
Assume-Guarantee Compositional Reasoning

Marius Minea

“Politehnica” University of Timişoara, Romania

CS2, Szeged, June 29, 2006

Assume-Guarantee Compositional Reasoning 2

Talk outline

• Compositional reasoning and circular assume guarantee

• Assume-guarantee for hierarchical hybrid systems

• Compositional safety interfaces

• Compositionality in timed systems: survey and research agenda

June 29, 2006 Marius Minea

Assume-Guarantee Compositional Reasoning 3

Compositional reasoning: Motivation

Systems are complex ⇒ need to apply “divide and conquer”

to verification of a system built from components

– verification of local properties of components

– deriving global properties from component properties

– without constructing a model of the entire system (impractical)

Compositional reasoning: generic term for rules of the form

– M1 |= f1 ∧M2 |= f2 ⇒ Compose(M1, M2) |= LogicOp(f1, f2)

e.g. parallel composition, and LogicOp = ∧
M1 |= f1 ∧M2 |= f2 ⇒ M1||M2 |= f1 ∧ f2
– M1 ≺ M2 ⇒ CompOp(M1) ≺ CompOp(M2)

ex. ≺ = implementation, refinement; CompOp(·) = ·||M
M1 ≺ M2 ⇒ M1||M ≺ M2||M
– M1 ≺ S1 ∧M2 ≺ S2 ⇒ Compose(M1, M2) ≺ Compose(S1, S2)

June 29, 2006 Marius Minea

Assume-Guarantee Compositional Reasoning 4

The limitations of compositionality

Often, compositional rules are not strong enough.

Consider implementations Mi and specifications Si, i = 1,2.

To prove M1||M2 ≺ S1||S2 it would suffice if M1 ≺ S1 and M2 ≺ S2.

But frequently, these individual relations are not satisfied:

– components M1 and M2 are not independently designed

– each relies on functioning in an environment provided by the other

Example:

specifications: S1 : x = 0; S2 : y = 0 (invariant)

modules: M1 : x0 = 0;next(x) = y; M2 : y0 = 0;next(y) = x;

We have M1||M2 ≺ S1||S2 but M1 6≺ S1, M2 6≺ S2

But in the right context: M1||S2 ≺ S1 and M2||S1 ≺ S2

June 29, 2006 Marius Minea

Assume-Guarantee Compositional Reasoning 5

Non-circular assume-guarantee

Familiar case: Hoare rules/triples for sequential programs:

{P} S {Q}

P : precondition; S: statement; Q: postcondition

In practice, one can use pre/postconditions at procedure boundaries

– intraprocedural analysis to establish/check individual pre/postconditions

– interprocedural analysis starting with given pre/postconditions for a

full program check

– languages with built-in assume-guarantee support

(Eiffel: “design by contract”)

– add-ons, e.g. JML for Java (used by ESC/Java static analyzer)

/*@ non_null */ int[] a;

//@ invariant 0 <= n && n <= a.length;

//@ requires input != null; ... etc.

June 29, 2006 Marius Minea

Assume-Guarantee Compositional Reasoning 6

Circular assume-guarantee rules

Ideally, we’d like a rule of the form:

{P2} M1 {P1}
{P1} M2 {P2}

{true} M1||M2 {P1 ∧ P2}

(M1 guarantees P1 provided that M2 guarantees P2 and vice versa)

– is NOT generally sound !

Circular AGR originates with [Chandi & Misra’81, Jones ’83]

[Abadi & Lamport ’93, ’95] (Composing/Conjoining Specifications)

June 29, 2006 Marius Minea

Assume-Guarantee Compositional Reasoning 7

Circular assume-guarantee rules

We refer to Reactive Modules [Alur & Henzinger ’95]:

– modules with input and output variables, and transition relation

– dependence relation ≺⊆ (Vin ∪ Vout)× Vout

– x ≺ y: y depends combinationally on x;

otherwise, only the next value of y can depend sequentially on x

– synchronous parallel composition M1||M2 is possible

if Vout(M1) ∩ Vout(M2) = ∅ and ≺M1
∪ ≺M2

is an acyclic relation

We define the refinement (implementation) relation M ≤ M ′ iff

V (M ′) ⊆ V (M), Vout(M ′) ⊆ Vout(M), ≺M⊇≺′
M , L(M)|V (M ′) ⊆ L(M ′)

(first 3 conditions: if P can function in a context, so can Q)

June 29, 2006 Marius Minea

Assume-Guarantee Compositional Reasoning 8

Circular assume-guarantee rules (cont’d)

For reactive modules:

M1||S2 ≤ S1||S2
S1||M2 ≤ S1||S2

M1||M2 ≤ S1||S2

(assuming all compositions well defined)

Advantage: although there are two relations to prove, each is simpler

than the original one.

– specification description Si usually simpler than implementation Mi

– need not compose two different implementations (often impossible)

June 29, 2006 Marius Minea

Assume-Guarantee Compositional Reasoning 9

Rule with temporal induction [McMillan’99]

Induction over (discrete) time steps is crucial to proving soundness of

assume-guarantee rules

– e.g., for reactive modules, proof uses double induction:

over sequence of sub-steps (variables that change combinationally)

over sequence of steps (length of execution trace)

McMillan (’99) states an explicit temporal induction rule valid for

invariants (safety properties)

– if P1 ∧Q1 true at 0,1, · · · , t ⇒ Q2 true at t + 1

– if P2 ∧Q2 true at 0,1, · · · , t ⇒ Q1 true at t + 1

– then for any t, P1 ∧ P2 ⇒ Q1 ∧Q2

June 29, 2006 Marius Minea

Assume-Guarantee Compositional Reasoning 10

Compositionality and refinement

[Henzinger’01] - study of the theory of interfaces

For a refinement relation ≤ and a composition relation ||, we wish:

If M1 ≤ S1 and M2 ≤ S2, then M1||M2 ≤ S1||S2

Generally, insufficient – components may be incompatible.

⇒ two variants:

• If M1 ≤ S1 and M2 ≤ S2, and M1||M2 is defined,

then S1||S2 is defined and M1||M2 ≤ S1||S2

– formalism focused on components

– allows independent verification of components (bottom-up)

• If M1 ≤ S1 and M2 ≤ S2, and S1||S2 is defined,

then M1||M2 is defined and M1||M2 ≤ S1||S2

– formalism focused on interfaces

– allows independent implementation of interfaces (top-down)

June 29, 2006 Marius Minea

Assume-Guarantee Compositional Reasoning 11

Practical issues

– Tool support

e.g. Mocha [Berkeley/UPenn]: support for proof decomposition us-

ing assume-guarantee proofs; also proof manager

LTSA: assumptions modeled as finite-state automata

– Completeness of assume-guarantee rules

given a system composed of (two) models, are there always envi-

ronments that can be used in a circular AGR rule ? How can they be

found ? [Namjoshi & Trefler ’00];

L* learning approach [Giannakopoulou, Pasareanu et al.]

– Automated decomposition

How to choose decomposition boundaries in a complex system ?

June 29, 2006 Marius Minea

Assume-Guarantee Compositional Reasoning 12

Talk outline

• Compositional reasoning and circular assume guarantee

• Assume-guarantee for hierarchical hybrid systems

• Compositional safety interfaces

• Compositionality in timed systems: survey and research agenda

June 29, 2006 Marius Minea

Assume-Guarantee Compositional Reasoning 13

Assume-guarantee reasoning for hierarchical hybrid systems

[T. A. Henzinger, M. Minea, V. Prabhu, HSCC 2001]

Goal: synthesis of hybrid systems by top-down refinement

with verification supported by design flow

Achieved through:

• A formal model for hierarchical hybrid systems

• with compositional semantics

• and refinement checking by assume-guarantee reasoning

June 29, 2006 Marius Minea

Assume-Guarantee Compositional Reasoning 14

Masaccio: formal hybrid components [Henzinger ’00]

A formal model inspired from:

• Reactive Modules (discrete behavior and composition)

• Hybrid Automata (continuous and real-time behavior)

Enhancements:

• Parallel and serial composition, arbitrarily nested

• Discrete and continuous dynamics, arbitrarily composed

June 29, 2006 Marius Minea

Assume-Guarantee Compositional Reasoning 15

Sample Masaccio Model

Example: plant g and controller with modes f1 and f2

– components with parallel and serial composition (Statecharts-like)

– explicit flow of control + math. equations for continuous quantities

� �

� �

+

-
y

-x

� �

� �u u
ẋ = f1(x, y)

� �

� �

u u
ẋ = f2(x, y)

||

� �

� �

u
y

ẏ = g(x, y)

June 29, 2006 Marius Minea

Assume-Guarantee Compositional Reasoning 16

Components in Masaccio

• Component = interface + behavior
• Interface: interaction with other components
– Data: variables (input/output, discrete/continuous)

– dependence relation: x ≺ y
for combinational await dependency y′ = f(x′)

– Control: locations, with entry conditions on data variables
� �

� �

-
x

ua ������1 ���
��H

HHHY

PPPPPPq

-

--
y

-
z

ub

• Behavior: set of executions
– Jumps: instantaneous change of variables (x̄, x̄′),
– Flows: evolution of continuous variables:

(f, δ) with function f and real-valued duration δ
Execution: (a, s1s2 · · · sn, b) or (a, s1s2 · · ·), with si jumps or flows

June 29, 2006 Marius Minea

Assume-Guarantee Compositional Reasoning 17

Atomic Components

Atomic discrete component: guarded difference equation

� �

� �

-
x

ua -
g(x, y′) → z′ := f(x′, y)

-
y

-
z

ub

Atomic continuous component: guarded differential equation

� �

� �

-
x

ua --
g(x, y) → ż := f(x, ẏ)

-
y

-
z

ub

+ Component operations: composition, renaming, hiding

June 29, 2006 Marius Minea

Assume-Guarantee Compositional Reasoning 18

Operations: Parallel Composition

Execution:

(a, s1, b)

� �

� �

ua g1

?

s1

u
b

‖ � �

� �

ua g2

?

t1

?

t2 u
c

u
Execution:

(a, t1t2, c)

Execution: (a,

(
s1
t1

)
, b)

• synchronous conjunction of component behaviors

jumps correspond to jumps, and flows to flows of same duration

• same entry locations and projections of entry conditions

• union of dependence relations: acyclic

• one component may preempt another

June 29, 2006 Marius Minea

Assume-Guarantee Compositional Reasoning 19

Operations: Serial Composition

Execution:

(a, s1, b)

� �

� �

ua g1

?

s1

u
b

+ � �

� �

ua g2

?

t1

?

t2 u
c

u
Execution:

(a, t1t2, c)
Executions: (a, s1, b), (a, t1t2, c)

• disjunction of component behaviors

• entry condition determines component that executes

• can represent different execution modes

June 29, 2006 Marius Minea

Assume-Guarantee Compositional Reasoning 20

Operations: Hiding and Renaming

• Location hiding: makes location internal to a component

– strings together component executions

– hidden location has entry condition true ⇒ avoids deadlock

– no-op jumps always possible at hidden locations

– used with serial composition

� �

� �
ua -ub

+q q q q q q q q q q q
� �

� �
ub -uc ⇒

hide b

� �

� �
ua - -u

b

uc

• Variable hiding

• Location and variable renaming

June 29, 2006 Marius Minea

Assume-Guarantee Compositional Reasoning 21

Refinement in Masaccio

Trace inclusion: not satisfactory

Generally: A < B means “A is more specific than B”

Parallel composition:

if A = B ‖ C then A < B (B is projection of A)

Serial composition:

if A = B + C then A < B (B is prefix of A)

Formally: A < B if every trace (a, w, c) or (a, w) of A

– is either a trace of B

– or has a prefix (a, w′, b) which is a trace of B

June 29, 2006 Marius Minea

Assume-Guarantee Compositional Reasoning 22

Compositionality

All component operations are compositional w.r.t. refinement:

• A < B ⇒ A + C < B + C serial composition

• A < B ⇒ A ‖ C < B ‖ C parallel composition

• A < B ⇒ A \ a < B \ a location hiding

• A < B ⇒ A [a:=b] < B [a:=b] location renaming

• A < B ⇒ A \ x < B \ x data hiding

• A < B ⇒ A [x:=y] < B [x:=y] data renaming

More generally, for any context C:

A < B ⇒ C[A] < C[B]

context = component expression with placeholder

e.g. C[·] = · ‖ D + E

June 29, 2006 Marius Minea

Assume-Guarantee Compositional Reasoning 23

Circular Assume-Guarantee Reasoning

A1 ‖ B2 < A2 ‖ B2

A2 ‖ B1 < A2 ‖ B2

A1 ‖ B1 < A2 ‖ B2

A1 < A2 only in the context of B2, etc.

– requires several conditions for circularity to be sound

– typically applicable only to safety properties

– nonblocking conditions: environment B2 may not block A1

– typically used for parallel composition; for serial case: [Alur&Grosu ’00]

June 29, 2006 Marius Minea

Assume-Guarantee Compositional Reasoning 24

Assume-Guarantee in Masaccio

Refinement goal: context with two implementation components

Premises: individually replace components with specification

C[A1,B2] < C[A2,B2]
C

A1 B2 <
C

A2 B2

C[A2,B1] < C[A2,B2]
C

A2 B1 <
C

A2 B2

C[A1,B1] < C[A2,B2]
C

A1 B1 <
C

A2 B2

June 29, 2006 Marius Minea

Assume-Guarantee Compositional Reasoning 25

Example: Communicating Robots

Two robots alternate leading and following
� �

� �

uqqqqqqqqqqqqqqqq
q q q q q q q q q q q q q q q qRobotA‖-

leftB: B

-
rightB: B

-
leadB: B

-
switchB: B

-
obstA: B

-
leftA: B

-
rightA: B

-
leadA: B

-
switchA: B

� �

� �

uqqqqqqqqqqqqqqqq ControlA
+ -

leftA: B
-

rightA: B
-

leadA: B
-

switchA: B

� �

� �

u
-

xA: R
-

yA: RMotorA

� �
� �

u uq q q q q q q
uq q q q q q qLeadA

� �
� �
u
u FollowA

• robot in follow mode mimics robot in lead mode

• mode switch upon hitting obstacle or at random

June 29, 2006 Marius Minea

Assume-Guarantee Compositional Reasoning 26

Refinement of Robot Synchronization

Leading robot goes straight or turns around obstacle:� �

� �

uqqqqqqqqqqq q q q q q q q q q q qLeadA
‖

-
leadB: B

-
obstA: B

-
switchB: B

-
leftA: B

-
rightA: B

-
leadA: B

-
switchA: B

uq q q q q q q q q q q q q

� �

� �

uqqqqqqqqqqq MoveA
+

� �

� �

u

u
SwitcherA

� �

� �

u uq q q q q q q q q q q
uq q q q q q q q q q qStraightA

� �

� �
u
u TurnA

Implement more robust switching from lead to follow:
Error detection component takes place of switcher

� �

� �

qqqqqqqqqqq
q q q q q q q q q q qLeadI

A‖-
clkA: R

-
leadB: B

-
obstA: B

-
switchB: B

-
leftA: B

-
rightA: B

-
leadA: B

-
switchA: B

uqqqqqqqqqqq q q q q q q q q q q q

� �

� �

u

u
MoveA

� �

� �

u

u
ErrdetectA

June 29, 2006 Marius Minea

Assume-Guarantee Compositional Reasoning 27

Applying Assume-Guarantee

Need to prove:

CA[ControlIA]||CB[ControlIB] < CA[ControlA]||CB[ControlB]

With assume-guarantee:

CA[ControlIA]||CB[Control′B] < CA[ControlA]||CB[Control′B]

CA[ControlA]||CB[ControlIB] < CA[ControlA]||CB[ControlB]

By compositionality:

ControlIA ‖ Control′B < ControlA ‖ Control′B
ControlA ‖ ControlIB < ControlA ‖ ControlB

June 29, 2006 Marius Minea

Assume-Guarantee Compositional Reasoning 28

Talk outline

• Compositional reasoning and circular assume guarantee

• Assume-guarantee for hierarchical hybrid systems

• Compositional safety interfaces

• Compositionality in timed systems: survey and research agenda

June 29, 2006 Marius Minea

Assume-Guarantee Compositional Reasoning 29

Compositional Safety Interfaces

[jointly with Jonas Elmqvist and Simin Nadjm-Tehrani, U. Linköping]

Context: component-based development of safety-critical systems

Question: how to characterize a component ?

– behavior in the “intended” environment

– behavior in the presence of single / multiple faults

Two roles:

– component developer establishes safety interface

– component integrator performs safety analysis

(requiring only safety interfaces, not full component descriptions)

June 29, 2006 Marius Minea

Assume-Guarantee Compositional Reasoning 30

Fault Models

Component model: reactive modules [Alur & Henzinger],

with input / output / private variables Vi, Vo, Vp.

To model input faults ⇒ input vi of model M no longer controlled by

environment of M , but by a fault module.

Fault module F for M : one input v
f
i , one output vi, unconstrained

transition relation (but could be specialized).

We might regard the fault as:

– composed with the module M

– composed with the environment E of M : Fi ◦ E = Fi||E[vj/v
f
j]

June 29, 2006 Marius Minea

Assume-Guarantee Compositional Reasoning 31

Satisfying Environment

Our problem:

given module M and system safety property ϕ,

in what environment (of other components) must M be placed

for the global system to satisfy ϕ ?

(assuming no faults, or in the presence of specific single/double faults)

Observation: if M |= ϕ, then M ||E |= ϕ

Else, if M 6|= ϕ ⇒ iterative generation of satisfying environment E:

– model check M ||Ei |= ϕ and find counterexample

– restrict Ei to Ei+1 to eliminate counterexample

– iterate to fixpoint

Done experimentally using tools for synchronous languages (Esterel

and SCADE/Lustre)

June 29, 2006 Marius Minea

Assume-Guarantee Compositional Reasoning 32
Safety Interfaces

Given a module M , a system-level safety property ϕ, a safety interface

Sϕ for M is a tuple 〈Eϕ, single, double〉 where

• Eϕ is an environment in which M ‖ Eϕ |= ϕ.

• single = 〈F s, Es〉 where F s ⊆ P(F) is a set of faults (the single

fault resilience set and) Es is an environment such that ∀Fk ∈ F s

M ‖ (Fk ◦ Es) |= ϕ

• double = {〈F d
1 , Ed

1〉, . . . , 〈F
d
n , Ed

n〉} with F d
k = 〈F1

k , F2
k 〉, F1

k ,F2
k ∈ F ,

F1
k 6= F2

k such that M ‖ ((F1
k ‖ F2

k) ◦ Ed
k) |= ϕ

⇒ safety interface characterizes satisfying environments for M and φ

in the presence of up to double faults

Goal: reason about composed system using only safety interfaces

June 29, 2006 Marius Minea

Assume-Guarantee Compositional Reasoning 33

An n–module Assume-Guarantee Rule

Let Mj and Ej be modules and environments such that the composi-

tions I = M1 ‖ . . . ‖ Mn and E = E1 ‖̂ . . . ‖̂En exist and V E
j ⊆ V I

obs.

Then, if ∀j∀k Mj ‖ Ej ≤ Ek we have M1 ‖ . . . ‖ Mn ≤ E1 ‖̂ . . . ‖̂En.

(where ‖̂ denotes nonblocking parallel composition)

more succinctly:
∀j∀k Mj ‖ Ej ≤ Ek

M1 ‖ . . . ‖ Mn ≤ E1 ‖̂ . . . ‖̂En

In other words: each module Mj when placed in its needed environ-

ment Ej refines the needed environment for each other module Mk

For specifications ϕ:
∀j Mj ‖ Ej |= ϕ ∀j∀k Mj ‖ Ej ≤ Ek

M1 ‖ M2 ‖ . . . ‖ Mn |= ϕ

June 29, 2006 Marius Minea

Assume-Guarantee Compositional Reasoning 34

Assume-Guarantee for Faults

Single faults:

– a module in any environment (even faulty one) still provides an en-

vironment that guarantees the safety of each other module in absence

of another fault

Mi ‖ E
ϕ
i ≤ E

ϕ
k

– a module in a non-faulty environment provides for every other mod-

ule an environment which makes it resilient to single faults.

Mk ‖ E
ϕ
k ≤ Es

i

Double faults: similar (three types of rules);

some premises common or subsume those for single faults

Experimental results: model of aircraft leakeage detection system

– compositional analysis for single and double faults ⇒ system safe

June 29, 2006 Marius Minea

Assume-Guarantee Compositional Reasoning 35

Talk outline

• Compositional reasoning and circular assume guarantee

• Assume-guarantee for hierarchical hybrid systems

• Compositional safety interfaces

• Compositionality in timed systems: survey and research agenda

June 29, 2006 Marius Minea

Assume-Guarantee Compositional Reasoning 36

Modularity for Timed and Hybrid Systems

[Alur, Henzinger 1997]

– modularity, liveness and control in reactive and real-time setting

– discuss the case of open systems

– extend formalism of reactive modules to real-time

– receptiveness condition becomes nonzenoness (diverging time)

– analyze it as game between system and environment (both symbolic

and region-graph algorithm), extending timed I/O automata results

– circular assume-guarantee rule remains valid for receptive modules:

P1||Q2 ≤ Q1 ∧Q1||P2 ≤ Q2 ⇒ P1||P2 ≤ Q1||Q2

– use results for synthesis of receptive controllers

June 29, 2006 Marius Minea

Assume-Guarantee Compositional Reasoning 37

Simulation and Assume-Guarantee for TA

[Serdar Tasiran, PhD thesis, Berkeley, 1998]

1) Checking timed refinement (timed trace inclusion/timed simulation)

– gives algorithm using homomorphisms and reduction to checking of

untimed homomorphism

– relies on region graph construction, can quickly become complex

2) Assume-guarantee reasoning for timed abstractions (≤L and ≤S)

– requires non-blocking timed automata: react to any input, and

outputs change due to inputs only after non-zero delay

– with these restrictions, circular assume-guarantee applies:

if A1||B2 ≤L A2 and A2||B1 ≤L B2 then A1||B1 ≤L A2||B2

– same rule with same conditions applies for timed simulation ≤S

– witness simulation for composition: computed from simulation rela-

tions for components

June 29, 2006 Marius Minea

Assume-Guarantee Compositional Reasoning 38

Assume-Guarantee for Timing Diagrams

[Amla, Emerson, Namjoshi, Trefler 2001] “timing” in diagrams is not

explicit, but implicit in a reference clock

– generic formalism for synchronous composition of processes with

variables

– to deal with liveness: need closure CL(P) of process P

– prior approach [Alur & Henzinger ’96] breaks circularity by taking

closure of specification in one assumption: CL(Q1)||P2 |= Q2

– here: additional check; can still use liveness properties as assumptions

Assumptions for P1||P2 |= S:

– P1||Q2 |= Q1 and Q1||P2 |= Q2 and Q1||Q2 |=S(spec)

– P1||CL(T) |= T + Q1 + Q2 or P2||CL(T) |= T + Q1 + Q2

Timing diagrams are formalizations of those used in circuit descriptions

(with clock waveforms, sequential and concurrent dependencies)

– could timing constraints be added ?

June 29, 2006 Marius Minea

Assume-Guarantee Compositional Reasoning 39

Timed Interfaces

[de Alfaro, Henzinger, Stoelinga 2002]

– specify both assumptions (about timing of inputs) as well as

guarantees (about timing of outputs)

– semantics is optimistic: an interface is well-formed if there is at least

some environment that satisfies its input assumptions

– similarly, interfaces are compatible iff composition is well-formed,

i.e., there exists a common environment in which they work

Issues in composition:

– control: error states (outputs are not acceptable inputs for the other)

– timing: time errors (one component cannot let time pass)

Game-theoretic view : interface compatibility checking using algorithms

for solving timed games

Specific case:

– Timed interface automata with input and output invariants

June 29, 2006 Marius Minea

Assume-Guarantee Compositional Reasoning 40

Timed I/O Automata

[Kaynar & Lynch, 2003/2004]

Timed I/O Automata have:

– set X of internal variables, defining set Q of states;

– internal (H), input (I) and output (O) actions

– discrete transitions and timed trajectories

Requirements:

– input action enabling: ∀x ∈ Q ; ∀a ∈ I ∃x′ ∈ Q . x
a→ x′

– time passage enabling: in every state, time can either reach infinity

or there is a trajectory which is (right-)closed and has a controllable

action (H ∪O) enabled in its last state

Two TIOA are comparable if they have the same external actions.

Two TIOA are composable if they have disjoint internal variables

and outputs, and hidden actions of one are not actions of the other.

Implementation relation ≤ is trace inclusion.

June 29, 2006 Marius Minea

Assume-Guarantee Compositional Reasoning 41

Assume-Guarantee for Timed I/O Automata

1) A1||B2 ≤ A2||B2 and A2||B1 ≤ A2||B2 imply A1||B1 ≤ A2||B2 if:

– traces of A2 and B2 are closed under limits (safety properties)

– traces of A2 and B2 are closed under time extension

(do not impose stronger time passage constraints than A1||B1)

2) Conditions on A2 and B2 can be relaxed by introducing variant

contexts A3 and B3, closed under limits and time-extension. Then:

A2||B3 ≤ A3||B3 and A3||B2 ≤ A3||B3 and

A1||B3 ≤ A2||B3 and A3||B1 ≤ A3||B2 imply A1||B1 ≤ A2||B2

Reasoning can be extended to liveness (with more complex conditions)

June 29, 2006 Marius Minea

Assume-Guarantee Compositional Reasoning 42

Problems in compositionality

Composability of components

– typically (in timed {automata, diagrams, I/O automata}): a separate

precondition to any assume-guarantee rule

– timed interfaces: optimistic composability view (context exists)

– more general frameworks for composability (urgency types, etc.)

Q: what restrictions result in simple composability check?

Safety and Liveness

– most assume-guarantee results concerned with safety

– liveness in a timed context – for timed I/O automata

Q: how to extend liveness results for other models ?

June 29, 2006 Marius Minea

Assume-Guarantee Compositional Reasoning 43

Problems in compositionality (cont.)

Completeness of assume-guarantee methods

– reasoning is usually incomplete for liveness; sometimes for safety

– [Namjoshi, Trefler 2000] give complete rule in untimed setting

– [Maier 2003]: cases where assume-guarantee cannot be both sound

and complete

Q: in which setting is there completeness ? usable in practice ?

Automation of assume-guarantee checking

Q: for given goal P1||Q1 |= S, how to split S = P2||Q2 ?

Q: if helper assertions/contexts are needed, how to generate them ?

– some answers (w/o explicit timing) in [Namjoshi, Trefler 2000]

Generating abstractions for timed systems

– related to question of generating appropriate environments

June 29, 2006 Marius Minea

