The hidden subgroup problem in quantum computing

Gábor Ivanyos
Computer and Automation Research Institute of the Hungarian Academy of Sciences

$(\mathrm{CS})^{2}$
Szeged, July 5, 2008.

Outline

(1) Quantum circuits

- Qubits
- Quantum gates and circuits
(2) The hidden subgroup problem
- Background
- Definition, special instances
(3) Hidden subgroup algorithm - in \mathbb{Z}_{2}^{n}
- Oracle call for the superposition
- Fourier transform of \mathbb{Z}_{2}^{n}
- Applying Fourier transform
- Computing the hidden subgroup
(4) Extensions
- "Straightforward"
- Current groups with polynomial time HSP
- Hidden shift

Contents

(1) Quantum circuits

- Qubits
- Quantum gates and circuits
(2) The hidden subgroup problem
- Background
- Definition, special instances
(3) Hidden subgroup algorithm - in \mathbb{Z}_{2}^{n}
- Oracle call for the superposition
- Fourier transform of \mathbb{Z}_{2}^{n}
- Applying Fourier transform
- Computing the hidden subgroup

4) Extensions

- "Straightforward"
- Current groups with polynomial time HSP
- Hidden shift

Qubits

- State: a unit vector in the complex euclidean space $B=\mathbb{C}^{2}$: a superposition (linear combination) $a|0\rangle+b|1\rangle$, where $|a|^{2}+|b|^{2}=1$
- Computational basis: $|0\rangle,|1\rangle$
- After measurement:
- 0 : with probability $|a|^{2}$,
- 1: with probability $|b|^{2}$.

n-qubit system

- State: a unit vector in the complex euclidean space $B^{\otimes n}=\mathbb{C}^{2^{n}}$:

$$
\text { superposition } \sum_{s \in S} a_{s}|s\rangle
$$

$$
\text { where } S=\{0,1\}^{n} \text { and } \sum_{s \in S}\left|a_{s}\right|^{2}=1
$$

- Computational basis: $|s\rangle$, where $s \in S$:

$$
|0 \ldots 00\rangle,|0 \ldots 01\rangle,|1 \ldots 11\rangle
$$

- After measurement: bit string s with probability $\left|a_{s}\right|^{2}$.

Quantum gates

- d-qubit gate: a unitary transformation of $\mathbb{C}^{2 d}$.

Examples:

- Hadamard gate: $\mathrm{Had}:|0\rangle \mapsto \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$,

$$
|1\rangle \mapsto \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle) .
$$

- Controlled phase shift:

$$
\begin{aligned}
& |0 x\rangle \mapsto|0 x\rangle,|10\rangle \mapsto|10\rangle, \\
& |11\rangle \mapsto \omega|11\rangle, \text { where }|\omega|=1 .
\end{aligned}
$$

Quantum circuits and the "computing" phase

- n-qubit circuit $=$ a sequence of one-and two-qubit gates wired to qubits or pairs of qubits in an n-qubit system
- Formally:

$$
T \otimes I
$$

where T acts on the appropriate \mathbb{C}^{2} or \mathbb{C}^{4}

- Operation: the composition (product) of the individual transformations
- Time complexity: length of the sequence
- Remark: For any constant $d>2$, the quantum circuits built from 1- or 2-qubit gates are polynomially equivalent to circuits built from $\leq d$-qubit gates.

Quantum circuits: operation and the measurement

- the composition of the transformations applied to the computational basis element corresponding to the input
- then the state obtained is measured
- result: a probability distribution over the n-bit strings decision \sim one-bit results:

$$
\operatorname{Prob}\left[s_{1}=1\right]=\sum_{s \in\{0,1\}^{n-1}} \operatorname{Prob}[1 s] .
$$

corresponding class: BQP analogous to BPP

Speedup with quantum computers

- Exploit parallelness in superpositions (Feynman)?
- Not that easy (measurements)
- First groundbreaking results (1994):
- Grover: search in time \sqrt{n} (in a list of size n)
- Shor: factoring and discrete log
in polynomial time
- More recently: exponential speedup also in algebraic number theory (Hallgren; Schmidt and Vollmer 2005): class number and unit group computations (spec. case: Pell's equations).

Contents

0

Quantum circuits

- Qubits
- Quantum gates and circuits
(2) The hidden subgroup problem
- Background
- Definition, special instances
(3) Hidden subgroup algorithm - in \mathbb{Z}_{2}^{n}
- Oracle call for the superposition
- Fourier transform of \mathbb{Z}_{2}^{n}
- Applying Fourier transform
- Computing the hidden subgroup

4) Extensions

- "Straightforward"
- Current groups with polynomial time HSP
- Hidden shift

Background

- The hidden subgroup paradigm is a common generalization of
- Shor's order finding (the critical step in factoring),
- discrete log
- also captures the graph isomorphism problem
- All the currently known cases of exponential speedup with quantum computer are closely related.

Definition

- G (finite) group
- Function $f: G \rightarrow\{$ bit strings $\}$
hides subgroup $H \leq G$ if

$$
f(x)=f(y) \Leftrightarrow x H=y H
$$

(in words, f is constant on each left coset of H but takes distinct values on different cosets.)

- f is given by quantum oracle (or an efficient algorithm).

Quantum oracle: unitary map $|x\rangle|0\rangle \mapsto|x\rangle|f(x)\rangle$
Convention: two or more parts, called registers

- Task: find (generators for) H
time measured in $\log |G|:$ polynomial $=(\log |G|)^{O(1)}$

Special instances

- Oder finding $G=\mathbb{Z}, a \in A$ (commutative group),
- $f(k)=a^{k}$.
- $H=m \mathbb{Z}$, where $m=$ order of a.
- Discrete logarithm $G=\mathbb{Z} \times \mathbb{Z}, a, b \in A$
- $f(k, \ell)=a^{k} b^{-\ell}$.
- $H=\left\{(k, \ell) \mid a^{k}=b^{\ell}\right\}$.

Graph Isomorphism

- permuted graph:
Γ graph with vertex set $\{1, \ldots, n\} \sigma \in S_{n}$, edges of the permuted graph Γ^{σ} : $[i, j]$, where $[\sigma(i), \sigma(j)]$ edge of Γ.
- The automorphism group as hidden subgroup
- $G=S_{n} f(\sigma)=\Gamma^{\sigma}$.
- the hidden subgroup is $\operatorname{Aut}(\Gamma)$
- Graph Isomorphism \leftarrow Automorphism group
- Γ_{1}, Γ_{2} connected.
- $\Gamma_{1} \cong \Gamma_{2} \Leftrightarrow\left|\operatorname{Aut}\left(\Gamma_{1} \dot{\cup} \Gamma_{2}\right)\right|=2 \cdot\left|\operatorname{Aut}\left(\Gamma_{1}\right)\right| \cdot\left|\operatorname{Aut}\left(\Gamma_{2}\right)\right|$.

Quantum circuits

Contents

0

Quantum circuits

- Qubits
- Quantum gates and circuits
(2) The hidden subgroup problem
- Background
- Definition, special instances
(3) Hidden subgroup algorithm - in \mathbb{Z}_{2}^{n}
- Oracle call for the superposition
- Fourier transform of \mathbb{Z}_{2}^{n}
- Applying Fourier transform
- Computing the hidden subgroup

4) Extensions

- "Straightforward"
- Current groups with polynomial time HSP
- Hidden shift

Oracle for superposition 1.

$$
\begin{aligned}
&\left|0^{n}\right\rangle|0 . .0\rangle \rightarrow \\
& \text { (prepare uniform superposition) } \\
& \frac{1}{\sqrt{2^{n}}} \sum_{x \in \mathbb{Z}_{2}^{n}}|x\rangle|0 . .0\rangle \rightarrow \\
& \frac{1}{\sqrt{2^{n}}} \sum_{x \in \mathbb{Z}_{2}^{n}}|x\rangle|f(x)\rangle=\quad \text { (call the oracle) } \\
& \frac{1}{\sqrt{2^{n}}} \sum_{s} \sum_{\substack{x \in \mathbb{Z}_{2}^{n} \\
f(x)=s}}|x\rangle|s\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{a \in T} \sum_{x \in H}|a+x\rangle|f(a)\rangle \\
&
\end{aligned}
$$

T : cross-section (representatives of cosets)

Oracle for superposition 2.

with $|H|=2^{k}$

$$
\begin{array}{r}
\frac{1}{\sqrt{2^{n}}} \sum_{a \in T} \sum_{x \in H}|a+x\rangle|f(a)\rangle= \\
\frac{1}{\sqrt{2^{n-k}}} \sum_{a \in T}\left(\frac{1}{\sqrt{2^{k}}} \sum_{x \in H}|a+x\rangle\right)|f(a)\rangle
\end{array}
$$

for fixed $a \in T$ the first register contains the

$$
\text { coset state }|a+H\rangle:=\frac{1}{\sqrt{2^{k}}} \sum_{x \in H}|a+x\rangle
$$

the second register is (and remains) constant omit it

Quantum circuits

Fourier transform of \mathbb{Z}_{2}^{n}

linear extension of

$$
|x\rangle \mapsto \frac{1}{\sqrt{2^{n}}} \sum_{y \in \mathbb{Z}_{2}^{n}}(-1)^{x \cdot y}|y\rangle,
$$

where $\cdot=$ scalar product $\bmod 2$.
The transform is
$H a d^{\otimes n}$

Applying Fourier transform

$$
\begin{aligned}
\text { coset state } \frac{1}{\sqrt{2^{k}}} \sum_{x \in H}|a+x\rangle & \rightarrow \\
\frac{1}{\sqrt{2^{k}}} \sum_{x \in H} \frac{1}{\sqrt{2^{n}}} \sum_{y \in \mathbb{Z}_{2}^{n}}(-1)^{(a+x) \cdot y}|y\rangle & = \\
\frac{1}{\sqrt{2^{n}}} \sum_{y \in \mathbb{Z}_{2}^{n}}\left(\frac{(-1)^{a \cdot y}}{\sqrt{2^{k}}} \sum_{x \in H}(-1)^{x \cdot y}\right)|y\rangle &
\end{aligned}
$$

Applying Fourier transform 2.

$$
\text { coeff of }|y\rangle=\frac{(-1)^{a \cdot y}}{\sqrt{2^{n-k}}} \frac{1}{2^{k}} \sum_{x \in H}(-1)^{x \cdot y}= \begin{cases}\frac{(-1)^{a^{2 \cdot y}}}{\sqrt{2^{n-k}}} & \text { if } y \perp H, \\ 0 & \text { otherwise. }\end{cases}
$$

$$
\text { probability of } y= \begin{cases}\frac{1}{2^{n-k}} & \text { if } y \perp H \\ 0 & \text { otherwise. }\end{cases}
$$

Computing the hidden subgroup H

- $H^{\perp}=\left\{y \in \mathbb{Z}_{p}^{n} \mid y \perp H\right\}$ a subgroup of \mathbb{Z}_{p}^{n}.
- Using $O(n)$ iterations probably collect a system 「 of generators for the group H^{\perp}.
- if so,

$$
H=\left\{x \in \mathbb{Z}_{p}^{n} \mid x \cdot y \text { for every } y \in \Gamma\right\}
$$

(= system of linear equations)

"Straightforward"

Contents

(1) Quantum circuits

- Qubits
- Quantum gates and circuits
(2) The hidden subgroup problem
- Background
- Definition, special instances
(3) Hidden subgroup algorithm - in \mathbb{Z}_{2}^{n}
- Oracle call for the superposition
- Fourier transform of \mathbb{Z}_{2}^{n}
- Applying Fourier transform
- Computing the hidden subgroup
(4) Extensions
- "Straightforward"
- Current groups with polynomial time HSP
- Hidden shift

"Straightforward" extensions

- General commutative groups

Fourier transforms of commutative groups

- Hidden normal subgroups in noncommutative groups

Noncommutative generalization of the
Fourier transform

Current groups with polynomial time HSP

Almost commutative

- Certain "two-step solvable" groups
$A \triangleleft G, A$ and G / A commutative
Very few groups of this kind,
Usually G / A is "large"
- Groups solvable in a constant number of steps
with order of element bounded by a constant
Friedl, ~, Magniez, Santha, Sen 2003
~ 2008

Hidden shift - a tool for induction

- $f_{1}, f_{2}: \mathbb{Z}_{k}^{n} \rightarrow\{$ strings $\}$ injective $f_{2}(x)=f_{1}(x+v)$ for some $v \in \mathbb{Z}_{k}^{n}$
Find v
- A HSP in a two-step solvable group
- Friedl, ~, Magniez, Santha, Sen 2003:
poly time algorithm for k prime of constant size
- ~ 2008: k prime power of constant size

Hidden shift II.

- Kuperberg 2006: subexponential in $n \log k$ like $e^{\sqrt{n \log k}}$
- Would be very good: poly in $n \log k$
- already for $n=1$
- ~ 2008: For $k=$ prime power, poly in n, exponential in k
- Open: For $k=6$: poly in n ?????
- Open: poly in $n k$ (k prime).

Would lead to quite efficient HSP algorithms in a reasonably large class of solvable groups

Oracle for superposition 1.

$$
\begin{aligned}
\left|1_{G}\right\rangle|0 . .0\rangle & \rightarrow
\end{aligned} \begin{aligned}
\frac{1}{\sqrt{|G|}} \sum_{x \in G}|x\rangle|0 . .0\rangle & \rightarrow \\
\frac{1}{\sqrt{|G|}} \sum_{x \in G}|x\rangle|f(x)\rangle & = \\
\frac{1}{\sqrt{|G|}} \sum_{s} \sum_{\substack{x \in G \\
f(x)=s}}|x\rangle|s\rangle & =\frac{1}{\sqrt{|G|}} \sum_{a \in T} \sum_{x \in H}|a x\rangle|f(a)\rangle
\end{aligned}
$$

T : cross-section (representatives of cosets)

Oracle for superposition 2.

$$
\begin{array}{r}
\frac{1}{\sqrt{|G|}} \sum_{a \in T} \sum_{x \in H}|a x\rangle|f(a)\rangle= \\
\frac{1}{\sqrt{|G: H|}} \sum_{a \in T}\left(\frac{1}{\sqrt{|H|}} \sum_{x \in H}|a x\rangle\right)|f(a)\rangle
\end{array}
$$

for fixed $a \in T$ the first register contains the coset state $|a H\rangle:=\frac{1}{\sqrt{|H|}} \sum_{x \in H}|a x\rangle$
the second register is (and remains) constant omit it

Characters

of the finite commutative group G :
maps $\chi: G \longrightarrow \mathbb{C}^{*}$ s.t. $\chi(u+v)=\chi(u) \chi(v)$.
i.e. homomorphisms $G \longrightarrow \mathbb{C}^{*}$.

Form a group \hat{G} isomorphic with G.
Example: $G=\mathbb{Z}_{p}^{n}$

$$
\chi_{u}(v)=\omega^{u \cdot v}
$$

$u \cdot v=$ scalar product modulo p
$\omega=$ primitive $\sqrt[p]{1}$.

Fourier transform

of the finite commutative group G :
linear extension of

$$
|g\rangle \mapsto \frac{1}{\sqrt{|G|}} \sum_{\chi \in \hat{G}} \chi(g)|\chi\rangle .
$$

\exists efficient quantum implementations (QFT). Usually \hat{G} identified with G (χ_{x} with x above $)$

Example: Hadamard gate $=$ Fourier transform of \mathbb{Z}_{2} :

$$
\begin{aligned}
\text { Had : }|0\rangle & \mapsto \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle), \\
|1\rangle & \mapsto \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle) .
\end{aligned}
$$

exact QFT for $\mathbb{Z}_{2}^{n}: \operatorname{Had}^{\otimes n}$.

Quantum circuits

Applying Fourier transform

$$
\begin{aligned}
\text { coset state } \frac{1}{\sqrt{|H|}} \sum_{x \in H}|a x\rangle & \rightarrow \\
\frac{1}{\sqrt{|H|}} \sum_{x \in H} \frac{1}{\sqrt{|G|}} \sum_{\chi \in \hat{G}} \chi(a x)|\chi\rangle & = \\
\frac{1}{\sqrt{|G|}} \sum_{\chi \in \hat{G}}\left(\frac{\chi(a)}{\sqrt{|H|}} \sum_{x \in H} \chi(x)\right)|\chi\rangle &
\end{aligned}
$$

Applying Fourier transform 2.

coeff of $|\chi\rangle$

$$
\frac{\chi(a)}{\sqrt{|G: H|}} \frac{1}{|H|} \sum_{x \in H} \chi(x)= \begin{cases}\frac{\chi(a)}{\sqrt{|G: H|}} & \text { if } \chi_{H}=1 \\ 0 & \text { otherwise }\end{cases}
$$

Proof.: orthogonality relation for 1_{H} and χ_{H} :

$$
\frac{1}{|H|} \sum_{x \in H} \chi(x)= \begin{cases}1 & \text { if } \chi_{H}=1 \\ 0 & \text { otherwise }\end{cases}
$$

probability of χ :

$$
\begin{cases}\frac{1}{|G: H|} & \text { if } \chi \in H^{\perp} \\ 0 & \text { otherwise. }\end{cases}
$$

Computing the hidden subgroup H

- $H^{\perp}=\left\{\chi \in \hat{G} \mid \chi_{H}=1\right\}$ a subgroup of \hat{G}.
- In $O(\log |G|)$ iteration probably collect a system Γ of generators for the group H^{\perp}.
- if so,

$$
H=\{x \in G \mid \chi(x)=1 \text { for every } \chi \in \Gamma\} .
$$

(\sim system of linear equations)

