Assume-Guarantee Compositional Reasoning

Marius Minea

“Politehnica” University of Timișoara, Romania

CS^2, Szeged, June 29, 2006
Talk outline

- Compositional reasoning and circular assume guarantee
- Assume-guarantee for hierarchical hybrid systems
- Compositional safety interfaces
- Compositionality in timed systems: survey and research agenda
Compositional reasoning: Motivation

Systems are complex ⇒ need to apply “divide and conquer” to verification of a system built from components
- verification of local properties of components
- deriving global properties from component properties
- without constructing a model of the entire system (impractical)

Compositional reasoning: generic term for rules of the form
- \(M_1 \models f_1 \land M_2 \models f_2 \Rightarrow \operatorname{Compose}(M_1, M_2) \models \operatorname{LogicOp}(f_1, f_2) \)
 e.g. parallel composition, and \(\operatorname{LogicOp} = \land \)
 \(M_1 \models f_1 \land M_2 \models f_2 \Rightarrow M_1 \parallel M_2 \models f_1 \land f_2 \)
- \(M_1 \prec M_2 \Rightarrow \operatorname{CompOp}(M_1) \prec \operatorname{CompOp}(M_2) \)
 ex. \(\prec = \) implementation, refinement; \(\operatorname{CompOp}(\cdot) = \cdot \parallel M \)
 \(M_1 \prec M_2 \Rightarrow M_1 \parallel M \prec M_2 \parallel M \)
- \(M_1 \prec S_1 \land M_2 \prec S_2 \Rightarrow \operatorname{Compose}(M_1, M_2) \prec \operatorname{Compose}(S_1, S_2) \)
The limitations of compositionality

Often, compositional rules are not strong enough. Consider implementations M_i and specifications S_i, $i = 1, 2$.

To prove $M_1 || M_2 < S_1 || S_2$ it would suffice if $M_1 < S_1$ and $M_2 < S_2$. But frequently, these individual relations are not satisfied:

– components M_1 and M_2 are not independently designed
– each relies on functioning in an environment provided by the other

Example:
specifications: $S_1 : x = 0$; $S_2 : y = 0$ (invariant)
modules: $M_1 : x_0 = 0; \text{next}(x) = y$; $M_2 : y_0 = 0; \text{next}(y) = x$

We have $M_1 || M_2 < S_1 || S_2$ but $M_1 \not< S_1$, $M_2 \not< S_2$

But in the right context: $M_1 || S_2 < S_1$ and $M_2 || S_1 < S_2$
Non-circular assume-guarantee

Familiar case: Hoare rules/triples for sequential programs:

\[
\{P\} \ S \ \{Q\}
\]

\(P\): precondition; \(S\): statement; \(Q\): postcondition

In practice, one can use pre/postconditions at procedure boundaries
– intraprocedural analysis to establish/check individual pre/postconditions
– interprocedural analysis starting with given pre/postconditions for a full program check

– languages with built-in assume-guarantee support
 (Eiffel: “design by contract”)
– add-ons, e.g. JML for Java (used by ESC/Java static analyzer)

```*/@ non_null */ int[] a;
//@ invariant 0 <= n && n <= a.length;
//@ requires input != null; ... etc.```
Circular assume-guarantee rules

Ideally, we’d like a rule of the form:

\[
\begin{align*}
\{P_2\} & \quad M_1 & \quad \{P_1\} \\
\{P_1\} & \quad M_2 & \quad \{P_2\}
\end{align*}
\]

\[
\{true\} \quad M_1 \parallel M_2 \quad \{P_1 \land P_2\}
\]

\((M_1 \text{ guarantees } P_1 \text{ provided that } M_2 \text{ guarantees } P_2 \text{ and vice versa})\) – is NOT generally sound!

Circular AGR originates with [Chandi & Misra’81, Jones ’83] [Abadi & Lamport ’93, ’95] (Composing/Conjoining Specifications)
Circular assume-guarantee rules

We refer to Reactive Modules [Alur & Henzinger '95]:
- modules with input and output variables, and transition relation
- dependence relation $\prec \subseteq (V_{in} \cup V_{out}) \times V_{out}$
- $x \prec y$: $y$ depends \textit{combinationally} on $x$;
  otherwise, only the next value of $y$ can depend sequentially on $x$
- synchronous parallel composition $M_1 \parallel M_2$ is possible if $V_{out}(M_1) \cap V_{out}(M_2) = \emptyset$ and $\prec_{M_1} \cup \prec_{M_2}$ is an acyclic relation

We define the \textit{refinement} (implementation) relation $M \leq M'$ iff
- $V(M') \subseteq V(M)$, $V_{out}(M') \subseteq V_{out}(M)$, $\prec_M \supseteq \prec'_{M'}$, $L(M)|_{V(M')} \subseteq L(M')$
  (first 3 conditions: if $P$ can function in a context, so can $Q$)

June 29, 2006 Marius Minea
Circular assume-guarantee rules (cont’d)

For reactive modules:

\[ M_1 || S_2 \leq S_1 || S_2 \]
\[ S_1 || M_2 \leq S_1 || S_2 \]
\[ M_1 || M_2 \leq S_1 || S_2 \]

(assuming all compositions well defined)

Advantage: although there are two relations to prove, each is simpler than the original one.

– specification description \( S_i \) usually simpler than implementation \( M_i \)

– need not compose two different implementations (often impossible)
Rule with temporal induction [McMillan’99]

Induction over (discrete) time steps is crucial to proving soundness of assume-guarantee rules
- e.g., for reactive modules, proof uses double induction:
  over sequence of sub-steps (variables that change combinationally)
  over sequence of steps (length of execution trace)

McMillan (’99) states an explicit temporal induction rule valid for invariants (safety properties)
- if $P_1 \land Q_1$ true at $0, 1, \ldots, t$ $\Rightarrow$ $Q_2$ true at $t + 1$
- if $P_2 \land Q_2$ true at $0, 1, \ldots, t$ $\Rightarrow$ $Q_1$ true at $t + 1$
- then for any $t$, $P_1 \land P_2$ $\Rightarrow$ $Q_1 \land Q_2$
Compositionality and refinement

[Henzinger’01] - study of the theory of interfaces

For a refinement relation $\leq$ and a composition relation $\|$, we wish:

If $M_1 \leq S_1$ and $M_2 \leq S_2$, then $M_1 \| M_2 \leq S_1 \| S_2$

Generally, insufficient – components may be incompatible.

⇒ two variants:

• If $M_1 \leq S_1$ and $M_2 \leq S_2$, and $M_1 \| M_2$ is defined,
  then $S_1 \| S_2$ is defined and $M_1 \| M_2 \leq S_1 \| S_2$
  – formalism focused on components
  – allows independent verification of components (bottom-up)

• If $M_1 \leq S_1$ and $M_2 \leq S_2$, and $S_1 \| S_2$ is defined,
  then $M_1 \| M_2$ is defined and $M_1 \| M_2 \leq S_1 \| S_2$
  – formalism focused on interfaces
  – allows independent implementation of interfaces (top-down)
Practical issues

– Tool support
  e.g. Mocha [Berkeley/UPenn]: support for proof decomposition using assume-guarantee proofs; also proof manager
  LTSA: assumptions modeled as finite-state automata

– Completeness of assume-guarantee rules
  given a system composed of (two) models, are there always environments that can be used in a circular AGR rule? How can they be found? [Namjoshi & Trefler ’00];
  L* learning approach [Giannakopoulou, Pasareanu et al.]

– Automated decomposition
  How to choose decomposition boundaries in a complex system?
Talk outline

- Compositional reasoning and circular assume guarantee

- *Assume-guarantee for hierarchical hybrid systems*

- Compositional safety interfaces

- Compositionality in timed systems: survey and research agenda
Assume-guarantee reasoning for hierarchical hybrid systems

[ T. A. Henzinger, M. Minea, V. Prabhu, HSCC 2001]

Goal: synthesis of hybrid systems by top-down refinement with verification supported by design flow

Achieved through:

- A formal model for hierarchical hybrid systems
- with compositional semantics
- and refinement checking by assume-guarantee reasoning
Masaccio: formal hybrid components [Henzinger ’00]

A formal model inspired from:

- Reactive Modules (discrete behavior and composition)
- Hybrid Automata (continuous and real-time behavior)

Enhancements:

- Parallel and serial composition, arbitrarily nested
- Discrete and continuous dynamics, arbitrarily composed
Sample Masaccio Model

Example: plant $g$ and controller with modes $f_1$ and $f_2$

- components with parallel and serial composition (Statecharts-like)
- explicit flow of control $+$ math. equations for continuous quantities

\[
\begin{align*}
\dot{x} &= f_1(x, y) \\
\dot{x} &= f_2(x, y) \\
y &= g(x, y)
\end{align*}
\]
Components in Masaccio

- **Component** = interface + behavior
- **Interface**: interaction with other components
  - Data: variables (input/output, discrete/continuous)
    - dependence relation: \( x \prec y \)
      for combinational await dependency \( y' = f(x') \)
  - Control: locations, with entry conditions on data variables

- **Behavior**: set of executions
  - Jumps: instantaneous change of variables \((\bar{x}, \bar{x}')\),
  - Flows: evolution of continuous variables:
    \((f, \delta)\) with function \(f\) and real-valued duration \(\delta\)

Execution: \((a, s_1 s_2 \cdots s_n, b)\) or \((a, s_1 s_2 \cdots)\), with \(s_i\) jumps or flows
Atomic Components

Atomic \textit{discrete} component: guarded \textit{difference} equation

\[
\begin{align*}
x & \rightarrow a \\
y & \\
z & \rightarrow b \\
g(x, y') & \rightarrow z' := f(x', y) \\
\end{align*}
\]

Atomic \textit{continuous} component: guarded \textit{differential} equation

\[
\begin{align*}
x & \\
y & \rightarrow a \\
z & \\
g(x, y) & \rightarrow \dot{z} := f(x, y) \\
\end{align*}
\]

+ Component operations: composition, renaming, hiding
Operations: Parallel Composition

- synchronous conjunction of component behaviors
  - jumps correspond to jumps, and flows to flows of same duration
- same entry locations and projections of entry conditions
- union of dependence relations: acyclic
- one component may preempt another
Operations: Serial Composition

- disjunction of component behaviors
- entry condition determines component that executes
- can represent different execution modes
Operations: Hiding and Renaming

- **Location hiding**: makes location internal to a component
  - strings together component executions
  - hidden location has entry condition $true \Rightarrow$ avoids deadlock
  - no-op jumps always possible at hidden locations
  - used with serial composition

- **Variable hiding**
- **Location and variable renaming**
Refinement in Masaccio

Trace inclusion: not satisfactory

Generally: $A < B$ means “$A$ is more specific than $B$”

Parallel composition:
if $A = B \parallel C$ then $A < B$  (B is projection of A)

Serial composition:
if $A = B + C$ then $A < B$  (B is prefix of A)

Formally: $A < B$ if every trace $(a, w, c)$ or $(a, w)$ of A
– is either a trace of B
– or has a prefix $(a, w', b)$ which is a trace of B

June 29, 2006  Marius Minea
Compositionality

All component operations are compositional w.r.t. refinement:

- $A < B \Rightarrow A + C < B + C$  
  serial composition

- $A < B \Rightarrow A \parallel C < B \parallel C$  
  parallel composition

- $A < B \Rightarrow A \setminus a < B \setminus a$  
  location hiding

- $A < B \Rightarrow A [a:=b] < B [a:=b]$  
  location renaming

- $A < B \Rightarrow A \setminus x < B \setminus x$  
  data hiding

  data renaming

More generally, for any context $C$:

$$A < B \Rightarrow C[A] < C[B]$$

context = component expression with placeholder  

e.g. $C[\cdot] = \cdot \parallel D + E$
Circular Assume-Guarantee Reasoning

\[
\begin{align*}
A_1 & \parallel B_2 < A_2 \parallel B_2 \\
A_2 & \parallel B_1 < A_2 \parallel B_2 \\
& \hspace{1cm} \\
A_1 & \parallel B_1 < A_2 \parallel B_2
\end{align*}
\]

\(A_1 < A_2\) only in the context of \(B_2\), etc.
- requires several conditions for circularity to be sound
- typically applicable only to safety properties
- nonblocking conditions: environment \(B_2\) may not block \(A_1\)
- typically used for parallel composition; for serial case: [Alur & Grosu ’00]
Assume-Guarantee in Masaccio

Refinement goal: context with two implementation components
Premises: individually replace components with specification

\[ C[A_1, B_2] < C[A_2, B_2] \]

\[ C[A_2, B_1] < C[A_2, B_2] \]

\[ C[A_1, B_1] < C[A_2, B_2] \]
Example: Communicating Robots

Two robots alternate leading and following

- robot in follow mode mimics robot in lead mode
- mode switch upon hitting obstacle or at random
Refinement of Robot Synchronization

Leading robot goes straight or turns around obstacle:

Implement more robust switching from lead to follow:
Error detection component takes place of switcher
Applying Assume-Guarantee

Need to prove:
\[ C_A[\text{Control}^I_A] \parallel C_B[\text{Control}^I_B] < C_A[\text{Control}_A] \parallel C_B[\text{Control}_B] \]

With assume-guarantee:
\[ C_A[\text{Control}^I_A] \parallel C_B[\text{Control}'_B] < C_A[\text{Control}_A] \parallel C_B[\text{Control}'_B] \]
\[ C_A[\text{Control}_A] \parallel C_B[\text{Control}^I_B] < C_A[\text{Control}_A] \parallel C_B[\text{Control}_B] \]

By compositionality:
\[ \text{Control}^I_A \parallel \text{Control}'_B < \text{Control}_A \parallel \text{Control}'_B \]
\[ \text{Control}_A \parallel \text{Control}^I_B < \text{Control}_A \parallel \text{Control}_B \]
Talk outline

• Compositional reasoning and circular assume guarantee

• Assume-guarantee for hierarchical hybrid systems

• Compositional safety interfaces

• Compositionality in timed systems: survey and research agenda
Compositional Safety Interfaces

[jointly with Jonas Elmqvist and Simin Nadjm-Tehrani, U. Linköping]

Context: component-based development of safety-critical systems

Question: how to characterize a component?
– behavior in the “intended” environment
– behavior in the presence of single / multiple faults

Two roles:
– component developer establishes safety interface
– component integrator performs safety analysis

(requiring only safety interfaces, not full component descriptions)
Fault Models

Component model: reactive modules [Alur & Henzinger], with input / output / private variables $V_i, V_o, V_p$.

To model input faults $\Rightarrow$ input $v_i$ of model $M$ no longer controlled by environment of $M$, but by a fault module.

Fault module $F$ for $M$: one input $v_i^f$, one output $v_i$, unconstrained transition relation (but could be specialized).

We might regard the fault as:
- composed with the module $M$
- composed with the environment $E$ of $M$: $F_i \circ E = F_i \| E[v_j/v_j^f]$
Satisfying Environment

Our problem:
given module $M$ and system safety property $\varphi$,
in what environment (of other components) must $M$ be placed
for the global system to satisfy $\varphi$?

(assuming no faults, or in the presence of specific single/double faults)

Observation: if $M \models \varphi$, then $M || E \models \varphi$

Else, if $M \not\models \varphi \Rightarrow$ iterative generation of satisfying environment $E$:
– model check $M || E_i \models \varphi$ and find counterexample
– restrict $E_i$ to $E_{i+1}$ to eliminate counterexample
– iterate to fixpoint

Done experimentally using tools for synchronous languages (Esterel
and SCADE/Lustre)
Given a module $M$, a system-level safety property $\varphi$, a safety interface $S^\varphi$ for $M$ is a tuple $\langle E^\varphi, \text{single}, \text{double} \rangle$ where

- $E^\varphi$ is an environment in which $M \parallel E^\varphi \models \varphi$.

- single $= \langle F^s, E^s \rangle$ where $F^s \subseteq \mathcal{P}(F)$ is a set of faults (the single fault resilience set and) $E^s$ is an environment such that $\forall F_k \in F^s$ $M \parallel (F_k \circ E^s) \models \varphi$

- double $= \{ \langle F^d_1, E^d_1 \rangle, \ldots, \langle F^d_n, E^d_n \rangle \}$ with $F^d_k = \langle F^1_k, F^2_k \rangle$, $F^1_k, F^2_k \in F$, $F^1_k \neq F^2_k$ such that $M \parallel ((F^1_k \parallel F^2_k) \circ E^d_k) \models \varphi$

$\Rightarrow$ safety interface characterizes satisfying environments for $M$ and $\varphi$ in the presence of up to double faults

Goal: reason about composed system using only safety interfaces

June 29, 2006  
Marius Minea
An $n$–module Assume-Guarantee Rule

Let $M_j$ and $E_j$ be modules and environments such that the compositions $I = M_1 \parallel \ldots \parallel M_n$ and $E = E_1 \hat{\parallel} \ldots \hat{\parallel} E_n$ exist and $V_j^E \subseteq V_I^{obs}$. Then, if $\forall j \forall k \ M_j \parallel E_j \leq E_k$ we have $M_1 \parallel \ldots \parallel M_n \leq E_1 \hat{\parallel} \ldots \hat{\parallel} E_n$.

(where $\hat{\parallel}$ denotes nonblocking parallel composition)

more succinctly: $\frac{\forall j \forall k \ M_j \parallel E_j \leq E_k}{M_1 \parallel \ldots \parallel M_n \leq E_1 \hat{\parallel} \ldots \hat{\parallel} E_n}$

In other words: each module $M_j$ when placed in its needed environment $E_j$ refines the needed environment for each other module $M_k$

For specifications $\varphi$: $\frac{\forall j \ M_j \parallel E_j \models \varphi}{M_1 \parallel M_2 \parallel \ldots \parallel M_n \models \varphi}$
Assume-Guarantee for Faults

Single faults:
– a module in any environment (even faulty one) still provides an environment that guarantees the safety of each other module in absence of another fault

\[ M_i \parallel E_i^\varphi \leq E_k^\varphi \]

– a module in a non-faulty environment provides for every other module an environment which makes it resilient to single faults.

\[ M_k \parallel E_k^\varphi \leq E_i^s \]

Double faults: similar (three types of rules);
some premises common or subsume those for single faults

Experimental results: model of aircraft leakage detection system
– compositional analysis for single and double faults \( \Rightarrow \) system safe
Talk outline

- Compositional reasoning and circular assume guarantee
- Assume-guarantee for hierarchical hybrid systems
- Compositional safety interfaces
- *Compositionality in timed systems: survey and research agenda*
Modularity for Timed and Hybrid Systems

[Alur, Henzinger 1997]

– modularity, liveness and control in reactive and real-time setting
– discuss the case of open systems
– extend formalism of reactive modules to real-time

– receptiveness condition becomes nonzenoness (diverging time)
– analyze it as game between system and environment (both symbolic and region-graph algorithm), extending timed I/O automata results
– circular assume-guarantee rule remains valid for receptive modules:
\[ P_1 \parallel Q_2 \leq Q_1 \land Q_1 \parallel P_2 \leq Q_2 \Rightarrow P_1 \parallel P_2 \leq Q_1 \parallel Q_2 \]
– use results for synthesis of receptive controllers
Simulation and Assume-Guarantee for TA

[ Serdar Tasiran, PhD thesis, Berkeley, 1998 ]

1) Checking *timed refinement* (timed trace inclusion/timed simulation)
   – gives algorithm using homomorphisms and reduction to checking of
     untimed homomorphism
   – relies on region graph construction, can quickly become complex

2) Assume-guarantee reasoning for timed abstractions ($\leq_L$ and $\leq_S$)
   – requires *non-blocking* timed automata: react to any input, and
     outputs change due to inputs only after non-zero delay
   – with these restrictions, circular assume-guarantee applies:
     
     $\text{if } A_1||B_2 \leq_L A_2 \text{ and } A_2||B_1 \leq_L B_2 \text{ then } A_1||B_1 \leq_L A_2||B_2$

   – same rule with same conditions applies for timed simulation $\leq_S$
   – witness simulation for composition: computed from simulation rela-
     tions for components
Assume-Guarantee Compositional Reasoning

Assume-Guarantee for Timing Diagrams

[Amla, Emerson, Namjoshi, Trefler 2001] “timing” in diagrams is not explicit, but implicit in a reference clock
– generic formalism for synchronous composition of processes with variables
– to deal with liveness: need closure $\text{CL}(P)$ of process $P$
– prior approach [Alur & Henzinger ’96] breaks circularity by taking closure of specification in one assumption: $\text{CL}(Q_1)||P_2 \models Q_2$
– here: additional check; can still use liveness properties as assumptions

Assumptions for $P_1||P_2 \models S$:
– $P_1||Q_2 \models Q_1$ and $Q_1||P_2 \models Q_2$ and $Q_1||Q_2 \models S(\text{spec})$
– $P_1||\text{CL}(T) \models T + Q_1 + Q_2$ or $P_2||\text{CL}(T) \models T + Q_1 + Q_2$

Timing diagrams are formalizations of those used in circuit descriptions (with clock waveforms, sequential and concurrent dependencies)
– could timing constraints be added?

June 29, 2006

Marius Minea
Timed Interfaces

[ de Alfaro, Henzinger, Stoelinga 2002 ]
– specify both assumptions (about timing of inputs) as well as guarantees (about timing of outputs)
– semantics is optimistic: an interface is well-formed if there is at least some environment that satisfies its input assumptions
– similarly, interfaces are compatible iff composition is well-formed, i.e., there exists a common environment in which they work

Issues in composition:
– control: error states (outputs are not acceptable inputs for the other)
– timing: time errors (one component cannot let time pass)

Game-theoretic view: interface compatibility checking using algorithms for solving timed games

Specific case:
– Timed interface automata with input and output invariants
Timed I/O Automata


Timed I/O Automata have:
– set $X$ of internal variables, defining set $Q$ of states;
– internal ($H$), input ($I$) and output ($O$) actions
– discrete transitions and timed trajectories

Requirements:
– **input action enabling**: $\forall x \in Q; \forall a \in I \ \exists x' \in Q . \ x \xrightarrow{a} x'$
– **time passage enabling**: in every state, time can either reach infinity or there is a trajectory which is (right-)closed and has a controllable action ($H \cup O$) enabled in its last state

Two TIOA are **comparable** if they have the same external actions.
Two TIOA are **composable** if they have disjoint internal variables and outputs, and hidden actions of one are not actions of the other.

*Implementation* relation $\leq$ is *trace inclusion*.
Assume-Guarantee for Timed I/O Automata

1) $A_1||B_2 \leq A_2||B_2$ and $A_2||B_1 \leq A_2||B_2$ imply $A_1||B_1 \leq A_2||B_2$ if:
   - traces of $A_2$ and $B_2$ are closed under limits (safety properties)
   - traces of $A_2$ and $B_2$ are closed under time extension
     (do not impose stronger time passage constraints than $A_1||B_1$)

2) Conditions on $A_2$ and $B_2$ can be relaxed by introducing variant contexts $A_3$ and $B_3$, closed under limits and time-extension. Then:
   $A_2||B_3 \leq A_3||B_3$ and $A_3||B_2 \leq A_3||B_3$ and
   $A_1||B_3 \leq A_2||B_3$ and $A_3||B_1 \leq A_3||B_2$ imply $A_1||B_1 \leq A_2||B_2$

Reasoning can be extended to liveness (with more complex conditions)
Problems in compositionality

Composability of components
– typically (in timed \{automata, diagrams, I/O automata\}): a separate precondition to any assume-guarantee rule
– timed interfaces: optimistic composability view (context exists)
– more general frameworks for composability (urgency types, etc.)

Q: what restrictions result in simple composability check?

Safety and Liveness
– most assume-guarantee results concerned with safety
– liveness in a timed context – for timed I/O automata

Q: how to extend liveness results for other models?
Problems in compositionality (cont.)

Completeness of assume-guarantee methods
– reasoning is usually incomplete for liveness; sometimes for safety
– [Namjoshi, Trefler 2000] give complete rule in untimed setting
– [Maier 2003]: cases where assume-guarantee cannot be both sound and complete

Q: in which setting is there completeness? usable in practice?

Automation of assume-guarantee checking

Q: for given goal $P_1 || Q_1 \models S$, how to split $S = P_2 || Q_2$?

Q: if helper assertions/contexts are needed, how to generate them?
– some answers (w/o explicit timing) in [Namjoshi, Trefler 2000]

Generating abstractions for timed systems
– related to question of generating appropriate environments