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Basic definitionsBasic definitions

 Constraint satisfaction problem (CSP):
– Take finitely many variables and domains for their values (a 

subset of the reals, integers, or more abstract sets),
– Impose finitely many constraints on these variables (e.g., 

must be different, their sum is at most 10, their product is 
positive, and the like),

– Find one or all feasible points, i.e. a set of values for all 
variables from their respective domains such that all 
constraints are satisfied.

 Global optimization problem (GOP):
– Take a constraint satisfaction problem and add a real valued 

function, the objective function, assigning a value to all 
feasible points.

– Find those feasible points, whose objective function value is 
minimal (maximal) among all feasible points.



Reasons for researchingReasons for researching
global optimizationglobal optimization

 Earn money:
–Global optimization is NP-hard.
–Many constraint satisfaction problems are NP-complete.
–Getting a deep understanding of GOP and CSP may provide 

insight in the P vs NP problem.
–Solving the P vs NP problem will get you one million dollars.

 If you don't manage to solve the P vs NP problem:
–Protein folding is a huge global optimization problem (money 

from the pharmaceutical industry).
–Robotics is a fast developing industrial area, where a lot of 

CSPs and GOPs have to be solved efficiently.
–Many chemical engineering tasks lead to global optimization 

problems. Solving them properly is a prerequisite to the 
design of more efficient chemical reactors.



Reasons for researchingReasons for researching
global optimization (ctd.)global optimization (ctd.)

 Industrial problems leading to GOP:
– Design of mechanical structures leads to global optimization 

problems when it comes to safety related issues (aircrafts, 
bridges, buildings).

– Structural integrity of mechanical products (motors, breaks,...) 
leads to global optimization problems coupled with ordinary or 
partial differential equations.

 Other industrial applications (traveling salesman, logistics, 
commodity flow problems, scheduling,...) also lead to GOPs.

 However, there is something special with the blue problems 
in the list above:
The solution to those is useful only if the global optimum 
can be found with guarantee!
Thus, simulated annealing, genetic algorithms, and the like 
cannot be used!



Reasons for researchingReasons for researching
global optimization (ctd.)global optimization (ctd.)

 Global optimization is everywhere.
 Living your life is a global optimization problem.
 The constraints are apparent most of the time, though 

some 'hidden' ones might exist.
 Finding the correct objective function might prove 

difficult, and might be more of a philosophical 
problem rather than a purely mathematical one.

 At the end, you might realize that just earning money 
is probably not the best way to live your life.



Real World ProblemReal World Problem

He pulled open the next door ... there was nothing frightening in here, just a 
table with seven differently shaped bottles standing on it in a line.

“Snape's,” said Harry. “What do we have to do?”

They stepped over the threshold and immediately a fire sprang up behind 
them in the doorway... At the same instant, black flames shot up in the 
doorway leading onwards. They were trapped.

“Look!” Hermione seized a roll of paper lying next to the bottles. Harry 
looked over her shoulder to read it: 



Real World Problem (ctd.)Real World Problem (ctd.)

Danger lies before you, while safety lies behind,
Two of us will help you, whichever you would find,
One among us seven will let you move ahead,
Another will transport the drinker back instead,
Two among our number hold only nettle wine,
Three of us are killers, waiting hidden in line,
Choose, unless you wish to stay here for evermore,
To help you in your choice, we give you these clues four:
First, however slyly the poison tries to hide
You will always find some on nettle wine's left side;
Second, different are those who stand at either end,
But if you would move onwards, neither is your friend;
Third, as you see clearly, all are different size,
Neither dwarf nor giant holds death in their insides;
Fourth, the second left and the second on the right
Are twins once you taste them, though different at first sight.



Real World Problem (ctd.)Real World Problem (ctd.)

Hermione read the paper several times... At last, she clapped her hands.

“Got it,” she said. “The smallest bottle will get us through the black fire - 
towards the Stone.”

...

“Which one will get you back through the purple flames?”

Hermione pointed at the rounded bottle at the right end of the line.

   



ModelingModeling

 From the Latin word “modellus”, typical human way of 
coping with the reality

 Mechanical models
– Astronomy
– Architecture

 Mathematical models used since Hellenic Age
– Geometry (~600 BC (Thales) — ~300 BC (Euclid))
– Circumference / Diameter of Earth (~250 BC (Erathostenes))
– Arithmetic (~240 AD (Diophantus) — ~800 AD (Al-Khwarizmi))
– Astronomy (~150 AD (Ptolemy))
– Physics
– Economics

 Visual models
– Anatomy



Modeling (ctd.)Modeling (ctd.)

 A model is a simplified version of something that is 
real.

 Represents a real-world object by other, simpler 
objects.

 Structures the knowledge about the real world.
 Reduction to those phenomena and aspects which 

are considered important.
 Usefulness is restricted to its scope of application.
 Serve many different needs ─ the modeling goal

– explain phenomena, make predictions,
– control environment, decision making,
–maintenance, normative components,
– communication



Mathematical ModelingMathematical Modeling

 Represents a real-world problem by mathematical 
objects in a formalized mathematical language.

 Can be analyzed by mathematical theory and 
algorithms.

 Represents the knowledge about the real-world by 
concepts, variables, relations, data.

 Makes models accessible to computers.

– First computers were human (usually lowly paid women).

–Since ENIAC (1945) larger and more complicated 
mathematical models have become accessible.

 Models became attractive to military and industry.



Real World Problem (revisited)Real World Problem (revisited)

A constraint satisfaction problem



Real World Problem (again)Real World Problem (again)

We see that the
information provided in
the book is not enough
to solve the problem.

The size information,
which Harry and
Hermione have is vital
for solving the CSP.



Real World Problem (again, ctd.)Real World Problem (again, ctd.)

 Did J.K.Rowling know what she did when inventing 
that riddle?

 Is there a possibility of assigning bottle sizes in such 
a way that the riddle is solvable by Hermione?

 Mathematical model:

where HP(L,S) denotes the CSP we have seen before 
with given assignment of “largest” and “smallest”.



Real World Problem (again, ctd.)Real World Problem (again, ctd.)

 It turns out that there are indeed many solutions to 
that problem.

 Eight of the solutions are essentially different in 
placing the smallest and largest bottles. All other 
bottle sizes can then be assigned arbitrarily.

 Four of these eight essentially different solutions 
correspond to the book.

 These four solutions are grouped in two pairs, the 
difference being just the assignment of the largest 
bottle.



MinesweeperMinesweeper

 Very well known game, 
for which even world 
championships are orga-
nized and world record 
lists are maintained.

 Mathematical Questions:
– is a given game solvable by 

applying logical rules only? 
– Given a board preset with 

mines and numbers. Is 
there a consistent way to 
write numbers and mine 
symbols on all closed 
fields?



Minesweeper (2)Minesweeper (2)

 The consistency question can be modeled as a 
mathematical problem:

 Richard Kaye (2000) has proved that SAT (logical 
satisfiability problem) can be reduced in polynomial 
time to the Minesweeper Consistency Problem 
(MCP). Therefore, MCP is NP-complete.



A geometric problemA geometric problem

 Take a sphere S of radius 1. Is it possible to add 
another 12 spheres with radius 1 in three dimensional 
space in such a way that all of them touch S?
– this is indeed possible,
– there is an infinite number of solutions.

 Is it also possible to solve the same problem with 13 
instead of 12 spheres?
– this is impossible!

 Model:

 What is the smallest possible radius of S such that 13 
spheres of radius 1 can touch?



Kepler's problemKepler's problem

 The 18th Hilbert Problem (Part C):
Ich weise auf die ... Frage hin, wie man unendlich viele Körper von der 
gleichen vorgeschriebenen Gestalt, etwa Kugeln mit gegebenem Radius ..., 
im Raume am dichtesten einbetten, d.h. so lagern kann, daß das Verhältnis 
des erfüllten Raumes zum nichterfüllten Raum möglichst groß ausfällt.

 Kepler conjectured, that the cubic face centered 
packing is the densest possible packing of spheres in 
three dimensions.

 1953 Lszl Fejes-Tth: finite dimensional optimization 
problems are sufficient.

 1990 Wu-Yi Hsiang: Proof, incomplete, in parts too 
unclear.

 1999 T. Hales: Computer-assisted proof, likely correct 
but very bulky and quite difficult to check, using global 
optimization techniques.



RoboticsRobotics

 Parallel robot at the European 
Synchrotron Radiation Facility 
in Grenoble

 Can handle up to 1000kg
 Accuracy better than 1m

 Guarantee stability
 Compute the work space 
 Compute the current position

 Design problem for robots



Worst-Case AnalysisWorst-Case Analysis
of structures with FEMof structures with FEM

 Linear FEM equations become very
difficult if the materials involved
have uncertain material data (in
reality 10-20% in elasticity and
1-5% in diameter).

 State-of-the-Art is Monte-Carlo-Simulation, which in 
general underestimates the worst case, sometimes by 
orders of magnitude.

 Industry relevant problems usually involve many 
thousand variables.



Global Optimization (GOP)Global Optimization (GOP)

 Mathematical Formulation:



Classes of solution algorithmsClasses of solution algorithms

 incomplete
Clever heuristic methods without safeguards,

       usually finding good feasible points quite fast                 
       (e.g. genetic algorithms),

 asymptotically complete
Find the global optimum with probability 1 after              

       running arbitrarily long (e.g. simulated annealing),
 complete

Reaches the global optimum with guarantee, if no          
       rounding errors happen and the running time is              
       not limited. After finite time an approximation of             
       the optimum within tolerances is found (branch and      
       bound methods, e.g., BARON, LINGO, COCOS,...), 

 rigorous
Finds the global optimum with guarantee (except           

       in degenerate cases) (e.g. GLOBSOL, Gloptlab)



                Internal MathematicalInternal Mathematical
                Representation                        Representation        

 The mathematical representation of a problem is

where (currently) the sets S are boxes,         is 
allowed.

 The algorithmic representation is in graph form using 
not a tree (or forest) as usual but a directed acyclic 
graph (DAG).

 The DAG is simplified so that every subexpression is 
contained only once.

 The DAG is similar to a parse tree. Every node 
represents a mathematical operation (e.g. +,*,exp,...).

min f  x 
s.t. F  x ∈S c , x∈S v

f =0



Directed Acyclic Graph (DAG)Directed Acyclic Graph (DAG)

 DAG representation of 
the GOP

– similar to a computational 
tree

– a node may have more 
than one parent

– constants and variables 
are sources (roots)

– constraints and objective 
function are sinks (leaves)   
                                                
                                                
         

Constraints Objective

7 4 3 x y

^^2

* ** *

*

min
∈[−∞,∞]

+

+

+

"y"
∈[1,2]

"z"
∈[−1,4]

∈[−∞,6]

''x''
∈[−∞,∞]

*

min 3x2z+4xy3z
s.t . z=4x+3y3

s.t . 7x+3x2z+7y3≤6
s.t . y∈[1,2],z∈[−1,4 ]



 Evaluation works similar to compute trees by 
performing a graph walk.

 Caching keeps evaluation work minimal.
 The whole problem is stored in one graph.
 Defining short­cuts makes it possible to replace 

graph walks by evaluation functions. Short-cuts 
may be defined at every node.

 Additional elementary functions can easily be 
incorporated.

Evaluation of a DAGEvaluation of a DAG



                                              DAG SimplificationDAG Simplification

1.Common 
subexpressions 
are detected.

2.Constants and 
equality 
constrained 
subnodes are 
propagated.

3.Simple Sums are 
resolved.

4.Simple Products 
are resolved.

2x1x2+x2=1
x1x2=1/5

x xxxx1 2 2 1 2

+ *

*
2

[1] [1/5]

x2=3/5
x1x2=1/5

x2=3/5
x1=1/3

1

2 3

4

1, 2

3

4

x x1 2

+

*
2

[1]

[1/5]
x x1 2

*

[3/5]

[1/5]

x x1 2 [3/5][1/3]



DAG - different interpretations 1DAG - different interpretations 1

 Without change a DAG can be interpreted in 
different ways to suit the various algorithms.
– the original most compact form has the smallest 

number of variables and it reduces the number of non-
linear equalities ⇒ local optimization

– interpreting all named vertices as variables leads to a 
representation which is equivalent to the original 
problem definition.

– to improve the sparsity pattern of the Hessian, 
additional vertices can be regarded as variables, hereby 
increasing sparsity as well as dimension.



DAG Interpretation (compact)DAG Interpretation (compact)

 The true mathematical 
form of the problem 
represented by the 
example DAG is

 It has lowest possible 
dimension 2 and no 
non-linear equalities.

Constraints Objective

7 4 3 x y

^^2

* ** *

*

min
∈[−∞,∞]

+

+

+

"y"
∈[1,2]

"z"
∈[−1,4]

∈[−∞,6]

''x''
∈[−∞,∞]

*

min 3x24xy34x+3y3
s.t . 7x+3x24x+3y37y3≤6

s.t . −1≤4x+3y3≤4
s.t . y∈[1,2]



DAG Interpretation (sparse)DAG Interpretation (sparse)

Constraints Objective

7 4 3 x y

^^2

* ** *

*

min
∈[−∞,∞]

+

+

+

"y"
∈[1,2]

"z"
∈[−1,4]

∈[−∞,6]

''x''
∈[−∞,∞]

"g1"

"g2"
*

 The DAG on the left 
corresponds to the 
problem

where the     are 
variables "generated" by 
reinterpretation of 
vertices.

min g14g2xz

s.t . 4x+3g2=z

s.t . 7x+g17g2≤6

s.t . 3x2z=g1

s.t . y3=g2

s.t . y∈[1,2],z∈[−1,4 ]

gi



DAG Interpretation (quadDAG Interpretation (quad++sep.)sep.)

Constraints Objective

7 4 3 x y

^^2

* ** *

*

min
∈[−∞,∞]

+

+

+

"y"
∈[1,2]

"z"
∈[−1,4]

∈[−∞,6]

''x''
∈[−∞,∞]

*

*
"g "

2

"g "
4

"g "
1

"g "
3,1

"g "
3,2

 Generating quadratic+ 
separable form requires 
implicit vertex splitting 
(e.g. in Gloptlab). 

min g1+g3,2

s.t . 4x+3g2=z

s.t . 7x+g17g2≤6
s.t . 3g4z=g1

s.t . y3=g2

s.t . 4xz=g3,1

s.t . g3,1g2=g3,2

s.t . x2=g4

s.t . y∈[1,2 ],z∈[−1,4 ]



DAG Interpretation (ternary)DAG Interpretation (ternary)

Constraints Objective

7 4 3 x y

^^2

* ** *

*

min
∈[−∞,∞]

+

+

+

"y"
∈[1,2]

"z"
∈[−1,4]

∈[−∞,6]

''x''
∈[−∞,∞]

*

*

+

"g "
2

"g "
4

"g "
1

"g "
3,1

"g "
3,2

"c "1

 For a ternary 
representation the sums 
have to be implicitly
split,
too.

min g1+g3,2

s.t . 4x+3g2=z
s.t . c17g2≤6
s.t . 7x+g1=c1
s.t . 3g4z=g1

s.t . y3=g2

s.t . 4xz=g3,1

s.t . g3,1g2=g3,2

s.t . x2=g4

s.t . y∈[1,2 ],z∈[−1,4 ]



                  ExampleExample

 Interval evaluation and 
constraint propagation 
produce bounds on 
each node

 No reduction on the 
domain of the variables

 The bounds on 
intermediate nodes are 
improved compared to 
interval evaluation

min x1x2+x3  4x1−x2x3  , x1∈[1,2 ] , x2,x3∈[3,4 ]



                                  Example (ctd.)Example (ctd.)

 Linear enclosures produced 
using slopes give redundant 
constraints, e.g.

24x1−2−48x2−4−32x3−4≤0



Constraint PropagationConstraint Propagation

 Known bounds on the graph's nodes are combined by 
using well-known estimates for the operations and 
their partial inverses.

 For                             we define the
forward propagation

and the backward propagation

                                                                                    .
 Iteration of the two propagation methods improves 

the estimates for all nodes.

h=f g1 ,g2 ,,gk 

hn+1 =f g1
n+1  ,g2

n+1  ,,gk
n+1  ∩hn 

g j
n+1 =f−1, j g1

n+1  ,g2
n+1  ,,g j−1

n+1  ,g j+1
n  ,,gk

n   hn+1  ∩g j
n 



                              Constraint PropagationConstraint Propagation

 In these tests we compare the DAG based constraint 
propagator (with Xuan-Ha Vu, EPFL) with other state-of-the-
art algorithms.

 Hull is one of the best public domain programs (IRIN).
 ILOG Solver is the best known commercial solver.
 FBPD ist 7-75(18) times faster than (tuned!) ILOG Solver and

5-600(150) times faster than IRIN Hull.



The  COCONUT environmentThe  COCONUT environment



                                  DesignDesign

Problem

AMPL
Model

GAMS
Model




Solution













Strategy
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                                          Basic Modular SetupBasic Modular Setup

Strategy Eng.

Management M.Inference Mod. Report Mod.

main part of algorithm,
searches, makes decisions,

file generation (AMPL,
GAMS, C, Fortran90,...),
human readable output,
checkpointing

structure analysis, bisection,
local optimization, interval
analysis, constr. propagation,
linear relaxation, convex opt.,
search graph analysis,...

problem management,
search graph management,
resource management



                          Modular designModular design

 The API is designed to make the development of
the various module types independent of each 
other and independent of the internal model 
representation.

 Provides data abstraction, basic strategy 
structures.

 A collection of C++ classes.
 Supports dynamic linking.



 Five different module types, all modules are 
subclasses of one of these classes.

 Communication with the strategy engine by the
search database and standard control structures.

 The API implementation (w/o modules) consists 
of 80000 lines of C++ code and a few perl scripts, 
organized into 250 files, 5 MB of disk space.

 Available modules: 70000 lines (2 MB) without 
libraries, Strategy engine: 49800 lines (1.73 MB).

                                        Modular design (ctd.)Modular design (ctd.)



        Search graphSearch graph

 Starts at the original 
model

 Contains relaxations
 and splits.
 It is not a tree since it 

might also contain 
glueings.

 Some of the nodes will 
be terminal, since they 
can be solved 
completely.



    Model RelationsModel Relations

Relaxation

Reduction
e.g. Add cut,
prune box

Split



                              Internal RepresentationInternal Representation

 Models (subproblems) are organized in the search 
graph, represented by a Directed Acyclic Graph 
(DAG).

 Most nodes in the search graph contain deltas, 
i.e. differences between models.

 Additional information for models can be stored 
in the search database in a flexible way.



                            Search graphSearch graph

 The search graph has one focus onto the search 
node for each model, which is analyzed by the 
algorithm.

 Every model in the search focus is copied into an 
enhanced structure – the work node. A reference 
to this work node is passed to the inference 
engines.

 The graph itself can be analyzed by graph 
analyzers, modules which use search inspectors.



          Search databaseSearch database

 The search database stores the deltas, the model 
annotations, and whatever data the inference 
engines want to store.

 It is organized like SQL databases in tables with 
columns and rows.

 The columns can hold (almost) arbitrary C++ 
objects, even methods which compute the column 
values dynamically depending on the evaluation 
context.

 For every worknode a view of the database is 
created, restricting the database to a subset and a 
specific evaluation context.



                                    Inference ModulesInference Modules

 Two types of inference modules are designed:
– inference engines analyze work nodes:

• Model analysis (e.g. find convex part)
• Model reduction (e.g. pruning, fathoming)
• Model relaxation (e.g. linear relaxation)
• Model splitting (e.g. bisection)
• Model glueing (e.g. undo excessive splitting)
• Update local information (e.g. local optimization)

– graph analyzers analyze the search graph:
• Box selection
• Gluing

 Inference modules never change the model but 
calculate which changes may be made and are 
considered useful.



                              Inference Modules:Inference Modules:
               General features               General features

 All inference modules only advertise changes.
 There is a fixed documentation structure defined.

–Services Provided
– Limits
–Structure, Prerequisites of Input
–Structure, Features of Output
–Control Parameters
– Termination Reason

 They produce a result where every possible 
change is listed together with a weight (the higher 
the weight the more important the change).

 They collect statistical data to support the 
strategy engine in making decisions.



                                                Inference Engines implemented Inference Engines implemented 
                      as State of the Art                      as State of the Art

 Several state of the art techniqnes were 
implemented as inference engines:
–Starting point generator (STOP, PGSL, Simple)
– Local optimization (DONLP2-INTV, IPfilter)
–Karush-John-Condition Generator
–Point Verifier
–Simple convexity detection
–Exclusion Box
– Interval constraint propagation (2 versions)
– Linear Relaxation
– LP solver (CPLEX, XPRESS-MP, LP_solve)
–Basic Splitter
–BCS (box covering solver)



                                      Contributions from the outsideContributions from the outside
                    of the COCONUT project                    of the COCONUT project

 Bernstein modules by J. Garloff & A. Smith (U. Konstanz)
 Verified lower bounds for convex relaxations

by Ch. Jansson (TU Hamburg-Harburg)
 GAMS reader by the GAMS consortium
 Taylor arithmetic by G. Corliss (Marquette U.)
 Asymptotic arithmetic by K. Petras (U. Braunschweig)
 XPRESS-MP commercial LP-solver (Dash Optimization)
 GLOBAL – Heuristic global optimizer (T. Czendes, U. 

Szeged)
 PGSL – Heuristic global optimizer (B. Raphael, EPFL)

We are happy that researchers and companies from
outside the COCONUT project agreed to complement
our efforts in integrating the known techniques:



                          Report ModulesReport Modules

 This class of modules produces output.
Various types of files and human readable output 
will have to be created.

 Examples:
–Solution Report (for humans, AMPL, GAMS,...)
–Conversion to other solvers or input formats

(BARON, LGO, C, Fortran90, GlobSol, LINGO, Frontline 
Interval Solver, Gloptlab)

–Structure Report
–Progress Information
–Checkpointing
–Debugging output



                                            Management ModulesManagement Modules

 Corresponding to every internal part of the 
program, a class of management modules is 
designed. All management modules are derived 
from two base classes.
–Management modules

• Model management
• Data collection
• Resource management

– Initializers
• Initialization management
• Destruction management

 Management modules never calculate anything. 
They just perform some of the changes which 
have been advertised by inference modules.



                                  COCOSCOCOS
                   combination strategy                   combination strategy

 There are two versions of the solution strategy 
COCOS
–Hardcoded, which has to be recompiled and linked
–Strategy Engine based, which can be changed 

dynamically
 Presolve phase at the root node
 Main phase (Branch & Bound)
 Postsolve phase

–Clean up and postanalysis of all small boxes found



                                  Strategy EngineStrategy Engine



                        Strategy EngineStrategy Engine

 It is the core of the algorithm
 It calls the management modules, the report modules, 

and the inference modules in succession.
 It can be programmed using a strategy language 

(interpreted, Python based).
– (Semi-)interactive and automatic solution process
–Debugging and single-stepping of strategies
–Object oriented, dynamically typed objects, garbage 

collected
–Easily extendable



                              Strategy Engine (ctd.)Strategy Engine (ctd.)

 Manages the search graph via the search graph 
manager,

 Manages the search database via the database 
manager,

 Uses a component framework (CORBA based) to 
communicate with the inference engines,

 Launches inference engines dynamically (on 
need) to avoid memory overload,

 Provides a management interface,
 Strategy engine is itself a component, so 

multilevel strategies are possible,
 Prepared for distributed and parallel computing, 

and distributed memory



                              ExtensibilityExtensibility

 The strategy language makes it easy to change 
the strategy.

 A registration phase during initialization removes 
the need to recompile the program when new 
inference engines are added.

 Registration also allows us to balance scientific 
and commercial interests: 
– Free but reduced core version with open API 

specification
– Free strategy engine with basic strategy
–Advanced commercial components

 Extending the system by external contributers is 
made easy by this modular design.



Open ProblemsOpen Problems

 Use global optimization methods for solving the 
following problems
–Protein folding,
–minimizing the Gibbs free energy function (Chemistry),
–Robotics design.

 Adding ODE and PDE constraints to global 
optimization algorithms (necessary, e.g., for trajectory 
design, aircraft design,...).

 Adding black-box-functions to branch-and-bound 
global optimization algorithms.

 Automatically removing symmetries from GOPs.
 Exploiting sparsity efficiently.
 etc.



Questions and DiscussionQuestions and Discussion

Thank you!


