Mining Chemical Graphs

Tamás Horváth

Department of Computer Science III, University of Bonn and Fraunhofer Institute Autonomous Intelligent Systems (IAIS) Schloss Birlinghoven, Sankt Augustin Germany

Fraunhofer Institut Intelligente Analyse- und Informationssysteme

RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT

Learning and Mining Graph Structured Data

many real-world machine learning/data mining problems:

graphs: natural way of representing structural aspects of a domain

- e.g., chemical graphs, the web graph, social networks, ...
- traditional machine learning/data mining algorithms: assume single fixed-width table representation of the data
 - **columns** \rightarrow features
 - rows \rightarrow objects
- graph structured objects:

no natural single fixed-width table representation

- ⇒ traditional machine learning/data mining algorithms **cannot** be applied
- ⇒ new methods specific to graph structured objects have to be developed

Learning and Mining Graph Structured Data

most frequent scenarios:

- i. single-graph mining:
 objects are (tuples of) vertices of a single graph
 - e.g., classification of webpages (vertices) in the WWW (web graph)
- ii. transactional graph mining:

instances are graphs; elements of a graph database

e.g., classification of chemical compounds (molecular graphs)

this talk: transactional graph mining in chemical graphs

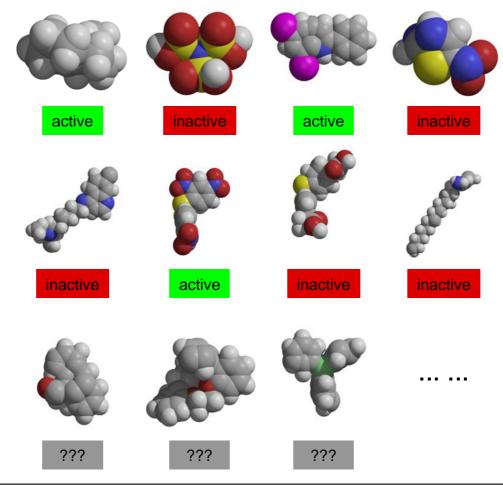
universitä

Fraunhofer Institut Intelligente Analyse- und Informationssysteme

Application Example

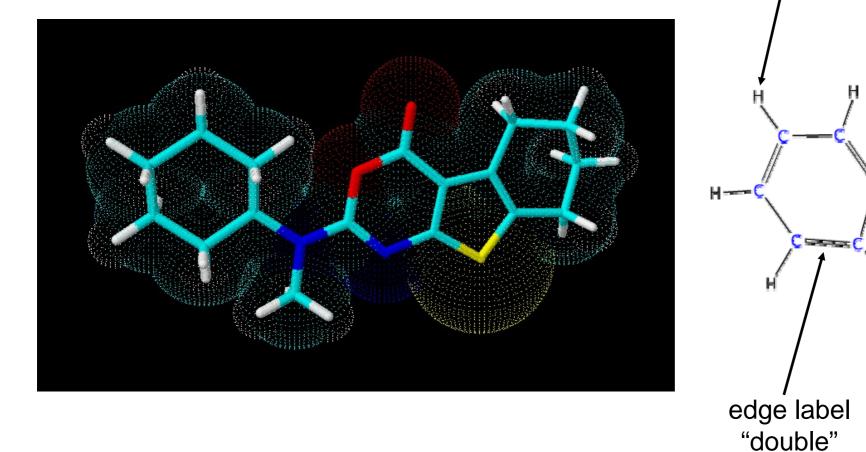
virtual screening in drug discovery:

 select a limited number of candidate compounds from millions of database molecules that are most likely to possess a desired biological activity



molecules give rise to labeled undirected graphs

Molecules and their Molecular Graphs



Fraunhofer Institut Intelligente Analyse- und Informationssysteme

universitätbonn

Outline

fer Institut Intelligente Analyse- und Informationssysteme

- descriptive graph mining (local patterns)
 - 1. frequent subgraph mining in *outerplanar graphs*
 - 2. frequent subgraph mining in graphs of bounded treewidth
- conclusion

EINISCHE FRIEDRICH-WILHEL4S-UNIVERSITÄT

Fraunhofer Institut Intelligente Analyse- und Informationssysteme

Frequent Subgraphs

frequent graphs:

- D: set of labeled graphs,
- t: positive integer threshold,
- ϕ : a quasi-order (i.e., reflexive and transitive) **specialization relation** on D
- a labeled graph H is **t-frequent** w.r.t. D and ϕ if $|\{G \in D: H \phi G\}| \ge t$
- $F(D,t,\varphi)$: set of t-frequent graphs w.r.t. D and φ
 - apart from *antisymmetry*, **special case** of [Mannila & Toivonen, '97]

usual cases:

- φ is the **subgraph isomorphism** (*partial order*): graph mining community
- φ is the **homomorphism**: ILP community

both cases: ϕ is **monotone** w.r.t. t-frequency

Enumeration Complexity

if the size of the output is **exponential** in that of the input, it is **hopeless** the algorithm to work in time **polynomial** in the size of the input

universität

HEINISCHE FRIEDRICH-WILHELIS-UNIVERSITÄ

Fraunhofer Institut

Intelligente Analyse- und Informationssysteme

- ⇒ characterize the **delay time** [Johnson, Yannakakis & Papadimitriou, '88]
- I. polynomial delay:
 - the delay time is **always polynomial** in the **size** of the input
- **II.** incremental-polynomial delay:
 - the delay time is polynomial in the **combined size** of the input and the output **so far** computed
 - after exponentially many steps the delay time may become exponential
- III. output-polynomial time:
 - the total time is polynomial in the **combined size** of the input and the **entire** output
 - after **polynomially** many steps the delay time may become **exponential**
- most liberal class: output-polynomial time

Mining Frequent Connected Subgraphs

Given a set D of labeled graphs and an integer $t \ge 0$, **enumerate** the set of t-frequent *connected* subgraphs of D w.r.t. subgraph isomorphism

universität

Fraunhofer Institut

Intelligente Analyse- und

Informationssysteme

- i.e. the set $F(D,t,\leq)$, where \leq is the subgraph isomorphism
- \otimes cannot be solved in output-polynomial time (unless P = NP)
 - can be used to decide the Hamiltonian path problem
 - existing approaches resort to various heuristic strategies and restrictions of the search space (often with good empirical performance)
- © enumerable in incremental-polynomial time if D is a set of **forests**
 - [Chi, Muntz, Nijssen, & Kok, '05; survey paper]

What about problem classes beyond trees?

 challenge for graph mining: systematic study of graph classes and non-standard specialization operators

This Work

problem class:

- D: labeled d-tenuous outerplanar graphs (*will be defined*)
- Section 2: block and bridge preserving subgraph isomorphism (*will be defined*)
 - **constrained** subgraph isomorphism that generalizes subtree isomorphism

universitä

HEINISCHE FRIEDRICH-WILHELIS-UNIVERSITÄ

Fraunhofer Institut

Intelligente Analyse- und

Informationssysteme

Why this fragment?

- 1. natural first class beyond trees
 - trees, outerplanar graphs, and planar graphs form a natural hierarchy (Hedetniemi, Chartrand, & Geller, '71)

2. practically relevant class

- NCI dataset: **94.3%** (**236180** out of **250251**) compounds are **11**-tenuous outerplanar graphs
- 3. subgraph isomorphism is often **not adequate**, e.g., in chemoinformatics

universitätbonn

RHEINISCHE FRIEDRICH-WILHELIS-UNIVERSITÄT

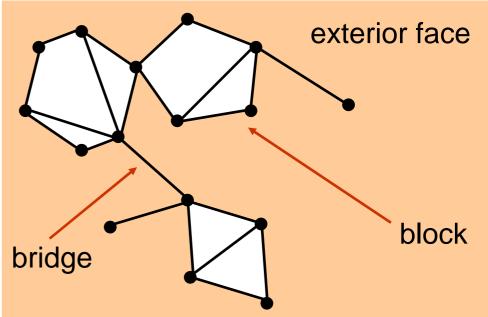
Fraunhofer Institut Intelligente Analyse- und Informationssysteme

Outerplanar Graphs

- (Chartrand & Harary, '67)
- graphs which can be embedded in the **plane** in such a way that
 - **no two edges intersect** except at a vertex in common
 - all vertices lie on the exterior face

Properties:

- outerplanarity can be decided in linear time [Mitchell, 79]
- each block (biconnected components) with n vertices has a unique Hamiltonian cycle
- the unique Hamiltonian cycle
 - can be computed in **linear** time [Mitchell, 79]
 - has at most **n-3 diagonals**



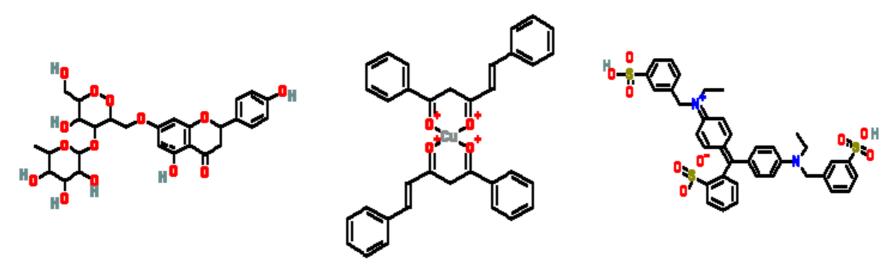
universität**bonn**

HEINISCHE FRIEDRICH-WILHELIS-UNIVERSITÄT

Fraunhofer Institut Intelligente Analyse- und Informationssysteme

d-Tenuous Outerplanar Graphs

- each block has at most **d** diagonals
- NCI dataset:
 - 236180 outerplanar graphs (out of the 250251 compounds)
 - **d** = **11** (only for one compound)
 - **d = 5** for **236083** (**99.99%**) outerplanar graphs
- **d** is considered to be a **constant**!
- **some** molecular graphs from the NCI dataset:



IAIS

RHEINISCHE FRIEDRICH-WILHEL4S-UNIVERSITÄT

Fraunhofer Institut Intelligente Analyse- und Informationssysteme

Subgraph Isomorphism between Outerplanar Graphs

- G, H outerplanar graphs; How **hard** is to decide whether H is **subgraph isomorphic** to G?
- Output Provide a straight of the straight o
 - generalizes the NP-complete **subforest isomorphism** problem [Garey & Johnson, 79]
- Output NP-complete even if H is connected but not biconnected and G is biconnected [Syslo,'82]
- \odot decidable in time $O(|V(H)| \cdot |V(G)|^2)$ if H is **biconnected** [Lingas, '89]
 - unlabeled case
- \odot decidable in time $O(|V(H)|)^{1.5} \cdot |V(G)|)$ if H and G are **trees** [Matula, 78]
 - improved bound $O(|V(H)|^{1.5}/\log(|V(H)|) \cdot |V(G)|)$ [Shamir &Tsur, '99]

BBP Subgraph Isomorphism

G, H outerplanar graphs; a **block and bridge preserving (BBP)** subgraph isomorphism from H to G is a subgraph isomorphism from H to G mapping

universität

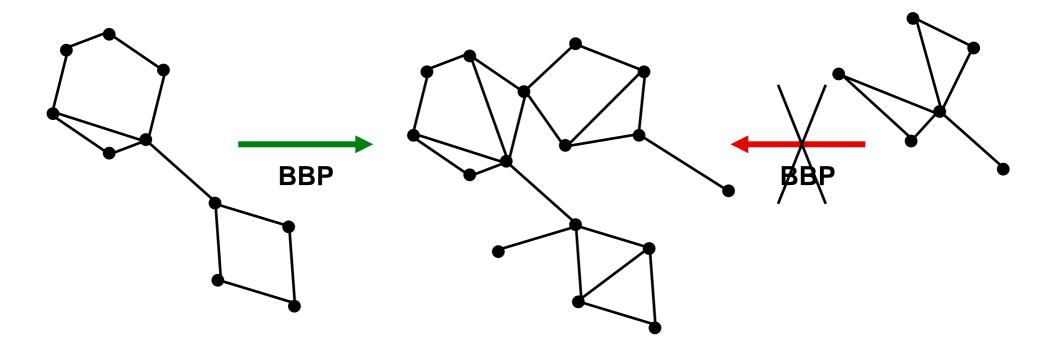
HEINISCHE FRIEDRICH-WILHELS-UNIVERSITA

Fraunhofer Institut

Intelligente Analyse- und

Informationssysteme

- different blocks of H to different blocks of G
- bridges of H to bridges of G



Mining d-Tenuous Outerplanar Graphs w.r.t. BBP Subgraph Isomorphism

k-pattern: outerplanar graph s.t. number of **blocks** + number of **vertices** not belonging to any block is **k**

input: set D of d-tenuous outerplanar graphs and t > 0

- 1. compute the set of frequent 1-patterns (i.e., vertices + blocks)
- 2. compute the set of **frequent 2-patterns** (i.e., *edges* + *two blocks* with a common vertex + a *block* and an *edge* with a common vertex)
- 3. k = 2
- 4. while $L_k \neq \emptyset$ do
- 5. ++k
- 6. generate the set C_k of candidates from L_{k-1}
- 7. compute the set L_k from of frequent patterns from C_k
- 8. endwhile
- 9. return $\cup_{k>0} L_k$

Four Algorithmic Problems

- 1. canonical string representation for outerplanar graphs
 - string encoding of outerplanar graphs unique modulo isomorphism

universitä

Fraunhofer Institut

Intelligente Analyse- und Informationssysteme

- defines a **total order** on outerplanar graphs allowing advanced data structures that support **fast search**
- 2. computing **frequent biconnected** outerplanar graphs
- 3. candidate generation
- 4. frequency counting

1. Canonical String Representation – BB-Trees

block and bridge graph of an outerplanar graph G

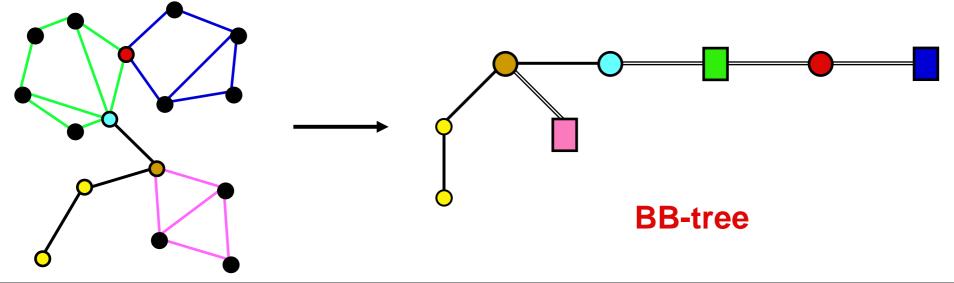
- vertices: bridge vertices
 - + vertices belonging to more than one block

universität

Fraunhofer Institut

Intelligente Analyse- und Informationssysteme

- + a vertex for each block
- edges: bridges of G + edges representing vertex containment
- ⇒ always a free tree
- ⇒ we generalize the depth-first canonical representation for free trees [Chi, Muntz, Nijssen & Kok, '05; survey]



2. Frequent Biconnected Outerplanar Graphs

universitä

Fraunhofer Institut

Intelligente Analyse- und Informationssysteme

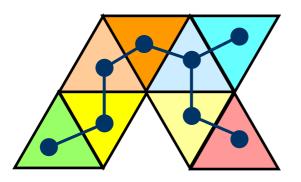
input: set *D* of d-tenuous outerplanar graphs, integer t > 0

- 1. compute in L_0 the set of **frequent cycles** of D
- **2.** for k = 1 to d do
- 3. **let** C_k be the set of candidate biconnected graphs containing k diagonals
 - removing any diagonal results in an element of L_k
- 4. let L_k be the frequent patterns in C_k
- 5. endfor
- 6. return $\cup_{k=0,1,\ldots,d} L_k$

2. Frequent Biconnected Outerplanar Graphs – Step 1

How to compute the **frequent cycles** in Step 1?

a d-tenuous biconnected outerplanar graph has at most 2^{d+1} cycles



- always a tree
- bijection between subtrees and cycles

universitä

Fraunhofer Institut

 \Rightarrow the number of cycles of a d-tenuous graph G is bounded by O(|V(G)|)

- the cycles of a graph can be enumerated with linear delay [Read & Tarjan, 75]
- Lemma: For d-tenuous outerplanar graphs, the set of frequent cycles can be computed in time polynomial in the size of D.

Main Result

- 1. canonical string representation for outerplanar graphs \checkmark
- 2. computing frequent biconnected graphs
- 3. candidate generation \checkmark
- 4. frequency counting \checkmark
- Thm: Frequent d-tenuous outerplanar graphs can be enumerated in incremental polynomial time.

universitä

RHEINISCHE FRIEDRICH-WILHELIS-UNIVERSITÄ

Fraunhofer Institut

Intelligente Analyse- und Informationssysteme

Empirical Evaluation

NCI dataset [http://cactus.nci.nih.gov/]

- most frequently used benchmark graph dataset
 - usually small subsets are considered (e.g., HIV)
- 250251 chemical graphs
 - about **10⁷** compounds have so far been synthesized
- 236180 (i.e., 94.3%) outerplanar
- max number of diagonals (d) is small:
 - d = 11
 - d = 5 for 236083 (i.e., 99.99%)

universitä

Fraunhofer Institut

Intelligente Analyse- und Informationssysteme

Universität**bonn**

Fraunhofer Institut Intelligente Analyse- und Informationssysteme

Empirical Evaluation - Results

frequency	number of candidates	number of frequent patterns	candidate generation time (sec)	frequency counting time (hours)
 10%	925	521	0.80	1,98
5%	2688	1929	2.42	4,41
2%	36889	33247	60.08	12.10
1%	94606	83159	266.07	25.54

- for 10% and 5%: entire set of frequent patterns
- for 2% and 1%: only the first 18 levels

Current implementation is NOT optimized!

Outline

Institut Intelligente Analyse- und Informationssysteme

descriptive graph mining (local patterns)

- 1. frequent subgraph mining in outerplanar graphs
- 2. frequent subgraph mining in graphs of *bounded treewidth*
- conclusion

Treewidth (Robertson & Seymour,'86)

measure of tree-likeness of graphs

tree decomposition of a graph G:

tree T with vertices labeled by subsets of the vertex set of G s.t.

- i. for each edge e of G there is a vertex of T whose label contains the vertices of e
- ii. for each vertex v of G, the induced subgraph of T defined by the vertices whose labels contains v is connected (i.e., it is a tree)

width of T:

maximum cardinality of the labels -1

treewidth of G:

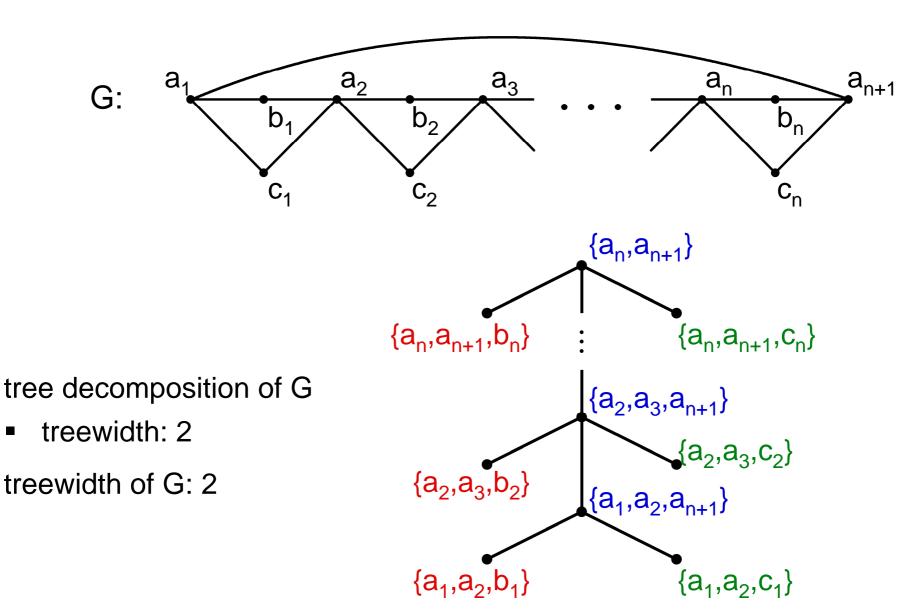
the width of a tree decomposition of G with the smallest width

• e.g., the treewidth of trees is 1; the treewidth of cycles is 2

HEINISCHE FRIEDRICH-WILHELIS-UNIVERSITÄT

Fraunhofer Institut Intelligente Analyse- und Informationssysteme

Treewidth: Example



Treewidth (cont'd)

- **useful** parameter in the design of algorithms
 - many hard problems become polynomial for graphs of bounded treewidth

universität

HEINISCHE FRIEDRICH-WILHELS-UNIVERSITÄ

Fraunhofer Institut

Intelligente Analyse- und Informationssysteme

- many graph classes have bounded treewidth
 - e.g., *k*-outerplanar graphs: 3*k*-1

 \Rightarrow outerplanar graphs: 2

- vast majority of molecular graphs of pharmacological compounds have small treewidth
 - e.g., NCI chemical dataset: 250251 compounds

treewidth at most 2:	243638	(97,36%)
treewidth at most 3:	250186	(99,97%)
treewidth at least 4:	65	(0,03%)

Mining Frequent Connected Subgraphs in Graphs of Bounded Treewidth

- **Given** a set D of labeled graphs of treewidth at most k and an integer threshold $t \ge 0$, **list** all *connected* graphs that are subgraph isomorphic to at least t graphs in D
 - k is a constant
- for constant k, it can be decided in linear time, whether a graph has treewidth at most k [Bodlaender, '96]
 - not a practical result (huge hidden constant)
 - NP-complete if *k* is a parameter [Arnborg, Corneil, Proskurowski, '87]
- subgraph isomorphism remains NP-hard between graphs of treewidth at most k
 - NP-complete if the pattern is not k-connected or has more than k vertices of unbounded degree; otherwise it is tractable [Gupta & Nishimura, '96]
 - ⊗ candidate generation and test is not directly applicable

Mining Frequent Connected Subgraphs in Graphs of Bounded Treewidth

Thm [Matousek & Thomas, '92; also Hajiaghayi & Nishimura, '07] for constant k, subgraph isomorphism between graphs of treewidth at most k can be decided in polynomial time if the pattern is connected and has bounded degree

proof: dynamic programming algorithm

- for the text graph, it computes a tree decomposition T of treewidth k
- for each node v in T, it computes a set of "properties" from v and from the properties of v's children
 - polynomially many, polynomial time computable properties for each node in T
 - if the treewidth is only restricted then the number of properties can be **exponential**

universitätbonn

Mining Frequent Connected Subgraphs in Graphs of Bounded Treewidth

Thm: can be solved in incremental polynomial time proof idea:

- levelwise (BF-search) generation of candidate patterns
 - add one new edge to a pattern s.t. the graph obtained has treewidth at most k
- to decide whether a candidate pattern P is subgraph isomorphic to a transaction graph in D, it is sufficient to compute a set of properties with cardinality polynomial in the combined size of D and the set of frequent patterns listed before P
 - the delay can be exponential only after the enumeration of exponentially many frequent patterns

Conclusion and Future Work

frequent connected subgraph mining in outerplanar graphs:

positive result for a practically relevant graph class beyond trees

universitä

HEINISCHE FRIEDRICH-WILHELIS-UNIVERSITH

Fraunhofer Institut

Intelligente Analyse- und Informationssysteme

BBP subgraph isomorphism algorithm may be of interest in itself

frequent connected subgraph mining in graphs of bounded treewidth:

- positive result though the matching operator is NP-complete
 - ⇔ efficient pattern mining is possible even for NP-hard matching operators!
- ? enumerable with **polynomial delay**
- design and implementation of a practical algorithm for graphs of treewidth at most 3
 - vast majority of molecular graphs of pharmacological compounds have treewidth at most 3

universität

Fraunhofer Institut RHEINISCHE FRIEDRICH-WILHELHS-UNIVERSITHT

Intelligente Analyse- und Informationssysteme

Acknowledgements to Coauthors

Jan Ramon K.U. University of Leuven

Stefan Wrobel Fraunhofer IAIS University of Bonn