
A.E. Eiben Evolutionary Computing

Introduction 1

Evolutionary Algorithms and their
Parameters

Evolutionary Computing Introduction 1

Prof.dr.A.E. Eiben
Vrije Universiteit Amsterdam

www.cs.vu.nl/~gusz

Borg Vogons

Biotop

Art

Life Sciences Social Sciences Exact Sciences etc

Science Politics Sports etc

Society Stones & Seas etc

Earth etc

Universe

Evolutionary Computing Introduction 2

Life Sciences Social Sciences

Mathematics Physics

Software Engineering

Neural Nets Evolutionary Computing Fuzzy Systems

Computational Intelligence etc

Computer Science etc

Exact Sciences etc

You are here

Positioning of Evolutionary Computing

• EC is part of computer science
• EC is not part of life sciences/biology
• Biology deliveres inspiration and

Evolutionary Computing Introduction 3

• Biology deliveres inspiration and
terminology

• EC can be applied in biological research
(as simulation tool & as optimizer)

Fathers of evolutionary computing

Charles Darwin 1809 - 1882
“Father of the evolution theory”

Gregor Mendel 1822-1884
“Father of genetics”

Evolutionary Computing Introduction 4

Fathers of evolutionary computing

John von Neumann 1903 –1957
“Father of the computer”

Alan Mathison Turing 1912 - 1954
“Father of the computer”

Fact 1
Developing, analyzing, and applying problem solving methods
(a.k.a. algorithms) is a central theme in mathematics and
computer science

Fact 2

Motivation for EC 1

Evolutionary Computing Introduction 5

Time for thorough problem analysis decreases
Time for algorithm development decreases
Complexity of problems to be solved increases

Consequence:
We need algorithms that solve problems we do
not understand

Motivation for EC 2
Nature has always served as a source of
inspiration for engineers and scientists

The best problem solver known in nature is:
– the (human) brain that created “the wheel, New

York, wars and so on” (after Douglas Adams’ Hitch-

Evolutionary Computing Introduction 6

York, wars and so on (after Douglas Adams Hitch
Hikers Guide)

– the evolution mechanism that created the human
brain (after Darwin’s Origin of Species)

Answer 1 neurocomputing
Answer 2 evolutionary computing

A.E. Eiben Evolutionary Computing

Introduction 2

What is evolution ?

If a collection of objects (population) satisfies that
1. they are able to reproduce
2. children inherit features of parents
3. features undergo small random variation
4. features effect reproductive capabilities

Evolutionary Computing Introduction 7

Then
The features will change over time such that the population

will fit the environment better and better

Note: living organisms satisfy 1-4
This is our best explanation for life on Earth

Common model of evolutionary processes

• Population of individuals
• Individuals have a fitness
• Variation operators: crossover, mutation
• Selection towards higher fitness

– “survival of the fittest” and

Evolutionary Computing Introduction 8

– “mating of the fittest”

Neo Darwinism (simplified):
Evolutionary progress towards higher life forms

=
Optimization according to some fitness-criterion
(optimization on a fitness landscape)

Evolutionary Computing: the Basic Metaphor

EVOLUTION

Environment

PROBLEM SOLVING

Problem

Evolutionary Computing Introduction 9

Individual
Fitness

Candidate Solution
Quality

Quality → chance for seeding new solutions

Fitness → chances for survival and reproduction

The evolutionary mechanism: the main cycle

Parents
Parent selection

Recombination
(crossover)

Intialization

Evolutionary Computing Introduction 10

Population

Survivor selection
Offspring

(crossover)

Mutation

Termination

The evolutionary mechanism: the two pillars

• Increasing population
diversity by genetic

• Decreasing population
diversity by selection

There are two competing forces active

Evolutionary Computing Introduction 11

operators
– mutation
– recombination

Push towards novelty

– of parents
– of survivors

Push towards quality

Working of an evolutionary algorithm: phases

Phases in optimizing on a 1-dimensional fitness landscape

Early phase:
quasi-random population distribution

Evolutionary Computing Introduction 12

Mid-phase:
population arranged around/on hills

Late phase:
population concentrated on high hills

A.E. Eiben Evolutionary Computing

Introduction 3

Working of an evolutionary algorithm:
typical run

s
in

 p
op

ul
at

io
n

Evolutionary Computing Introduction 13

Typical run of an EA shows so-called “anytime behavior”

B
es

t f
itn

es
s

Time (number of generations)

Demonstration: magic square
•• Software by M. Herdy, TU Berlin
• Interesting parameters:

• Step1: small mutation, slow & hits the optimum
• Step10: large mutation, fast & misses (“jumps over” optimum)
• Mstep: mutation step size modified on-line fast & hits optimum

Evolutionary Computing Introduction 14

Application

• Mstep: mutation step size modified on-line, fast & hits optimum

• Start: double-click on icon below
• Exit: click on TUBerlin logo (top-right)

Algorithm design and parameters

• Calibration of EAs
• Design of EAs
• Configuration of EAs
• Parameter optimization of EAs
• …
Given: an algorithmic framework
Required: instantiation to a specific algorithm

with good quality

Numeric parameters

• E.g., population size, xover rate, tournament
size, …

• Domain is subset of R, Z, N (finite or infinite)
• Sensible distance metric searchable

Parameter value

EA
 p
er
fo
rm

an
ce

Parameter value

EA
 p
er
fo
rm

an
ce

Relevant parameter Irrelevant parameter

Symbolic parameters

• E.g., xover_operator, elitism, selection_method
• Finite domain, e.g., {1-point, uniform, averaging}, {Y, N}
• No sensible distance metric non-searchable in general

Parameter value

EA
 p
er
fo
rm

an
ce

A B D E F G HC

Parameter value

EA
 p
er
fo
rm

an
ce

B D A H F G EC

Non-searchable ordering Searchable ordering

What is an EA?
ALG-1 ALG-2 ALG-3 ALG-4

SYMBOLIC PARAMETERS

Representation Bit-string Bit-string Real-valued Real-valued

Overlapping pops N Y Y Y

Survivor selection ̶ Tournament Replace worst Replace worst

Parent selection Roulette wheel Uniform determ Tournament Tournament

Mutation Bit-flip Bit-flip N(0,σ) N(0,σ)p p (,) (,)

Recombination Uniform xover Uniform xover Discrete recomb Discrete recomb

NUMERIC PARAMETERS

Generation gap ̶ 0.5 0.9 0.9

Population size 100 500 100 300

Tournament size ̶ 2 3 30

Mutation rate 0.01 0.1 ̶ ̶

Mutation stepsize ̶ ̶ 0.01 0.05

Crossover rate 0.8 0.7 1 0.8

A.E. Eiben Evolutionary Computing

Introduction 4

What is an EA? (cont’d)

Make a principal distinction between EAs and EA instances and
place the border between them by:

Option 1
There is only one EA, the generic EA scheme
Previous table contains 1 EA and 4 EA-instances

Option 2
An EA = particular configuration of the symbolic parameters
Previous table contains 3 EAs, with 2 instances for one of them

Option 3
An EA = particular configuration of parameters
Notions of EA and EA-instance coincide
Previous table contains 4 EAs / 4 EA-instances

• How to find good parameter values ?
Many parameters, unknown effects, unknown, non-
linear interactions

Problems

• How to vary parameter values?
EA is a dynamic, staged, process optimal parameter
values may vary during a run

Brief historical account
• 1970/80ies “GA is a robust method”
• 1970ies + ESs self-adapt mutation stepsize σ
• 1986 meta-GA for optimizing GA parameters
• 1990ies EP adopts self-adaptation of σ as ‘standard’

1990ies some papers on changing parameters on the fl• 1990ies some papers on changing parameters on-the-fly
• 1999 Eiben-Michalewicz-Hinterding paper proposes

clear taxonomy & terminology

Taxonomy

PARAMETER TUNING
(before the run)

PARAMETER CONTROL
(during the run)

PARAMETER CALIBRATION

(before the run)

DETERMINISTIC
(time dependent)

ADAPTIVE
(feedback from search)

SELF-ADAPTIVE
(coded in chromosomes)

(during the run)

Google Scholar index > 1000

Parameter tuning

Parameter tuning: testing and comparing different
values before the “real” run

Problems:
sers mistakes in settings can be so rces of errors– users mistakes in settings can be sources of errors

or sub-optimal performance
– costs much time
– parameters interact: exhaustive search is not

practicable
– good values may become bad during the run

Parameter control

Parameter control: setting values on-line, during the
actual run, e.g.

predetermined time-varying schedule p = p(t)
using (heuristic) feedback from the search process
encoding parameters in chromosomes and rely on
natural selection

Problems:
finding optimal p is hard, finding optimal p(t) is harder
still user-defined feedback mechanism, how to
“optimize”?
when would natural selection work for algorithm
parameters?

A.E. Eiben Evolutionary Computing

Introduction 5

Three major types of parameter control:

deterministic: some rule modifies strategy parameter
without feedback from the search (based on some
counter, typically time or no of search steps)

Control HOW?

adaptive: feedback rule, i.e., heuristic, based on
some measure monitoring search progress

self-adaptative: parameter values evolve along with
solutions; encoded onto chromosomes they undergo
variation and selection

Control flow of EA calibration / design

Design layer

optimizes

Meta-GAUser

Application layer

Algorithm layer

optimizes

One-max

GA

Symbolic
regression

GP

Ontology - Terminology

LOWER PART UPPER PART
METHOD EA Tuner

SEARCH SPACE Solution vectors Parameter vectors

QUALITY Fitness Utility

ASSESSMENT Evaluation Test

Fitness ≈ objective function value
Utility = ?
MBF‐utility, AES‐utility, SR‐utility, combined utility,
robustness utility, …

Off-line vs. on-line calibration / design
Design / calibration method

Off-line parameter tuning
On-line parameter control

Why focus on tuning (first)?
EasierEasier
Most immediate need of users
Control strategies have parameters too need tuning
themselves
Knowledge about tuning (utility landscapes) can help the
design of good control strategies
There are indications that good tuning works better than
control

High impact R&D programme: principled approaches to EA tuning

Tuning by generate-and-test

Generate
initial

parameter
vectors

Test p.v.’s Terminate

Generate p.v.’s

Select p.v.’s

→ Non-iterative
→ Multi-stage
→ Iterative

Tuning effort

• Total amount of computational work is determined by
– A = number of vectors tested
– B = number of tests per vector
– C = number of fitness evaluations per test

T ning methods can be positioned b their rationale• Tuning methods can be positioned by their rationale:
– To optimize A (iterative search)
– To optimize B (multi-stage search)
– To optimize A and B (combination)
– To optimize C (non-existent)
– …

A.E. Eiben Evolutionary Computing

Introduction 6

Optimize A = optimally use A

Applicable only to numeric parameters
Number of tested vectors not fixed, A is the maximum (stop cond.)
Population-based search:

– Initialize with N << A vectors and
– Iterate: generating, testing, selecting p.v.’s

Meta-EA (Greffenstette ‘86)
Generate: usual crossover and mutation of p.v.’s

SPO (Bartz-Beielstein et al. ‘05)
Generate: uniform random sampling!!! of p.v.’s

REVAC (Nannen & Eiben ’06)
Generate: usual crossover and distribution-based mutation of p.v.’s

Time or
fitness level

REVAC illustration

fitness level

Optimize B = reduce B
Applicable to symbolic and numeric parameters
Number of tested vectors (A) fixed at initialization
Set of tested vectors can be created by

regular method grid search
random method random sampling
exhaustive method enumeration

Complete testing (single stage) vs. selective testing (multi-stage)

Complete testing: nr. of tests per vector = B (thus, not optimizing)
Selective testing: nr. of tests per vector varies, ≤ B
Idea:

Execute tests in a breadth-first fashion (stages), all vectors X < B times
Stop testing vectors with statistically significant poorer utility

Well-known methods
ANOVA (Scheffer ‘89)
Racing (Maron & Moore ’97)

Optimize A & B

Existing work:
Meta-EA with racing (Yuan & Gallagher ‘04)

New trick: sharpening (Smit & Eiben 2009)
Id t t t X B ti d i XIdea: test vectors X < B times and increase X over
time during the run of a population-based tuner

Newest method:
REVAC with racing & sharpening = REVAC++

Which tuning method?

Differences between tuning algorithms
Maximum utility reached
Computational costs
Number of their own parameters – overhead costsp
Insights offered about EA parameters (probability
distribution, interactions, relevance, explicit model…)

Similarities between tuning algorithms
Nobody is using them
Can find good parameter vectors

Solid comparison is missing – ongoing

Tuning “world champion” EAs

G-CMA-ES SaDE

Tuned by Avg St dev CEC ∆ Avg St dev CEC ∆

G-CMA-ES 0.77 0.2 20 % 0.73 0.25 49 %

REVAC++ 0.85 0.24 12 % 0.67 0.22 53 %

SPOT 0.76 0.19 22 % 0.73 0.20 49 %

CEC-2005 0.97 0.32 - 1.43 0.25 -

Main conclusion: if only they had asked us ….
See our CEC-2010 paper for more

Ranking at CEC 2005 Ranking at CEC 2005
1. CMA-ES
2. SaDE

Ranking after tuningRanking after tuning
1. SaDE
2. CMA-ES

A.E. Eiben Evolutionary Computing

Introduction 7

Culture change?

• Fast and good tuning can lead to radically new attitude
• Past & present: robust EAs preferred
• Future: problem-specific EAs preferred
• Old question: what is better the GA or the ES?

Ne q estion hat s mbolic config ration is best?• New question: what symbolic configuration is best?
• … with parameters tuned using same time/effort
• Black box with 3 layers inside and a single START button

– Assumption: tuner level less sensitive to its parameters
– Never mind the No Free Lunch theorems

Tuning vs. not tuning

rm
an

ce

rm
an

ce

P
er

fo
r

EA 1 EA 2

P
er

fo
r

EA 1 EA 2

EA-as-is (accidental parameters) EA as-it-could-be (“optimal” param’s)

The biggest challenge remains …
The (near) future of automated tuning

Hybrid methods combining population-based search and selective
testing
Well-funded EA performance measures, multi-objective formulation

multi-objective tuner algorithms
(Statistical) models of the utility landscape more knowledge about
parameters
Open source toolboxesOpen source toolboxes
Distributed execution
Good testbeds
Adoption by the EC community
Rollout to other heuristic methods with parameters

THUS: MORE THAN ENOUGH WORK TO DO

Recommendations

• DO TUNE your evolutionary algorithm
• Do not forget the magic constants
• Decide: speed or solution quality?
• Decide: specialist of generalist EA?
• Record and report tuning effort
• Try our toolbox:

http://sourceforge.net/projects/mobat

Recommended
reading

