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Qubits

State: a unit vector in the complex euclidean space B = C2:

a superposition (linear combination) a|0〉+ b|1〉,
where |a|2 + |b|2 = 1

Computational basis: |0〉, |1〉
After measurement:

0: with probability |a|2,
1: with probability |b|2.
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n-qubit system

State: a unit vector in the complex euclidean space
B⊗n = C2n

:

superposition
∑

s∈S as |s〉,

where S = {0, 1}n and
∑

s∈S |as |2 = 1.

Computational basis: |s〉, where s ∈ S :

|0 . . . 00〉, |0 . . . 01〉, |1 . . . 11〉.
After measurement: bit string s with probability |as |2.
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Quantum gates

d-qubit gate: a unitary transformation of C2d
.

Examples:

Hadamard gate: Had : |0〉 7→ 1√
2
(|0〉+ |1〉),

|1〉 7→ 1√
2
(|0〉 − |1〉).

Controlled phase shift:

|0x〉 7→ |0x〉, |10〉 7→ |10〉,
|11〉 7→ ω|11〉, where |ω| = 1.
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Quantum circuits and the ”computing” phase

n-qubit circuit = a sequence of one-and two-qubit gates

wired to qubits or pairs of qubits

in an n-qubit system

Formally:
T ⊗ I ,

where T acts on the appropriate C2 or C4

Operation: the composition (product) of the individual
transformations

Time complexity: length of the sequence

Remark: For any constant d > 2, the quantum circuits built
from 1- or 2-qubit gates are polynomially equivalent to
circuits built from ≤ d-qubit gates.
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Quantum circuits: operation and the measurement

the composition of the transformations applied to the
computational basis element corresponding to the input

then the state obtained is measured

result: a probability distribution over the n-bit strings

decision ∼ one-bit results:

Prob[s1 = 1] =
∑

s∈{0,1}n−1

Prob[1s].

corresponding class: BQP

analogous to BPP
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Speedup with quantum computers

Exploit parallelness in superpositions (Feynman)?

Not that easy (measurements)

First groundbreaking results (1994):

- Grover: search in time
√

n

(in a list of size n)

- Shor: factoring and discrete log

in polynomial time

More recently: exponential speedup also in algebraic number
theory (Hallgren; Schmidt and Vollmer 2005):

class number and unit group computations
(spec. case: Pell’s equations).
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Background

The hidden subgroup paradigm is a common generalization
of

Shor’s order finding (the critical step in factoring),
discrete log
also captures the graph isomorphism problem

All the currently known cases of exponential speedup with
quantum computer are closely related.
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Definition

G (finite) group

Function f : G → {bit strings}
hides subgroup H ≤ G if

f (x) = f (y)⇔ xH = yH

(in words, f is constant on each left coset of H but takes
distinct values on different cosets.)

f is given by quantum oracle (or an efficient algorithm).

Quantum oracle: unitary map |x〉|0〉 7→ |x〉|f (x)〉
Convention: two or more parts, called registers

Task: find (generators for) H

time measured in log |G |: polynomial = (log |G |)O(1)
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Special instances

Oder finding G = Z, a ∈ A (commutative group),

f (k) = ak .
H = mZ, where m = order of a.

Discrete logarithm G = Z× Z, a, b ∈ A

f (k, `) = akb−`.
H = {(k, `)|ak = b`}.
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Graph Isomorphism

permuted graph:
Γ graph with vertex set {1, . . . , n} σ ∈ Sn,
edges of the permuted graph Γσ:
[i , j ], where [σ(i), σ(j)] edge of Γ.

The automorphism group as hidden subgroup
G = Sn f (σ) = Γσ.
the hidden subgroup is Aut(Γ)

Graph Isomorphism ← Automorphism group
Γ1, Γ2 connected.
Γ1
∼= Γ2 ⇔ |Aut(Γ1

⋃̇
Γ2)| = 2 · |Aut(Γ1)| · |Aut(Γ2)|.
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Oracle for superposition 1.

|0n〉|0..0〉 → (prepare uniform superposition)

1√
2n

∑
x∈Zn

2

|x〉|0..0〉 → (call the oracle)

1√
2n

∑
x∈Zn

2

|x〉|f (x)〉 = (collect by the second register)

1√
2n

∑
s

∑
x ∈ Zn

2

f (x) = s

|x〉|s〉 =
1√
2n

∑
a∈T

∑
x∈H

|a + x〉|f (a)〉

T : cross-section (representatives of cosets)
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Oracle for superposition 2.

with |H| = 2k

1√
2n

∑
a∈T

∑
x∈H

|a + x〉|f (a)〉 =

1√
2n−k

∑
a∈T

(
1√
2k

∑
x∈H

|a + x〉

)
|f (a)〉

for fixed a ∈ T the first register contains the

coset state |a + H〉 :=
1√
2k

∑
x∈H

|a + x〉

the second register is (and remains) constant

omit it

Gábor Ivanyos Computer and Automation Research Institute of the Hungarian Academy of SciencesThe hidden subgroup problem in quantum computing



Quantum circuits
The hidden subgroup problem

Hidden subgroup algorithm - in Zn
2

Extensions

Oracle call for the superposition
Fourier transform of Zn

2
Applying Fourier transform
Computing the hidden subgroup

Fourier transform of Zn
2

linear extension of

|x〉 7→ 1√
2n

∑
y∈Zn

2

(−1)x ·y |y〉,

where · = scalar product mod 2.
The transform is

Had⊗n
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Applying Fourier transform

coset state
1√
2k

∑
x∈H

|a + x〉 →

1√
2k

∑
x∈H

1√
2n

∑
y∈Zn

2

(−1)(a+x)·y |y〉 =

1√
2n

∑
y∈Zn

2

(
(−1)a·y√

2k

∑
x∈H

(−1)x ·y

)
|y〉
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Applying Fourier transform 2.

coeff of |y〉 =
(−1)a·y√

2n−k

1

2k

∑
x∈H

(−1)x ·y =

{
(−1)a·y√

2n−k
if y ⊥ H,

0 otherwise.

probability of y =

{
1

2n−k if y ⊥ H,

0 otherwise.
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Computing the hidden subgroup H

H⊥ = {y ∈ Zn
p | y ⊥ H} a subgroup of Zn

p.

Using O(n) iterations probably collect a system Γ of
generators for the group H⊥.

if so,
H = {x ∈ Zn

p | x · y for every y ∈ Γ}.

(= system of linear equations)
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”Straightforward” extensions

General commutative groups

Fourier transforms of commutative groups

Hidden normal subgroups in noncommutative groups

Noncommutative generalization of the

Fourier transform
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Current groups with polynomial time HSP

Almost commutative

Certain ”two-step solvable” groups

A C G , A and G/A commutative

Very few groups of this kind,

Usually G/A is ”large”

Groups solvable in a constant number of steps

with order of element bounded by a constant

Friedl, ∼, Magniez, Santha, Sen 2003

∼ 2008
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Hidden shift - a tool for induction

f1, f2 : Zn
k → {strings} injective

f2(x) = f1(x + v) for some v ∈ Zn
k

Find v

A HSP in a two-step solvable group

Friedl, ∼, Magniez, Santha, Sen 2003:

poly time algorithm for k prime of constant size

∼ 2008: k prime power of constant size
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Hidden shift II.

Kuperberg 2006: subexponential in n log k

like e
√

n log k

Would be very good: poly in n log k

already for n = 1

∼ 2008: For k =prime power, poly in n, exponential in k

Open: For k = 6: poly in n ?????

Open: poly in nk (k prime).

Would lead to quite efficient HSP algorithms

in a reasonably large class of solvable groups
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Oracle for superposition 1.

|1G 〉|0..0〉 → (prepare uniform superposition)

1√
|G |

∑
x∈G

|x〉|0..0〉 → (call the oracle)

1√
|G |

∑
x∈G

|x〉|f (x)〉 =

1√
|G |

∑
s

∑
x ∈ G

f (x) = s

|x〉|s〉 =
1√
|G |

∑
a∈T

∑
x∈H

|ax〉|f (a)〉

T : cross-section (representatives of cosets)
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Oracle for superposition 2.

1√
|G |

∑
a∈T

∑
x∈H

|ax〉|f (a)〉 =

1√
|G : H|

∑
a∈T

(
1√
|H|

∑
x∈H

|ax〉

)
|f (a)〉

for fixed a ∈ T the first register contains the

coset state |aH〉 :=
1√
|H|

∑
x∈H

|ax〉

the second register is (and remains) constant

omit it
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Characters

of the finite commutative group G :
maps χ : G −→ C∗ s.t. χ(u + v) = χ(u)χ(v).
i.e. homomorphisms G −→ C∗.
Form a group Ĝ isomorphic with G .
Example: G = Zn

p

χu(v) = ωu·v

u · v = scalar product modulo p
ω = primitive p

√
1.
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Fourier transform

of the finite commutative group G :
linear extension of

|g〉 7→ 1√
|G |

∑
χ∈Ĝ

χ(g)|χ〉.

∃ efficient quantum implementations (QFT).
Usually Ĝ identified with G (χx with x above)

Example: Hadamard gate = Fourier transform of Z2:
Had : |0〉 7→ 1√

2
(|0〉+ |1〉),

|1〉 7→ 1√
2
(|0〉 − |1〉).

exact QFT for Zn
2: Had⊗n.
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Applying Fourier transform

coset state
1√
|H|

∑
x∈H

|ax〉 →

1√
|H|

∑
x∈H

1√
|G |

∑
χ∈Ĝ

χ(ax)|χ〉 =

1√
|G |

∑
χ∈Ĝ

(
χ(a)√
|H|

∑
x∈H

χ(x)

)
|χ〉
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Applying Fourier transform 2.

coeff of |χ〉

χ(a)√
|G : H|

1

|H|
∑
x∈H

χ(x) =

{
χ(a)√
|G :H|

if χH = 1,

0 otherwise.

Proof.: orthogonality relation for 1H and χH :

1
|H|
∑

x∈H χ(x) =

{
1 if χH = 1,
0 otherwise

probability of χ:

{ 1
|G :H| if χ ∈ H⊥,

0 otherwise.
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Computing the hidden subgroup H

H⊥ = {χ ∈ Ĝ | χH = 1} a subgroup of Ĝ .

In O(log |G |) iteration probably collect a system Γ of
generators for the group H⊥.

if so,
H = {x ∈ G | χ(x) = 1 for every χ ∈ Γ}.

(∼ system of linear equations)
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