
THE 12TH CONFERENCE OF PHD
STUDENTS IN

COMPUTER SCIENCE

Volume of short papers

CS2

Organized by the Institute of Informatics of the University of Szeged

June 24 – June 26, 2020
Szeged, Hungary

Scientific Committee:

János Csirik (Co-Chair, SZTE)
Lajos Rónyai (Co-Chair, SZTAKI, BME)
András Benczúr (ELTE)
Tibor Csendes (SZTE)
László Cser (BCE)
Erzsébet Csuhaj-Varjú (ELTE)
József Dombi (SZTE)
István Fazekas (DE)
Zoltán Fülöp (SZTE)
Aurél Galántai (ÓE)
Zoltán Gingl (SZTE)
Tibor Gyimóthy (SZTE)
Katalin Hangos (PE)
Zoltán Horváth (ELTE)
Márk Jelasity (SZTE)
Tibor Jordan (ELTE)
Zoltán Kató (SZTE)
Zoltán Kása (Sapientia EMTE)
László Kóczy (SZE)
Andrea Kő (SZE)
János Levendovszki (BME)
Máté Matolcsi (BME)
Gyöngyvér Márton (Sapientia EMTE)
Branko Milosavljevic (UNS)
Valerie Novitzka (TUKE)
László Nyúl (SZTE)
Marius Otesteanu (UPT)
Zsolt Páles (DE)
Attila Pethő (DE)
Sándor Szabó (PTE)
Gábor Szederkényi (PPKE)
Jenő Szigeti (ME)
János Sztrik (DE)
János Tapolcai (BME)
János Végh (ME)

Organizing Committee:
Attila Kertész, Balázs Bánhelyi, Tamás Gergely, Judit Jász, Zoltán Kincses
Address of the Organizing Committee
c/o. Attila Kertész
University of Szeged, Institute of Informatics
H-6701 Szeged, P.O. Box 652, Hungary
Phone: +36 62 546 781, Fax: +36 62 546 397
E-mail: cscs@inf.u-szeged.hu
URL: http://www.inf.u-szeged.hu/∼cscs/

Sponsors
Supported by the project "Integrated program for training new generation of scientists in the
fields of computer science", No. EFOP-3.6.3-VEKOP-16-2017-00002. The project has been supported
by the European Union and co-funded by the European Social Fund.
University of Szeged, Institute of Informatics

valami

Preface

This conference is the 12th in a series. The organizers aimed to bring together PhD students
working on any field of computer science and its applications to help them publishing one of
their first papers, and provide an opportunity to hold a scientific talk. As far as we know, this
is one of the few such conferences. The aims of the scientific meeting were determined on the
council meeting of the Hungarian PhD Schools in Informatics: it should

• provide a forum for PhD students in computer science to discuss their ideas and research
results;

• give a possibility to have constructive criticism before they present the results at professional
conferences;

• promote the publication of their results in the form of fully refereed journal articles; and
finally,

• promote hopefully fruitful research collaboration among the participants.

The papers emerging from the presented talks will be invited to be considered for full paper
publication the Acta Cybernetica journal.

This year, due to the unfortunate international situation caused by the COVID-19 pandemic,
the organizers had no option but to adapt, so they decided to convert the conference completely
into a web-based event. Nevertheless, they still hope that the conference will be a valuable
contribution to the research of the participants, who can perform virtual interactions to get
feedback on their research progress.

Szeged, June 2020

Attila Kertész
Balázs Bánhelyi
Tamás Gergely

Judit Jász
Zoltán Kincses

i

Contents

Preface i

Contents ii

Program iv

Plenary talks 1
Tibor Gyimóthy: Software Maintenance and Evolution of Large Systems 1
Gábor Tardos: Fingerprinting Digital Documents . 2

Short papers 3
Ali Al-Haboobi, Gábor Kecskeméti: Reducing Execution Time of An Existing Lambda based

Scientific Workflow System . 3
Ádám Fodor, László Kopácsi, Zoltán Á. Milacski, András Lőrincz: Speech de-identification with

deep neural networks . 7
Ahmad T. Anaqreh, Boglárka G.-Tóth, Tamás Vinkó: Symbolic Regression for Approximating

Graph Geodetic Number
A preliminary study . 11

András Márkus: Task allocation possibilities in simulated Fog environments 15
Artúr Poór: Static Analysis Framework for Scala . 19
Attila Szatmári: An Evaluation on Bug Taxonomy and Fault Localization Algorithms in JavaScript

Programs . 23
Balázs Szűcs, Áron Ballagi: An Industrial Application of Autoencoders for Force-Displacement

Measurement Monitoring . 28
Bence Bogdándy, Zsolt Tóth: Overview of Artificial Neural Network Abduction and Inversion

Methods . 32
Biswajeeban Mishra, Biswaranjan Mishra: Evaluating and Analyzing MQTT Brokers with Stress-

testing . 36
Csaba Bálint: Iterative Operations on Footpoint Mappings . 40
Dániel Balázs Rátai, Zoltán Horváth, Zoltán Porkoláb, Melinda Tóth: Traquest model - a novel

model for ACID concurrent computations . 44
Dániel Pásztor, Péter Ekler, János Levendovszky: Energy-efficient routing in Wireless Sensor

Networks . 49
Dávid Papp: Spectral Clustering based Active Zero-shot Learning 54
Dilshad Hassan Sallo, Gábor Kecskeméti: Parallel Simulation for The Event System of DISSECT-

CF . 58
Ebenezer Komla Gavua, Gábor Kecskeméti: Improving MapReduce Speculative Executions with

Global Snapshots . 62
Gábor Karai, Péter Kardos: Distance-based Skeletonization on the BCC Grid 66
Gábor Székely, Gergő Ládi, Tamás Holczer, Levente Buttyán: Towards Reverse Engineering

Protocol State Machines . 70
Gabriella Tóth, Máté Tejfel: Component-based error detection of P4 programs 74
György Papp, Miklós Hoffmann, Ildikó Papp: Embedding QR code onto triangulated meshes . . 79
Hamza Baniata: Fog-enhanced Blockchain Simulation . 83
Hayder K. Fatlawi, Attila Kiss: Activity Recognition Model for Patients Data Stream using Adaptive

Random Forest and Deep Learning Techniques . 88
István Fábián, Gábor György Gulyás: On the Privacy Risks of Large-Scale Processing of Face

Imprints . 92

ii

Jenifer Tabita Ciuciu-Kiss, István Bozó, Melinda Tóth: Towards Version Controlling in RefactorErl
. 96

José Vicente Egas-López, Gábor Gosztolya: Using the Fisher Vector Approach for Cold Identification
. 100

László Viktor Jánoky, János Levendevoszky, Péter Ekler : A Novel JWT Revocation Algorithm . 104
Márton Juhász, Dorottya Papp, Levente Buttyán: Towards Secure Remote Firmware Update

on Embedded IoT Devices . 108
Mátyás Kiglics, Csaba Bálint: Quadric tracing: A geometric method for accelerated sphere tracing

of implicit surfaces . 112
Mohammed B. M. Kamel, Péter Ligeti, Christoph Reich: Private/Public Resource Discovery for

IoT: A Two-Layer Decentralized Model . 116
Mohammed Mohammed Amin, István Megyeri : Improving keyword spotting with limited

training data using non-sequential data augmentation . 120
Orsolya Kardos, Tamás Vinkó: Social network characteristics from the viewpoint of centrality

measures . 124
Péter Hudoba, Attila Kovács: Toolset for supporting the number system research 129
Róbert Bán, Gábor Valasek: Geometric Distance Fields of Plane Curves 133
Roland Nagy, Levente Buttyán: Towards Rootkit Detection on Embedded IoT Devices 136
Sándor Balázs Domonkos, Tamás Németh: Use data mining methods in quality measurement in

the education systems . 140
Tamás Aladics, Judit Jász, Rudolf Ferenc: Feature Extraction from JavaScript 144
Tekla Tóth, Levente Hajder: Minimal solution for ellipse estimation from sphere projection using

three contour points . 148
Viktor Homolya, Tamás Vinkó: Side road to axioms for two-dimensional centralities:

Network reconstruction from hub and authority values . 152
Yuping Yan, Péter Ligeti: A Combination of Attribute-Based Credentials with Attribute-Based

Encryption for a Privacy-friendly Authentication . 155
Zoltán Richárd Jánki, Vilmos Bilicki: Crosslayer Cache for Telemedicine 159
Zoltán Szabó, Vilmos Bilicki: EHR Data Protection with Filtering of Sensitive Information in

Native Cloud Systems . 164

List of Authors 168

iii

Program

Wednesday, June 24

09:00 – 09:20 Opening

09:20 – 10:40 Talks – Graphs (4x20 min.)

10:40 – 11:00 Break

11:00 – 12:00 Talks – Machine Learning (3x20 min.)

12:00 – 13:00 Lunch Break

13:00 – 14:20 Talks – Security (4x20 min.)

14:20 – 14:30 Break

14:30 – 15:30 Talks – Program Analysis (3x20 min.)

15:30 – 15:40 Break

15:40 – 16:40 Talks – Healthcare (3x20 min.)

Thursday, June 25

09:20 – 10:40 Talks – Simulation (4x20 min.)

10:40 – 11:00 Break

11:00 – 12:00 Plenary Talk

12:00 – 13:00 Lunch Break

13:00 – 14:20 Talks – Privacy (4x20 min.)

14:20 – 14:30 Break

14:30 – 15:30 Talks – Computer Graphics I. (3x20 min.)

15:30 – 15:40 Break

15:40 – 16:40 Talks – Bugs (3x20 min.)

Friday, June 26

09:40 – 10:40 Talks – Computer Graphics II. (3x20 min.)

10:40 – 11:00 Break

11:00 – 12:00 Plenary Talk

12:00 – 13:00 Lunch Break

13:00 – 15:00 Talks – Distributed (6x20 min.)

15:00 – 15:10 Break

15:10 Closing

iv

Detailed program
Wednesday, June 24

09:00 Opening

Session 1 Graphs - Session chair: Gábor Gosztolya
09:20 Orsolya Kardos and Tamás Vinkó:

Social network characteristics from the viewpoint of centrality measures
09:40 Ahmad T. Anaqreh, Boglárka G.-Tóth and Tamás Vinkó:

Symbolic Regression for Approximating Graph Geodetic Number: A preliminary study
10:00 Sándor Balázs Domonkos and Németh Tamás:

Use data mining methods in quality measurement in the education systems
10:20 Viktor Homolya and Tamás Vinkó:

Side road to axioms for two-dimensional centralities: Weighted signed network
reconstruction from hub and authority values

10:40 Break

Session 2 Machine Learning - Session chair: Márk Jelasity
11:00 Bence Bogdándy and Zsolt Tóth:

Overview of Artificial Neural Network Abduction and Inversion Methods
11:20 Dávid Papp:

Spectral Clustering based Active Zero-shot Learning
11:40 Mohammed Mohammed Amin and István Megyeri:

Improving keyword spotting with limited training data using non-sequential data
augmentation

12:00 Lunch Break

Session 3 Security - Session chair: Ákos Kiss
13:00 Roland Nagy and Levente Buttyán:

Towards Rootkit Detection on Embedded IoT Devices
13:20 Márton Juhász, Dorottya Papp and Levente Buttyán:

Towards Secure Remote Firmware Update on Embedded IoT Devices
13:40 Mohammed B. M. Kamel, Péter Ligeti and Christoph Reich:

Private/Public Resource Discovery for IoT: A Two-Layer Decentralized Model
14:00 László Viktor Jánoky, János Levendevoszky and Péter Ekler:

A Novel JWT Revocation Algorithm
14:20 Break

Session 4 Program Analysis - Session chair: István Siket
14:30 Tamás Aladics, Judit Jász, and Rudolf Ferenc:

Feature Extraction from JavaScript
14:50 Artúr Poór:

Static Analysis Framework for Scala
15:10 Jenifer Tabita Ciuciu-Kiss, István Bozó, and Melinda Tóth:

Towards Version Controlling in RefactorErl
15:30 Break

Session 5 Healthcare - Session chair: Richárd Farkas
15:40 José Vicente Egas-López and Gábor Gosztolya:

Using the Fisher Vector Approach for Cold Identification
16:00 Hayder K. Fatlawi and Attila Kiss:

Activity Recognition Model for Patients Data Stream using Adaptive Random Forest and
Deep Learning Techniques

16:20 Zoltán Richárd Jánki and Vilmos Bilicki:
Crosslayer Cache for Telemedicine

v

Thursday, June 25

Session 6 Simulation - Session chair: Zoltán Gingl
09:20 Hamza Baniata:

Fog-enhanced Blockchain Simulation
09:40 Dilshad Hassan Sallo and Gábor Kecskeméti:

Parallel Simulation for The Event System of DISSECT-CF
10:00 Péter Hudoba and Attila Kovács:

Toolset for supporting the number system research
10:20 András Márkus:

Task allocation possibilities in simulated Fog environments
10:40 Break

11:00 Plenary Talk
Tibor Gyimóthy:
Software Maintenance and Evolution of Large Systems

12:00 Lunch Break

Session 7 Privacy - Session chair: András London
13:00 Ádám Fodor, László Kopácsi, Zoltán Á. Milacski and András Lőrincz:

Speech de-identification with deep neural networks
13:20 Zoltán Szabó and Vilmos Bilicki:

EHR Data Protection with Filtering of Sensitive Information in Native Cloud Systems
13:40 István Fábián and Gábor György Gulyás:

On the Privacy Risks of Large-Scale Processing of Face Imprints
14:00 Yuping Yan and Péter Ligeti:

A Combination of Attribute-Based Credentials with Attribute-Based Encryption for a
Privacy-friendly Authentication

14:20 Break

Session 8 Computer Graphics I. - Session chair: Péter Balázs
14:30 Gábor Karai and Péter Kardos:

Distance-based Skeletonization on the BCC Grid
14:50 Papp György, Hoffmann Miklós and Papp Ildikó:

Embedding QR code onto triangulated meshes
15:10 Csaba Bálint:

Iterative Operations on Footpoint Mappings
15:30 Break

Session 9 Bugs - Session chair: Árpád Beszédes
15:40 Balázs Szűcs and Áron Ballagi:

An Industrial Application of Autoencoders for Force-Displacement Measurement
Monitoring

16:00 Gabriella Tóth and Máté Tejfel:
Component-based error detection of P4 programs

16:20 Attila Szatmári:
An Evaluation of Bug Taxonomy and Fault Localization Algorithms in JavaScript Programs

vi

Friday, June 26

Session 10 Computer Graphics II. - Session chair: Gábor Németh
09:40 Tekla Tóth and Levente Hajder:

Minimal solution for ellipse estimation from sphere projection using three contour points
10:00 Róbert Bán and Gábor Valasek:

Geometric Distance Fields of Plane Curves
10:20 Mátyás Kiglics and Csaba Bálint:

Quadric tracing: A geometric method for accelerated sphere tracing of implicit surfaces
10:40 Break

11:00 Plenary Talk
Gábor Tardos:
Fingerprinting Digital Documents

12:00 Lunch Break

Session 11 Distibuted - Session chair: Tamás Vinkó
13:00 A. Al-Haboobi and Gábor Kecskeméti:

Reducing Execution Time of An Existing Lambda based Scientific Workflow System
13:20 Ebenezer Komla Gavua and Gábor Kecskeméti:

Improving MapReduce Speculative Executions with Globlal Snapshots
13:40 Biswajeeban Mishra and Biswaranjan Mishra:

Evaluating and Analyzing MQTT Brokers with Stress-testing
14:00 Gábor Székely, Gergő Ládi, Tamás Holczer and Levente Buttyán:

Towards reverse engineering protocol state machines
14:20 Dániel Pásztor, Péter Ekler and János Levendovszky:

Energy-efficient routing in Wireless Sensor Networks
14:40 Dániel Balázs Rátai, Zoltán Horváth, Zoltán Porkoláb and Melinda Tóth:

Traquest model - a novel model for ACID concurrent computations
15:00 Break

15:10 Closing

vii

PLENARY TALKS

Software Maintenance and Evolution of Large Systems

Tibor Gyimóthy
Institute of Informatics,

University of Szeged, Hungary

Managing large software systems is a difficult task, mainly due to the constant evolution of
these systems. The software developers have to manage the continuous software changes with
little downtime and cost. In this talk some methods are presented which can assist the software
maintenance and evolution process. Software quality models based on product metrics can
be used to identify bad smells and error-prone constructions in software code. Static slicing
methods are able to identify the data and control flow dependences of software elements.
Dynamic slicing approaches can be used in the optimization of testing a program debugging.
Finally, we give some remarks on the applications of machine learning methods in software
maintenance.

1

PLENARY TALKS

Fingerprinting Digital Documents

Gábor Tardos
Alfréd Rényi Institute of Mathematics

Hungarian Academy of Sciences, Hungary

There are several approaches to make spreading illegal copies of sensitive or protected
digital documents harder. The fingerprinting approach does not prevent legitimate users from
spreading the document, but makes anonymity impossible for them: the identity of the user
who leaked the document can be identified. This approach works in cases when the number
of legitimate users is limited and is based in hiding unique identifiers (fingerprint codes) in the
copy of every user.

A natural attack against fingerprinting is based of several legitimate users colluding. If
they compare their copies of the documents they find where they differ – this is the embedded
fingerprint code – so they can remove this code and publish the document in a way that is not
traceable back to them. Surprisingly, however, clever design of the fingerprint code can make
fingerprinting resilient against such collusion attacks.

2

Reducing Execution Time of An Existing Lambda based Scientific
Workflow System

A. Al-Haboobi and Gábor Kecskeméti

Abstract: Recent developments in the field of cloud computing have led to emerging an
innovative service called Function as a Service (FaaS). Cloud functions have received increased
attention across a number of disciplines in recent years. Researchers have executed scientific
applications such as workflows using function platforms. Functions could reduce the execution
time and cost for scientific workflows due to their features: auto-scaling and fine-grained
pricing schema. In this paper, we developed an improved system based on the DEWE v3
system that can process large-scale workflows with three different execution modes: (virtual
machines, cloud functions, and a hybrid mode). We can improve DEWE v3 by modifying
its scheduling algorithm in the cloud function environment. The improved algorithm can
schedule a group of jobs with precedence requirements to run in a single function invocation for
speeding up the execution time. We evaluated the improved system with large-scale Montage
workflows by comparing its result with the original DEWE v3. The experimental results show
that the improved system can minimize the execution time and cost in contrast to DEWE v3 in
most cases.

Keywords: Scientific workflows, Cloud functions, Serverless architectures.

Introduction

A scientific workflow consists of a large number of dependent jobs with complex precedence
constrains between them e.g., Montage [1]. These applications need large resources for proces-
sing such as cloud computing that is increasingly being used. Moreover, they require Workflow
Management Systems (WMS) such as Pegasus [2] for handling the jobs which follow a specific
order of processing to achieve a desired goal. Workflows can be executed on traditional cloud
platforms such as Infrastructure as a Service (IaaS) on a number of Virtual Machines (VMs).
Function as a Service (FaaS) is a commercial cloud platform for running distributed applications
e.g. scientific workflows in cloud. It can be used instead of IaaS for some applications due
to its ability for providing auto-scaling and fine-grained pricing schema. For example, the
billing interval of cloud functions is 100 ms while for VMs is over second. Determining the
number of VMs on cloud is a challenge for executing a workflow because there are different
numbers of released jobs in each phase. Therefore, in order to reduce the total execution time
of a workflow, we can add more VMs for processing the jobs in a certain phase that may
lead to occur a resource under-utilization issue for the same workflow during other phases.
However, a cloud function allows to run hundreds of invocations in parallel where the auto-
scaling occurs in Faas automatically while in IaaS needs to handle it. We need a scheduling
algorithm that dispatches jobs to Lambda with precedence requirements to be run in a single
Lambda invocation. Therefore, it can reduce the duplicated data transfer that occurs between
the Lambda storage service and its invocation execution environment which is leading to
additional communication cost.

We improved the DEWE v3 [3] system because it has demonstrated the ability of cloud
functions such as Lambda to execute large-scale montage workflows. We have changed the
scheduling algorithm of DWED v3 for reducing the duplicated data transfer. Moreover, it
occurs during the execution between the Lambda storage service and its invocation execution
environment leading to additional communication cost. In addition, it has achieved by schedul-
ing jobs with precedence requirements to be executed in a single Lambda invocation. As a

3

result, the improved scheduling algorithm can reduce the execution time of scientific workflows
on the Lambda platform.

We have evaluated the improved system with large-scale a 6.0-degree Montage workflow
that contains a total of 8,586 tasks with a total size of 38GB. We have tested our improved system
by comparing its execution time with DEWE v3 on the Lambda function. The experimental
results show that the improved system can outperform DEWE v3 in most cases.

Related Works

A number of studies [3,6] have investigated whether large-scale scientific workflows can be
executed on a function platform due to its limits such as memory and temporary storage. [4]
presented a prototype for executing workflows on cloud functions and the system evaluated
with 0.25- and 0.4-degree Montage workflows. However, they tested with small-scale Montage
workflows and they have a deficiency with large-scale workflows. In [3] the authors developed
a DEWE v3 system that is a based on function platform which is able to process large-scale
scientific workflows using AWS Lambda and Google Cloud Functions (GCF). It can process
scientific workflows in three different execution modes: virtual machines, cloud functions,
and hybrid mode (virtual machines and cloud functions). It was evaluated with a small- and
large-scale Montage workflow. DEWE v3 uses a scheduling algorithm that dispatches jobs to
Lambda without considering jobs with precedence requirements to be run in a single Lambda
invocation. Therefore, it can reduce the duplicated data transfer that can occur between the
Lambda storage service and its invocation execution environment which is leading to additional
communication cost.

Improving An Existing Workflow Management System

Our improved approach is based on the DEWE v3 system and involves modifying the
scheduling algorithm for the cloud function mode. This can speed up the workflow execution
time by processing a set of tasks with precedence requirements in a single Lambda invocation.
As a result, it can reduce the duplicated data transfer between the Lambda storage and the
function invocation execution environment. Algorithm 1 shows the pseudo-code of the im-
proved algorithm for scheduling a workflow. The modified scheduling algorithm changed the
dispatching behaviour of DEWE v3 by releasing parent tasks with its children tasks in order to
the same Kinesis shard. Where each shard will assure the ordering of tasks in processing which
parent task must be executed before its children tasks. The improved algorithm will create a
number of partition keys equal to the number of Kinesis shards. We will explain the steps of the
improved scheduling algorithm. Step 1: It reads the XML file of workflow definition. Step 3:
At the beginning of the scheduling, all the parent tasks will schedule across the Kinesis shards
without their children tasks to run on Lambda. Step 4: Then, each parent task completed the
execution, then in Step 5: its children will remove it as a parent. Where each child task will
become a parent task if it has no other parents. For example, Task 1 is the parent of Task 2 and
it completed the execution and Task 2 become a parent. Next, in Step 6 to Step 7 where each
parent task will schedule and then in Step 8 to Step 12 each child task will also schedule if it has
no other parents. For example, Task 2 will schedule with its children Tasks 4 and 5 on the same
Kinesis shard. The parent task with its children tasks will run in a single Lambda function
invocation. Lambda will pull tasks from Kinesis shard and execute them sequentially based
on their order. As a result, this will lead for reducing the duplicated data transfer between the
Lambda storage and the function invocation execution environment. However, a particular
task might fail to execute in Lambda due to different reasons such as out of disk space error,

4

Algorithm 1 The improved scheduling algorithm.

1: Read the workflow definition (dag.xml)
2: Ti← task, Tj ← free− task , KSi← Kinesis− shard, Li← Lambda− fumction
3: At the beginning scheduling all tasks that are eligible to run Tj
4: while (Tj has completed processing) do
5: Remove Tj as a parent from its children Ti
6: while (Ti has no more parent) do
7: schedule Ti to KSi to run on Li
8: while (Ti has children) do
9: if (A child has only one parent Ti) then

10: Remove Ti as a parent from its child
11: Schedule the child of Ti to KSi to run on Li
12: end if
13: end while
14: end while
15: end while

exceeding the maximum execution time limit and out of memory error. In this case, Lambda
will retry to execute the task until it succeeds.

Evaluation

In this section, we evaluated the improved system by comparing it results with the DEWE v3
system on AWS Lambda. The both systems tested with Montage workflows as a test case with
different workflow degrees: 2.0-degree, 4.0-degree and 6.0-degree. We selected Montage that
is a real-world astronomy application. It is used for different benchmarks and performance
evaluation [5]. We tested the both systems with the Montage 6-degree workflow with job
dependencies on Lambda. It is a very large-scale scientific workflow which contains a total
of 8,586 tasks, 1,444 input data files and 22,850 intermediate files, with a total size of 38GB.
It is a very compute- and data-intensive scientific workflow. It contains short jobs such as
mProjectPP, mDiffFit and mBackground while the long jobs are six: mConcatFit, mBgModel,
mAdd, mImgtbl, mShrink and mJPEG. All the short and long jobs are executed on Lambda
except the mAdd jobs which are executed on the virtual machine t2.xlarge. This occurs because
the size of the input/output files exceeds the storage space in Lambda. The total execution time
of both systems with Montage workflow 6-degree as shown in Fig. 1. In this experiment, the
both systems evaluated on the same platform configuration as follows: The Lambda Memory
size is 3008 MB. The Lambda execution duration is 900 seconds. The batch size of the Lambda
function is 20. The Kinesis shard number is 30. The virtual machine is t2.xlarge that executed
mAdd jobs with its features: 16 GiB of memory and 4 vCPUs.

Conclusion

In this paper, we have improved the scheduling algorithm of DEWE v3 system for the
Lambda function execution environment. We modified the dispatching behaviour of workflow
by releasing a parent task with its children tasks to the same Kinesis shard. Then, the grouped
tasks with precedence requirements can be executed in a single Lambda invocation. As a
result, the duplicated data transfer can be reduced between the Lambda storage service and
its invocation execution environment. Therefore, speed-up can be achieved for the execution

5

Figure 1: The execution time of the both systems with a 6.0-degree Montage workflow with job
dependencies running on 3GB Lambda memory size.

time of scientific workflows. We evaluated the improved system with large scale scientific
workflow without job dependencies which are Montage workflow degrees: 2.0, 4.0 and 6.0.
Moreover, We also tested it with a 6.0-degree Montage workflow with job dependencies that
is a very compute- and data-intensive scientific workflow. The experimental results of both
systems show that the improved system can achieve better results than the DEWE v3 system in
most cases. In the future work, we will extend the improved system to run on heterogeneous
memory sizes of cloud functions to reduce the execution time and cost. Moreover, we will
extend a Workflow Management System (WMS) tool for the DISSECT-CF simulator in order to
be able for simulating the execution of scientific workflows.

Acknowledgements

This research was supported by the Hungarian Scientific Research Fund under the grant
number OTKA FK 131793.

References

[1] Jacob, J.C., Katz, D.S., Berriman, G.B., Good, J., Laity, A.C., Deelman, E., Kesselman, C.,
Singh, G., Su, M.H., Prince, T.A. and Williams, R., 2010. Montage: a grid portal and software
toolkit for science-grade astronomical image mosaicking. arXiv preprint arXiv:1005.4454.

[2] Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Patil, S., Su, M.H., Vahi, K. and
Livny, M., 2004, January. Pegasus: Mapping scientific workflows onto the grid. In European
Across Grids Conference (pp. 11-20). Springer, Berlin, Heidelberg.

[3] Jiang, Q., Lee, Y.C. and Zomaya, A.Y., 2017, November. Serverless execution of scientific
workflows. In International Conference on Service-Oriented Computing (pp. 706-721).
Springer, Cham.

[4] Malawski, M., 2016, November. Towards Serverless Execution of Scientific Workflows-
HyperFlow Case Study. In Works@ Sc (pp. 25-33).

[5] Juve, G. and Deelman, E., 2008, December. Resource provisioning options for large-scale
scientific workflows. In 2008 IEEE Fourth International Conference on eScience (pp. 608-
613). IEEE.

[6] Pawlik, M., Figiela, K. and Malawski, M., 2019. Performance considerations on execution
of large scale workflow applications on cloud functions. arXiv preprint arXiv:1909.03555.

6

Speech de-identification with deep neural networks

Ádám Fodor, László Kopácsi, Zoltán Á. Milacski and András Lőrincz

Abstract: Cloud-based speech services are powerful practical tools but the privacy of the
speakers raises important legal concerns when exposed to the Internet. We propose a deep
neural network solution that removes personal characteristics from human speech by convert-
ing it to the voice of a Text-to-Speech (TTS) system before sending the utterance to the cloud.
The network learns to transcode sequences of vocoder parameters, delta and delta-delta features
of human speech to those of the TTS engine. We evaluated several TTS systems, vocoders and
audio alignment techniques. We measured the performance of our method by (i) comparing
the result of speech recognition on the de-identified utterances with the original texts, (ii)
computing the Mel-Cepstral Distortion of the aligned TTS and the transcoded sequences, and
(iii) questioning human participants in A-not-B, 2AFC and 6AFC tasks. Our approach achieves
the level required by diverse applications.

Keywords: speech processing, voice conversion, deep neural network, text-to-speech, speaker privacy

Introduction

Cloud-based speech services have improved recently due to the large amount of voice data
that is exploited by deep learning technology, giving rise to superhuman performance in several
tasks. Consequently, it seems wise to use such utilities in practice.

Unfortunately, many speech applications involve legal concerns regarding privacy. Several
tasks have been formulated to eliminate personal information from samples without spoiling
the linguistic content before uploading. Voice conversion (VC) operates by altering certain
features of human speech [8]. Voice transformation (VT) converts the signal as if it was uttered
by a target speaker [5]. De-identification is the process that intends to remove any personal
information from the data that could be associated with identity. VC and VT may be applied
to solve de-identification, but the papers in the literature suffer from several flaws: the VC
algorithm in [4] is approximately invertible and relies on a good voice transformer, while VT
[5, 7] requires data from pairs of speakers and is unable to anonymize the target speaker.

Our contributions are as follows. For de-identification, we propose to transform utterances
to a generic voice of a Text-to-Speech (TTS) engine, by taking advantage of utterance-text
sample pairs. We use an end-to-end trainable Deep Neural Network (DNN) to learn the many-
to-one VT task. We suggest to learn the mapping at vocoder level. We show that the trained
network gives rise to tolerable distortions at utterance level by conducting two experiments:
comparing the outputs of Google’s Automatic Speech Recognition (ASR) system for the original
TTS output and the de-identified utterance and measuring the Mel-Cepstral Distortion (MCD).
To confirm de-identification success, we further performed four perceptual listening studies
with human subjects (A-not-B test: distinguishing transformed utterances of different speakers,
2-Alternative Forced-Choice (2AFC) test: classifying utterances from female/male and child/
adult speakers, and 6-Alternative Forced-Choice (6AFC) test: estimating the number of speak-
ers). Our proposal is irreversible and it requires only speech-transcript sample pairs for training,
which are readily accessible in the literature. We argue that our method performs favorably
compared to several baseline methods.

Proposed method

We describe the features set, the pre-processing steps and the DNN architectures in detail
here. The de-identification pipeline can be seen in Fig. 1.

7

Figure 1: Schematic diagram of our proposed method. Training [T]: vocoded human voice
is input to a Deep Neural Network (DNN) that is trained to approximate the aligned TTS
output. Inference [I]: vocoded human voice is de-identified by the DNN and transformed back
to utterances by the vocoder.

We used the WORLD [6] vocoder for the estimation of the fundamental frequency (F0),
aperiodicity and spectral envelope. Mel-Generalized Cepstrum (MGC) and band aperiodicity
(BAP) were calculated from spectral envelope and aperiodicity, respectively. Linear interpola-
tion of logF0 was calculated. We applied a thresholded binary voiced/unvoiced (V/UV) mask.
Dynamic features were determined using MGC and BAP.

The Festival Speech Synthesis System [1] was used to generate TTS audio samples from the
corresponding transcripts. The choice of Festival was motivated by comparing several TTS
systems. The TTS generated sound files were aligned to match with the corresponding sound
files produced by the speaker. We used Dynamic Time Warping (DTW) for the alignments.

For feature transformation, various deep learning architectures were applied and compared:
(1) we experimented with an architecture, which we refer to as Dense, having four 1,024 unit
dense layers. (2) we used a Convolutional Neural Network (ConvNet) with two 1D convolu-
tional layers of 512 units and kernel width 7 and stride 1, and two 1,024 unit dense layers. (3)
tried a model, which we call C-BLSTM, having three batch normalized 256 unit 1D convolution-
al layers with kernel width 3, one 128 unit BLSTM layer and two 512 unit dense layers was
also tested, where the first dense layer was batch normalized. Finally, two state-of-the-art
architectures based on (4) Residual Networks (ResNet) and (5) Wav2Letter [3] were also evaluat-
ed.

Within all networks, we used ReLU activation functions and dropout layers with probability
between 0.2 and 0.3, in addition to adding a final dense output layer on top with linear activa-
tion.

Results
We implemented the neural networks in Python using Keras and applied PyWorld and

SPTK for feature extraction. We used early stopping with patience 10 and Adam optimizer
with its default parameters. We trained the models on TIMIT [10], and CSLU Kids’ Speech
Version 1.1 [9] data sets. In the latter case a subset was selected from the scripted collection
based on the quality of DTW transformed TTS utterances.

To show that the trained networks have acceptable noise levels at utterance level, we con-
ducted two quantitative experiments. In the first experiment we were concerned with the ASR
accuracy. Here we measured the intelligibility of the trained networks with the Google Cloud
Speech-to-Text system. The precision values are given in Table 1. In the second experiment, we
evaluated MCD between de-identified Dense network outputs and the aligned TTS signals by
averaging over all 1,680 test sample pairs of the TIMIT corpora using the Dense architecture.
The mean and standard deviation values are presented in Fig. 2 for our method (last column)
together with values available in the literature. Our method significantly outperformed its
baselines.

8

Table 1: Details of the objective evaluations on the TIMIT database. The average and the
standard deviation of the Letter Accuracy Rate (LAR) measured with Google Cloud Speech-
to-Text system is presented for the proposed architectures and input features. Notation: “ilF0"
means interpolated logF0.

Method Architecture
ASR (LAR) precision using the following features:
logF0 + MGC +

BAP
ilF0 + MGC +

BAP
ilF0 + MGC +
BAP + deltas

Dense 5 dense 0.77 ±0.17 0.85 ±0.15 0.84 ±0.16
ConvNet 2 conv + 3 dense 0.76 ±0.17 0.82 ±0.17 0.82 ±0.15
C-BLSTM 3 conv + blstm + 3 dense 0.77 ±0.14 0.79 ±0.15 0.79 ±0.15
ResNet 4 residual + 3 dense 0.79 ±0.15 0.82 ±0.16 0.82 ±0.14
Wav2Letter 9 conv + 2 dense 0.76 ±0.16 0.79 ±0.17 0.77 ±0.16

Figure 2: Mean Mel-Cepstral Distortion (MCD) values of various schemes: Exemplar-based
Nonnegative Matrix Factorizations (ENMF) [2] using 3000 randomly selected source-target pair
frames, VAE-pair [2], Bernoulli-Bernoulli RBM (BB-RBM) [7], Gaussian-Bernoulli RBM (GB-
RBM) [7] and our proposed method.

To confirm that our Dense network can properly de-identify human speech, we conducted
four qualitative experiments with human participants in an isolated environment using TIMIT
and CSLU Kids’ Speech. Given randomly selected samples listeners had to decide (1) which
samples were produced by kids?, (2) whether a pair of utterances was produced by the same
speaker or not, (3) what was the gender of the original speaker, and finally (4) they had to guess
the number of speakers within two groups.

In all four tests, the results were convincing, subjects performed like random choice, see
Table 2. Participants were unable to sense any of the relevant aspects of the speakers. In the
first 6AFC test, none of the subjects inferred accurately. In the second 6AFC test, 4 subjects out
of 22 predicted correctly, which matches random guessing within tolerance.

Table 2: Results of the perceptual listening experiments. We report the average and the
standard deviation of the identification accuracy.

Task
of
subj.

of
samp.

Accuracy
mean ±std

Random
choice

Child/Adult 14 20 0.52 ±0.15 0.5
A-not-B

22

20 0.56 ±0.15 0.5
Female/Male 15 0.51 ±0.15 0.5

of 6 0 0.16
Speakers 6 0.18 0.16

9

Summary

We presented a deep neural network based speech de-identification method that can map
vocoder features of human speech to those of a generic TTS engine with little or minimal loss
of sound quality using the TIMIT data set. The novelty of our scheme is that de-identification
is based on speech-text sample pairs, which are widely available in the speech processing
community. In the resulting signal, the identity of the speaker is concealed, as confirmed by
our perceptual listening experiments.

The dynamics of the original speaker is inherited due to the application of DTW, A limitation
of the technique. We hypothesize that this problem may be alleviated by applying DTW in the
loss function of the deep network, a potential future work. We observed degraded performance
on the CSLU Kid’s Speech corpus calling for additional research in augmenting speech data,
in improving the quality of the DTW transformation and in applying more sophisticated DNN
architectures. The observed limitation for children’s speech may also mean that larger databases
are needed for high quality de-identification for certain accents.

Acknowledgements

The research has been supported by the European Union, co-financed by the European
Social Fund (EFOP-3.6.3-16-2017-00002, EFOP-3.6.3-VEKOP-16-2017-00001). AL was supported
by the National Research, Development and Innovation Fund of Hungary via the Thematic
Excellence Programme funding scheme under Project no. ED_18-1-2019-0030 titled Application-
specific highly reliable IT solutions.

References

[1] A. Black. The Festival Speech Synthesis System: System Documentation (1.1. 1). Tech. Rep.
HCRC/TR-83, 1997.

[2] C.-C. Hsu, H.-T. Hwang, et al. Voice conversion from non-parallel corpora using
variational auto-encoder. In APSIPA, Asia-Pacific, pages 1–6. IEEE, 2016.

[3] V. Liptchinsky, G. Synnaeve, et al. Letter-based speech recognition with Gated ConvNets.
CoRR, abs/1712.09444, 2017.

[4] C. Magariños, P. Lopez-Otero, et al. Reversible speaker de-identification using pre-trained
transformation functions. Comp. Speech and Lang., 46:36–52, 2017.

[5] S. H. Mohammadi and A. Kain. Voice conversion using deep neural networks with
speaker-independent pre-training. Proc. IEEE SLT Workshop, pages 19–23, 2014.

[6] M. Morise, F. Yokomori, et al. WORLD: a vocoder-based high-quality speech synthesis
system for real-time applications. IEICE Trans. Info. Sys., 99(7):1877–1884, 2016.

[7] T. Nakashika, T. Takiguchi, et al. Voice conversion based on speaker-dependent restricted.
(6):1403–1410, 2014.

[8] J. Qian, H. Du, et al. VoiceMask: Anonymize and sanitize voice input on mobile devices.
arXiv:1711.11460, 2017.

[9] K. Shobaki, J.-P. Hosom, et al. The OGI’s Kid’s Speech corpus and recognizers. Proc. 6th
ICSLP, 2000.

[10] V. Zue, S. Seneff, et al. Speech database development at MIT: TIMIT and beyond. Speech
Comm., 9:351–356, 1990.

10

Symbolic Regression for Approximating Graph Geodetic Number
A preliminary study

Ahmad T. Anaqreh, Boglárka G.-Tóth and Tamás Vinkó

Abstract: Graph properties are certain attributes that make the structure of the graph under-
standable easily. Occasionally, standard methods cannot work properly for calculating graph
properties due to the huge computational complexity needed to obtain their exact values,
especially for real-world graphs. In contrast, heuristics and metaheuristics are alternatives
proved their ability to provide sufficient solutions in a reasonable time. In this work, symbolic
regression with one of its tools called Cartesian Genetic Programming has been used to derive
formulas capable to approximate a specific graph property called geodetic number for random
and real-world graphs based on different training data as inputs.

Keywords: Symbolic Regression, Cartesian Genetic Programming, Graph Geodetic Number

Introduction

Topological representation is the simplest way to represent graphs, where the graph is
set of vertices and edges. On the other hand, spectral representation (e.g., adjacency matrix,
Laplacian matrix) can significantly help to describe the structural and functional behavior of
the graph. Adjacency matrix is a (0, 1)-matrix which indicates whether the nodes are adjacent
or not. Well-known algorithms like Dijkstra’s and Floyd-Warshall algorithm use the adjacency
matrix to calculate the shortest paths for a given graph. Is also known that the diameter for
a given graph is small if the absolute value of the second eigenvalue of the adjacency matrix
is small [1]. Laplacian matrix is a square matrix which can be used to calculate the number of
spanning trees for a given graph. The eigenvalues of the Laplacian matrix are non-negative,
less than or equal to the number of vertices, and less than or equal to twice the maximum vertex
degree [2]. Considering these important relations between the graph properties, eigenvalues of
spectral matrices and more parameters (to be discussed in the forthcoming sections), which can
be calculated easily even for complex graphs, symbolic regression is one of the good choices to
verify the connection between graph parameters and properties and use such parameters for
approximating network properties.

Preliminaries

Symbolic Regression

Symbolic regression is a mathematical model attempt to find a simple formula such that its
output fits a given output in term of accuracy based on a set of inputs. The inputs are set of
predefined parameters and constants. The model combines these parameters and constants
by a set of given arithmetic operators (e.g., +,−,×,÷, etc.) to build-up a formula. Even
though there are some algorithms in the literature using symbolic regression apart from genetic
programming [3], essentially, genetic programming is considered as one of the most popular
approaches applied by symbolic regression [9].

One of the most famous Genetic programming tools is Cartesian Genetic Programming
(CGP) developed by Julian Miller [4]. CGP is an evolutionary algorithm which applies iterations
until getting a final solution. The solution is gained either by reaching the maximum number
of iterations (number of generations) or a fitness threshold has reached (target fitness). CGP
begins by creating some initial solutions, then the best solution will be chosen by evaluating

11

these solutions based on the fitness function. Then, these solutions will be used to create the
next generation in the algorithm. Thus next generation solutions will be a mixture of chosen
solutions from the previous generation, where the new generation solutions should not be
perfectly the same of the previous ones. This can be done by mutation. Mutation used to
change small parts of the new solutions and usually mutation for CGP occurs probabilistically.
The mutation rate is the probability of applying the mutation on a specific new solution. Even-
tually, the algorithm must terminate. As we mentioned before there are two cases in which
this occurs: the algorithm has reached the maximum number of generations, or the algorithm
has reached the target fitness. At this point, a final solution is selected and returned. Using
CGP in our work refers to the fact that CGP uses only the inputs actually contribute to the final
computation, namely, some inputs can be totally disregarded, that leads to efficient and simple
formulas.

Network Properties

A simple connected graph is denoted by G = (V,E), where V is the set of vertices and E is
the set of edges.

Geodetic number Geodetic number is the minimal-cardinality set of vertices, such that all
shortest paths between its elements cover every vertex of the graph[6]. Assume that
n = |V | and m = |E|. Given i, j ∈ V , the set I[i, j] contains all k ∈ V which lies on any
shortest paths (geodetics) between i and j. The union of all I[i, j] for all i, j ∈ S ⊆ V is
denoted by I[S], which is called as geodetic closure of S ⊆ V . Formally

I[S] := {x ∈ V : ∃i, j ∈ S, x ∈ I[i, j]}.

The geodetic set is a set S for which V = I[S]. The geodetic number of G is

g(G) := min{|S| : S ⊆ V and I[S] = V }.

Degree-one node The degree of a node is the number of edges linked the node to other nodes
in the graph. If there is one edge connected the node, this node is called degree-one node.
It is easy to see that degree-one nodes are always part of the geodetic set [8].

Simplicial node Vertex v called simplicial node if its neighbors form a clique (complete graph),
namely, every two neighbors are adjacent. Ahangar et al. [7] prove that ifG is a nontrivial
connected graph and v is either a cut-vertex or a simplicial vertex of G, then v belongs to
every geodetic set of G.

Betweenness centrality Betweenness centrality (BC) for a specific node v is the proportion of
all shortest paths pass through this node. The nodes with high BC called central nodes,
these nodes might have more impact in the graph comparing to the nodes with low BC.
It is shown in [8] if G is a star graph with n nodes the g(G) = n − 1 where the central
node with the highest BC, that all the shortest paths passing through, will never be in the
geodetic set. Moreover, in the tree graph G with k leaves the g(G) = k, that mean the
leaves with low BC are geodetic nodes while the root and the parents with higher BC are
not part of the geodetic set.

Methodology

Although there are not many papers proposing the idea of using symbolic regression for
approximating graph properties, the work by Martens et al. [5] was a good starting point for

12

0 20 40 60 80 100 120

0
10

0
20

0
30

0
40

0

IDs of test graphs

g(
G

)

Exact g(G)

optimized g(G)

Figure 1: Exact g(G) and optimized g(G) for real-world test graphs

us. They made their experiments on real-world networks. They used CGP to optimize the
diameter and isoperimetric number. In our case, we aim at obtaining results for the geodetic
number using random and real-world graphs. We have used CGP-Library, which is a cross-
platform Cartesian Genetic Programming implementation developed by Andrew Turner1. To
be able to use CGP all we need is training data. Each training data will contain instances
and each instance contains two parts: graph parameters and chosen constants as inputs, the
graph property exact value as output. Thus, CGP will attempt to join the parameters and
constants by using arithmetic operators to achieve output close to predefined output. The
arithmetic operators we have used in all the cases were: +,−,×,÷,√., x2, x3. The parameters
we have used in this work: eigenvalues of the adjacency matrix and Laplacian matrix, number
of degree-one nodes, number of simplicial nodes, etc.

Numerical experiments

As we mentioned in the previous sections, the experiments we have applied is to investigate
the geodetic number property for random graphs and real-world graphs. To obtain the formulas
for either random graphs or real-world graphs, we have run the CGP 100 times. From these
100 formulas we choose the best formulas according to its output’s absolute deviation from the
exact value (best formula gave the least deviation).

For instance the best formula gave best approximation for the geodetic number on real-
world graphs is:

deg1 + sim+
√
M − 2, (1)

where deg1 is the number of degree-one nodes, sim is the number of simplicial nodes, and M
is the number of edges.

Figure 1 shows a comparison between optimized g(G) and exact g(G) for 120 graphs. We
created these as sub-graphs of different sizes (with 14 ≤ N ≤ 140) from known test graphs

1http://www.cgplibrary.co.uk/files2/About-txt.html

13

http://www.cgplibrary.co.uk/files2/About-txt.html

taken from the literature2. It is obvious how the optimized values are very close to the exact
values although there are two gaps in the figure indicating that for some graphs the optimized
value is less than the exact value. For these graphs, the number of simplicial nodes was zero.
Since the formula is the summation of the number of simplicial nodes, the number of degree-
one nodes, and the number of edges, if one of these values is zero that will cause these gaps.

Conclusion

Our work demonstrates that symbolic regression is applicable to derive formulas based on
given inputs for the graph geodetic number. The formulas gave acceptable results compared to
the exact values. Here, we have proposed a general formula to compute the geodetic number
for real-world graphs. Thus, the geodetic number can be obtained in a reasonable computation-
al time even for graphs with thousands of nodes and edges, while obtaining the exact geodetic
number is an NP-hard problem.

Acknowledgements

The project was supported by the European Union, co-financed by the European Social Fund
(EFOP-3.6.3-VEKOP-16-2017-00002).

References

[1] F. R. K. Chung: Diameters and Eigenvalues. Journal Of The American Mathematical Society
2(2), 187–196 (1989).

[2] William N. Anderson Jr. and Thomas D. Morley: Eigenvalues of the Laplacian of a Graph.
Linear and Multilinear Algebra 18(2), 141–145 (1985).

[3] Trent McConaghy1: FFX: Fast, Scalable, Deterministic Symbolic Regression Technology.
Genetic Programming Theory and Practice IX,235-260 (2011).

[4] Julian F. Miller: Cartesian Genetic Programming, Springer (2011).

[5] Marcus Martens, Fernando Kuipers, and Piet Van Mieghem: Symbolic Regression on
Network Properties. Genetic Programming, 131–146 (2017).

[6] Hansen, P. and van Omme, N.: On pitfalls in computing the geodetic number of a graph.
Optimization Letters 1(3), 299–307 (2007).

[7] HA Ahangar, F Fujie-Okamoto, V Samodivkin: On the forcing connected geodetic number
and the connected geodetic number of a graph. Ars Combinatoria 126, 323-335 (2016).

[8] Frank Harary, Emmanuel Loukakis, Constantine Tsouros: The geodetic number of a graph.
Mathematical and Computer Modeling 17(11), 89–95 (1993).

[9] Koza, John R.: Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, Cambridge, MA, USA (1992).

2the original graphs can be found in the repository http://networkrepository.com

14

http://networkrepository.com

Task allocation possibilities in simulated Fog environments

András Márkus

Abstract: Nowadays billions of smart devices utilise the network and storage capacity of
complex systems. These devices having various sensors are usually managed in Internet of
Things systems, which are often supported by Fog Computing or Cloud Computing services.
Within the Fog paradigm, nodes are installed close to the users (i.e their devices) to achieve
faster and more reliable communications and sensor data management than former cloud
solutions. In this paper, we present an extension of a simulation tool called DISSECT-CF-Fog,
which provides a more detailed fog model by enhanced location awareness and multi-layer fog
node management. We also exemplify the utilisation of these fog properties by developing and
validating different task allocation strategies in simulated IoT-Fog-Cloud environments. We
also show an evaluation of a scenario comparing four different approaches for task allocation
in these systems.

Keywords: Fog Computing, Internet of Things, Simulation, Task allocation

Introduction

According to the paradigm of the Internet of Things (IoT), sensors, actuators and smart
devices are connected through the Internet. Based on [1], the number of smart devices will
overstep 75 billions all over the world by 2025. IoT is often encoupled with Cloud Computing,
because the huge amount of sensed data require storing and processing for further analysis
with cloud resources. In the past years a new paradigm called Fog Computing appeared
(grown out of Cloud Computing), where the generated sensor data are stored and processed
on so-called fog nodes, which are located geographically closer to the end users for minimising
latency and ensuring privacy of the data [2]. These fog nodes usually have less computing
power and limited functionality as well (due to their constrained nature). Different type of
applications, such as real time or forecasting systems, can utilise fog architectures, which typi-
cally have more layers of fog or cloud nodes with different resource constraints and characteris-
tics. These nodes can process bag of task applications composed of the generated data of
sensors, hence one of the open issues of Fog Computing is how the operating costs and the
node response times can be minimised by an appropriate allocation of the tasks.

The investigation of real-world fog systems and topologies are rarely feasible, thus different
simulation environments are utilised by the researchers for such purposes. In this paper we
chose the DISSECT-CF-Fog simulator1 to be extended with a more realistic fog model, and for
further analysing task allocation possibilities. The rest of this paper we give a brief introduction
to related works in Section , in Section we present our simulator extension, the proposed
strategies and their evaluation. Finally, Section concludes our work.

Related work

The literature of Fog, Cloud and IoT systems contains numerous articles with diverse ap-
proaches aiming at task and virtual machine (VM) placement for IoT applications. Mann et
al. [3] compared seven different VM placement algorithms for clouds. They executed their
experiments in the well-known CloudSim simulator, relying on cloud properties such as CPU
speed, resource capacity, utilisation ratio and energy consumption of the available nodes.

1The DISSECT-CF-Fog simulator is available at: https://github.com/andrasmarkus/dissect-cf/

15

https://github.com/andrasmarkus/dissect-cf/

Vasconcelos et al. [4] presented a different approach, where the Fog topology is modelled
as a weighted graph, and they considered resource cost, bandwidth, and latency of the smart
devices. Resource availability and the topology of the network are also considered during their
validations performed in the Cooja simulator.

Xia et al. [5] proposed four heuristics for application placement in SimGrid with the follow-
ing parameters: required CPU, RAM, bandwidth, and latency of the fog nodes. Three allocation
policies were presented by Bittencourt et al. [6], which were evaluated in the one of the most
commonly used Fog simulators called iFogSim. The proposed strategies took into account
CPU capacity, the arrival time and the delay-priority of the tasks. Skarlat et al. [7] presented a
framework, where fog nodes are utilised when possible. Their optimisation solution considers
the resource capacity of fog nodes, the resource demand of a service, the link delay between
nodes, and different properties of the application (e.g. deployment and response time).

Based on these works we can state that the evaluation of task scheduling algorithms have
been performed in different simulation environments, and most approaches consider almost
the same characteristics of the Fog and IoT systems. Beside the former commonly used cloud
properties, location and mobility-related properties are used in fogs, but more heterogeneous
and multi-layered Fog-Cloud systems are rarely analysed.

Device layer

Fog layer II.

Cloud layer

Fog layer I.

Frankfurt

Athen

Brussel
Budapest

Kiev

London Paris

Amsterdam

Vienna Prague

Bratislava

Moscow Vilnius

Warsaw

Stockholm

Figure 1: The considered Fog topology in the evaluation

The proposed simulator extension and its evaluation

An algorithm for the allocation of a task of an IoT application in our proposed model can
consider the energy consumption of the execution environment (i.e. fog or cloud node), the
load of the network used for communication and data transfers, and the transfer, storage and
execution costs. When a selected fog node is overloaded, the execution of the appropriate task
will be delayed, which has a negative effect on the makespan of it application. To overcome this
problem, we also introduce the possibility of multi-layer fog node management by enabling
task offloading from (possibly overloaded) nodes to others. A typical fog topology can contain
numerous nodes, some of them are grouped as a Fog cluster, which restricts the access and
visibility of other nodes. These nodes can be ordered into layers, where higher level fog layers
usually contain stronger physical resources. We implemented this envisioned model in the
DISSECT-CF-Fog simulator. We developed a solution that is able to handle fog properties
dynamically, hence performing task allocation and reallocation during the experiments. In this
way, different approaches can be created and implemented by extending the new, Application-
Strategy abstract class.

16

We defined four strategies to validate the usability of our proposal. The Random strategy is
the default, which always chooses one from the connected nodes randomly. The Pushing Up
strategy always chooses the parent node (i.e. a node from a higher layer), if available. The
disadvantage of these strategies is the disability to consider increased network traffic and costs
of the operation. The third strategy called Holding Down considers data protection, because
the application keeps the data as close to the end-user as possible. In this way the network
traffic is minimal, but the execution time of the application can increase dramatically (due to
the overload of the lowest layer). Finally, the Load Balancing strategy ranks the parent nodes (if
available) and all neighbour nodes (from its own cluster) by network latency and the ratio of
the available CPU capacity and the total CPU capacity. The algorithm picks the node with the
highest rank (i.e. closest and least loaded).

We evaluated these proposed strategies in a European-wide weather forecasting scenario
with a fog topology having 10000 weather stations. Each station is equipped with five sensors
(e.g. measuring weather conditions (e.g. temperature, humidity) with 50 bytes of sensor
data). The time interval between two measurements was set to one minute, and the whole
simulation period took one day. The topology contains two Fog layers with 14 different Fog
nodes organised into clusters, and one cloud layer having a single cloud node. Each node has at
lest 40 CPU cores and 44 GB RAMs, and they are mapped to different cities, with exact latency
values defined between them using WonderNetwork2. The defined topology can be seen in
Figure 1, which also depicts the Fog clusters and layers with different colour. The arrows
represent routes responsible for communication between the layers, while the (undirected)
edges are for the message exchanges inside a cluster. The network capability of the smart
devices (or stations) are modelled with a 4G network with an average 50 ms of latency. The fog
nodes are modelled with real VM specifications according to the Amazon Web Services (AWS):
the lowest Fog layer has VMs with 2 CPU cores, 4 GB RAMs and 0.051$ hourly price, the top
fog layer has VMs with 4 CPU cores, 8 GB RAMs and 0.101$ hourly price, finally the cloud
layer has VMs with 8 CPU cores, 12 GB RAMs and 0.204$ hourly price. Each VM can process
only one task (represented by 250 Kilobytes of data) at the same time.

Table 1: Evaluation results of the proposed strategies

Strategies Random Pushing Up Holding Down Load Balancing
Num. of VM 78 73 60 78

Network utilisation (sec.) 54 40 0 43
Data transferred (MB) 1076 279 0 346

Timeout (min.) 42.04 4.88 175.16 4.66
Fog Layer I. cost ($) 66.41 66.40 72.05 66.40
Fog Layer II. cost ($) 21.71 22.02 0 22.01

Cloud cost ($) 13.10 0.74 0 0.81
Sum. of cost ($) 101.22 89.16 72.05 89.22

Table 1 summarises the average results after executing the scenario with all strategies five
times. For the comparison of the strategies, we measured how many VMs were required for
processing the tasks (and their data) during the operating hours. The Network utilisation
metric reflects the network load, and it represents the time taken to transfer the sensor data
from the source to the actual processing node, while the Data transferred metric represents its
size. The Timeout value means the time taken to finish data processing after the last sensor

2WonderNetwork website is available at: https://wondernetwork.com/pings. Accessed in January, 2020.

17

https://wondernetwork.com/pings

measurement was performed. According to the used AWS pricing models, we could calculate
the exact costs of the usage of the resources, separating each layer.

Concerning the results, the Random strategy occasionally used the network unnecessarily
(1074 MB for 54 seconds), and the task were often moved to the cloud layer resulting in the
highest cost (101.22 $). The Holding Down strategy used the least VMs (60), however its timeout
value extremely increased (175.16 minutes), pointing out the need of the upper layers. Never-
theless, it is obviously the cheapest solution with 72.05 $. The Pushing Up approach secured
us average cost, but its timeout is the best so far. Finally, the Load Balancing algorithm showed
slightly better task allocation for almost the same price, with the timeout value of 4.66 minutes.

Conclusion

In this paper we presented a simulation solution for investigating task allocation problems
in Fog environments. We developed an extension to DISSECT-CF-Fog with a revised fog
model, and proposed four strategies to exemplify its utilisation. We also compared the perfor-
mance of these strategies. In our future work we plan to extend our strategies with more
sophisticated methods, and perform evaluations of larger-scale IoT systems.

Acknowledgements

This research was supported by the Hungarian Scientific Research Fund under the grant
number OTKA FK 131793, and by the Hungarian Government under the grant number EFOP-
3.6.1-16-2016-00008.

References

[1] Taylor, Robin and Baron, David and Schmidt, Daniel. (2015). The world in 2025 - predictions
for the next ten years. 192-195. 10.1109/IMPACT.2015.7365193.

[2] Mahmud, Md and Buyya, Rajkumar. (2016). Fog Computing: A Taxonomy, Survey and
Future Directions. 10.1007/978-981-10-5861-5_5.

[3] Mann, Zoltan and Szabo, Mate. (2017). Which is the best algorithm for virtual machine
placement optimization?. Concurrency and Computation: Practice and Experience. e4083.
10.1002/cpe.4083.

[4] Vasconcelos, Danilo and Andrade, R and Severino, Valdenir and De, J and Souza,. (2019).
Cloud, Fog, or Mist in IoT? That Is the Question. ACM Transactions on Internet Technology.
19. 25. 10.1145/3309709. 10.1145/3309709.

[5] Xia, Ye and Etchevers, Xavier and Letondeur, Loic and Lebre, Adrien and Coupaye, Thierry
and Desprez, Frederic. (2018). Combining Heuristics to Optimize and Scale the Placement
of IoT Applications in the Fog. 153-163. 10.1109/UCC.2018.00024.

[6] Bittencourt, Luiz Fernando and Diaz-Montes, Javier and Buyya, Rajkumar and Rana, Omer
and Parashar, Manish. (2017). Mobility-Aware Application Scheduling in Fog Computing.
IEEE Cloud Computing. 4. 26-35. 10.1109/MCC.2017.27.

[7] Skarlat, Olena and Nardelli, Matteo and Schulte, Stefan and Borkowski, Michael and
Leitner, Philipp. (2017). Optimized IoT Service Placement in the Fog. Service Oriented
Computing and Applications. 11. 427-443. 10.1007/s11761-017-0219-8.

18

Static Analysis Framework for Scala

Artúr Poór

Abstract: Static program analysis has many application areas: from bug finding and code
verification to checking safety preconditions of transformations. Many transformations target
improving performance through parallelization, and they need elaborate static analysis to
ensure that the transformation does not change the program semantics.

This paper presents a static analysis library for Scala, a hybrid object-oriented and functional
programming language. The library is IDE-independent and represents the result of an ongoing
research project, features control flow analysis and data flow analyses.

Introduction

Automatic discovery of program parts that have unexploited parallelism involves thorough
static analysis. In order to claim two statements are safe to execute in parallel, it is necessary to
verify that no dependency exists between the statements. If it turns out that one statement is
dependent on the other, their relative order must not be changed to preserve the result of the
computation.

Two kinds of dependency between statements are distinguished: data and control dependen-
cy. When statement S2 data depends on statement S1, it means one of the following: S1 writes
memory region that S2 subsequently reads (true dependency), S2 reads memory region that
S1 subsequently writes (anti-dependency), or S2 and S1 both writes the same memory region
(output dependency). When S2 is control dependent on S1 then, intuitively, the execution of S1
directly governs whether S2 will be executed.

Determining whether two statements are in dependency relationship requires different kinds
of static analysis. Control flow analysis and data dependence analysis are common, and further
analyses are determined by the nature of the parallelization strategy. In case of loop paralleliza-
tion, for example, Artigas et. al. [1] utilized side effect analysis to create regions of exception-
free statements, and Kennedy et. al. [3] analyzed loop-carried dependencies between loop
iterations. Discovering divide and conquer algorithms [6] may need analysis of pointer bounds
so that a procedure calls access non-overlapping ranges of memory. Such analyses either do
not depend on control flow analysis (flow-insensitive) or they do (flow-sensitive). Existence of
the latter justifies the implementation of control flow analysis for Scala.

The main contribution of this paper therefore is a static analysis library for Scala, which
features control flow analysis and presents detailed control flow graph of Scala programs.
The control flow graph is input of flow sensitive analyses. An example of a flow sensitive
data flow analysis is live variables analysis. We hope the library will be the foundation of
a semi-automatic parallelization tool for Scala in the future, although static analysis for code
maintenance can also be implemented on top of the library. For example, live variables analysis
has been implemented, which can be used to detect dead code. The library can also construct
call graph of methods.

Representation of Scala Programs

Intermediate representation is a data structure for representing source code with the goal of
analysis, transformation or compilation. The library builds an abstract syntax tree from Scala
source code as an intermediate representation. The process involves three phases. First, the
source code is fed into scalac, the Scala compiler, which performs lexical, syntactic and static
semantic (e.g. name resolution and type inference) analyses. The output of this phase is an AST,

19

which is annotated with semantic information (e.g. symbols and types), although the compiler
removes syntactic sugars and comments, and inserts extra code during the process. Second,
the very same code is also fed into a parser which yields a faithful representation of the source
code without types and other semantic information. Finally, the two ASTs are merged so that a
faithful, type-annotated AST is created. We refer to this as resugared AST in this paper.

In order to see why the three steps are necessary, consider the following Scala code from
scalafix library:
1 object Patch {
2 /* * Combine a sequence of patches i n t o a s i n g l e patch . */
3 def fromIterable (seq : Iterable [Patch]) : Patch =
4 seq .foldLeft (empty) (_ + _)
5 . . .
6 }

The compiler will discard the comment, fills in the implicit type parameter of @foldLeft@.
The compiler will also desugar the placeholder syntax into anonymous function with fresh
argument identifiers:
1 def fromIterable (seq : Iterable [Patch]) : Patch =
2 seq .foldLeft [Patch] (empty) (((x$0 : Patch , x$1 : Patch) => x$0 . + (x$1)))

This clearly complicates presenting the code for users after code transformation (e.g. inline
method). While comments are not essential in compiling the above code, they should be
preserved when the code is reconstructed from the intermediate representation.

After each of the two front ends constructed ASTs from the same Scala code, they are
traversed simultaneously in depth-first order from top-level declarations to expressions. For
each node in the untyped AST, a matching node is searched in the typed AST to gather static
semantic information. The matching criterion is that the two nodes must belong to the same
position in the same source file, that is, their lexical token sequence must be identical modulo
the peculiar handling of position information in the two front ends in some cases.

Terminal and non-terminal nodes of the resugared AST fall under one of three categories:
declaration, definition or expression, represented by @Decl@, @Defn@ and @Expr@, respective-
ly. The ambiguity introduced by the placeholder syntax in the above code example can be
resolved with a dedicated syntactic category for infix applications (@AppInfix@), which di-
verges from ordinary anonymous functions (@Lambda@). The design of class hierarchy follows
that of the parser library of our choice, scala.meta. Main difference is the addition of type
information for expressions and symbols for definitions and declarations.

Control Flow Analysis

Flow sensitive data flow analyses rely on preliminary control flow analysis which approxi-
mates the flow of control in the program. The result of the analysis is a control flow graph.

Nodes of a graph are basic blocks, sequences of code which are executed without interrup-
tion. If the control reaches a basic block, then all the code in that block will be executed. Edges
in a graph represent flow of control between basic blocks. Label on an edge indicates whether
the control is passed conditionally (e.g. in loops) or unconditionally (e.g. method invocations
and exceptions).

Basic blocks are referred by labels (@BLabel@). That level of indirection allows us to represent
cycles in the graph. Such cycles are introduced by loops and recursive methods. A basic
block can be either open or closed (this design decision is inspired by Hoopl [5], a static
analysis framework) on either end. The distinction between open and closed ends allows us to
construct blocks in a type safe manner. A block is only considered complete when both ends
are closed. Only complete blocks can be added to a control flow graph. An open block of type

20

@Block[A,C,O]@ for some type @A@ consists of one @BFirst@, which holds the block label,
followed by zero or more @BMiddle@s, concatenated together using @BCat@s. A @BMiddle@
is a pointer to an expression in an AST which implicitly passes control to the next expression
in the block. When the control flow analysis reaches an explicit control passing expression,
it completes the block using a closing @BLast@, which becomes of type @Block[A,C,C]@, and
starts a new block. Type safety ensures that control transfer cannot occur in the middle of a
block as a @BMiddle@.
1 sealed abstract class O // Open
2 sealed abstract class C // Closed
3
4 sealed abstract class Block [A [_ ,_] ,E ,X] // Entry , e X i t
5 extends NonLocal [E ,X] { . . . }
6 case class BFirst [A [E ,X]<:NonLocal [E ,X]] (element : A [C ,O])
7 extends Block [A ,C ,O] { . . . }
8 case class BMiddle [A [E ,X]] (element : A [O ,O])
9 extends Block [A ,O ,O] { . . . }

10 case class BLast [A [E ,X]<:NonLocal [E ,X]] (element : A [O ,C])
11 extends Block [A ,O ,C] { . . . }
12 case class BCat [A [_ ,_] ,E ,X] (b1 : Block [A ,E ,O] , b2 : Block [A ,O ,X])
13 extends Block [A ,E ,X] { . . . }

The analysis1 is still in early phases. Only a subset of Scala is supported currently, which
includes sequences, if expressions, while loops, recursive functions.

Related Work

A refactoring tool for Scala has been developed and published as master’s thesis [8] by
Mirko Stocker. The tool implements several useful refactorings: rename, extract method, extract
local, inline local and organize imports. The tool has been integrated into Scala IDE for Eclipse,
which seems to be discontinued since 2017. The tool also performs static analysis on Scala
programs to support the refactorings. Similarly to our approach, this work also uses the Scala
compiler to construct an AST. The supported refactorings do not require control flow analysis,
and the tool does not implement it.

IntelliJ IDEA is one of the few IDEs which support Scala via plug-in. The Scala plug-in
implements an incremental compiler front-end for type checking code and providing auto-
completion for developers. The list of available refactoring includes rename, move class, extract
trait, extract method, introduce variable, introduce field, introduce parameter. The plug-in
also features control flow analysis, which covers more features of Scala, in order to highlight
unreachable code.

Ilya Segey et. al. reported a survey [7] of automatic refactorings for Scala and the challenges
posed by language features and static semantics of Scala. The refactorings are compared to Java
analogues, highlighting the differences and pitfalls. Many transformations and refactorings
are implemented in IntelliJ IDEA, including add missing imports, remove unused imports,
introduce and inline variables and extract method. The report also discusses a few more useful
refactorings specific to Scala.

Static analysis engine Insane [4] is also capable of constructing control flow and call graphs
of Scala programs. Furthermore, it analyses class hierarchy and pointers. The project seems to
be discontinued since 2013, and we failed to compile the source code due to jar dependencies
that are no longer available.

LambdaFicator [2] is a Java tool for migrating pre-8 Java code to use some of the new
functionality that Java 8 introduced. LambdaFicator automates two refactorings. First, it

1Implementation is available at https://github.com/poor-a/parscala

21

https://github.com/poor-a/parscala

transforms anonymous inner classes into lambda expressions. Second, for loops over Java
collections are converted into application of higher order functions, which use lambda expres-
sions.

Conclusion

Getting started with tool-supported semi-automatic refactorings is far from trivial for a
language such as Scala. Safe refactoring require precise static analysis so that the refactoring
does not introduce changes in the program semantics. Building the static analysis framework
for Scala revealed challenges in designing the intermediate representation.

This paper presented the static analysis framework for Scala along with design of intermedi-
ate representation. The focus was on control flow analysis, which enables us to perform many
interesting flow sensitive data flow analysis in the future.

References

[1] Pedro V. Artigas, Manish Gupta, Samuel P. Midkiff, and José E. Moreira. Automatic
loop transformations and parallelization for java. In Proceedings of the 14th International
Conference on Supercomputing, ICS ’00, pages 1–10, New York, NY, USA, 2000. Association
for Computing Machinery.

[2] Alex Gyori, Lyle Franklin, Danny Dig, and Jan Lahoda. Crossing the gap from imperative
to functional programming through refactoring. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2013, pages 543–553, New York, NY, USA,
2013. Association for Computing Machinery.

[3] Ken Kennedy, Kathryn S. McKinley, and Chau-Wen Tseng. Analysis and transformation in
the parascope editor. In Proceedings of the 5th International Conference on Supercomputing, ICS
’91, pages 433–447, New York, NY, USA, 1991. Association for Computing Machinery.

[4] Etienne Kneuss. Interprocedural static analysis engine for Scala, 2013.

[5] Norman Ramsey, João Dias, and Simon Peyton Jones. Hoopl: A modular, reusable library
for dataflow analysis and transformation. SIGPLAN Notices, 45(11):121–134, September
2010.

[6] Radu Rugina and Martin Rinard. Automatic parallelization of divide and conquer
algorithms. SIGPLAN Notices, 34(8):72–83, May 1999.

[7] Ilya Sergey, Dave Clarke, and Alexander Podkhalyuzin. Automatic refactorings for scala
programs. Technical report, Department of Computer Science, KU Leuven; Leuven,
Belgium, March 2010.

[8] Mirko Stocker. Scala refactoring. Master’s thesis, HSR Hochschule für Technik Rapperswil,
2010.

22

An Evaluation on Bug Taxonomy and Fault Localization Algorithms
in JavaScript Programs

Attila Szatmári

Abstract: Due to the asynchronous and loosely typed nature of JavaScript, developers are
prone to making mistakes. Finding an error in complex software programs is an expensive
task. Fault localization (FL) can reduce the time spent on finding bugs. However, it raises the
question: “Which bugs are easier to find for these algorithms, and why?” Therefore, I performed an
empirical study on JavaScript programs to evaluate the relationship between bug taxonomy
and fault localization algorithms’ efficiency. Results show that bugs that occurred due to
incomplete feature implementation and incorrect feature implementations are significantly
different. I further investigated these taxonomy types to better understand which bug features
make the localization easier. Results also show that bugs occurred due to incorrect input
validation are easier to find.

Keywords: BugsJS, JavaScript, Fault localization, Bug Taxonomy

Introduction
Used by many developers, JavaScript gained popularity over the years. Due to its popularity,

frameworks built on JavaScript are changing rapidly. Considering this and the language’s
asynchronous nature developers are more likely to make mistakes.

Various techniques have been proposed for testing applications written in this language,
however, there is a lack of bug benchmarks proposed for JavaScript. In my work, I used
the relatively new bug benchmark called BugsJS [1] to compare how well Fault Localization
algorithms perform.

Debugging in complex software programs is an expensive task, still, it is one of the most
crucial parts of software development. Spectrum-Based Fault Localization (SBFL) can reduce
the time spent on finding bugs by sorting code elements in a suspiciousness order, thus leading
developers into the right direction.

I was interested in whether the features of bugs affect the efficiency of SBFL algorithms, and
if they do which are these. This leads us to the research question:

RQ: Are there bug features on which SBFL algorithms perform significantly better or
worse than on others?

In this paper, I will separate cases where the code element has a rank less or equal to three
(top-3), less or equal to five (top-5), less or equal to ten (top-10), and when it is over ten (other).
This is commonly referred to as top-N. Results show us that bugs existing due to incorrect
input validation are more likely to be successfully localised than other types, while incorrect
file path ranked higher in the other (ranks over 10) ranges.

In the next section, I briefly explain how Fault Localization works and what BugsJS and
Bug Taxonomy are. In Section Threats to Validity, I draw the conclusion based on the results
introduced in Section Results, thus answering the research question.

Background

Spectrum-Based Fault Localization

There are various studies on Fault Localization techniques. [2, 3, 4] In my work I focused
on one of the most popular FL techniques, called Spectrum-Based Fault Localization. It takes

23

information about the program execution i.e. program’s spectra. The coverage matrix repre-
sents the spectrum, whose rows demonstrate the test cases and columns show the code ele-
ments (in our case functions). An element of the matrix is 1, if the function is covered by test
case, otherwise it is 0. In another matrix the test results are stored, where 0 means the test case
passed and 1 when it failed.

Using these matrices, four basic statistical numbers are calculated for each φ function:
1. φep: number of passed tests covering φ
2. φef : number of failed tests covering φ
3. φnp: number of passed tests not covering φ
4. φnf : number of failed tests not covering φ
Using these four numbers, Tarantula [5], Ochiai [6] and DStar [7] provide a ranked list

of functions as an output. Whichever function ranked the highest is the most suspicious of
containing a bug.

BugsJS
BugsJS is a JavaScript bug benchmark, which includes 453 bugs from 10 open-Source Node.js

server-side projects. Originally, the “per-test” measurement was extremely slow. It was re-
instrumenting the code in every test run. Therefore I used the hook function of Mocha to
run the tests without re-instrumenting the code. Due to this, I was able to use 7 out of 10
projects. The reason for this is, there is a conflict between the Node.js versions of the new
instrumentation and the projects.

Bug Taxonomy
The authors of BugsJS made a classification on JavaScript bugs based on their features. In

Table 1, I listed these categories and the ranks for each formulae proposed in Section . Then I
summed the number of bugs in every subcategory and main category.

Table 1: Number of labels for each metric

TOP-3 (#) TOP-5 (#) TOP-10 (#) OTHER (#) # OF BUGS
IN SUBCATEGORY

OF BUGS
IN MAIN CATEGORY

Main category Sub category

Ta
ra

nt
ul

a
O

ch
ia

i

D
St

ar

Ta
ra

nt
ul

a
O

ch
ia

i

D
St

ar

Ta
ra

nt
ul

a
O

ch
ia

i

D
St

ar

Ta
ra

nt
ul

a
O

ch
ia

i

D
St

ar

incorrect
feature implementation

configuration processing 11 11 11 14 14 14 16 17 17 3 2 2 19

182

incorrect data processing 29 29 29 33 35 36 37 39 39 12 10 10 49
incorrect
handling of
regex expressions

3 3 3 3 3 3 4 4 4 1 1 1 5

incorrect filepath 4 4 2 5 5 3 6 7 5 1 0 2 7
incorrect input validation 52 54 55 65 66 66 74 74 74 4 4 4 78
incorrect output 9 9 9 9 10 11 13 14 14 2 1 1 15
performance 1 1 1 2 2 2 2 2 2 0 0 0 2

perfective maintenance 4 4 4 5 5 5 5 5 5 0 0 0 5 5

generic

missing type conversion 1 1 1 1 1 1 1 1 1 0 0 0 1

18

variable initialization 6 6 6 6 6 6 6 6 6 1 1 1 7
data processing 3 3 3 3 3 3 4 4 4 0 0 0 4
return statement 2 2 2 2 2 2 2 2 2 0 0 0 2
typo 2 2 2 3 3 3 3 3 3 0 0 0 3
loop statement 1 1 1 1 1 1 1 1 1 0 0 0 1

incomplete
feature implementation

configuration processing 11 11 11 14 14 14 16 17 17 3 2 2 19

155
error handling 5 5 5 8 8 8 9 9 9 0 0 0 9
incomplete data processing 8 8 7 9 9 8 12 12 11 2 2 3 14
incomplete output message 1 1 1 1 1 1 2 1 1 0 1 1 2
missing input validation 64 68 70 85 87 87 99 99 99 12 12 12 111

Results
In this section, I will present the results and show which taxonomy types are significantly

different in terms of ranking.

24

First, I investigated the main features of JavaScript bugs. Table 1 shows the numbers counted
of taxonomy labels for each metric. Bugs labelled with “perfective maintenance” or “generic”
occurred fewer than bugs that happened due to “incomplete-” or “incorrect feature implementa-
tions”. As a result, I investigated the subcategories of bugs labelled with the latter.

In the first main category, which is the “incorrect feature implementation” there are 8 sub
categories. To verify if there is a statistical significant difference among the number of ranking
associated with these subcategories, I used Fisher’s exact test. It is a statistical significance test,
which is one of the non-parametric methods and is used in the analysis of contingency tables.

The null hypothesis is that the ratio of belonging to a top-N range is not higher for one
category than the others. When that value is less than the chosen significance level, i.e. 0.05,
then the null hypothesis is rejected. Therefore, the ratio of belonging to a range is different for
a given label than the others. In almost all cases, the same taxonomy labels were significantly
different for every formulae, whenever it is not, I will list the name of the formulae as well.
Running Fisher’s exact test, the following labels were significantly different in terms of ranking:

• In top-3: “incorrect input validation” and “incorrect filepath” with DStar.
• In top-5: “incorrect input validation” with all, and “incorrect filepath” with DStar.
• In top-10: “incorrect input validation” with DStar and Tarantula, “incorrect filepath”

with DStar, “incorrect data processing” with Ochiai and Tarantula.
• Other: “incorrect data processing” with Ochiai and Tarantula, “incorrect input validation”

with DStar and Tarantula, “incorrect filepath” with DStar.
When function level coverage is used, then FL algorithms can localize faulty code elements

in the top-1 category, however I did not include it in the paper. The reason for that is: none of
the bug taxonomy categories were significantly different in top-1. None of the subcategories of
“Incomplete feature implementation” were significantly different.

This test only determines if there is a difference in probability, however it does not show
its direction. For better demonstration I counted the number of labels occurring in the non-
overlapping rank-ranges as well.

Figure 1: DStar interval statistics.

25

Looking at Figure 1, we can determine whether bugs with certain taxonomy labels are easier
to find for the FL algorithm that implements the DStar formulae.

DStar ranked buggy methods, whose bugs occurred due to “Incorrect input validation”, in
the top-10 category more often than buggy methods with different taxonomy labels. Taking
the results from Fisher’s exact test into consideration, we can say that such buggy methods are
more successfully localised by DStar.

On the other hand, DStar ranked less the buggy methods with the type “Incorrect filepath”
in the top-10 category, and more in the other section. We can see, it is significantly worse than
other types, i.e. it is harder for DStar to localise bugs with this taxonomy label.

Conclusion

First I investigated the main taxonomy categories. Among the four categories, there are
two that occurred fewer than the other two. Therefore, I investigated the remaining two, i.e.
“Incorrect feature implementation” and “Incomplete feature implementation”.

Among the subcategories of the first there were two significantly different categories, how-
ever, none of the latter’s subcategories were significantly different.

“Incorrect input validation” is significantly easier and “Incorrect filepath” is significantly harder
to find for DStar. Therefore, answering my research question:

RQ: There is one bug feature that is easier to find for DStar. Buggy methods that happen
because “Incorrect input validation” are more successfully localised in the top-10 range.
There are two bug features that are harder to find for SBFL algorithms. “Incorrect filepath”
is less likely to be successfully localised in top-3, top-5 and top-10 ranges. “Incorrect data
processing” bugs ranked lower in the top-10 ranges.

These results can help researchers implement new, more robust FL algorithms that take bug
taxonomies into consideration.

Threats to Validity

While buggy methods that happened due to “incorrect outputs” seem just as good (i.e. easier
to find for DStar) as “Incorrect input validation”, we can see there were only 15 bugs with such
label. Therefore, statistically it could not be significantly different. If there were more bugs,
labelled with “incorrect outputs” it would probably be significantly different.

Bugs in the benchmark were labelled with bug taxonomy types by the authors, however all
authors participated in this manual activity to counter for personal bias.

References

[1] Péter Gyimesi, Béla Vancsics, Andrea Stocco, Davood Mazinanian, Árpád Beszédes,
Rudolf Ferenc, and Ali Mesbah. BugsJS: a benchmark of JavaScript bugs. In Proceedings
of the 12th IEEE Conference on Software Testing, Verification and Validation (ICST’19), pages
90–101, April 2019.

[2] Priya Parmar and Miral Patel. Software fault localization: A survey. International Journal
of Computer Applications, 154(9), 2016.

[3] Higor Amario de Souza, Marcos Lordello Chaim, and Fabio Kon. Spectrum-based
software fault localization: A survey of techniques, advances, and challenges. ArXiv,
abs/1607.04347, 2016.

26

[4] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, Michael D Ernst,
Deric Pang, and Benjamin Keller. Evaluating and improving fault localization. In
Proceedings of the 39th International Conference on Software Engineering, pages 609–620. IEEE
Press, 2017.

[5] James A. Jones and Mary Jean Harrold. Empirical evaluation of the tarantula automatic
fault-localization technique. In Proceedings of the 20th IEEE/ACM International Conference on
Automated Software Engineering, ASE ’05, pages 273–282, New York, NY, USA, 2005. ACM.

[6] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan J.C. van Gemund. A practical
evaluation of spectrum-based fault localization. Journal of Systems and Software, 82(11):1780
– 1792, 2009. SI: TAIC PART 2007 and MUTATION 2007.

[7] W. E. Wong, V. Debroy, R. Gao, and Y. Li. The DStar method for effective software fault
localization. IEEE Transactions on Reliability, 63(1):290–308, 2014.

27

An Industrial Application of Autoencoders for Force-Displacement
Measurement Monitoring

Balázs Szűcs and Áron Ballagi

Abstract: The applications of artificial intelligence and neural networks in the industrial pro-
cess monitoring and supervision are on the rise. One potential use case of these technologies are
the anomaly detection in processes and measurements, without the need of pre-programming
well defined patterns and supervision functions, thus unexpected events can be detected dy-
namically. In this paper we present a novel, neural network based method for the monitoring
of press-in and joining processes. The new method, in contrast with the classical approaches,
which are using envelope test or window functions, the autoencoder based approach is capable
to detect unexpected events and anomalies, which are cannot be pre-programmed. By applying
the above mentioned method, a higher level of quality assurance can be achieved. We present
the new method through the example of force-displacement monitoring of mounting a sealing
ring.

Keywords: machine learning, anomaly detection, neural networks, autoencoder, measurement, monitor-
ing, industry 4.0

Introduction

In the series production, enormous amount of data generated by the in- and post-process
measuring systems every minute. Due to the volume of the data the process monitoring is at a
very high degree of automation, but there are anomalies which the monitoring systems cannot
be prepared beforehand. Joining and assembly processes like pressing, riveting, clinching
and caulking are often monitored with force-displacement measurements. These processes
are often characterized in that certain force and/or way points have to be reached or have to
be avoided to achieve a functionally reliable joining. A typical way of these kind of process
monitoring is to monitor the force-displacement curves with envelope or window functions.
These functions are programmed based on empirical values from well prepared manufacturing
tests. A problem with this kind of process monitoring is that it lacks the capability to deal with
unexpected anomalies outside the window functions. Measurements can still be classified as
OK if the curves do not violate the predefined rules of the windows, but there are clear and
visible anomalies outside the supervised sections. In Figure 1 the OK-NOK measurement
curves can be seen. The first window monitors the sliding of the sealing ring, the second the
first contact of tone wheel chamfer, and the third monitors the end position.

These windows and window rules are predefined, the curve must enter and enter from each
window from a specific direction. As we have seen, the blue curve does not violate the rules of
the windows, although the process is clearly faulty. Our goal is to detect all of the anomalies
without the need of defining new windows.

Autoencoders

Autoencoders (Figure 2) are a special type of artificial neural networks, which are used
to efficient data coding, dimensionality reduction and denoising. These neural networks has
an input layer, an output layer and one or more hidden layers connecting them. Through the
learning process, the data from the input is sampled and encoded by the hidden layers of the
network, thus learning a higher level representation of the input data. The output layer has

28

Figure 1: Force-Displacement Curves: OK (blue), NOK (orange), (1. Sealing ring sliding: enter
left, exit right; 2. First contact part chamfer: enter bottom, exit right;, 3. End position: enter
bottom)

Figure 2: Basic autoencoder architecture

the same number of neurons as the input layer, the goal of this arrangement is to reconstruct
the input data on the output of the network. The model uses backpropagation to minimize the
difference between the input and the output (Eq.: 1 - 3). These behaviour makes these models
efficient at denoising and dimension reduction tasks.

φ : X→ F (1)

ψ : F → X (2)

φ, ψ = arg min
φ,ψ

‖X − (ψ ◦ φ)X‖2 (3)

The encoder function φ (Eq.: 1), maps the input data X, to the latent space (hidden layer) F,
which is present at the code layer (bottleneck) of the network. The decoder function ψ (Eq.: 2),
the opposite of (Eq.: 1) maps the latent space F at the bottleneck to the output. The output X is
the same as the input function. Thus, the network trying to recreate the original input data after
some generalized non-linear compression. The aim of the autoencoder is to select our encoder
and decoder functions in such a way that we require the minimal information (minimizing the
reconstruction error) to encode the input data such that it be can regenerated on the output of
the network.

29

Classification of force-displacement curves with autoencoders

Our method is illustrated by the process of pressing a sealing ring onto a crankshaft. The
sealing ring prevents the oil leakage from a combustion engine. The pressing process is super-
vised with a conventional window function monitoring. The nature of the process and the
measurement curves are well known. The window functions are placed in a well-defined
position of the pressing process, such as the positioning and sliding of the sealing rings, the
point of first contact between the sealing ring and the crankshaft, and the end point of the
pressing (Figure 2). The anomalies during the pressing process or the faults on the surface of
the crankshaft can damage the sealing ring, thus the sealing ring cannot seal effectively. These
faults are monitored with the window functions, but the faults outside the windows cannot be
detected. To detect the unforeseen faults in the process we used the denoising behaviour of the
autoencoder.

The data

The input data contains 105 samples per measurement, each sample corresponds to a specific
force value in a specific position. The values of the samples varies from 0 to 4 kN. To accelerate
the convergence of the model, thus shortening learning process, we scaled the input data to the
range 0 to 1. We used 26365 measurements to train the model.

The model

We used a baseline autoencoder architecture. In the encoder part of the network the input
layer consists 105 nodes, the first hidden layer 50 nodes, and the second hidden layer 20 neuron.
The decoder part of the model is the reverse of the encoder part, with 20, 50 and 105 neurons.
We used rectified linear activation function, for optimization we used the Adam optimizer and
the loss function of the model was mean squared error. We trained the model with the batches
of 32 samples, which only consists OK measurements. After 15 epochs the model learned to
reconstruct the input data. The model was built with the frameworks TensorFlow and scikit-
learn in Python language.

Results

We trained the model only with OK measurements, that means the model reconstructs the
input data on the output with relative small error. When the model receives a measurement
containing anomaly on the input, the reconstruction error is one or two orders of magnitude
higher than in the case of OK measurements.

We classified the measurements by the error rate. The threshold value of reconstruction error
was chosen to be 0.1 based on the descriptive statistics of the reconstruction error of 200 true
positive OK and NOK samples. With this method we achieved a full curve length monitoring,
which can detect anomalies outside of window functions. The classification can be done by
a threshold value or a simple machine learning algorithm too. Physical experiments showed
correlation between the degree of damage on the parts and degree of anomalies in the pressing
curves, but further researches are required to create an adequate physical model.

Conclusion

The above introduced method presents a simple, yet powerful process monitoring technique.
The autoencoder based approach is capable to detect unforeseen faults and anomalies in pro-
cesses, where the nature of the measurement curves is well known. With this procedure the

30

Figure 3: Reconstruction of measurements, blue: original curve, orange: reconstructed curve.
The reconstruction error is relative small in the OK case (left) and one or two orders of
magnitude higher in the NOK case (right)

pre-programming of window functions is avoidable, thus a flexible monitoring system can be
made. These algorithms are reliable, but they can only classify the measurements after the
process is done. Further research is recommended on other neural network architectures, like
recurrent neural nets to detect the anomalies in-process.

References

[1] Kramer, Mark A. (1991), Nonlinear principal component analysis using autoassociative
neural networks, AIChE Journal. 37 (2): 233-243. doi:10.1002/aic.690370209.

[2] Vincent, Pascal; Larochelle, Hugo (2010), Stacked Denoising Autoencoders: Learning
Useful Representations in a Deep Network with a Local Denoising Criterion, Journal of
Machine Learning Research. 11: 3371-3408.

[3] Frey, Brendan; Makhzani, Alireza (2013), k-Sparse Autoencoders, arXiv:1312.5663.

[4] Gondara, Lovedeep (2016), Medical Image Denoising Using Convolutional Denoising
Autoencoders, IEEE 16th International Conference on Data Mining Workshops (ICDMW).
Barcelona, Spain: IEEE: 241-246. doi:10.1109/ICDMW.2016.0041. ISBN 9781509059102.

[5] Pedregosa et al. (2011), Scikit-learn: Machine Learning in Python, JMLR 12, pp. 2825-2830

[6] Martín et al., (2015) TensorFlow: Large-scale machine learning on heterogeneous systems,
Software available from tensorflow.org

31

Overview of Artificial Neural Network Abduction and Inversion
Methods

Bence Bogdándy and Zsolt Tóth

Abstract: Defining the intent and the reasoning behind the decisions of machine learning
models is a very important step towards general machine intelligence. Since the rise of modern
machine learning and big data, this subject has not received much spotlight. Induction, deduc-
tion and abduction reasoning are the three forms of logical inferences. Inductive reasoning can
be used to generate theories or rules based on previous premises and consequences. Deductive
reasoning is used for finding the consequences of premises based on known theory. Abductive
reasoning generates and evaluates the possible premises based on an existing theories and
conclusions.

Artificial neural networks are capable function approximators and can be used in order
to implement induction and deduction processes. These networks can be used for modeling
complex systems using only the input and output of a system without mathematical analysis.
Neural Network abduction aims to find one, or all possible explanations, for certain outcomes
of the function. Inversion of artificial neural networks allows us to recommend input settings
for systems after their behavior was modeled with neural networks. The connections and
similarities between artificial neural network abduction and invertion has not been explored
before.

Keywords: artificial neural network, machine learning, inversion, abduction

Methods

Logical Inference

Logical Inference was originally described as the combination of induction and deduction.
Over centuries of scientific research, abductive reasoning has been introduced into modern
logic. Inductive reasoning is the process of collecting all the available premises of a given
conclusion. In contrast, deductive reasoning uses set conclusions and hypotheses. In the event
that previously unknown premises are introduced, deduction can be used to connect premises
to certain events. The triangle of the logical inferences can be seen on Figure 1a.

Abductive reasoning is the newest, third process in the triangle of mathematical logic infer-
ences. Abductive reasoning is non-monotonic, which provides an interesting challenge during
the examination of the inferences it proposes. In this process, the conclusions and the premises
are known and the task is to explain the prior hypotheses tied to certain conclusions. As a
consequence, the set of available abductive inferences provide no definitive answer to what
prior events caused certain outcomes. With the prior explanation of the logical inferences, the
task is to find one, or all elements in the set of abductive infereces, in order to provide an
explanation for consequences.

Artificial Neural Networks

Artificial Neural Networks aim to recreate the processes of the human brain in order to
solve well specified problems. Training of neural networks is a supervised learning process
where the weights of each neuron are calculated iteratively in order to minimize the difference
of actual and expected outputs. A trained neural network is used for prediction which is
a function that takes inputs and the trained network connections in order to approximate

32

(a) Mathematical (b) Artificial neural
inferences network functions

outputs. Training process can be done by multiple different optimization methods, but in most
cases, variants of the back-propagation algorithm are used.

Artificial Neural Network and Logical Inferences

The logical inference triangle contained inductive, deductive and abductive reasoning.
The translation between artificial neural network functions and logical inferences can be

examined on Figure 1b. Artificial neural network functions achieve the same goals as the forms
of reasoning in a different context.

The induction process of a neural network can be interpreted as the artificial neural network
training. Instead creating hypotheses from premises and conclusions, neural network training
approximates a function which creates weighted connections between given inputs and outputs.
Prediction can be interpreted as the deductive reasoning in logical inferences, as it creates
conclusions based on given hypotheses and premises. After these considerations, it would
be logical to assume that abduction would be a natural component of neural networks.

Abduction creates premises, based on existing conclusions and hypotheses. Many possible
premises can exist for a combination of conclusion, hypotheses and different inputs can produce
the same outputs in an artificial neural network.

Results

Neural-Symbolic Learning Systems

Garcez et. al [3] described multiple different solutions to the problem of artificial neural
network abduction. The described solutions are collectively called Neural-Symbolic Learning
Systems [2]. The first approach uses connectionist modal logicand is based on the works of
Gabbay and Woods [1]. The approach creates alternate paths to the input node by separating
different explanations for the input. Connectionist modal logic introduces possibility and
necessity to traditional logic. Abductive logic programming [5] approach uses a set of integrity
criteria for a set of abductible inputs. The implementations of these abductive logic programs
create abductive neural networks. The networks use special neural structure and counters in
order to explore possible explanations for an output.

33

Artificial Neural Network Invertion

Artificial neural network inversion can be described as the inversion of the approximated
function. Inversion of artificial neural networks aims to find a single or multiple input values
where the neural network yields the desired output. During inversion, the output and the
weights are fixedand the input values are calculated.

Jensen et. al [4] presented an overview of some of the available inversion methodsand
corresponding real-life applications. Two major categories of artificial neural network inversion
methods are distinguished which are Single-element search and Multi-element search.

Single-element search solutions use discrete optimization algorithms and can only find a single
possible input combination for a given output. The multi-element search search the input hyper-
space for possible input vectors and are based on heuristicand metaheuristic optimization
algorithms.

William-Linder-Kindermann

The Williams-Linder-Kindermann [7, 6] single-element inversion is an algebraic optimization
method which produces one possible combination of inputs for a specific output. The algorithm
uses a modified back-propagation optimization to determine an input for a given output. The
WLK algorithm is based on a gradient descent which is shown by Equation 1 where itk denotes
the kth neuron in layer t. The step size is represented by η and the direction is defined by the
fraction which represents the error.

it+1
k = itk − η

∂E

∂itk
(1)

The error ∂E/∂itk is propagated back to the input layer. Equation 2 presents the formula of the
error calculation. ϕ′ is the derivative of the activation function.

δj =

{
ϕ′(oj)(oj − tj) j ∈ O
ϕ′(oj)

∑
m∈H,O δjwj,m j ∈ H, I

(2)

Genetic Algorithm Inversion

Multi-element search methods use heuristic and metaheuristic algorithms in order to itera-
tively search for possible input values. Inputs can be represented as a point in an n-dimension
function, which are transformed by the neural network in order to return an m dimensional
output. In order to find the possible inputs for a given output, evolutionary algorithms have
to find boundaries that are assigned to a given output in the n-dimensional space. A solution
is proposed by Reed, Russell D and Marks, Robert J [8]. The fitness function aims to evenly
distribute the generated entities along a manifold. A repelling force between entities calculated
based on the relative distance between the point and the manifold, with respect to the distance
to other points as well.

Overview

The abductive exploration of neural networks has been an actively researched topic since the
end of the 1980’s. A number of implementation has been created for the abduction of artificial
neural networks. While not explicitly called abduction, neural network inversion provides an
implementation of abduction.

The mentioned papers on abduction and inversion provide a comprehensive look at how
this topic evolved over time. To our best knowledge, the connections between abductive
reasoning and neural network inversion have not been discussed before.

34

Discussion

In this paper, the definitions of logical inferences were overviewed, with special attention
given to abductive reasoning and artificial neural network invertion. Furthermore, the connec-
tions between the types of logical reasoning and artificial neural network processes were exam-
ined. Abduction provides a method of finding potential premises leading to certain conse-
quences. Neural network abduction can be achieved using a multitude of different methods.
In the core of all methods is the desire to predict possible premises for given consequences and
neural network structure. Abductive reasoning is a logical inference and therefore the most
obvious way would be to try to solve the problem with the tools of mathematical logic. Garcez
[2] showed that existing trained neural networks can be converted into abductive networks
using two techniques. Neural network inversion has been a different scientific topic. Inversion
methods are created in order to find the inverse of the approximated function. The inverse
function is capable of delivering potential inputs of the function. This is achieved by using
heuristic inversion methods on a trained neural network and an output. Two methods of
inversion were examined in this paper. The first method, called the WLK, is capable of finding a
single combination of input values. The second method uses a metaheuristic genetic algorithm.
This method is volatile, as every run of the genetic algorithm can result in a different set of input
values, given its metaheuristic nature. In this paper, the connections between the two topics
have been discussed. Examples and different abduction, and invertion were examined, in order
to find similarities between the methods. This paper provides a basic overview of methods in
both topics and shows that their functionalities can be interchanged.

References

[1] D Gabbay and J Woods. The reach of abduction: Insight and trial, 2005.

[2] Artur S d’Avila Garcez, Krysia B Broda, and Dov M Gabbay. Neural-symbolic learning
systems: foundations and applications. Springer Science & Business Media, 2012.

[3] Artur S d’Avila Garcez, Dov M Gabbay, Oliver Ray, and John Woods. Abductive reasoning
in neural-symbolic systems. Topoi, 26(1):37–49, 2007.

[4] Craig A Jensen, Russell D Reed, Robert J Marks, Mohamed A El-Sharkawi, Jae-Byung
Jung, Robert T Miyamoto, Gregory M Anderson, and Christian J Eggen. Inversion of
feedforward neural networks: Algorithms and applications. Proceedings of the IEEE,
87(9):1536–1549, 1999.

[5] Antonis C Kakas, Robert A. Kowalski, and Francesca Toni. Abductive logic programming.
Journal of logic and computation, 2(6):719–770, 1992.

[6] Joerg Kindermann and Alexander Linden. Inversion of neural networks by gradient
descent. Parallel computing, 14(3):277–286, 1990.

[7] Alexander Linden and J Kindermann. Inversion of multilayer nets. In Proc. Int. Joint Conf.
Neural Networks, volume 2, pages 425–430, 1989.

[8] Russell D Reed and Robert J Marks. An evolutionary algorithm for function inversion
and boundary marking. In Proceedings of 1995 IEEE International Conference on Evolutionary
Computation, volume 2, pages 794–797. IEEE, 1995.

35

Evaluating and Analyzing MQTT Brokers with Stress-testing
Biswajeeban Mishra and Biswaranjan Mishra

Abstract: MQTT (MQ Telemetry Transport) is a simple, lightweight, open-source and widely
used publish/subscribe type communication protocol for IoT systems. No matter which radio
technology is used to deploy an IoT/Machine-to-Machine (M2M) network, all independent
data generating end devices (sensors and actuators) must make their data available through the
Internet for further processing, and send control information back. For this, they heavily rely
on the special messaging protocols like MQTT designed for M2M communication within IoT
applications. This study aims to evaluate the performance of several MQTT Broker implemen-
tations by putting them under stress-test. The evaluation of the servers is made in a realistic
test scenario, and the comparison of the results is presented by different metrics (CPU, latency,
message rates). We also provide a detailed discussion of the applied test conditions (QoS
level, message throughput per client and message payload size, etc.). Our results showed
that Mosquitto is the most efficient, optimized broker implementation, and Bevywise’s MQTT
Route is the second with respect to message processing capabilities under full CPU load in all
QoS categories.

Keywords: Internet of Things, MQTT, MQTT Brokers, Performance Evaluation, Stress-testing

Introduction

Internet of Things devices are growing rapidly and increasingly becoming parts of our lives
as the costs of sensors and actuators are on a continuous decline. Today, the footprint of IoT is
significantly visible everywhere. It is rare to find any industry that does not get revolutionized
with the rise of IoT. IoT Networks use several radio technologies like WLAN, WPAN, etc. to
communicate at the lower level. No matter which radio technology is used to create an M2M
network, the end device or machine must make their data available to the Internet [1]. The
performance of M2M communication heavily depends on the underlying special Messaging
protocols designed for M2M communication within IoT applications. There are many M2M
data transfer protocols are available for IoT systems-MQTT, CoAP, AMQP, and HTTP, to name
but a few. Amongst these M2M protocols, characteristics like lightweight, open, simple and
easy to deploy, make MQTT an ideal protocol for communication in constraint environments
like IoT [2].

MQTT was created in 1999, and became an OASIS standard in 2014. It works on the top of
TCP/IP and uses 1883 and 8883 ports for unencrypted and encrypted communication respec-
tively. Its minimalistic designing principles surrounding less ’network bandwidth’ and ’device
resource requirements’ makes MQTT able to transmit telemetry information between con-
strained devices (devices having limited processing capabilities and memory) over low-band-
width, high-latency or unreliable networks. The MQTT protocol has two kinds of network
entities: a message broker(server) and client(a publisher or subscriber). MQTT based IoT
devices/applications(publishers) send or publish messages on a topic head to a server called
an MQTT broker; then the broker delivers the messages to those clients (subscribers) that have
previously subscribed to that topic. There are many MQTT server/broker options available
from different vendors. MQTT provides three Quality of service levels for delivering messages
to an MQTT Broker and any client (ranging from 0 to 2). At QoS 0, a message will not be
acknowledged by the receiver or stored and delivered by the sender. This is often called
"fire and forget." It is the minimal level and guarantees the best delivery effort. At QoS 1,
acknowledgment is assured. Data loss may occur. At least once delivery is guaranteed. At QoS
2, exactly once delivery of a message is guaranteed.

36

The aim of this paper is to evaluate the performance of several MQTT Broker implementa-
tions put under stress. The evaluation of the servers is made in a realistic test scenario, and
the comparison of the results is presented by different metrics (CPU, latency, and message
rates). We also provide a detailed discussion of the applied test conditions (QoS level, message
throughput per client and message payload size, etc.). The remainder of this paper is organized
as follows: Section 2 presents the test topology and details of the MQTT brokers put into stress,
Section 3 details the test scenario, and Section 4 summarizes test results. Finally, Section 5
concludes the paper highlighting the main points of our future work.

Test Environment and Test Topology

In this experiment we fire messages at very fast rates from a publisher machine to MQTT
server using a publishing script based on Paho Python MQTT library. The subscriber machine
runs ’mosquitto_sub’ command line subscribers. ’mosquitto_sub’ is an MQTT client for sub-
scribing to topics and prints the messages that it receives. During this test we redirect mosquit-
to_sub output to /dev/null to ensure resources are not consumed for printing MQTT messages
on the terminal. Also, we have configured each subscriber to subscribe to all published topics to
make sure a higher server load at reasonable message rates. Figure 1 presents the test topology.

Figure 1: Test Topology

In our local test environment, we have used an Ideapad 330-15ARR, as a publisher machine
running publisher threads. With 8 hardware threads, it is capable of firing messages at higher
rates. At high message publishing rate with multiple publishers overall CPU usage stays
below 70% during the entire course of the experiment on this hardware. MQTT broker was
run on an Intel NUC(Intel Corporation, NUC7i5BNB) and subscribers run on an Intel Core 2
Duo machine(Toshiba, Satellite B40-A)Throughout the test. The CPU usage on the subscriber
side doesn’t exceed 80%. No swap usage observed on the publisher, broker, and subscriber
machines during the tests. Gigabit Ethernet (local network) was used to ensure there is no
network bottleneck. See table 1 for hardware details of test environment.

Table 1: Hardware details of the test environment

HW Details Publisher MQTT Broker Subscriber

CPU: 64 bit AMD Ryzen 5
2500U @3600 MHz

64 bit An Intel(R)
Core(TM) i5-7260U
CPU @ 2.20GHz

Intel(R) Pentium(R)
CPU 2020M
@ 2.40GHz

Memory:
8GB, SODIMM DDR4
Synchronous Unbuffered
(Unregistered)
2400 MHz (0.4 ns)

8GB, SODIMM DDR4
Synchronous Unbuffered
(Unregistered)
2400 MHz (0.4 ns)

2GB, SODIMM DDR3
Synchronous
1600 MHz (0.6 ns)

37

Test Scenario

This section sheds light on our test conditions and the number of brokers evaluated. Follow-
ing test conditions are remain constant for all the brokers throughout the experiment - (a)
Number of topics: 3 (via 3 publishers threads), (b) Number of publishers: 3, (c) Number
of subscribers:15 (subscribing to all 3 topics), (d) Payload:64 bytes, (e) Topic names used to
publish large number of messages: topic/0’, ’topic/1’, ’topic/2’, (f) Topic used to calculate
latency’topic/latency’. Latency is defined as the message transmission time from publisher to
subscriber. We measured message delivery time by publishing an MQTT message on a topic
different from the topics used to fire a large number of messages to stress the server. This is to
ensure that the processing time of a currently queued messages on broker on a specific topic
head doesn’t affect the processing time of another message published on another topic head.
A good implementation should efficiently handle processing of all message irrespective of rate
of messages/topic. Moreover, this is close to the real world scenario of a broker experiencing
extreme load conditions while a client is trying to publish a message on a random topic. In
MQTT, every message gets transmitted as s single telemetry parameter.Hence in this experiment
small payload size is chosen not to overload server’s memory. during the entire test the
message payload size is fixed and set to 64 bytes. All the brokers(servers) were put under stress-
test with default configuration settings. The evaluated brokers are Mosquitto 1.4.15[2], Active-
MQ 5.15.8[4], HiveMQ Community Edition 2020.2[5], and Bevywise MQTT Route 2.0[3].

Test Results: A comparative Analysis

This section presents a comparative analysis of the performance of MQTT brokers based on
the stress-test results. In our test, we found Mosquitto being a single-threaded implementation
beats all other brokers by a huge margin in message processing rate across all QoS categories.
It is the most efficient, optimized implementation with the least latency in QoS1 and QoS2
category among all brokers we have tested so far. Bevywise MQTT Route occupies the second
position(after mosquitto) with respect to message processing capabilities @ 100% CPU load
in all QOS categories. We also observed that it has lower latency/message delivery time
compared to ActiveMQ and HiveMQ across all QOSes. It has shown better latency(less round
the trip time) than Mosquitto in QOS 0. In this experiment, we have tried to limit the CPU
usage around 100% for the process group to have a fair comparison with other brokers. The
figure 2 presents a detailed comparative analysis of test-results.

The message-rate mentioned in the above figure indicates the number of messages/second
required to push the broker to approximate 100% total CPU usage. It is to be noted that
some broker implementations like HiveMQ CE, ActiveMQ can scale up automatically to utilize
available resources on the system. These brokers create multiple threads or sub-processes to
handle the higher message load. The CPU utilization data presented in this table is for the
process group(consisting of all sub-processes/threads) of MQTT Server. So, CPU utilization
percent for these brokers can go up to 400% on a machine with 4 cores. However, we are not
considering that in our experiment as other brokers in the test are single-threaded and don’t
scale up automatically.

Conclusion

M2M protocols are the backbone of communication in IoT systems. There are many M2M
communication protocols are available such as MQTT, CoAP, AMQP, and HTTP. In this paper,
we investigated and analyzed the performance of MQTT brokers in terms of projected message
rate @100% CPU usage and the average time taken for message transmission by putting them

38

Figure 2: A comparative presentation of test results

under stress-test. Our results showed, Mosquitto being a single-threaded implementation beats
all other brokers by a huge margin in message processing rate across all QoS categories. It is
found to be the most efficient, optimized MQTT broker implementation among all the brokers
we put into test. Bevywise MQTT Route occupies the second position(after Mosquitto) with
respect to message processing capabilities @~100\% CPU load in all QOS levels, and broker
implementations like HiveMQ CE, ActiveMQ can scale up automatically to utilize available
resources on the system. In the future, it would be interesting to observe the performance
of MQTT brokers in a cloud-deployed test environment. We plan to widen the scope of this
research by putting more brokers under stress-test and create a generic, easily configurable
message blaster for MQTT brokers.

References

[1] Nitin Naik, Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP
and HTTP. IEEE International Systems Engineering Symposium, Vienna, pp. 1-7, 2017.

[2] MQTT Version 5.OASIS Standard, https://docs.oasis-open.org/mqtt/mqtt/v5.
0/mqtt-v5.0.html. Accessed in March, 2020.

[3] Bevywise MQTT Route Developer’s Guide, https://www.bevywise.com/
mqtt-broker/developer-guide. Accessed in March, 2020.

[4] ActiveMQ 5 Documentation, https://activemq.apache.org/components/
classic/documentation/. Accessed in March, 2020.

[5] HiveMQ Editions, https://www.hivemq.com/developers/community/. Accessed
in March, 2020.

[6] Mosquitto man page, https://mosquitto.org/man/mosquitto-8.html. Accessed
in March, 2020.

39

https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://www.bevywise.com/mqtt-broker/developer-guide
https://www.bevywise.com/mqtt-broker/developer-guide
https://activemq.apache.org/components/classic/documentation/
https://activemq.apache.org/components/classic/documentation/
https://www.hivemq.com/developers/community/.
https://mosquitto.org/man/mosquitto-8.html

Iterative Operations on Footpoint Mappings

Csaba Bálint

Abstract: Surfaces defined by foot mappings IR3 → IR3 are similar to signed distance functions
[3] (SDFs) regarding surface construction and direct visualization methods. For the latter, the
minimum and maximum operations approximate the SDF of the union and intersection of the
argument distance functions. We present a fast iteration for the intersection operation on foot
mappings to obtain precise footpoint for the resulting surface.

Keywords: Computer Graphics, Constructive Solid Geometry, Signed Distance Function

Introduction

From any sample point p ∈ IR3 a signed distance function (SDF) f : IR3 → IR is a continuous
function that evaluates to the signed Euclidean distance measured from the surface. That is∣∣f(p)

∣∣ = d(p, {f = 0}) (∀p ∈ IR3),

where d(p, A) is the point-to-set distance, and {f = 0} is the zero level-set. The sign encodes
whether p is inside {f ≤ 0} or outside {f > 0} which allows set-operations to be defined on
SDFs. Let f, g SDF, then according to [3],

d
(
p, {f ≤ 0} ∪ {g ≤ 0}

)
≥
∣∣min{f(p), g(p)}

∣∣ (∀p ∈ IR3) ,

d
(
p, {f ≤ 0} ∩ {g ≤ 0}

)
≥
∣∣max{f(p), g(p)}

∣∣ (∀p ∈ IR3) .
(1)

The min(f, g) = p 7→ min {f(p), g(p)} function estimates the SDF of the union of {f ≤ 0} and
{g ≤ 0} objects extremely well. For example, on the outside of both objects, the estimation is
precise. For this reason, many SDF representations use min and max operations to combine
primitive geometries into complex scenes [2]. However, the approximation is imprecise on the
union for the min operation, and only exact within the intersection for the max intersection SDF
approximation.

The precision can be quantified for any SDF by comparing the real distance-to-surface value
to that of the function:

qf (p) :=

∣∣f(p)
∣∣

d(p, {f = 0}) (∀p ∈ IR3) (2)

Signed distance function estimates (SDFEs) are defined using the above local precision. If there
exists a c > 0 global precision such that 0 < c ≤ qf (p) ≤ 1, then f : IR3 → IR is an SDFE.

Distance representations can be directly ray-traced via various sphere tracing algorithms
[3, 5, 3, 7]. SDFE precision measures the slowdown of the sphere tracing algorithm; however,
computing qmax(f,g)(p) for the intersection operation can be expensive.

Methods based on distance transform rely on a discretization of the distance function and
spreading the distance values by approximating the distance to the surface from the neighbor-
ing values [6, 7]. However, the local computations introduce errors that can result in even worse
precision for set operations then the min and max SDF operations. To increase precision and
reduce memory usage, we devised iterative algorithms that compute the distance to the inter-
section set from any point p ∈ IR3 to the intersection object. On the other hand, the presented
algorithms require a different representation of the surfaces.

40

Figure 1: Left: 2D SDFE obtained through min and max set operations using transformations
of a half-plane (line) and a circle primitive. Local precision is the ratio of the SDFE (left) and
the exact SDF (middle) is displayed on the right signaling the slowdown of sphere tracing. Our
footpoint iteration produced the middle image.

Foot mapping

The function f : IR3 → IR3 is a foot mapping if

1. IR3 3 p 7→
∥∥f(p)

∥∥ is a distance function

2. f(p+ f(p)) = 0 for all p ∈ IR3

This means that f returns a vector pointing to one of the closest points on the surface it defines.
Thus p+f(p) is the footpoint. Similarly to SDFs, the footpoint representation necessitates solid
geometry information for the set-operations to be defined. Let us assume we can decide if p is
inside p ∈ F ⊂ IR3 closed set or outside p ∈ IR3 \ F , where the boundary set is ∂F = {x ∈ IR3 |
‖f(x)‖ = 0} ⊂ F .

Let F ⊂ IR3 and G ⊂ IR3 be two objects with the foot mapping f : IR3 → IR3 and g : IR3 →
IR3, respectively. Our task is to produce a foot mapping h : IR3 → IR3 with H = F ∪ G or
H = F ∩ G similar to (1). This paper only describes the intersection since the complement
geometry has the same foot mapping and H = F ∪G = IR3 \

(
(IR3 \ F) ∩ (IR3 \G)

)
.

Footpoint Intersection Iteration

If p ∈ F ∩G then, the intersection approximation is precise in (1), so

h(p) =

{
f(p) if ‖f(p)‖ ≤ ‖g(p)‖
g(p) otherwise

(p ∈ F ∩G) . (3)

If the closest point to F from p 6∈ F ∩G is inside the G set, then that point is the closest point to
p in the F ∩G intersection. Thus,

h(p) =

{
f(p) if p+ f(p) ∈ G
g(p) if p+ g(p) ∈ F

(
p ∈ IR3 \ (F ∩G)

)
. (4)

However, this still leaves some h(p) values for us to define via iterative algorithms. The idea
of this naive midpoint approach is to step closer to the intersection and re-evaluate h:

h(p) :=
f(p) + g(p)

2
+ h

(
p+

f(p) + g(p)

2

)
if not (3) or (4). (5)

41

Figure 2: Comparison of the midpoint and deltoid footpoint iterations in a 2D scene where F
and G objects are touching circles. The deltoid method converges much faster to the F ∩ G
single-point intersection.

One can stop evaluating the recursion when one of (3) or (4) yield a value or after a predefined
number of iterations. Figure 2 illustrates the convergence.

Deltoid iteration

Since the foot vectors are perpendicular to the surface, we are looking for a vector v =
α · a + β · b that are perpendicular to both a := f(p) and b := g(p) vectors. Denoting the dot
product as xy = 〈x,y〉 yields:

〈v − a,a〉 = 0

〈v − b, b〉 = 0
⇐⇒

[
a>

b>

]
· v =

[
a>

b>

]
·
[
a b

]
·
[
α
β

]
=

[
aa
bb

]
.

Solving the equation for α and β assuming d := aa · bb− ab · ab 6= 0 gives:

[
α
β

]
=

[
aa ab
ba bb

]−1
·
[
aa
bb

]
=

1

d

[
bb −ab
−ab aa

]
·
[
aa
bb

]
=

1

d

[
bb · (aa− ab)
aa · (bb− ab)

]
. (6)

For the deltoid footpoint iteration, we substitude v = α · a + β · b from (6) into (5), so h(p) :=
v + h(p+ v) unless (3) or (4) provide a foot vector.

Conclusion

Computing the SDF in Figure 1 with the midpoint approach about ten times slower com-
pared to the deltoid method whilst achieving similar accuracy. Note that the iterations had
to be nested to produce the CSG tree of set-operations. Figure 2 demonstrates the superior
convergence of the deltoid algorithm. However, convergence and performance evaluation of
the mentioned algorithms are out of the scope of this paper. Further algorithm variants and
empirical results with various applications will be submitted in a subsequent paper.

42

Acknowledgements

EFOP-3.6.3-VEKOP-16-2017-00001: Talent Management in Autonomous Vehicle Control Tech-
nologies — The Project is supported by the Hungarian Government and co-financed by the
European Social Fund. Supported by the ÚNKP-19-3 New National Excellence Program of the

Ministry for Innovation and Technology.

References

[1] John C. Hart. Sphere tracing: A geometric method for the antialiased ray tracing of implicit
surfaces. The Visual Computer, 12:527–545, 1994.

[2] Gerald Farin. Curves and Surfaces for Computer Aided Geometric Design (3rd Ed.): A Practical
Guide. Academic Press Professional, Inc., San Diego, CA, USA, 1993.

[3] Benjamin Keinert, Henry Schäfer, Johann Korndörfer, Urs Ganse, and Marc Stamminger.
Enhanced Sphere Tracing. In Smart Tools and Apps for Graphics, Giachetti A., (Ed.) The
Eurographics Association, 2014.

[4] Csaba Bálint, Gábor Valasek. Accelerating Sphere Tracing. EG 2018 - Short Papers, Diamanti
O., Vaxman A. (Ed.) The Eurographics Association, 2018.

[5] Róbert Bán, Csaba Bálint, Gábor Valasek. Area Lights in Signed Distance Function Scenes. EG
2019 - Short Papers, Cignoni P., Miguel E. (Ed.) The Eurographics Association, 2019.

[6] Ricardo Fabbri, Luciano da F. Costa, Julio Torelli, Odemir Bruno. 2D Euclidean distance
transform algorithms: A comparative survey. ACM Computing Surveys, 2008.

[7] Gábor Valasek. Generating Distance Fields from Parametric Plane Curves. 10th International
Conference on Applied Informatics. Annales Mathematicae et Informaticae. 48. pp. 83-91.

43

Traquest model - a novel model for ACID concurrent computations

Dániel Balázs Rátai, Zoltán Horváth, Zoltán Porkoláb and Melinda Tóth

Abstract: Atomicity, consistency, isolation and durability are essential properties of many
distributed systems. They are often abbreviated as the ACID properties. Ensuring ACID
comes with a price: it requires extra computing and network capacity to ensure that the atomic
operations are done perfectly, or they are rolled back.

When we have more strict requirements on performance, we need to give up the ACID
properties entirely or settle for eventual consistency. Thanks to the ambiguity of the order of
the events, such algorithms can get very complicated since they have to be prepared for any
possible contingencies. Traquest model is an attempt for creating a general concurrency model
that can bring the ACID properties without sacrificing a too significant amount of performance.

Keywords: ACID, concurrency, consistency, atomicity, concurrency model, fault tolerance

Introduction
The word Traquest comes from the words Request and Transaction. The core of the idea

comes from the microservices architecture [8]. In the case of the microservices when we send a
request, it can initiate some modifications in the global state in a transactional way. Microser-
vices are mostly based on the request-response model. When the Request returns with no
errors, that means the modifications in the global state are done, and the transaction is over.
While if the response is an error, that means there were no modifications in the global state at
all. Requests can make other requests, so like that more complex transactions can be assembled.

In such a request-response model, the ACID properties come at a high price. The service
which calculates the response has to be sure that any write operations arising must be synchro-
nized, committed and persisted before it can reply with a response. Of course, on the other
hand, if ACID is not a requirement, the service can be very fast. In this case, the service can just
read and write the state of the local server and answer to the client immediately (and perhaps
synchronize the writes later if eventual consistency is a requirement).

However, it is not just the performance that can cause a problem. It is very tough to ensure
atomicity itself when we nest the services. Suppose we have a service A calling two other
services B and C. Suppose that B responses properly but C responses with an error. In this
case, we can assume that C has rolled back properly, but B should be rolled back as well.
In the request-response model, there is no mechanism to roll back a request after it has been
responded. Therefore it is hard to chain more services properly when atomicity is a requirement.
We can be sure to have a proper response if the happy path happens, but if there is an error
arising at some of the chained requests our system can get easily stuck into an invalid intermedi-
ate state.

It seems there is a seemingly unsolvable dilemma between ACID properties and efficiency.
The proposed Traquest model is an attempt to resolve this dilemma and therefore improve
the efficiency of the ACID systems. The Traquest model is something similar to the request-
response model. We can send requests to a Traquest, and the Traquest replies with an answer,
but here the answer is not a simple response message, but rather an established parent-child
connection between the two Traquests with a temporary response, a so-called Trasponse. When
a Traquest gets a request it can immediately carry out read and write operations on the local
server, and it can immediately reply with a Trasponse, however, of course, that still might take
time to synchronize the effects of the operations with other servers. Therefore Trasponse is
only a temporary response. One might think about a Trasponse like it would say"I received and
processed your request, here is my immediate temporary answer which is very probably correct, but I

44

still might have to discuss it with the other servers if it is absolutely sure, I will let you know later if you
can rely on this response with absolute certainty, meanwhile if you have any new information that might
change the response I gave, please let me know so I can undo this."

In Section 2, we describe the main concepts behind the Traquest model. Section 3 presents
some related work. Finally, Section 4 concludes the paper.

The Traquest model structure
The request-response model is used on a local level as well and not only between different

computing nodes. Asynchronous callback functions can behave equivalently. We can send
the request content and the callback function as an argument, and the callback function can
contain the response in an argument. This mechanism is often used to wrap network-based
request-responses, but for local asynchronous operations as well.

However, callbacks can get complicated, when they are heavily used, and we want to handle
the exceptional scenarios. To this end in computer science, Future, Promise, Delay, and Deferred
refer to constructs used for synchronizing program execution in some concurrent programming
languages. They describe an object that acts as a proxy for a result that is initially unknown,
usually because the computation of its value is not yet complete. The term Promise was proposed
in 1976 by Daniel P. Friedman and David Wise [9] and Peter Hibbard called it Eventual [5]. A
somewhat similar concept Future was introduced in 1977 in a paper by Henry Baker and Carl
Hewitt [3].

Traquests behave most similarly to Promises; therefore, we use them as a baseline for the
explanation. Traquests, just like Promises, are placeholders for a temporarily unknown value.
Promises just like Traquests can be chained together and depend on each other. However, in
case of the Promises, once a Promise returns with a response, this response is final, it cannot
be modified afterwards. On the other hand, Traquests can be strongly bonded together to form
a tree structure, a so-called Traquest tree. A Traquest tree creates the transaction, and if any
Traquest fails in the Traquest tree, all the Traquests are failing. When the Traquests are failing,
they are not just returning an error, but they are ensuring that if there was any modification
created by them, it will be appropriately rolled back so that the global state of the system will
not be affected by half done transactions. To be able to achieve this Traquests are containing
some additional mechanisms.

Promises contain two parts. One part is responsible for executing the required asynchronous
algorithm, and another part is responsible for handling the response coming back. The response
can run into two different branches depending on whether the executed asynchronous algorithm
has succeeded or failed. Traquests has all of those parts, but they have some others as well to
be able to cooperate with the whole Traquest tree.

Promises have a Request (the inner part containing the asynchronous algorithm which shall
be executed) and a Response (the outer part, the placeholder object which will contain the
response value of the asynchronous algorithm in the future) mechanism. The Promise has a
Resolve branch to be called with the proper response value by the asynchronous algorithm
when it has successfully finished and a Reject branch to be called in case of failure. The
response has a Then branchto be called in case of success with the proper response value,
and a Catch branch for failure handling.

Traquests also have Request and Response mechanism, but an additional Binding mecha-
nism is used as well. The Binding mechanism is key for the Traquest model to be able to bind
Traquests together into a tree structure. Like that, a Traquest tree can act as a single entity, and
it can form a complete atomic transaction.

The Request mechanism has the following branches. The Response branch is the same as
the resolve branch at the Promises. This should be executed, when the asynchronous algorithm
successfully finishes with the proper value. The Mistake branch is slightly different from the

45

reject branch of the promises. A mistake is called when a temporary failure happens. If there
is a chance that the failure has happened only because the wrong order (e.g. division by zero)
of the asynchronous operations, then a mistake should be triggered. Mistakes can be undone
later, and the Traquest might rerun in proper order. The Terminate branch is used in case of
final failures. This function terminates the whole Traquest tree and results in a full rollback on
all the Traquests in the Traquest tree.

The Then branch of the Response mechanism is the same as the Then branch of the Promises.
The Catch branch is similar to the Catch branch of the promises, but it is used explicitly for the
mistakes. It can also avoid spreading up the mistake to parent Traquests or let it spread further.
The Finally branch is executed no matter if the Traquest was properly committing or it was
terminated.

The Binding mechanism of the Traquests has the following concepts:
Parent-child binding – When a Traquest is created the reference to the parent Traquest

should be defined. If it is not defined, that means the created Traquest will be the root of
the Traquest tree.

Undo – A mistake happens when an exception occurs because the Traquests are executed
out of order. However, it can happen that the Traquest has already responded with a seemingly
correct response, and an out of order conflict turns out only later. In this case, an undoing
mechanism can be executed, which rolls back the necessary Traquests on the affected branch of
the Traquest tree and re-executes them.

Rollback – A callback is provided for the case when the Traquest needs to revert the changes
it made so far. If the Traquest did not create any changes directly to the global state just by
calling other Traquests this part can be omitted because the rollbacks spread automatically on
the Traquest tree.

Committing – It is a mechanism used when all the Traquest in the tree has returned, and a
final commit can be initiated. This happens completely hidden and automatically when all the
Traquests in the tree has returned.

Data protectors

So far, we were discussing that the Traquests are forming a tree structure. However, a tree
structure by itself would never result in any conflicts which would be the core of the Traquest
model to be able to handle them effectively. Conflicts are happening when two different
processes are trying to read or write the same part of the global state. To this end, Data
protectors were constructed. Data protectors are entities responsible for managing a given
segment of the global state. They protect the given global state particle from conflicting reads
and writes.

The goal of each branch of the Traquest tree is to interact somehow with the global state.
Therefore, each branch, at some point ends up in a Data protector. When a Traquest reads
or writes to a Data protector, the Data protector generates new Traquest containing the read
or write operation. This new Traquest can be bounded to the original Traquest as a child;
therefore, it becomes part of the Traquest tree.

When more Traquests are using the same Data protector, the Data protector can use the
logical timestamps of the Traquests to decide which read or write operation should be answered
first. If a Traquest with an earlier timestamp comes after a Traquest with a later timestamp has
been already responded to, the Data protector can call the undo mechanism of the already
responded Traquest and serve the newly requesting Traquest. Therefore, the Data protector
can easily resolve any conflicts.

Furthermore, because all the conflicts are recognized and resolved at the Data protectors
most of the conflict resolving features of the Traquests are used only by the Data protectors
themselves. This way the increased complexity of the Traquests can be mostly hidden from

46

the developers, and they do not need to care with the failure handling parts at all, except
taking care about the Finally branch of the root Traquest. As a result, using Traquests can be as
straightforward as using Promises or even more.

Consistency and Fault tolerance

Traquests interact with each-other using serializable data constructs only. Therefore, Traque-
sts can be located on different computing notes as well, and they still can interact. Fault
tolerance requires the replication of the different particles of the global state to several comput-
ing nodes. Traquests are perfect for creating replicas of a desired global state particle and
managing them in a consistent way. It is enough to only add new Traquest tree branches
to each write operations that replicates the operation on different computing nodes. Thanks
to the atomic property of the Traquest tree, the state will always remain consistent. For the
read operations, we do not need such replication since the writes are already ensuring the
consistency.

Pipelining

Traquest can offer pipelining similarly to Proimises[1]. Traquests first can accomplish all
the tasks they can do locally, collect what they cannot and send them in one single network
message to another computing node. This way, the number of effectively necessary network
messages can be highly reduced. This pipelining mechanism can be done automatically and
hidden from the developers.

The Traquest tree branches created purely for replication does not need to contain any
meaningful responses; therefore, their Then branch can be omitted as well. These Traquests
are the so-called Tail Traquests. Tail Traquests combined with pipelining can result in a very
efficient lazy synchronization, which means, that a sophisticated algorithm can be executed in
a Traquest tree and the synchronization mechanism can happen in the background without
blocking or slowing down the execution. The only restriction is that the synchronizations
have to be finished before the whole Traquest tree commits. Therefore, pipelining can be very
efficient, since all the synchronization steps can be awaited and executed in one round message
over the network.

Related work
The "Layers" architectural pattern has been described in various publications [2], and it is

the most widely used pattern in case of the enterprise web applications. When the Business
layer executes the desired algorithm, it continuously has to access the Data access layer to read
the global state and to write back the changed state. When the algorithm requires only a few
iterations depending on each-other with the Data access layer, this causes no problem. On the
other hand, when there are several depending steps, each read and write requires a roundtrip
on the network. However, many databases (e.g. most of the SQL databases) can easily handle
atomic transactions, the number of the necessary roundtrips implicates a massive limitation in
the overall performance. This is a very strict limitation that occurs in any architecture where
we separate the location when we execute the business logic from the location where we store
the global state.

The Traquest model is able not only to ensure atomicity, but it is also a promising way to
ensure consistency. Therefore, hereby we take the most relevant consistency protocols [7] under
investigation respective to the Traquest model.

Primary-Based protocols provide proper consistency for an arbitrary type of data. To keep
the data consistent, they have to synchronize each write at least with the primary server.
For instance, in such case the algorithm has to be blocked until a read it depends on gets a

47

confirmation from the primary server. This requires many iterations of roundtrip messages;
therefore, Primary-Based Protocol implies a strict limitation in the performance.

Quorum-Based Protocols have very similar limitations to the Primary-Based Protocols. Each
read and write operation has to be confirmed by other computing nodes before the executed
algorithm can rely on the operation and step forward. The only exception is the Read-One,
Write-All scheme. In this case, it is enough only to read the local state of the data; however, it
requires even more messages to write synchronizations. This scenario can be only suitable in
case of very read-heavy applications.

Conclusion
Providing ACID properties can be crucial for many applications, but it requires a massive

compromise in the performance. The Traquest model is a proposed potential solution for this
problem. By creating temporary responses and building up a mechanism for rolling back
the conflicting parts of a running distributed algorithm it can ensure atomicity in a very fast
way. This way, the Traquest model can provide lazy conflict resolving for atomicity and lazy
replication for consistency and fault tolerance. Combined with pipelining in an optimistic
concurrency case, the Traquest model require magnitudes fewer network messages than any of
the investigated state of the art solutions.

Acknowledgements
The research was supported by the ÚNKP-19-3 New National Excellence Program of the

Ministry for Innovation and Technology and by the project no. ED_18-1-2019-0030 (Application-
specific highly reliable IT solutions) has been implemented with the support provided from
the National Research, Development and Innovation Fund of Hungary, financed under the
Thematic Excellence Programme funding scheme.

References

[1] Mark S. Miller; Darius Bacon. Promise pipelining at erights.org, 2010.

[2] Regine; Rohnert Hans; Sommerlad Peter; Stal Michael Buschmann, Frank; Meunier.
Pattern-Oriented Software Architecture, Volume 1, A System of Patterns. Wiley, 8 1996.

[3] Henry Baker; Carl Hewitt. The incremental garbage collection of processes. In SIGPLAN
Notices 12, 8, pages 55–59. ACM, 8 1977.

[4] Peter; Steiger Richard Hewitt, Carl; Bishop. A universal modular actor formalism for
artificial intelligence. IJCAI, 1973.

[5] Peter Hibbard. Parallel processing facilities. In Stephen A. Schuman, editor, New Directions
in Algorithmic Languages. IRIA, 1976.

[6] Typesafe Inc. Transactors, 2013.

[7] Andrew S. Tanenbaum; Maarten Van Steen. Distributed Systems - Principles and Paradigms.
Prentice Hall, 2 edition, 2007.

[8] Justus Bogner; Alfred Zimmermann; Stefan Wagner. Analyzing the relevance of soa
patterns for microservice-based systems. In 10th Central European Workshop on Services
and their Composition, 2018.

[9] Daniel Friedman; David Wise. The impact of applicative programming on
multiprocessing. In International Conference on Parallel Processing, pages 263–272, 1976.

48

Energy-efficient routing in Wireless Sensor Networks

Dániel Pásztor, Péter Ekler and János Levendovszky

Abstract: Efficient data collection is the core concept of implementing Industry4.0 on IoT
platforms. This requires energy aware communication protocols for Wireless Sensor Networks
(WSNs) where different functions, like sensing and processing on the IoT nodes must be sup-
ported by local battery power. Thus, energy aware network protocols, such as routing, became
one of fundamental challenges in IoT data collection schemes. In our research, we have devel-
oped novel routing algorithms which guarantee minimum energy consumption data transfer
which is achieved subject to pre-defined reliability constraints. We assume that data is transmit-
ted in the form of packets and the routing algorithm identifies the paths over which the packets
can reach the Base Station (BS) with minimum transmission energy, while the probability of
successful packet transmission still exceeds a pre-defined reliability parameter. In this way, the
longevity and the information throughput of the network is maximized and the low energy
transmissions will considerably extend the lifetime of the IoT nodes. In this paper we propose
a solution that maximizes the lifetime of the nodes.

Keywords: IoT, WSN, energy-efficient, routing, WiFi

Introduction

Industry 4.0 is part of the fourth industrial revolution. One of the main focus of i4.0 is digital
data acquisition and analysis of complex manufacturing processes, which requires a number
of different sensors and communication equipment to measure and transmit the information
about the process.

Since in many cases, connecting each sensor to a wired network would prove to be physically
infeasible, wireless IoT devices can provide an efficient solution for controlling the sensor and
transmit the collected data via a wireless network. This also gives flexibility, i.e. additional
sensors can be easily added to or removed from the network as needed. This combination of
the sensor and an IoT device with wireless transceiver will be called a node in the forthcoming
discussion.

Unfortunately, wireless devices need to be powered by typically through a built-in batteries
which needs to be recharged periodically. Under these circumstances, energy efficiency becomes
a driving force when developing IoT communication protocols.

To save on transmission energy , it can often be disadvantageous for a particular device
to send its message directly to the base station due to the energy consumption needed for
reliable large distance communication. Instead, it may be useful to implement multi-hop packet
transfers from the sender node to the BS via some relay nodes. In this paper we develop novel
routing algorithms for packet transfer that ensures extended lifetime of the network.

The rest of the paper is organised as follows. In Section 2 the related work is summarised.
In Section 3 the model is defined. Section 4 introduces the two-hop and multi-hop algorithms
with numerical performance evaluation. Section 5 concludes the paper and proposes further
research directions.

Related Work

In the literature, several different algorithms have been proposed for wireless efficient com-
munication in wireless sensor networks. LEACH[1] assigns nodes to be cluster heads periodi-
cally whose responsibility are collecting the messages in their region. After compressing the

49

received packets into a single message, every cluster head transmits it’s message to the base
station.

PEGASIS[2] creates a chain between the nodes close to each other. At every round, the
measured values are aggregated and sent towards one particular node through the chain,
which in turn transmits to the base station. This node changes every round.

The key difference between previous work and our research is that with our model, the
lifetime of the network can be extended while high probability of successful packet delivery
can be ensured.

Model

To investigate the different algorithms for routing, we first introduce the Rayleigh-fading
model, which gives us a connection between the transmission energy and the probability of
successfully packet transfer

gij = −dαij
θσ2Z

lnPij
(1)

where gij is the energy used in the transfer, d is the distance between the communicating nodes,
α is the spatial dimension used in our models, θ and σ are parameters of the environment and
communication, lnPij is the probability of successfully receiving the message between nodes i
and j. This can be simplified to the following equation:

gij lnPij = ωij (2)

where ωij is a constant dependent on the distance between the nodes and the parameters of the
environment.

Let our wireless sensor network consist of N stationary nodes and a base station collecting
the messages sent by the nodes. We place the nodes and the base station at random places
for every simulation in a unit square. Each node starts with a given energy E, and transmit
messages in a random order, given the constraint that the base station must receive it with a
probability Ps. At any given time, only one message can be transmitted. We run the simulation
until a node’s energy level drops to zero, becoming a dead node. An example of this can be
seen in figure 1.

Figure 1: An example of one WSN. The square is the base station, while the triangle is a node
currently sending a message.

50

Our proposed routing algorithms work on the principle that nodes with higher energy
levels should participate more frequently in message routing.In order to achieve this, instead
of minimizing the sum of the energies used in the transfer of a given message, we maximize
the minimum remaining energy level after transferring a packet. This can be accomplished if
and only if for every node the energy levels reach a common energy level after the transfer.

Proposed algorithms

Based on this observation, the objective of our algorithms is to bring the energy level of the
nodes involved in a packet transfer to the highest common energy level while still satisfying
the reliability constraint (guaranteeing that the packet will reach the BS with a pre-defined
probability). We propose the following routing algorithms:

• Direct sending, i.e. the source node sends the packet directly to the base station without
using an intermediate node. This is the simplest algorithm which serve as a baseline
algorithm.

• K-hop algorithm, in which case at most k-1 intermediate node form the path for packet
transfer.

• Multi-hop algorithm is a special case of k-hop, where we do not set the number of nodes
prior to the routing algorithm (i.e. any number of intermediate nodes can be used in a
path).

It can easily be demonstrated that calculating the optimal solution for two-hop routing results
in a quadratic equation to be solved for every possible intermediary node. In contrast, calculat-
ing the solution for k-hop and multi-hop routing requires significantly more calculations. First
we have to calculate the unique solution for a given permutation, which requires finding the
root of an (k-1)-degree complete polynomial which satisfies the constraints. After that we must
check every permutation of nodes for the optimal solution, making the complexity at least
O | V |! Because of this, we opted to use an approximation.

Instead of solving the optimal common energy level problem, let us first find for a given
energy distribution which guarantees that a packet can be send form the source node to the BS
with the highest probability. Formally, this can be written as follows, using equation 3:

max
g

m∑
j=0

ωj,j+1

gj,j+1
(3)

Since ω must be a negative number, we can see that for a given path, the maximum trans-
mission probability can be reached if glj lj+1

= cj(k), meaning that every node along the path
is using their remaining energy to send the message. Since we know the energy level of every
node before the transmission occurs, we can calculate γj,j+1 ≡ ωj,j+1

gj,j+1
, making the problem:

max

m∑
j=0

γj,j+1 = min

m∑
j=0

−γj,j+1 (4)

which makes this problem equivalent to finding the shortest path in a graph with the edges
having weight−γj,j+1. This can easily be solved using the Bellman-Ford algorithm for directed
graphs, which has a worst case complexity of O(| V || E |) = O(| V |3).

With this solution, we can approximate the optimal common energy level for multi-hop
routing. Instead of every node sending with it’s remaining energy, let us choose a common

51

energy level c, which every node participating in the transmission must reach. This gives us
the energy for every node with which they can participate in the transmission: gj,j+1 = cj(k)−c,
from which the previously presented approach gives us the maximum transmission probability.

Looking at the relation between the chosen common energy level and the maximum trans-
mission probability, we can intuitively see that if we lower the energy level, the transmission
probability rises since nodes can use more energy in the transmission. Because of this, we can
use binary search over the interval (0, cs(k)) for the common energy level where the maximum
transmission probability reaches the given success probability. This gives us an approximate
solution with complexity O(| V |3 ln cmax

δc), where cmax is the starting energy level of the
nodes and δc is the maximum absolute error between the energy levels of the optimal and
approximated solution.

The proposed algorithms were implemented in MATLAB, and simulation were run with it.
We have changed the placement of the nodes and the order of the messages being sent between
simulations, and measured the number of messages being sent before the first node run out of
energy. The results can be seen in table 1.

Table 1: Number of messages before first dead node.

Minimum Average Maximum
Node count Direct 2-hop Multi Direct 2-hop Multi Direct 2-hop Multi

10 26 76 75 112.2 160.32 152.09 289 416 398
20 78 220 136 212.39 350.79 281.53 536 761 608
50 156 590 314 428.7 987.3 656.3 1392 1896 1443
100 308 1256 650 760.2 1980.2 1178.9 1673 3622 2287

It can be seen that under every circumstance, two-hop routing performed better than either
direct or multi-hop routing. Comparing to direct routing, two-hop can make use of an interme-
diary node, so nodes farther away or with lower energy are able to conserve energy. This is in
contrast to the results of multi-hop routing, where the use of more intermediary nodes leads
to shorter lifetime. Examining the energy levels after each message, we concluded that while
the remaining energy levels are indeed higher compared to the two-hop algorithm, the use of
multiple nodes result in an overall higher energy usage which depletes the network faster.

Conclusion and future works

In this paper we have developed different routing algorithms for energy aware IoT data
communication. As the performance analysis have revealed the 2-hop routing performed
the best for every case. In the future, we would like to examine the k-hop algorithm for k
larger than 2. Another future development may relate to the network topology. I these results
were measured with randomly placed nodes. In the future, we would like to consider the
special network topologies including indoor transmission, as well as different packet sending
frequencies , when optimising the routing algorithm. The model developed can be further
expanded by introducing barriers between nodes (such as buildings). We plan to apply the
findings of our research in the wireless sensor network deployed at ZalaZone (being a test
environment for future cars).

Acknowledgement

This work was supported by the BME-Artificial Intelligence FIKP grant of EMMI (BME
FIKP-MI/SC) and by the János Bolyai Research Fellowship of the Hungarian Academy of
Sciences.

52

References

[1] W. R. Heinzelman, A. Chandrakasan and H. Balakrishnan, "Energy-efficient
communication protocol for wireless microsensor networks," Proceedings of the 33rd
Annual Hawaii International Conference on System Sciences, Maui, HI, USA, 2000, pp. 10
pp. vol.2-.

[2] S. Lindsey and C. S. Raghavendra, "PEGASIS: Power-efficient gathering in sensor
information systems," Proceedings, IEEE Aerospace Conference, Big Sky, MT, USA, 2002,
pp. 3-3.

53

Spectral Clustering based Active Zero-shot Learning

Dávid Papp

Abstract: Supervised machine learning tasks often require a large number of labeled training
data to set up a model, and then prediciton - for example the classification - is made based
on this model. Nowadays tremendous amount of data is available on the web or in data
warehouses, although only a portion of those data is annotated and the labeling process can
be tedious, expensive and time consuming. Active learning tries to overcome this problem
by reducing the labeling cost through allowing the learning system to iteratively select the
data from which it learns. In special case of active learning, the process starts from zero-shot
scenario, where the labeled training dataset is empty, and therefore only unsupervised methods
can be performed. In this paper I propose a query strategy to estimate the informativeness
value of the unlabeled data in the special zero-shot situation. The approach uses ClusterGAN
(Clustering using Generative Adversarial Networks) integrated in the spectral clustering algo-
rithm and then it selects an unlabeled instance depending on the cluster membership probabil-
ities. The results are compared with various active learning query startegies on the MNIST
dataset.

Keywords: active learning, zero-shot, query strategy, clustering, spectral clustering, generative adver-
sarial network

Introduction and related work

The main goal of classification applications is to make predictions with high accuracy. A
crucial part of this process is the model creation, which is based on the labeled training data
(where the labels are the ground truth categories); hence the gathering of labeled data is also
an important component of supervised machine learning. One can collect large amount of
inexpensive unlabeled data through real-world applications [1], however labels for this data
can be expensive, time-consuming or difficult to obtain. For example accurate labeling of
speech utterances is extremely time consuming and requires trained linguists [2], on the other
hand annotating gene and disease mentions for biomedical information extraction usually
requires PhD-level biologists [3]. Consequently in these cases it is recommended to limit the
number of labeled data that used for training, while attempting to achieve high accuracy. Let
U = {ui}, i = 1...m denote the total amount of (unlabeled) data available for training; the
goal is to select only a subset of this data and assign labels to them, thereby creating the
L = {lj}, j = 1...n labeled dataset. The easiest technique is to randomly select L, this method is
called passive learning, although it could lead to sub-optimal samples due to the randomness.
A more sophisticated approach would be to consider the informativeness of the unlabeled data
and then select the most informative ones. This approach is called active learning [4], where
the learning system is allowed to iteratively select unlabeled instances and ask for their label.
The key idea is that carefully picked, informative data allow the learning algorithm to perform
better with less training. A decisive part of an active learning system is how it estimates the
informativeness of unlabeled instances; these procedures are called query startegies. There
are some traditional query startegy frameworks in the literature, e.g. uncertainty sampling
[5], query-by-committee (QBC) [6], expected model change [7], expected error reduction [8], or
density-weighted method [9].

Usually active learning query strategies assume that the selection process already started
and train a classification model based on L. In special active zero-shot learning situation, the
procedure starts with empty L, and therefore only unsupervised techniques (e.g. clustering)
can be used. The aim of active zero-shot learning [10, 11, 12] is to find a small number of

54

informative seen classes to facilitate unseen class predictions. The setting of this task contains
seen and unseen categories, however in this paper I propose a query strategy, named Spectral
Clustering Based Sampling (SCBS), to solve problems with only unseen classes.

The proposed query strategy utilizes ClusterGAN (Clustering using Generative Adversarial
Networks, [13]) integrated in Spectral Clustering [14] framework to form the clusters in zero-
shot condition; then the algorithm queries an unlabeled instance based on the cluster member-
ship probabilities. The next section delineate the proposed approach, and after that the experi-
mental evaluation is presented.

Spectral Clustering Based Sampling

Given a set of data points x1, ..., xm with pairwise similarities sij (or distances) a similarity
graph G can be built to model local neighborhood relationship between the data points. Based
on the constructedG graph, a similarity matrix S can be derived, where the value of an element
sij corresponds to the weight of the edge between xi and xj in G (if those points are not
connected by an edge in G, then sij = 0). Let D be a diagonal degree matrix with Dii =

∑
j sij .

The fundamental step of spectral clustering is the calculation of graph Laplacian matrix
from the matrices S and D [15]. For example the unnormalized graph Laplacian matrix can be
computed as expressed in Eq. 1, and I used this in the SCBS algorithm. Another two popular
Laplacians are the symmetric normalized and left normalized [16].

L = D − S (1)

Let matrix V be defined as the matrix containing the first k eigenvectors v1, ..., vk of L as
columns. At this point I applied ClusterGAN [13] on the rows of V to form C1, ..., Ck clusters.
One advantage of using ClusterGAN clustering is that it provides decision vectors d1, ..., dm
for each data where the elements are the cluster membership probabilities.

I perform this algorithm on the initial unlabeled data set U , then query instances based on
the informativeness values calculated from C1, ..., Ck and d1, ..., dm. I developed two variants
of SCBS, the Global SCBS (G-SCBS) and Local SCBS (L-SCBS); both of them essentially operates
the same way, however the former minimizes the informativeness metric over each element of
U , while the latter examines only a reduced unlabeled set UCj , which contains the elements
of a single cluster at a time. Furthermore, two different techniques were used to determine
the unlabeled instance to query, the first one minimizes the uncertainty of the most probable
cluster, and the second one minimizes the information entropy over all possible cluster assign-
ments; as can be seen in Eq. 2 and Eq. 3, respectively.

u∗ = argmin
u

(
1− d∗

)
, (2)

u∗ = argmin
u

− k∑
j=1

dij × log dij

 , (3)

where dij denotes the probability that unlabeled instance ui belongs to cluster Cj , and d∗

represents the probability of the most probable cluster.

Experimental evaluation

In this section I present the experiments that were conducted on the MNIST database of
handwritten digits, which consist of 60,000 train and 10,000 test images. 10 different subsets

55

were randomly selected from this dataset, each of them contained 500 images. During the
experiments, the following 4 SCBS method variants were tested:

• G-SCBS using Eq. 2

• G-SCBS using Eq. 3

• L-SCBS using Eq. 2

• L-SCBS using Eq. 3

I tested several additional methods that are already proposed in the literature; the Random
[17], the Centroid [18], the Border-based [19] and the Hybrid [19] active learning query strategies.
The results of these competitor methods are compared to the results of the proposed SCBS
based techniques.

The tests were performed in the special zero-shot situation, so at the start of active learning
process U contained the total 500 images of the test datasets and L was empty. Consequently,
the first steps are imporant to set up an adequate initial labeled image collection. At the testing
of each dataset I investigated the first 100 active learning iterations, and evaluated the accuracy
from the results at each iteration. The accuracy (ACC) is the ratio of the correct decisions and
all decisions, as can be seen in Eq. 4. The different types of decisions come from the confusion
matrix: True Positive, False Positive, True Negative and False Negative. Note that since at
zero-shot active learning there is not enough labeled items to perform supervised learning (i.e.
classification), the elements of the confusion matrix are derived from the clustering results.

ACC =
TP + TN

TP + FP + TN + FN
(4)

Acknowledgements

The research was supported by the ÚNKP-19-3 New National Excellence Program of the
Ministry of Human Capacities.

References

[1] Panda, N., Goh, K. S., & Chang, E. Y. (2006). Active learning in very large databases,
Multimedia Tools and Applications, 31(3), 249-267.

[2] X. Zhu. Semi-Supervised Learning with Graphs. PhD thesis, Carnegie Mellon University,
2005.

[3] Chowdhury, M., & Faisal, M. (2010). Disease mention recognition with specific features, In
Proceedings of the 2010 workshop on biomedical natural language processing, pp. 83-90.

[4] Settles, B. (2009). Active learning literature survey, University of Wisconsin-Madison
Department of Computer Sciences.

[5] Lewis D. and Gale. W. (1994). A sequential algorithm for training text classifiers, In
Proceedings of the ACM SIGIR Conference on Research and Development in Information Retrieval,
pp. 3-12.

[6] Tsai, Y.L., Tsai, R.T.H., Chueh, C.H., Chang, S.C. (2014). Cross-domain opinion word
identification with query-by-committee active learning, In: Cheng, S.M., Day, M.Y. (eds.)
TAAI 2014. LNCS, vol. 8916, pp. 334-343.

56

[7] Cai, W., Zhang, Y., Zhou, J. (2013). Maximizing expected model change for active learning
in regression, In: IEEE 13th International Conference on Data Mining, pp. 51-60.

[8] Mac Aodha, O., Campbell, N., Kautz, J., Brostow, G. (2014). Hierarchical sub-query
evaluation for active learning on a graph, In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 564-571.

[9] Settles B. and Craven. M. (2008). An analysis of active learning strategies for sequence
labeling tasks, In Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 1069-1078.

[10] Xie, S., Wang, S., & Yu, P. S. (2016). Active zero-shot learning, In Proceedings of the 25th
ACM International on Conference on Information and Knowledge Management, pp. 1889-1892.

[11] Xie, S., & Philip, S. Y. (2017). Active zero-shot learning: a novel approach to extreme multi-
labeled classification, International Journal of Data Science and Analytics, 3(3), pp. 151-160.

[12] Gavves, E., Mensink, T., Tommasi, T., Snoek, C. G., & Tuytelaars, T. (2015). Active transfer
learning with zero-shot priors: Reusing past datasets for future tasks, In Proceedings of the
IEEE International Conference on Computer Vision, pp. 2731-2739.

[13] Mukherjee, S., Asnani, H., Lin, E., & Kannan, S. (2019). Clustergan: Latent space clustering
in generative adversarial networks, In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 33, pp. 4610-4617.

[14] Von Luxburg, U. (2007). A tutorial on spectral clustering, Statistics and computing, 17(4),
395-416.

[15] HU, P. (2012). Spectral Clustering Survey

[16] Chung, F. R., & Graham, F. C. (1997). Spectral graph theory (No. 92), American Mathematical
Soc.

[17] Kang, J., Ryu, K. R., & Kwon, H. C. (2004). Using cluster-based sampling to select initial
training set for active learning in text classification, In Pacific-Asia Conference on Knowledge
Discovery and Data Mining, pp. 384-388.

[18] Hu, R., Mac Namee, B., & Delany, S. J. (2010). Off to a good start: Using clustering to
select the initial training set in active learning, In Twenty-Third International Florida Artificial
Intelligence Research Society Conference (FLAIRS 2010), pp. 26-31.

[19] Yuan, W., Han, Y., Guan, D., Lee, S., & Lee, Y. K. (2011). Initial training data selection
for active learning, In Proceedings of the 5th International Conference on Ubiquitous Information
Management and Communication, p. 5.

57

Parallel Simulation for The Event System of DISSECT-CF

Dilshad Hassan Sallo and Gábor Kecskeméti

Abstract: Discrete Event Simulation (DES) frameworks gained significant popularity to sup-
port and evaluate cloud computing environments, by providing decision-making for complex
scenarios as well as saving time and effort. The majority of these frameworks lack of parallel
execution. DISSECT-CF is one of the frameworks that introduced an improvement in perfor-
mance of Infrastructure as a Service (IaaS) simulation. Although DISSECT-CF execution time is
faster than the majority, it still executes sequentially. This paper introduces parallel execution
to the most abstract subsystem in DISSECT-CF (event system). The new subsystem detects
when multiple events occur at a specific time and then multi-threads these events. The number
of independent frequent events, plays a crucial role to invoke the new subsystem and increase
the performance. Achieving a high degree of repeated events leads to better performance.
We focused on time management scenarios as a part of simulation to show the leverage of
parallelism. We also focused on events that not having an influence on the future. The results
show that parallel version scales proportionally with the number of cores and it reaches five
times faster than sequential version.

Keywords: Cloud computing, parallel simulation, DISSECT-CF

Introduction

The ubiquity of emerging advanced technologies such as fog computing, edge computing
and Internet of things (IoT), has urged to develop DES frameworks being capable of predicting
and evaluate the behaviour of these [2]. Moreover, these provide more flexibility than the
real systems, by providing a reproducible environment for repeated evaluation of various
scenarios and algorithms with minimal costs[4]. Despite DES simulators may support several
levels of parallel and distributed computing [2], they are mostly written following a sequential
execution model. Introducing the capability to support parallel execution and scaling is crucial-
ly to these kinds of simulators. DISSECT-CF [1] is one of the frameworks that able to simulate
internal components and processes of cloud infrastructures. Its extensibility was demonstrated
towards IoT and fog computing use cases. Although the execution time of DISSECT-CF is
significantly faster than even the most prominent simulator in the field "CloudSim" [4], this
performance advantage is still not enough for the most demanding current research use cases
(e.g., simulating millions of IoT devices and their continuum with clouds). Its sequential
execution is a significant bottleneck, thus parallel execution is needed for scaling its perfor-
mance efficiently to meet the newest challenges in the field.

This paper proposes parallel execution to the event system layer of DISSECT-CF, as this layer
is the most heavily used one during the simulations, and its time management features are
generally used by all other components. Our extension focuses on events that should execute
independently, but practically simultaneously executed and parallelises their evaluation. This
can be fulfilled by explicitly separated recurrent events to load balancing and distributing them
over available cores, leading to exploiting more cores per single machine. We have evaluated
our proposed extension via several test scenarios. In these, we prepared situations which
have different amounts of independent but simultaneously occurring events in the system.
These scenarios were carefully designed to cover a different aspect of implementing most
methods of Event subsystem classes, while they also represent a wide variety of potential use
cases expected in future simulations. The advantage over performance can be remarked when
many recurrent events need to be composed to achieve parallelism. Our findings show that
our parallel time management layer leverage from multicore execution, especially so when

58

the sequential workload is split into batches of over 32 events, leading to faster execution
considerably.

Related work

In this section, the most relevant works to the suggested approach are briefly presented
with highlighting their notable drawbacks. The authors [2] have conducted a survey over 33
simulators that support DES, including prominent framework CloudSim [6]. They provide
different significant features to support IaaS cloud computing. However, the gap was found in
the majority represented by they were built sequentially with lack of parallel execution. The
authors [3] extend the CloudSim simulator to dubbed "Cloud2Sim" that support concurrent
and distributed simulations. However, it exploits external features such as Hazelcast, Infinispan
and Hibernate to provide concurrent execution. The authors [4] provide a parallel DES frame-
work for simulating computing tasks, but it classifies discrete events to various groups before
simulating. The authors [5] suggested initial step in the parallel and distributed execution in
a real system, which could not adapt to current environments. However, introducing parallel
execution to simulators leading to control simulation easily as well as repeating tests free of
cost. After presenting several previous works that are related to the subject of the proposed
research, and showing the lack of sufficient parallel execution. This paper provides parallel
execution to the event system of DISSECT-CF simulator to speed up execution of simulations.

Methodology

DISSECT-CF simulator introduced substantial features to IaaS and allowing easy extensibil-
ity to support other concepts such as IoT. Despite DISSECT-CF reduces the execution time of
simulation, it executes sequentially. It could face challenges to simulate modern technology at
the same time such as IoT connected devices, which are rapidly increasing and could reached
billion devices. DISSECT-CF simulator consists of five major subsystems that mostly imple-
ment different tasks in an independent manner. The lowest layer (Event system) was built
sequentially to execute on a single core CPU. Based on existing application programming
interface (API) of DISSECT-CF, recurring events can execute in parallel manner when they
happen at a specific time. In each time, the degree of parallelism can be varied depending
on how frequent each event occurs. When all subscribed events happen at a specific time, the
degree of parallelism is 100%, if half of them happened at one time, the degree is 50% and so on.
Increasing these recurrent events with a high degree at any specific time, leads to insufficiently
manage by single CPU and may delay the execution.

Inner class called Parallel was designed inside Timed class to implement parallelism
using ForkJoinPool technique. This class designed to fit with existing methods of Timed
class, which benefit from any improvement. Executing Parallel class depends on the size
of recurrent events list, if they exceed determined size, then the Parallel class will invoke to
execute repeated events simultaneously. It runs recurring events after dividing them into equal
lists for balancing load over the processors. With respect to the number of cores, there are three
factors that influence the performance of parallel execution. Firstly, the size of a list allocated
to recurrent events. This determines when Parallel class will invoke to execute these events
simultaneously. When the size of the list is small, associating and managing threads over the
list is time consuming. Secondly, the degree of parallelism. It is important to observe to which
degree usually recurrent events occur at a specific time. This shows the advantage of parallel
version over sequential version regarding performance and scaling. Finally, the size of the
simulation has a significant role to show the benefit of the parallel version. When it becomes
large, lead to exploit all the cores.

59

1500

2000

2500

Time(s)

0

500

1000

Parallel Sequential Parallel Sequential

4 Cores 12 Cores

Figure 1: Result in time(s) for Parallel and sequential using 4 cores and 12 cores

Evaluation

Two laptops (Intel (R) Core (TM) i7-4600U CPU @ 2.10GHz (4 CPUs), 2.7GHz) and (Intel(R)
Core(TM) i7-8750H CPU @ 2.20GHz (12 CPUs), 2.2GHz) were used for evaluation of Parallel
execution of DISSECT-CF. Several scenarios with different purposes designed carefully to test
the performance of the parallel version. These focused on time management and ensure all
events happen properly at desired time. Our scenarios create 100,000 recurring event objects
executing with different frequencies to test parallel version in various conditions. These capable
to control the degree of parallelism as well as the size of the simulation. The source code of
scenarios is available on GitHub 1. As the invocation of Parallel class depends on a size of a
list that contains repeated events at a specific time, several tests with different sizes (8,12,32,64)
have been done to specify the suitable size to store recurring events. The result shows, better
performance can be obtained when the size of the list for recurrent events equal or exceeds 32.

Parallel version scales better with the number of cores and exploit entirely the power of
multi-cores. Figure 1 shows the execution of both parallel and sequential versions on 4 and 12
cores for 100,000 recurrent event objects. When the number of cores is 4, parallel version run
1.6 faster than sequential, with increasing number of cores to reach 12, it runs approximately
five times faster than sequential. The degree of parallelism has a significant effect over the
performance of the parallel version. The advantage of parallel to reduce execution time is a
little at 25%, comparing to 100%. Figure 2 shows the execution time of parallel and sequential
for 100,000 recurring event objects with five different degrees.

Conclusion

DISSECT-CF is one of the robust simulators that brought extraordinary features to improve
the performance of IaaS simulation. It is built to accompany the latest technology with easily
extensibility. In terms of execution time, DISSECT-CF is fast and reliable but still runs sequen-
tially, and it is not leveraging of power of multiprocessor to speed up the execution of simula-
tions. It also does not also scale with the number of cores. The parallel version was built to
handle this issue and being useful when there is necessity to apply that, represent occurring
multiple events at a specific time. It scales with the number of cores and leads to reduce the
time of execution significantly.

1The code is available at following website: https://github.com/dilshadsallo/
dissect-cf-examples

60

https://github.com/dilshadsallo/dissect-cf-examples
https://github.com/dilshadsallo/dissect-cf-examples

150000

200000

250000

Parallel

0

50000

100000

25% 33% 50% 75% 100%

Parallel

Sequential

Figure 2: Execution time(s) of parallel and sequetial for five different degree of parallelism

Acknowledgements

This research was supported by the Hungarian Scientific Research Fund under the grant
number OTKA FK 131793.

References

[1] Kecskemeti, G., 2015. DISSECT-CF: a simulator to foster energy-aware scheduling in
infrastructure clouds. Simulation Modelling Practice and Theory, 58, pp.188-218.

[2] Byrne, J., Svorobej, S., Giannoutakis, K.M., Tzovaras, D., Byrne, P.J., Ostberg, P.O.,
Gourinovitch, A. and Lynn, T., 2017, April. A review of cloud computing simulation
platforms and related environments. In International Conference on Cloud Computing and
Services Science (Vol. 2, pp. 679-691). SCITEPRESS.

[3] Kathiravelu, P. and Veiga, L., 2014, September. Concurrent and distributed cloudsim
simulations. In 2014 IEEE 22nd International Symposium on Modelling, Analysis & Simulation
of Computer and Telecommunication Systems (pp. 490-493). IEEE.

[4] Liu, J., Zhou, Y., Zhang, D., Fang, Y., Han, W. and Zhang, Y., 2014, December. Muclouds:
Parallel simulator for large-scale cloud computing systems. In 2014 IEEE 11th Intl Conf on
Ubiquitous Intelligence and Computing and 2014 IEEE 11th Intl Conf on Autonomic and Trusted
Computing and 2014 IEEE 14th Intl Conf on Scalable Computing and Communications and Its
Associated Workshops (pp. 80-87). IEEE.

[5] Fujimoto, R.M., Malik, A.W. and Park, A., 2010. Parallel and distributed simulation in the
cloud. SCS M&S Magazine, 3, pp.1-10.

[6] Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A. and Buyya, R., 2011. CloudSim:
a toolkit for modeling and simulation of cloud computing environments and evaluation of
resource provisioning algorithms. Software: Practice and experience, 41(1), pp.23-50.

61

Improving MapReduce Speculative Executions with Global
Snapshots

Ebenezer Komla Gavua and Gábor Kecskeméti

Abstract: Hadoop is a MapReduce implementation for distributed storage and computation.
However, this implementation has issues managing poor performing jobs. This challenge,
called speculative execution, is mostly handled by running backup tasks. The main contribu-
tion of this paper is a proposed the application of consistent global snapshots and stable prop-
erty to resolve this challenge. This involves the capturing of snapshots of all data I/O into
mappers and reducers before and after data executions. The snapshots are then compared
to determine the poor performing tasks. These tasks are quickly divided and redistributed
amongst the inactive mappers and reducers based on an algorithm on data complexity. As a
future work, we are considering executing these algorithms to evaluate their performance by
testing it with heterogeneous data sets.

Keywords: MapReduce, Global Snapshots, Speculative Executions.

Introduction

Distributed global snapshots have been widely used as a technique to achieve reliability
and fault recovery in distributed and cloud systems. During a distributed computing session,
a snapshot can be taken, to capture and preserve the session’s instantaneous execution state.
This is done to insure against failure at a later time [1, 2]. The concepts of Global Snapshot
and stable property are designed to monitor an asynchronous network algorithm while it
runs. By repeatedly computing and evaluating the global snapshot, the stable property can
be detected[3].

The Apache Hadoop software environment provides a popular implementation for dis-
tributed data storage and MapReduce computing [5]. However, the handling of poor perform-
ing jobs remains a challenge. Apache Hadoop does not fix or diagnose slow task but rather
launches another equivalent tasks as backup when it detects a task running slower than expect-
ed. This process is called Speculative Execution in Hadoop[6]. MapReduce runs a speculative
copy of a slow task (also called a backup task) on another machine to finish the computation
faster.

The main contribution of this work is to propose a technique involving Consistent Global
Snapshot and stable property concepts of distributed computing as means to diagnose detect
slow tasks. This will enable solutions to be provisions as early as possible to improve general
system performance. In order to achieve this, consistent global snapshots of all data inputs
and outputs (I/O) into mappers before and after processing are captured. This process is also
repeated for reducers before and after processing and during the intermediate session. The
captured snapshots are then compared to determine the poor performing tasks. This involves
monitoring the jobs which take a longer time to exhibit a stable property (i.e.those at a quiescent
state). These tasks are quickly divided and redistributed amongst the inactive mappers and
reducers based on an algorithm on data complexity for re-execution.

The remainder of this paper is structured as follows. In Section 2, we reviewed research
works in relation to Speculative Executions. In Section 3, we present our methodology for
detecting poor performaning jobs in MapReduce and proposed improvements. Finally, Section
4 concludes the paper with recommendations for future work.

62

Block 0
Block 1
Block 2
Block 3

Block 5
Block 4

Mapper

Mapper

Mapper

Reducer

Reducer

Output 0

Output 1

Input
(HDFS) Intermediate Results

output
(HDFS)

Map Phase Shuffle Phase Reduce Phase

Figure 1: MapReduce Structure

Related Works

Research works have been conducted over the years to mitigate poor performing jobs in
Hadoop MapReduce, as this challenge contributes to the system’s over all throughput. Wang et
al [7] proposed an extended speculative execution strategy called Partial Speculative Execution
(PSE). They analyzed checkpoint information of original tasks. Speculative tasks start from the
checkpoint instead of starting from scratch.

Zaharia et al designed a simple, robust scheduling algorithm, LATE [4], which uses estimated
finish times to speculatively execute the tasks that hurt the response time the most. Wang et al
[8] developed a new speculation scheme ESPLASH which can efficiently and quickly identify
the stragglers, submit the speculative tasks to the most appropriate nodes and avoid resource
waste on the unnecessary speculative execution. .

The above researches have addressed the challenge of managing poor performing jobs to
some extent. However, they did not employ consistent global snapshots in their algorithms.

Methodology

This section is divided into three sections. The first section briefly explains the MapReduce
programming model. The second section explains speculative execution in MapReduce and the
third section discusses the application of global snapshots and stable property to MapReduce.

MapReduce Programming Model

To utilize MapReduce, a programmer must express their computations as jobs. The job
inputs must be specified to yield key-value pairs. Job processing consists of two stages: firstly, a
user-defined map function is applied to each data input record to generate a list of intermediate
key-value pairs. Secondly, a user-defined reduce function is applied once on each distinct key
in the map output and passed on the list of intermediate values associated with that key. These
functions are parallelized by the MapReduce framework to ensure fault tolerance as shown in
figure 1. The process of MapReduce operation is shown as :

map(keyin,valuein)→ list(keyout, valueintermediate)
reduce(keyout , list(valueintermediate))→ (valueout)

Speculative Executions

Speculative Executions is Hadoop MapReduce way of tackling poor performing jobs. In
the MapReduce framework, speculative tasks start from the same workload as their original
tasks. Firstly, a speculative map task enters the input data same as the original map tasks
which increases I/O cost since the input data always comes from Hadoop Distributed File
System (HDFS). Secondly, speculative reduce tasks are recopied from the intermediate data

63

Split 0
Split 1

Split 4

Input files
(on HDFS)

Map Task

Output files
(on HDFS)

Reduce
 Tasks

Part 0
Part 1

Part 4Speculative
 Map TasksMap Tasks Reduce

Tasks
Speculative

ReduceTasks

PT=5mins

PT =Processing
Time

PT=5mins PT=9mins

PT=7mins

PT=7mins
PT=11mins

Figure 2: Speculative Execulation

Block 0
Block 1
Block 2
Block 3

Block 5
Block 4

Mapper

Mapper

Mapper

Reducer

Reducer

Output 0

Output 1

Input
(HDFS)

Intermediate Results

output
(HDFS)Map Phase Shuffle Phase Reduce Phase

Redistributed Specutative Tasks

Redistributed Speculative tasks
snap 1 snap 2 snap 3 snap 4

Redistributed
tasks
based on
 data
Complexity processed data

Saved
Snapshots

Saved
Snapshots

Global
Snapshots

3% Estimated Saving Overhead
of Mappers ProcessingTime

2% Estimated Saving Overhead of Reducers Processing Time

5% Estimaated
Saving

 and
 Comparison
of Snapshots
Overhead of
Data Output

Time

Figure 3: Structure of MapReduce with Global Snapshots

from almost all map tasks. Thirdly, all speculative tasks must be recomputed from all disks
and remote mappers since they are partially processed data. The extra data entry, recopying
and recomputing sessions make speculative execution inefficient. This is displayed in figure 2.

Application of Consistent Global Snapshots on MapReduce

The algorithm proposed to be implemented on MapReduce is the ChandyLamport global
snapshot algorithm[9]. This snapshot algorithm is a monitoring algorithm designed to work
as a send/ receive network algorithm. The snapshot algorithm initially sends a snap input
through the system about to utilize the MapReduce programming model. This is to capture the
state of the system before processing commences.

Once the initial checks are completed, the snapshot algorithm is sent ahead of every data
input at all stages of the MapReduce Function with a marker message. The marker message is
utilized to indicate the change in state of the system before and after data processing.

The snapshot algorithm then takes snapshots during data input before a map phase com-
mences and data output (intermediate data) after the map phase. Snapshots are also taken
during the data input before the reduce phase and data output after the reduce phase.

Once a snapshot is taken at a particular time, the captured data is reported (saved) for
comparisons later. The various captured locally captured snapshots at each level of data I/O
constitute a global snapshot of a particular execution.

At the end of a process execution, global snapshots are compared. The processes which take
a longer time to reach a quiescent state are the identified as the poor performing tasks. The
monitoring algorithm must be executed consistent and at a high rate in order not to delay the
general system performance. The points of capturing of local snapshots is shown in figure 3.

The data output from the poor performing jobs, are divided into two parts based on data
complexity by an algorithm. The less complex data are processed first, to be followed by the
more complex ones. The jobs tasks are then redistributed amongst the inactive mappers and
reducers based on the data complexity. These are done at a high execution rate to complete the
entire data processing cycle.

64

Conclusion

Hadoop MapReduce executes poor performing task speculatively to ensure that the entire
data input meets expected target. However, in most cases, these poor performing task delays
the general system performance.

In this paper, we proposed global snapshots as a technique for improving Speculative Exe-
cution in MapReduce. A monitoring algorithm will be utilized to take snapshots of data inputs
and outputs at key stages during the MapReduce programme execution. This will enable the
poor performing tasks to be quickly identified and redistributed amongst the inactive mappers
and reducers by an algorithm. The tasks will be processed based on data complexity until all
the tasks are thoroughly executed at a high execution rate.

As a future work, we are considering executing these algorithms to evaluate its performance
by testing it with heterogeneous data sets. Moreover, the experimental data gathered will be
compared with existing experimented data to assess the efficiency of this proposed technique.

Acknowledgements

This research was supported by the Hungarian Scientific Research Fund under the grant
number OTKA FK 131793.

References

[1] Ajay D Kshemkalyani. Fast and message-efficient global snapshot algorithms for large-
scale distributed systems. IEEE Transactions on Parallel and Distributed Systems, 21(9):1281–
1289, 2010.

[2] Yonghwan Kim, Tadashi Araragi, Junya Nakamura, and Toshimitsu Masuzawa. A
concurrent partial snapshot algorithm for large-scale and dynamic distributed systems.
IEICE TRANSACTIONS on Information and Systems, 97(1):65–76, 2014.

[3] Ardalan Kangarlou, Dongyan Xu, Paul Ruth, and Patrick Eugster. Taking snapshots
of virtual networked environments. In Proceedings of the 2nd International Workshop on
Virtualization Technology in Distributed Computing (VTDC’07), pages 1–8. IEEE, 2007.

[4] Matei Zaharia, Andy Konwinski, Anthony D Joseph, Randy H Katz, and Ion Stoica.
Improving mapreduce performance in heterogeneous environments. In Osdi, volume 8,
page 7, 2008.

[5] Apache Hadoop. Apache hadoop project, 2011.

[6] Huanle Xu and Wing Cheong Lau. Speculative execution for a single job in a mapreduce-
like system. In 2014 IEEE 7th International Conference on Cloud Computing, pages 586–593.
IEEE, 2014.

[7] Yaoguang Wang, Weiming Lu, Renjie Lou, and Baogang Wei. Improving mapreduce
performance with partial speculative execution. Journal of grid computing, 13(4):587–604,
2015.

[8] Jiayin Wang, Teng Wang, Zhengyu Yang, Ningfang Mi, and Bo Sheng. esplash: Efficient
speculation in large scale heterogeneous computing systems. In 2016 IEEE 35th International
Performance Computing and Communications Conference (IPCCC), pages 1–8. IEEE, 2016.

[9] K Mani Chandy and Leslie Lamport. Distributed snapshots: Determining global states of
distributed systems. ACM Transactions on Computer Systems (TOCS), 3(1):63–75, 1985.

65

Distance-based Skeletonization on the BCC Grid

Gábor Karai and Péter Kardos

Abstract: In this paper we study Strand’s algorithm that computes the surface skeleton of
3D objects sampled on the BCC grid based on a hybrid strategy [6]. Furthermore, we present
two improved versions of this algorithm, which have less time complexity, and are less
sensitive to the visiting order of border points. One of them is also capable of extracting curve
skeletons. All investigated methods can be extended to arbitrary distance metrics.

Keywords: BCC grid, distance transform, topology preservation, thinning

Introduction and Notations
A skeleton is a region-based shape descriptor that summarizes the general form of objects.

The two most important requirements that should be met by skeletons is to preserve the
geometrical and topological object features. In 3D the curve skeleton or centerline is represented
by 1D line segments, and the surface skeleton or medial surface may contain 2D
surface patches, too. Distance-based skeletonization techniques focus on the detection of ridges
in the distance map of boundary points. In 3D discrete spaces, the set of centres of maximal balls
(CMB’s) is generated for this purpose [1]. This set depends on the chosen distance metric.
Chamfer metrics give good approximations to the Euclidean distance by assigning a weight to
each grid point in a small neighborhood. The distance-based approach can fulfill the geometrical
requirement but it fails to preserve topology, as the set of CMB’s is usually disconnected.
Another strategy for skeletonization, called as thinning, is based on the iterative peeling of
the object boundary. Thinning algorithms preserve topology, if proper deletion rules are given
(see [3]). To ensure both above mentioned criteria, distance-based methods are often combined
with thinning. These approaches can be further classified as follows [1]:

• Anchor-based thinning: The detected CMB’s or local maxima (anchor points) are assumed
to be skeleton points during the subsequent thinning method.

• Distance-ordered thinning: In each iteration step of the thinning phase, only border voxels
with the same distance value are considered.

• Combinations of the previous two strategies. We refer to them as hybrid algorithms.

Most 3D skeletonization algorithms work on digital pictures sampled on the cubic grid. An
alternative structure, the body-centered cubic grid tessellates the space into truncated
octahedrons, which results in a less ambigous connectivity structure compared to the cubic
grid [7]. The BCC grid is defined as the following subset of Z3:

B = {(x, y, z) ∈ Z3 | x ≡ y ≡ z (mod 2)}.

In the voxel representation of the BCC grid, any two neighboring elements share a face. The
set N14(p) contains the 14 face-neighbors of point p, including p, depicted in Fig. 1, and we say
that any point in N14(p) is 14-adjacent to p. Furthermore, we divide N14(p) to the subsets N6(p)
and N8(p) as it is shown in Fig. 1, and let N∗i (p) = Ni(p) \ {p} (i ∈ {6, 8, 14}).

Let 〈a, b〉 denote the general Chamfer mask for weighted distance transform, where a and b
are the weights assigned to all points in N∗8 (p) and N∗6 (p), respectively. Many possible weight
combinations are examined in [2]. Note that 〈1, 1〉 and 〈1, 2〉masks are neighbor-based distances,
called d14 and d8, respectively.

66

♣
� �

� �
♣

♣ p ♣
♣
� �

� �

♣

Figure 1: Elements of N14(p) in B (a). Voxel representation of these points (b). The set N6

of the central point p ∈ B contains p and the six points marked “♣” (green voxels in (b)).
The set N8 contains p and the eight points marked “�” (red voxels in (b)).

The (14, 14) binary digital picture is a quadruple P = (B, 14, 14, B) [4]. A black component or an
object is a 14-connected set of points, called as black points in B, while a white component is a 14-
connected set of points, called as white points in B \ B. Here we assume that a picture contains
finitely many black points. A black point is called a border point in a picture if it is 14-adjacent
to at least one white point. Let CB(p) and CW (p) be the number of black components and the
number of white components in N∗14(p), respectively.

A simple point is a black point whose deletion is a topology preserving reduction [4]. Strand
and Brunner proposed the following characterization of simple points:

Theorem. [5] Let p be a border point in a (B, 14, 14, B) picture. Then p is a simple point if and only if
CB(p) = CW (p) = 1.

Strand’s Algorithm and Its Improved Variants
Strand proposed the first skeletonization algorithm for binary objects sampled on the BCC

grid [6]. His hybrid method assumes the d14 distance metric and it can extract only surface
skeletons by preserving non-simple points and surface edge points. A point p ∈ B is considered
as a surface edge point, if there are two points q, r ∈ N∗14(p) ∩ B such that N14(q) ∩N14(r) = {p}
and there is no point s ∈ N∗14(p) ∩ B such that N14(p) ∩N14(s) ⊆ B. The algorithm consists of
the following three steps:

1. Compute the d14 distance map of the input picture P = (B, 14, 14, B), and detect the set
H of CMB’s. Furthermore, let S = {p ∈ B | N14(p) ∩H = ∅}.

2. Thin the object “roughly” by sequentially deleting simple points of set S in ascending
order of their distance value. All points in S are examined exactly once.

3. Do a final sequential thinning on the remaining 3–4 voxel thick object by preserving the
surface edge points such that the remaining border points are visited in descending order
of their distance value. This step is executed until there are no more deletable points.

The sequential thinning in step 2 and 3 suffer from the disadvantage of being
sensitive to the visiting order of border points with the same distance value. As a result
the final skeleton usually has some “false” skeleton points (see Fig. 3b). Another drawback is
the computational complexity: if I denotes the number of grid points, then Strand’s

67

algorithm has a runtime of O(I4/3) in the case of optimal implementation as it highly depends
on the input object’s thickness.

To construct linear time algorithms, we merge the 2nd and 3rd step and simplify the
organization of thinning iterations. Therefore, these methods consist of a distance transforma-
tion step and a thinning step. The set S from Strand’s algorithm is not used but the deletion rule
is also based on the preservation of non-simple points and surface edge points. We introduce
parameter tmax which gives an upper limit to the visiting number of each object point
during the thinning phase (i.e., the iteration step will be repeated at most tmax times).
Therefore, if tmax is a positive integer, then the runtime complexity is O(tmax · I). Alternatively,
setting tmax to∞ means that the number of visiting numbers is not limited. This parameter is
applied in both of our improved algorithms. The motivation is to reduce the sensitivity to the
visiting order of border points.

Our first improved variant, called Mod-1, is an anchor-based thinning method that
considers local maxima instead of CMB’s to be anchor points because many CMB’s are proved
to be “false” skeleton points on weighted (except d14 and d8) distance maps. Point p is a
local maximum, if and only if there is no point q ∈ N∗14(p) such that DT (q) > DT (p), where
DT (p) denotes distance value of p. During the thinning phase of Mod-1 the anchor points are
recognized as skeleton points.

Our second improved variant, called Mod-2, is a distance-ordered thinning method that
omits the detection of anchor points. The border points are visited in ascending order of their
distance value during the thinning phase.

To extract curve skeletons, we set tmax to ∞, and instead of surface edge points we retain
either of two types of curve endpoints C1 and C2 in algorithm Mod-2. Point p ∈ B is a C1
endpoint, if and only if |N∗14(p) ∩ B| = 1, i.e., p has only one black neighbor in N∗14(p). Let u be
this black neighbor. p is a C2 endpoint, if and only if p is a C1 endpoint and u is a line point.
Point u is a line point if and only if |N∗14(u) ∩ B| = CB(u) = 2. We consider a border point
deletable if it is simple but not an endpoint. The corresponding algorithms are called Mod-C1
and Mod-C2, respectively. These variants terminate only if there are no more deletable points
during an iteration step of their thinning phase.

Results and Conclusions
The proposed algorithms Mod-1 and Mod-2 have linear runtime complexity and are less

sensitive to the visiting order of border points compared to Strand’s method. According to
our experience, it is sufficient to set tmax to at most 3 to produce “clear” surface skeletons. All
examined algorithms preserve topology due to the fact that all deletable points are simple. All
methods can be extended to arbitrary distance metrics including any 〈a, b〉 weighted distance
or even the Euclidean distance. Note that optimal parameters (e.g., distance metric, thinning
strategy) depend on the application. Some examples are illustrated in Fig. 2 and Fig. 3 where
the indicated types of algorithms and distance metrics were used. Numbers in brackets show
the number of object or skeleton points.

Original object Mod-C1, 〈6, 7〉 Mod-C2, 〈6, 7〉
(94031) (644) (579)

Figure 2: Extracted C1- and C2-centerline of a helicopter.

68

Original object Strand, d14 Mod-1, d14, tmax = 2
(20280) (4926) (4432)

Mod-2, d14, tmax = 2 Strand, d8 Mod-C2, d14
(3881) (2683) (58)

Figure 3: Extracted surface (b–e) and curve skeletons (f) of a holey cube with various
parameters. On (b), (c) and (e) anchor voxels are gray and further skeleton voxels are red.
The resulting C1- and C2-centerline (f) coincide with each other because no C2 endpoint was
detected.

Acknowledgements
This research was supported by the project “Integrated program for training new generation

of scientists in the fi elds of computer science”, no EFOP-3.6.3-VEKOP-16-2017-00002. The
project has been supported by the European Union and co-funded by the European Social
Fund.

References

[1] G. Borgefors, I. Nyström, G. Sanniti di Baja: Discrete Skeletons from Distance Transforms in 2D
and 3D In: Siddiqi K., Pizer S.M. (eds) Medial Representations. CIV 37. Springer, Dordrecht
(2008)

[2] C. Fouard, R. Strand, G. Borgefors: Weighted distance transforms generalized to modules and
their computation on point lattices, PR 40(9), 2453–2474 (2007)

[3] T. Y. Kong: On topology preservation in 2-d and 3-d thinning, International Journal of Pattern
Recognition and Artificial Intelligence 9, 813–844 (1995)

[4] T. Y. Kong, A. Rosenfeld: Digital topology: Introduction and survey, CVGIP 48, 357–393 (1989)

[5] R. Strand, D. Brunner: Simple Points on the Body-Centered Cubic Grid, Technical Report 42,
Centre for Image Analysis, Uppsala University, Uppsala, Sweden (2006)

[6] R. Strand: Surface skeletons in grids with non-cubic voxels, Proceedings of the 17th
International Conference on Pattern Recognition, ICPR 2004, Vol. 1, 548–551 (2004)

[7] R. Strand: The face-centered cubic grid and the body-centered cubic grid – a literature survey.
Internrapport, Centrum für Bildanalys, Uppsala University, Centre for Image Analysis
(2005)

69

Towards Reverse Engineering Protocol State Machines

Gábor Székely, Gergő Ládi, Tamás Holczer and Levente Buttyán

Abstract: In this work, we are addressing the problem of inferring the state machine of an
unknown protocol. Our method is based on prior work on inferring Mealy machines. We
require access to and interaction with a system that runs the unknown protocol, and we serve
a state-of-the-art Mealy machine inference algorithm with appropriate input obtained from the
system at hand. We implemented our method and illustrate its operation on a simple example
protocol.

Keywords: Automated Protocol Reverse Engineering, State Machines, Mealy Machines

Introduction

Many systems use closed protocols whose specification is not made publicly available. Ex-
amples include industrial control systems and in-vehicle embedded networks. Often, it would
be very beneficial to understand those closed protocols. For instance, network anomaly detec-
tion tools cannot monitor industrial control systems without understanding their protocols,
hence, cannot detect potential cyber attacks on them.

Protocol reverse engineering is the activity of uncovering the specification of an unknown
protocol. This can be a tedious work, so automation is required to make it practical. The goal
of automated protocol reverse engineering methods can be two-fold: determining the format
of messages used by the protocol and recovering the state machine of the protocol. In another
paper [2], we studied the problem of determining the message formats of unknown binary
protocols, and developed a tool which can take captured network traffic containing messages
of the protocol and output the identified message types and the semantics of message fields
for the different message types. In this work, we are addressing the problem of inferring the
state machine of an unknown protocol, and we assume that message types have already been
identified (e.g., by using our tool mentioned above).

Our method is based on prior work on inferring Mealy machines, and in particular, on the
work of Shahbaz and Groz [3]. We use their Mealy machine inference algorithm and extend
it with elements that make it possible to use their conceptual results in practice to reverse
engineer the state machine of real-world protocols in an automated way. Our method requires
access to and interaction with a system that runs the unknown protocol, and it basically consists
in serving the Mealy machine inference algorithm of Shahbaz and Groz with appropriate input
obtained from the system at hand.

Inferring Mealy Machines

We use Mealy machines to represent the state machine of a protocol, as they can be used in a
more straightforward manner to model the behavior of protocols using requests and responses
(which is quite typical in practice) than finite state machines or Moore machines can. Mealy
machines differ from simple finite state machines in that for every state transition that is trig-
gered by an input, an output is defined. The set I of possible inputs is called the input alphabet
and the set O of possible outputs is called the output alphabet.

Angluin described an algorithm in [1] that can be used to infer minimal finite state machines,
and this algorithm can be adapted for inferring Mealy machines too. In this work, we adopt
the techniques of Shahbaz and Groz described in [3], and in the sequel, we refer to the Mealy
machine inferring algorithm described in [3] as LM+.

70

Since we use the LM+ algorithm as a black box, a high level overview of its operation is
sufficient for our purposes here. The LM+ algorithm is executed by a learner and it requires
a teacher. The teacher knows the Mealy machine to be inferred, and the task of the learner
is to infer that machine. The teacher can answer two types of queries for the learner: first,
for a certain sequence of input characters, the teacher returns the output of the machine to be
inferred (input query); second, the teacher can determine whether a certain Mealy machine
conjectured by the learner is the same as the one to be inferred (equivalence query). If the
conjectured machine differs from the real one, then the teacher returns a counterexample:
a sequence of input characters for which the real and the conjectured machines produce a
different output.

Applying and extending the LM
+ algorithm

A Mealy machine can be used to model the state machine of a client-server protocol in
a fairly straightforward manner: the input alphabet of the machine can contain the possible
messages that the client may send to the server (i.e., the requests) and the output alphabet can
contain the possible messages that the server may send to the client (i.e., responses, acknowl-
edgements, errors, etc.).

Clearly, including all possible individual messages in the input and output alphabets can
easily lead to problems: a huge resulting Mealy machine and a very long running time of the
LM

+ algorithm. For instance, if a message contains a 4-byte timestamp, then the alphabet
would contain at least 232 elements to represent all possible messages containing different
timestamp values. To bring the size of the alphabets in a manageable range, we represent
message types by the elements of the input and output alphabets instead of individual messages.
A message type models a group of messages that have the same format but that may differ in
the specific values in the fields of the given message type.

In order to work with messages types, we use two helper functions: a message classifier and
a message generator. The message classifier function takes a particular message as input and
returns its message type. The message generator function takes a message type as input and
generates a valid message that has the specified message type. While the message classifier
function should be deterministic, the message generator can be non-deterministic: the values
of the message fields can be randomly generated as long as the message remains well-formed
(i.e., consistent with its type). An additional function, a message updater is also useful, which
takes as input the set M of all previously sent messages and a particular message m of this set,
and returns a new message m′ of the same type as m, such that the values of certain fields in
m′ are the mutations of the corresponding values in m, and M does not include m′ yet. The
updater function takes into account the semantics of certain fields: for instance, constant fields
and identifiers are not mutated, a counter is mutated by incrementing it, etc. Such an awareness
of semantics improves the efficiency and accuracy of our algorithm.

Recall that we aim at reverse engineering the protocol state machine of a system under test
(SUT). To achieve this goal, we use the LM+ algorithm as the learner that infers the unknown
Mealy machine representing the protocol, and we need to provide the teacher that answers the
queries of the learner. We construct the teacher by using the above defined helper functions,
and by sending messages to and observing responses of the actual implementation of the
protocol provided by the SUT.

This works in the following way: We start by using the message generator helper function
to produce messages for every message type. We use these pre-generated messages to avoid
a deterministic protocol appearing to be non-deterministic due to freshly generated random
values used in the same message at different stages of our algorithm. Then, we run the LM+

learner and we respond to its queries. Input queries are answered by first resetting the SUT,

71

then sending the pre-generated messages (after running the message updater helper function
on them) corresponding to the learner’s input query to the SUT, and finally running the message
classifier helper function on the SUT’s responses to get the message types that the learner can
understand. Equivalence queries are answered by generating random input queries, running
them against both the SUT and the conjectured machine, and comparing their outputs. The
number of queries needed to decide about equivalence with a given confidence level has been
studied in [1] and we follow those guidelines. Once the LM+ learner conjectures a Mealy
machine that is deemed correct, our algorithm terminates with that machine as the output.

However, the above described version of our algorithm may return an incomplete protocol
state machine, because it may happen that only a single message of a given type is generated,
which always triggers the same type of response, while it may be possible that other variants
of the same message would result in a different response. Consider, for example, a request
for reading the content of some memory address; the response can be the data found at the
specified address or an error if the address was invalid. The extended version of our algorithm
attempts to find these additional behaviors by finding messages of the same type that trigger
different responses of the SUT. This is done by generating multiple messages of each type of
the input alphabet I , and running the simple version of our algorithm with them. The resulting
Mealy machine is analyzed and messages that have the same type but do not produce different
behavior are removed (we call this step deduplication). Then, new messages are generated and
added to the set of possible inputs, and the simple algorithm is executed again. This is repeated
until a certain amount of runs in a row do not generate new messages that induce different
behavior.

Implementation and evaluation on a simple protocol

We implemented the LM+ algorithm and our algorithm in Python, using the NetworkX1

package for representing Mealy machines. We designed the implementation to be modular,
such that the different components are well separated and easy to replace. This is important
for future improvements and to be able to easily plug the functions that are different for each
protocol (e.g., the message generator, the message classifier, and the part of the teacher that
handles communication with the SUT).

For testing and illustration purposes, we constructed and used a simple protocol, which is
illustrated in Figure 1. The protocol has 3 states: the starting state DISCONNECTED, the state
BASE, where only get is a valid input, and the state WRITE, where both get and write are valid
inputs. The difference between get and bad_get is that the parameter (target address) of the get
message is valid, while it is invalid in a bad_get, and likewise with write and bad_write. Messages
get and bad_get are of the same type, and similarly, messages write and bad_write have the same
type. These two message types are used by the message generator to generate messages with
random addresses.

Figures 2, 3, and 4 show the inferred Mealy machine in different rounds after deduplication.
The request messages are postfixed with a number; this is a counter showing how many times
the message generator was called when the given message was generated. The starting state is
*, and every other state is labeled by the messages that can be used in sequence to reach that
state. In the first round, the algorithm generates two instances of each message type, however,
each instance of the same message type produced the same behavior, therefore, only one of
them were kept (see Figure 2). In the second run, a new instance was generated from each
message type, but these did not show new behavior either, so they were discarded too. In the
third round, a variant of the write message type was generated that resulted in an ok response,
as opposed to the error response triggered by the other variant of the write message, so this was

1https://networkx.github.io/

72

https://networkx.github.io/

kept (see Figure 3). Finally, in the fourth round, the algorithm also finds a get message variant
that results in different response observed so far, hence it is retained (see Figure 4). After 5
rounds with no new behavior found, the algorithm stopped. As we can see in Figure 4, in our
example, the Mealy machine inferred is identical to the state machine of the example protocol
(except for the names of the states and message variants, of course).

Figure 1: Protocol Mealy machine Figure 2: First round output

Figure 3: Third round output Figure 4: Fourth round output

Acknowledgment

The research presented in this paper has been supported by the European Union, co-financed
by the European Social Fund (EFOP-3.6.2-16-2017-00013), the Hungarian National Research,
Development and Innovation Fund (NKFIH, project no. 2017-1.3.1-VKE-2017-00029), and the
IAEA (CRP-J02008, contract no. 20629).

References

[1] Dana Angluin. Learning regular sets from queries and counterexamples. Information and
computation, 75(2):87–106, 1987.

[2] Gergő Ládi, Levente Buttyán, and Tamás Holczer. Message format and field semantics
inference for binary protocols using recorded network traffic. In IEEE Conference on Software,
Telecommunications and Computer Networks (SoftCom), September 2018.

[3] Muzammil Shahbaz and Roland Groz. Inferring mealy machines. In International
Symposium on Formal Methods, pages 207–222. Springer, 2009.

73

Component-based error detection of P4 programs

Gabriella Tóth and Máté Tejfel

Abstract: P4 is a domain-specific language to develop the packet processing of network devices.
These programs can easily hide errors, therefore we give a solution to analyze them and detect
predefined errors in them. This paper shows the idea, which works with the P4 code as a set of
components and processes them one by one, while calculating their pre- and post-conditions.
This method does not only detect errors between the components and their connections, but
it is capable to reveal errors, which are hidden in the middle of a component. The paper
introduces the method and shows its calculation in an example.

Keywords: P4, error detection, component

Introduction

We introduce a component-based formal method to detect errors in P4 programs. The
antecedent of the method is an error detection based on a rule system [4]. With this idea,
we approach the detection from backwards and process the code from the smallest units to
the biggest ones. This solution can not only check the error possibilities but give additional
information about the code for the developer.

Figure 1: Example P4 code

P4 programs We work with the P4 language, which is a domain-specific programming lan-
guage to develop the packet processing of network devices. When a packet arrives at a device
as a bitstream, the P4 program gets that bitstream as the input and starts to work with it. In
Figure 1 there is an example program. P4 programs work with the header information of a
network packet. The developers can define what kind of header information they work with
(rows 1-16.). P4 programs have three main processing parts: parser, modifier and deparser. The
parser (rows 18-27.) gets the input and extracts the header information from the packet. The

74

modifier part (rows 28-50.) modifies the header information – based on match-action tables, the
content of which comes from an external controller – and after the modification, the deparser
(rows 52-54.) creates the new packet with the calculated header information to forward it to
the network.

Method of detection

Motivation We would like to create a tool, based on our results, to help the P4 developers to
write correct programs. In this first version of the method, we concentrate only those errors
to detect, which are caused by using invalid headers and uninitialized fields. Using them can
cause undefined behaviour by unknown values. However, we still work with the subset of the
P4 language, but we plan to extend the rule system to work with a bigger language and detect
more error cases. Now we are also working on a representation of this method to be able to
compare it with other error detectors [1, 3, 2].

This method based on the precondition and postcondition of the program units. As we
see in Figure 1, there are different programming structures in the P4: actions, tables, control
functions. It works with them one by one, and calculates condition pairs for each of them,
starting from the smallest ones – like actions – finishing with the biggest ones – like control
functions.

The phases of the formal method The input of the method is the source code that will be
checked. The whole process contains three main phases: the Condition Calculator, the Main
Condition Calculator and the Final Checker. The Condition Calculator has two parts: the call
graph, and the subcondition calculator. The Condition Calculator check all of the components
– actions, tables and control functions – in the P4 source and calculate pre- and post-condition
pairs for them, while checking their correctness. The Main Condition Calculator works with the
parser – gets the main precondition from it – and the deparser – gets the main postcondition
from it. The Final Checker works with the calculated pieces of condition and checks that if
every main precondition matches with the needed preconditions. If the matching is not correct
then it means that there are some errors in the code. However, if the matching is right in the
preconditions then it checks the same with the postconditions.

Condition Calculator The graph contains the calling relationship between the control func-
tions, tables and actions. Based on the graph it will make an order of these components to
process them with the condition calculator. The condition calculator goes through all of them
and creates their pre- and post-condition, which describes the correct working of the program.

This phase processes the modifier part of the P4 code, and calculate pre- and post-conditions
for the different components. The result of this phase shows the claim – what kind of header
information it needs to work well – and the offering – what kind of header information it will
create after the processing – of the components.

Call Graph The call graph handles the modifier part of the input. Its vertices are the
components of this part – the control functions, match-action tables and actions – and the
directed edges describes a calling relation between them.

After the processing of the code, it will create a list of the components. This list starts with
those components, which do not depend on any other components, – they have no outgoing
edges – and the last two will be the ingress and the egress.

75

Subcondition calculator The list of the components gives a hint for the subcondition cal-
culator in which order it should process the components, therefore whenever a command of a
component’s calling is processed, the condition of that component will have been calculated.
During the processing of the components, it uses a rule system, which will calculate a condition
state . The type of the condition state – Figure 2 is a set of pairs, where a pair shows a name
of the component and its list of pre- and post-condition as pairs. Every condition contains a
valid and an invalid container, which contains a list of headers’ and fields’ name. During the
method, we use the valid word as a synonym of the property of initialized fields to be easier.

1 ConditionState ∈ {(name : [{pre : {valid : [ids], invalid : [ids]}, post : {valid : [ids], invalid : [ids]})])}
2

Figure 2: Condition State Describer

The rule system uses an operator `, the type of which can be seen in Figure 3. It works with
a known condition state, a name of a component – the one, that is processed when it uses this
rule – and the program code. The rules are based on the structure of the program, therefore it
has a deterministic usage.

1 `: (ConditionState×Name× Program)→ ConditionState
2

Figure 3: Type of `

The rules of the system are rewriting rules – we have the expression in the bottom and we
rewrite it to the top of the rule –, which define the behaviour of the ` operator. In Figure 4, there
are the rules for the assignment, sequence, table, skip and the calling of a table. In the rules, we
use some notations: (A ‖ B) shows a rewriting from A to B. The notUsed is a function which
gives a set of headers’ and fields’ name, which have not been used during the calculation – the
calculation has no condition about them. The Used is a really similar function, but here there
are the names of the used units. The result of V alid() function is true , when the unit is valid in
the postcondition. And ×means it checks if the preconditions match, then it merge them, then
checks if the postconditions match, then it also merge them, therefore we get a new condition
pair.

Figure 4: A subset of the rule system

76

Example

Figure 1 is an example P4 program which will be used to show an example usage of the
method.

Calculate conditions First it creates the call graph. There is only an ingress control flow,
which calls a table, which can call one of the two actions. Based on the graph it can create the
following list to define the order of the processing:[ipv4_create1 , ipv4_create2 , t ,MyIngress].

Based on the order of the list, it starts the calculation from the following expression:

1 (((Empty, ”ipv4_create1” ` ipv4_create1), ”ipv4_create2” ` ipv4_create2), ”t” ` t), ”MyIngress” ` MyIngress

After the calculation of conditions we will get pairs of pre- and post-conditions of the
different components – Figure 5.

Figure 5: Result of calculation of conditions

Calculate the main conditions The main conditions are calculated from the parser and
deparser. It works almost the same way as in our previous paper [4], therefore we do not
go into details, but we got the result in another format.

1 Pre : [{
2 Valid : [ethernet , ethernet .allFields ()] , InValid : [ipv4 , ipv4 .allFields ()] }]
3
4 Post : [{
5 Valid : [ethernet , ethernet .allFields () , ipv4 , ipv4 .allFields ()] } , { Valid : [drop

] }]

Final Checker In the end, the main conditions will be matched – in this case only – with the
conditions of the ingress . We can see, the first precondition of the ingress does not match with
the main condition because it would need a qmathitvalid ipv4 header, but after the parsing
phase it is not valid , therefore it shows an error here. The second precondition of the ingress
would be good, but its postcondition is not matching with any of the main postconditions. The
first main postcondition could be good, but it needs a valid ipv4 header with valid fields, and
after the program execution, the ipv4 .ttl field is not valid. It means there is another error in that
point. Our next job to define what kind of error does the method find.

Acknowledgements

This research was supported by the project “Integrated program for training new generation
of scientists in the fi elds of computer science”, no EFOP-3.6.3-VEKOP-16-2017-00002.

77

References

[1] Lucas Freire, Miguel Neves, Lucas Leal, Kirill Levchenko, Alberto Schaeffer-Filho, and
Marinho Barcellos. Uncovering Bugs in P4 Programs with Assertion-based Verification.
In Proceedings of the Symposium on SDN Research, SOSR ’18, pages 4:1–4:7, New York, NY,
USA, 2018. ACM.

[2] Jed Liu, William Hallahan, Cole Schlesinger, Milad Sharif, Jeongkeun Lee, Robert Soulé,
Han Wang, Călin Caşcaval, Nick McKeown, and Nate Foster. P4v: Practical Verification
for Programmable Data Planes. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM ’18, pages 490–503, New York, NY, USA,
2018. ACM.

[3] Radu Stoenescu, Dragos Dumitrescu, Matei Popovici, Lorina Negreanu, and Costin
Raiciu. Debugging P4 Programs with Vera. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication, SIGCOMM ’18, pages 518–532, New
York, NY, USA, 2018. ACM.

[4] Gabriella Tóth and Máté Tejfel. A formal method to detect possible p4 specific errors. In
Position Papers of the 2019 Federated Conference on Computer Science and Information Systems,
volume 19 of Annals of Computer Science and Information Systems, pages 49–56. PTI, 2019.

78

Embedding QR code onto triangulated meshes

György Papp, Miklós Hoffmann and Ildikó Papp

Abstract: The QR code is widely used to provide easily accessible information to anyone with
a smartphone, and since these devices play a significant role in our everyday life, a QR code can
be read by most people. However, significant deformation can make it challenging to decode
a printed QR code. In order to avoid deformation, the printed label should be affixed on a
developable surface patch of a 3D model. In the work of Kikuchi et al. [3] and Peng et al. [5], the
QR code is embedded onto surfaces to give more freedom in providing additional information.
In the first work, the QR code is engraved onto B-spline CAD models, while in the second
one, it is embedded code onto general meshes and optimizes its dark modules and minimizes
their carving depth to increase the engraved QR code readability. In this paper, we introduce a
method to embed a QR code onto any area of general meshes without using subdivision on the
mesh. Besides, we propose a method to determine the largest size of the QR code automatically
for a user-selected position. Also, our method can find better direction to carve the QR code
and achieve a larger size for a user given point in even on highly curved areas. Additionally,
we introduce a solution to speed up finding the carving depth for embedding the QR code.
Our proposed method uses the Horizon-Based Ambient Occlusion for calculating the shadow
in the engraved areas with the help of the GPU.

Keywords: QR code, 3D printing, triangulated mesh, embedding, ambient occlusion

Introduction

Providing information for items or parts is globally used for describing how to use or
assemble them. This supplementary information can be enclosed in the form of a printed
document, which can contain QR codes besides text. Moreover, the QR code even can be
printed on a label and affixed onto the surface. However, the placement of the label is limited
for developable surfaces to avoid significant deformation of the QR code, which could negative-
ly affect its readability. This restriction can be avoided by using a 3D printer for embedding the
QR code. The method encloses the additional information by engraving the dark modules of
the QR code onto any surface, not only developable ones. Kikuchi et al. [3] embed QR codes
onto CAD models, which are constructed by using B-spline surfaces, and Peng et al. [5] increase
the readability of the QR codes, which are engraved onto general meshes, by modifying its
modules and optimizing its carving depth. However, these solutions require modification on
the surface before the QR code can be embedded. In this paper, we propose a method that can
engrave QR codes onto any triangulated mesh without making any preprocessing step before
the embedding. Besides, our engraving solution can determine the largest size for a QR code
automatically at a given point on the mesh. Moreover, we propose to use ambient occlusion
techniques to speed up the process of finding the optimal carving depth of the QR code with
the help of the GPU.

Previous work

Embedding information in the form of a QR code into objects can serve different purposes.
In the work of Wei et al. [6], the QR code is embedded by using selective laser melting (SLM)
technology into metallic components as a safety feature to fight against illegal counterfeits.
Another one is to track components through the additive manufacturing chain and prevent
3D printing attacks by embedding obfuscated QR codes [2]. Besides these, objects also can be

79

tagged with a QR code to describe and provide useful information about them. Aircode [4]
embeds the user-defined information by placing structured air pockets under the surface of the
item.

Kikuchi et al. [3] proposed a technique to embed QR codes onto CAD models, which are
constructed from B-spline surfaces. The black modules of the QR code are carved onto the
surface to shadow them and create the required contrast between the white and dark regions
of the QR code for decoding. In their work, a method is presented to find the optimal carving
depth for the QR code. In the work of Peng et al. [5], a method has been proposed to improve
the readability of the embedded QR code. Firstly, the modules of the QR code are modified to
decrease the number of dark modules that are connected. Then, the carving depth is minimized
for the QR code with an iterative method. It defines different carving depth for small areas in
the modules.

The gaming industry uses different global illumination methods to achieve a more realistic
look for the game. Since the high frame rate is essential, the Screen Space Ambient Occlusion
(SSAO) techniques are widely used for quickly producing a visually convincing approximation
of realistic lighting for a given camera view. One of the many available techniques is the
Horizon-Based Ambient Occlusion [1] (HBAO), which is used in our solution.

Embedding QR code

Similar to the work of Peng et al. work, we also use triangulated meshes for engraving
QR codes. However, our goal was to preserve the original mesh without performing any
preprocessing step on it. In Peng’s work, the selected region for the QR code is being remeshed
to achieve a dense triangulation. Also, the proposed method of Kikuchi et al. for B-spline
surfaces has a preprocessing step to generate and insert the required knot lines and values.
Our proposed method embeds the QR code in the following steps.

• Finds the direction and position to project the QR code

• Removes affected triangles and triangulate the modules of the QR code

• Find their carving the depth and connects the embedded QR code with the mesh

Finding a plane for the QR code, which defines the position and the direction to project
the QR code is an iterative process. An initial plane h is centered at the given point by using
an initial size and orientation with the normal vector of the selected point. Then, its corners
are projected onto the surface by using the central projection. The center of the projection C
is positioned on the normal vector of plane h, and its distance from h is defined by a free
parameter g. As a result, a truncated pyramid is formed from the plane and the projected
points of the corners. It contains the vertices, which normal vectors are used to update plane h,
by replacing its normal vector with the average of the vertices’ normal vector in each iteration.
The next iteration uses the updated plane as an initial plane.

Our results showed that after the first iteration, the normal vector of plane h is good enough
to stop the iteration. Also, the other reason to stop is that in the following steps, only small
corrections can be made on the normal vector, which does not have significant effects later in
the projecting and engraving process. During the iteration, our method can maximize the size
of the QR code for a given viewing direction by using the contour of triangles that are visible
from it. This filtering criteria of the triangles can easily be changed, for example, to avoid highly
curved areas.

The modules of the QR code are projected by using the same central projection and plane
h. Then, our method triangulates and engraves the dark modules while it finds their carving

80

depth. As the last step, a connection between the mesh and the triangulated QR code is formed
by using constrained Delaunay triangulation because a hole is created by removing triangles
that contained a projected QR code. Figure 1. shows the resulting embedded QR code of our
method on two different models.

(a) (b)

(c) (d)

Figure 1: Embedding a QR code onto a sphere with a bumpy surface and the Stanford bunny.
Our method can engrave QR codes onto highly curved areas whilst preserving readability.
The models from the images can be viewed on the following website https://arato.inf.
unideb.hu/papp.gyorgy/qr_embedding/.

Carving depth with ambient occlusion

The process of calculating the craving depth for the QR code is time-consuming, in both the
work of Peng et al. and Kikuchi et al. Since the embedded QR code is read from the direction
of the projection we propose to use a Screen Space Ambient Occlusion technique in order to
speed up this process by harnessing the computation capacity of the GPU. Our solution is
also an iterative process like the ones from Kikuchi’s and Peng’s work. However, our method
calculates the carving depth for each module, not for the whole QR code or small parts of
it. We use the Horizon-Base Ambient Occlusion to render the QR code. The viewpoint with
the direction is given by the central projection from the embedding process. However, in the
case of using parallel projection, its direction also can be used with our method. The resulting
image of HBAO is used to calculate the average shadow for each module. The carving depth
is increased for each module until its shadow is under a threshold value, similar to the one in
Kikuchi’s work. The HBAO technique only approximates real shadow. However, the different
carving depth of the modules correctly can be predicted with its result. Also, it can produce a
result in 5–10 seconds instead of minutes.

81

https://arato.inf.unideb.hu/papp.gyorgy/qr_embedding/
https://arato.inf.unideb.hu/papp.gyorgy/qr_embedding/

Conclusion

There are numerous ways to provide information for components or objects. One of them
is to encode the information into a QR code and then embed it into an item. In this paper, a
solution was proposed on how to engrave QR codes onto the surface of triangulated meshes.
Our method preserves the original triangulated mesh and only changes the area of the QR code
and its adjacent triangles. Also, larges size can be achieved for a given viewpoint by using
our solution than using Principal Component Analysis for projecting and embedding the QR
code. The rest of the mesh and the embedded QR code are connected with the help of the
Constrained Delauney triangulation method. Further, we propose to use the central projection
for embedding the QR code and avoid the appearance of deformation in cases of highly curved
areas.

Additionally, we propose to use a Screen Space Ambient Occlusion technique to speed up
the process of finding the carving depth for the modules of the QR code. The HBAO technique
was used in our solution to utilize the computation capacity of the GPU and find the carving
depth in seconds. The appearance of the ray-tracing capable GPUs can provide an excellent
future work opportunity in terms of implementing a faster carving depth search algorithm
with more accurately calculated shadows.

Acknowledgements

This work was supported by the construction EFOP-3.6.3-VEKOP-16-2017-00002. The project
was supported by the European Union, co-financed by the European Social Fund.

References

[1] Louis Bavoil, Miguel Sainz, and Rouslan Dimitrov. Image-space horizon-based ambient
occlusion. In ACM SIGGRAPH 2008 Talks, SIGGRAPH ’08, New York, NY, USA, 2008.
Association for Computing Machinery.

[2] Fei Chen, Yuxi Luo, Nektarios Georgios Tsoutsos, Michail Maniatakos, Khaled Shahin,
and Nikhil Gupta. Embedding tracking codes in additive manufactured parts for
product authentication. Advanced Engineering Materials, 21(4):1800495, 2019. doi:
10.1002/adem.201800495; 06.

[3] Ryosuke Kikuchi, Sora Yoshikawa, Pradeep Kumar Jayaraman, Jianmin Zheng, and
Takashi Maekawa. Embedding qr codes onto b-spline surfaces for 3d printing. Computer-
Aided Design, 102:215–223, 2018. ID: 271502.

[4] Dingzeyu Li, Avinash S. Nair, Shree K. Nayar, and Changxi Zheng. Aircode: Unobtrusive
physical tags for digital fabrication. In Proceedings of the 30th Annual ACM Symposium on
User Interface Software and Technology, UIST ’17, pages 449–460, New York, NY, USA, 2017.
ACM.

[5] Hao Peng, Lin Lu, Lin Liu, Andrei Sharf, and Baoquan Chen. Fabricating qr codes on 3d
objects using self-shadows. Computer-Aided Design, 114:91–100, 2019.

[6] Chao Wei, Zhe Sun, Yihe Huang, and Lin Li. Embedding anti-counterfeiting features in
metallic components via multiple material additive manufacturing. Additive Manufacturing,
24:1–12, 2018. ID: 306190.

82

Fog-enhanced Blockchain Simulation

Hamza Baniata

Abstract: Blockchain (BC) technology was proven as enhancement factor for security, decen-
tralization, and reliability, leading to be successfully implemented in crypto-currency industries.
However, it is not standardized yet, so it is still in the research phase for other applications. Fog
computing (FC) is one of the recently emerged paradigms that needs to be improved to serve
Internet of Things (IoT) environments of the future. To evaluate a proposed integration of Fog-
Blockchain protocol/method, a suitable simulation environment is needed for the validation
before the implementation. Such environment may preserve high cost and great efforts. Most
of the available simulation environments provide Fog simulation, or Blockchain simulation,
but not both. In this paper, we present the results of the first phase of our research, leading
to a Fog-Blockchain simulator, whose main goal is to ease the experimentation/validation of
Fog-blockchain protocols/methods. We propose that different consensus algorithms, different
placement options of the BC in the FC architecture, and different uses of the BC in the simulation
shall be implemented. We validate our results by applying a case study, showing the pattern
of average time consumption of Blocks validation in a single BC node.

Keywords: Fog Computing, Blockchain, Simulation.

Introduction
Fog Computing (FC) is a geographically distributed computing architecture, in which vari-

ous heterogeneous devices at the edge of network are ubiquitously connected, to collaboratively
provide elastic computation, communication and storage services [1]. Blockchain (BC) is a
distributed ledger technology in the form of a distributed transactional database, secured by
cryptography, and governed by a consensus mechanism [2], where participants that do not
fully trust each other agree on the content of the ledger by running a consensus algorithm [3].

Participants or nodes of a BC network are mostly divided into two groups: Miners and Non-
Miners [4]. Miners are the ones eligible to collect new valid transactions that are waiting to be
confirmed, combine them in one block, and distribute it to the network. That is, if the Block was
validated by two conditions, ability/wealthiness of all transactions generators to perform the
transactions, and a correct puzzle solution. The puzzle condition applies in most proof-based
consensus algorithms [5], such as the Proof of Work (PoW), Proof of Schedule (PoSch), and
Proof of Stack (PoS) algorithms. Different algorithms set different threshold difficulty of the
puzzle, according to the application used. For example, Bitcoin’s algorithm sets the difficulty
of block generation to wherein one block is generated every 10 min [6].

Generally speaking, a proof-based BC system should define the following steps: Transaction
Generation, Transaction Distribution, Transaction Validation, Transaction Pooling, Block Min-
ing, and Block Confirmation. ’A Verification process’ indicates the recognition of a transaction
generator by other network entities through the linkage with his/her public/private keys.

In this paper, we propose a simulator specifically designed for mimicking the deployment
of Proof-based BC in a FC architecture. The concepts of Validation, Verification, Confirmation,
Proof-based Consensus, and Mining, are all available in the current version of the simulator,
while the re-configuration of the fog properties will be available in the second phase of our
research. Meanwhile, analysis of the mimicry can be easily obtained.

The remainder of this paper is organized as follows. Section presents short state-of-the-art
review regarding some integration approaches of BC and FC. Section provides an overview of
our research work, and introduces the simulator components, code, and framework. Section
presents our validation of the code. Finally, Section concludes.

83

Related work
Cisco started its own virtual Fog Data Services platform early in 2019 [7], with at least

1.00 GHz computing power, 4-GB vRAM, and 23 GB storage. The main techniques to design
hardware platforms able to cope with IoT requirements, such as power consumption and
management, IO architecture, and security were surveyed in [8].

The trust in Blockchain is typically gained by the majority consensus of a piece of information
validity, and a user verify-ability [9]. However, the proposed architecture in [10] limits the
necessity of verification by all nodes of the network. That is, public keys and private keys
-online and offline versions- are only registered and verified by few previously-verified and
trusted neighbours instead of having to verify it by all network nodes.

Authors of [11] proposed a reputation system for fog nodes, using Blockchain Ethereum
smart contracts. The system suggests that IoT devices rate fog nodes according to specific
modifiable criteria. Accordingly, fog nodes obtain trustworthiness value that would indicate
how reliable they are. IoT devices’ credibility is also computed, according to specific contribu-
tions.

Our proposed Blockchain-Fog simulation environment

Figure 1: Workflow of our current BC simulator

Searching in research databases, we found
that a BC can be deployed in any layer
of the FC architecture (i.e. End-user
layer, Fog layer, Cloud layer). BC can
be deployed for one or more of the
following purposes: Data management,
Payment/Trading, Identity/Authentication
management, and Reputation management.
Consequently, a BC-FC simulation environ-
ment should allow users to choose: the
consensus algorithm they want to implement,
the FC layer wherein they need to deploy
the BC, and the purpose/protocol of the
implemented BC. Meanwhile, the processing
steps defining the BC, along with the Fog
properties, must be clear and configurable.
The simulation environment should also be
able to provide analysis and reports during,
and after the experiment, and a user-friendly
Graphical User Interface (GUI).

To accomplish our goals, we decided to
conduct our work in two phases: The first
phase includes implementing a BC simulation that satisfies the processing steps that define
a BC, except for the ’distribution step’. After experimenting/validating the BC simulation, we
survey all available research papers/projects that integrates BC in a FC environment. Such
survey may direct the focus of our research into major properties, recommendations, and
challenges of a BC-FC integration. In the second phase, we investigate BC and FC simulation
environments, which highlights the properties, services, abilities, and weaknesses of those
environments. We then compare our observations about the BC-FC integration approaches,
with available simulation environments, leading to set strong knowledge foundations to
serve in our second phase. Accordingly, we implement the ’Distribution step’ in a way
that satisfies BC-FC integration recommendations, and solves the challenges presented about

84

current simulation environments.
So far, we have finished the first phase, by implementing a BC, using Python programming

language, that satisfies all BC steps, except for the distribution step. Our code is provided
publicly at GetHub.com1. The simulation of the first phase was successfully used to validate
our proposed PF-BVM mechanism published in an international conference [12]. We also
conducted a comprehensive survey concerning BC-FC integration approaches, and submitted
it to an internationally recognized journal. Our observations and results will be publicly available
as soon as the survey is accepted for publication.

As presented in Figure 1, our implementation randomly generates numbers representing
the transactions (Txs). Transactions can also be generated by the user, as an input. Once a Tx
is generated (Step1), it gets checked whether it is in a list of the valid Txs (Step2). If the data
already exists in the list, an error message is printed on the screen, and the program moves to
the next randomly generated transaction. Otherwise, the program adds it to the list (Step3).
Once the number of Tx/B -or gas limit- is reached the block is mined (Step4), and added to the
chain (Step5).

Case Study

Figure 2: Comparison of average Block
validation time for BC is saved in RAM vs. in
Hard Disk

The evaluation experiment in this paper
aims to show the validity of our code, and
some of the features it provides.

Some BC simulation environments like
BlockSim [13], PeerSim [14], and iFogsim
[15], simulates the validation step with
a delay without actually performing the
validation, hence all transactions are consid-
ered valid. We conducted a comparison
experiment in which we compute the real
average time needed to validate a whole
block, for different gas limit values, while the
BC is held in the RAM of the computer, and
in the secondary storage unit of the computer.
The first code keeps the BC in the RAM, while
the second code keeps the BC on hard disk.
We performed the experiment using an Intel

i5-8265U CPU, backed up by 12 GB of DDR4 SDRAM, 45 GB vRAM, 500 GB SSD, Apache HTTP
Server 2.4.41, and a MySQL database on the hard disk. We tested three scenarios of gas limit,
100Tx/B, 1000Tx/B, and 10000Tx/B, where 10 blocks are validated, mined, and confirmed.
The results of our experiment is presented in Figure 2.

According to this experiment, we showed, using our simulation code, that more transactions
saved in the ValidList, and more Tx/B rate, lead to exponential increase of average block
validation time. We also showed how saving the BC on RAM decreases the time consumption
compared to the case when it is saved on the hard disk. However, the exponential pattern
remains in both cases despite the difference of range in the time consumption metric.

Conclusions and Future Work

In this paper we introduced our work on a Blockchain-Fog simulation environment, whose
main goal is to ease the experimentation and validation of new BC-FC integration protocols/

1https://github.com/HamzaBaniata/BlockChainValidation

85

https://github.com/HamzaBaniata/BlockChainValidation

methods. We divided our work on the simulation into two phases, the first includes the
implementation of a BC simulation on a single node, and surveying the state-of-the-art regard-
ing BC-FC integration systems. We validated our work in the first phase using a case study
that provided usable analysis of the average validation time of a block on a single node. The
second phase, which is our future work, includes developing a BC-FC simulation, that allows
users to define and configure the simulation regarding the role of the BC, the placement of the
BC in FC, and the deployed consensus algorithm.

References

[1] Shanhe Yi, Zijiang Hao, Zhengrui Qin, and Qun Li. Fog computing: Platform and
applications. In 2015 Third IEEE Workshop on Hot Topics in Web Systems and Technologies
(HotWeb), pages 73–78. IEEE, 2015.

[2] Roman Beck, Michel Avital, Matti Rossi, and Jason Bennett Thatcher. Blockchain
technology in business and information systems research, 2017.

[3] Carlos Faria. Blocksim: Blockchain simulator. 2018.

[4] Andreas M Antonopoulos. Mastering Bitcoin: Programming the open blockchain. " O’Reilly
Media, Inc.", 2017.

[5] Giang-Truong Nguyen and Kyungbaek Kim. A survey about consensus algorithms used
in blockchain. Journal of Information processing systems, 14(1), 2018.

[6] Yusuke Aoki, Kai Otsuki, Takeshi Kaneko, Ryohei Banno, and Kazuyuki Shudo. Simblock:
a blockchain network simulator. arXiv preprint arXiv:1901.09777, 2019.

[7] Cisco. Cisco fog data services. https://www.cisco.com/c/en/us/products/
cloud-systems-management/fog-data-services/index.html?dtid=
osscdc000283, 2019. [Online; accessed 09-November-2019].

[8] Maurizio Capra, Riccardo Peloso, Guido Masera, Massimo Ruo Roch, and Maurizio
Martina. Edge computing: A survey on the hardware requirements in the internet of
things world. Future Internet, 11(4):100, 2019.

[9] Steem. Steem an incentivized, blockchain-based, public content platform. https://
steem.io/SteemWhitePaper.pdf, 2017. [Online; accessed 21-November-2019].

[10] Louise Axon. Privacy-awareness in blockchain-based pki. Cdt technical paper series, 2015.

[11] Mazin Debe, Khaled Salah, Muhammad Habib Ur Rehman, and Davor Svetinovic. Iot
public fog nodes reputation system: A decentralized solution using ethereum blockchain.
IEEE Access, 7:178082–178093, 2019.

[12] Hamza Baniata and Attila Kertesz. Pf-bvm: A privacy-aware fog-enhanced blockchain
validation mechanism. In Proceedings of the 10th International Conference on Cloud Computing
and Services Science, volume 1, pages 430–439, 05 2020.

[13] Maher Alharby and Aad van Moorsel. Blocksim: A simulation framework for blockchain
systems. ACM SIGMETRICS Performance Evaluation Review, 46(3):135–138, 2019.

[14] Alberto Montresor and Márk Jelasity. Peersim: A scalable p2p simulator. In 2009 IEEE
Ninth International Conference on Peer-to-Peer Computing, pages 99–100. IEEE, 2009.

86

https://www.cisco.com/c/en/us/products/cloud-systems-management/fog-data-services/index.html?dtid=osscdc000283
https://www.cisco.com/c/en/us/products/cloud-systems-management/fog-data-services/index.html?dtid=osscdc000283
https://www.cisco.com/c/en/us/products/cloud-systems-management/fog-data-services/index.html?dtid=osscdc000283
https://steem.io/SteemWhitePaper.pdf
https://steem.io/SteemWhitePaper.pdf

[15] Harshit Gupta, Amir Vahid Dastjerdi, Soumya K Ghosh, and Rajkumar Buyya. ifogsim: A
toolkit for modeling and simulation of resource management techniques in the internet
of things, edge and fog computing environments. Software: Practice and Experience,
47(9):1275–1296, 2017.

87

Activity Recognition Model for Patients Data Stream using Adaptive
Random Forest and Deep Learning Techniques

Hayder K. Fatlawi, Attila Kiss

Abstract: Precise detection of the current activity status for chronic diseases patients could
play a significant role for protect their lives against sudden decline in health. Combining the
information form various data resources present a reasonable challenge.On the other hand,
stream classification techniques have a privilege of low computational time but they need
a feedback for adapting the classifier. This work proposes a model for providing efficient
automatic feedback for adaptive random forest classifier using deep learning classifying of
video stream from surveillance systems.

Keywords: Random Forest ;Deep Learning ; Data Stream ;Activity Recognition

Introduction

Recognition of human activity using machine learning presents important tool for avoiding
mortality or risky injuries as a result of the fall, especially for patients with chronic diseases and
the elderly [1] [2] [3]. Many of data resources can provide a real time stream data for patients
such as smart phone, smart watch, wearable sensors, and surveillance systems. Each one of
those resources has its own data features and combining the information form them present a
reasonable challenge. Although the low computational time of stream classification techniques
but they need a feedback for adapting the classifier.

In case of using stream mining with sensors data of smart devices, there is a necessity to
provide the feedback in an efficient way without depending on the patient. The recognition
of activity using the data of surveillance systems could provide a feedback for the quality of
the decision that made by stream mining classifier. Deep learning present an efficient technique
for classifying the video stream. Convolutions Neural Networks (CNN) is one of deep learning
techniques, it has a limitation which is handling only the spatial information in which video
frames that extracted from videos are considered as a static images [4]. Three-dimensional
convolutional neural networks with a linear classifier has a better performance in dealing with
video recognition tasks [5].

The field of human activity recognition has increasing research interest recently. In [6] a
multi-fused features system based on sequences of depth map using temporal motion data and
joints of human skeleton. Code vectors of those features was trained using hidden Markov
model(HMM), the experimental results on three datasets showed better performance of the
proposed system. Temporal patterns based algorithm was proposed by [7] to represent activities
for auto recognition. High accuracy results was obtained using the proposed algorithm on real
dataset.

Wearable sensor based human activity recognition system was proposed by [8] to identify
ballet movements for investigating a dancer’s pain. The research tried also to determine the
effect of location and number of sensors on classification accuracy. In [9] Multi hidden Markov
models method was proposed for activity segmentation and recognition of stream sensor data
without using sliding window methods. The researchers applied the proposed method on two
smart home datasets. Our model combines the strength of both adaptive random forest and
deep learning to generate a integrated model for recognize activity based on multi types of
stream data.

88

Methodology

Three types of data stream are utilized in the proposed model, the first two types i.e acceleration
data and vital signs are combined. The resulted data stream is considered an input for Adaptive
Random Forest (ARF) algorithm. If drift is detected, deep learning classification will used
based on the third type of data i.e surveillance system stream, and the result of this classification
is used as a feedback for the decision of ARF. Figure 1 illustrates the steps of the proposed
model.

Figure 1: The proposed Model for Real-Time Patients Monitoring

The combination of sensors data requires synchronizing the samples of the same time slice,
the size of stream sample is a user defined parameter. ARF used very fast decision tree (VFDT)
as a base classifier which is a variation from typical decision tree designed for adapting with
distribution changes. The ensemble of ARF contains a specific number from base classifiers
i.e VFDT which are created using random sub-sampling with replacement from data stream.
For detecting drift change ARF uses adaptive sliding window (ADWIN) which tracking the
average of bits in the stream and change the length of windows if a change in average value
happen.

Three-dimensional architecture for convolutional neural networks which proposed by [9]
is used for analysis the video stream. Many of preprocessing steps are applied for the video
frames starting from the moment of drift change detection and step backward for a specific
interval time. The architecture of CNN contains four convolution layers with 3 x 3 x 3 kernels,
two max-pooling layers, with two fully connected layers, and ending with one softmax output
layer that dedicate if the fall activity state is yes or no. This simple design aims to minimize
the response time, the result is sent as a feedback for ARF to modify its classifiers based on this
more reliable decision. Algorithm 1 describe all the steps of the proposed model.

Discussion and Expected Results

Real time response from the recognition system with low time latency is very important
for treatment process. Surveillance video system stream requires many of preprocessing steps

89

Algorithm 1 Algorithm of Real-Time Patients Monitoring

1: Result: Activity Class
2: initialization
3: S1 acceleration data stream , S2 vital signs stream, S3 surveillance systems video stream.
4: for each time t do
5: Read S1,S2.
6: Combine the two streams SC= S1 & S2
7: end for
8: for each SC in time t do
9: Apply Adaptive Random Forest on SC and get classification result CA.

10: if DiftDetection()=True then
11: Apply preprocessing on S3 in time t.
12: Training Deep learning network on S3 and get classification result CB.
13: if CA = CB then
14: Activity Class = CA
15: else
16: Reset Window size of Adaptive Random Forest
17: end if
18: else
19: Activity Class = CA
20: end if
21: end for

which delayed the response. So, the key in our proposed model is utilizing sensors data stream
which has a small size and requires few preprocessing operations, and trigger the deep learning
only if a change in this data will detected.

The fast decision of fall detection will be made by ARF which can be send to the responsible
for the patient, meanwhile CNN will confirm the decision to avoid false detection and this
confirmation will be used to adopt ARF. Based on fast response from ARF and high quality of
CNN, we expect high accuracy and fast performance from the proposed model.

Conclusions

Machine learning can be an effective tool to preserve the lives of patients using activity
recognition. The combination of adaptive random forest and convolutional neural networks
classification techniques can provide a more reliable system with the presence of multi-sources
of stream data. Expected high accuracy and fast performance from the proposed model were
considered based on a fast response from ARF and the high quality of deep learning.

Acknowledgment

The project was supported by the European Union, co-financed by the European Social Fund
(EFOP-3.6.3-VEKOP-16-2017-00002).

References

[1] Baños, Oresti and Damas, Miguel and Pomares, Héctor and Rojas, Ignacio. Activity
recognition based on a multi-sensor meta-classifier, International work-conference on artificial
neural networks,Springer,pp.208-215 2013.

[2] Chikhaoui, Belkacem and Ye, Bing and Mihailidis, Alex. Ensemble learning-based
algorithms for aggressive and agitated behavior recognition, Ubiquitous Computing and
Ambient Intelligence,Springer. pp. 9-20, 2016.

90

[3] Al-Fatlawi, Ali H and Fatlawi, Hayder K and Ling, Sai Ho. Recognition physical activities
with optimal number of wearable sensors using data mining algorithms and deep belief
network, 39th Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), IEEE, pp. 871-2874, 2017.

[4] Jalal, Ahmad and Kim, Yeon-Ho and Kim, Yong-Joong and Kamal, Shaharyar and Kim,
Daijin. Robust human activity recognition from depth video using spatiotemporal multi-
fused features, Pattern recognition, Elsevier, Volume 61, pp. 295-308, 2017.

[5] Liu, Ye and Nie, Liqiang and Liu, Li and Rosenblum, David S. From action to activity:
sensor-based activity recognition,Neurocomputing, Elsevier, Volume 181, pp. 108-115, 2016.

[6] Hendry, Danica and Chai, Kevin and Campbell, Amity and Hopper, Luke and O’Sullivan,
Peter and Straker, Leon, Development of a Human Activity Recognition System for Ballet
Tasks. Sports Medicine-Open,Springer, Volume 6,Issue 1, pp. 10, 2020.

[7] Chua, Sook-Ling and Foo, Lee Kien and Juboor, Saed Sa’deh Suleiman. Towards real-
time recognition of activities in smart homes, International Journal of Advanced Intelligence
Paradigms, Inderscience Publishers (IEL), Volume 15,Issue 2, pp. 146-164, 2020.

[8] Fan, Yin and Lu, Xiangju and Li, Dian and Liu, Yuanliu. Video-based emotion recognition
using CNN-RNN and C3D hybrid networks,Proceedings of the 18th ACM International
Conference on Multimodal Interaction, pp. 445-450, 2016.

[9] Tran, Du and Bourdev, Lubomir and Fergus, Rob and Torresani, Lorenzo and Paluri,
Manohar. Learning spatiotemporal features with 3d convolutional networks. Proceedings
of the IEEE international conference on computer vision, pp. 4489-4497, 2015.

91

On the Privacy Risks of Large-Scale Processing of Face Imprints

István Fábián and Gábor György Gulyás

Abstract: As technology advances, the number of applications relying on face recognition is
on the rise. While facial recognition technologies have many benefits, it’s important to use
them in a responsible manner in order to avoid privacy risks. In this paper we analyze the
privacy risks of the processing of face imprints generated by face recognition technologies. We
characterize the risks of re-identification attacks against facial imprint databases in multiple
scenarios regarding different attacker strength. Our findings show that even if a large number
of subjects are surveilled and the attacker can only inefficiently benefit from using the embed-
dings, the risk of re-identification is still concerning.

Keywords: facial recognition, privacy, risk, identification, face embedding, deep metrics

Introduction
With the trend of technology getting cheaper and the advance of smart technologies, security

and surveillance cameras were getting more and more wide spread recently. According to
recent news, Chongqing, a single Chinese city alone exhibit 2.58 million surveillance cameras
alone [5]. While this is not constrained to distant countries such as China, as London also has
627,707 of such cameras [5]. As the technology is cheap, these devices enable face recognition
(hereafter also referred to as FR) technologies at scale. However, we can be certain that using
FR widely will have a significant impact on the society as a whole, on the everyday life at
companies, and on personal lives as well.

In this paper we consider risks posed by FR. In particular, we look at the case of the large-
scale storing and processing of face imprints generated by FR technologies. This technology
uses the photo or a video frame containing a person’s face to extract an imprint from it. The
imprint, or how the literature calls it, the embedding, describes the face based on its unique
characteristics. Therefore it can be used for identification. When generated by deep learning
techniques, the embedding is usually hard for a human to interpret, as usually it is a vector of
real values. Length of the vector may differ, OpenCV [7] and DLIB [4] provide embeddings at
the length of 128, while others provide longer, e.g., 512 float values [2].

Identification (i.e. the recognition) works by comparing multiple embedding vectors to
each other and calculating similarity between them (e.g. via Euclidean distance). At the
end, pairwise similarities of the embeddings determine whether the two faces are of the same
person. It’s presumed that the lower the distance, the higher the similarity, and the similarity
of embeddings is proportional to the similarity of the faces. Usually if the distance is below a
certain threshold, the embeddings are considered to belong to the same person.

The system setup is the following: cameras observe some areas (for example at a company,
or in a public space) and extract facial embeddings of people passing by. Either the cameras
themselves are capable of doing the extraction, or they transfer their footage to a capable server
device that would do so. Depending on the use case (tracking, authentication, identification,
etc.), either embeddings are stored in a database to be used later, or are compared to other
embeddings that are already stored in the database.

The reason why storing this may be concerning is that embeddings are biometric data (they
are based on features of the human body that the person cannot change) and unlike other
biometric data, such as fingerprints, facial images can be easily captured without a person’s
knowledge and consent, and can be captured in large-scales [1]. Therefore, in this paper, we
look at risks related to the processing of embeddings, more specifically we analyze the privacy
risk of re-identification by using face imprints.

92

DatabaseSmart CCTVPerson

<embi/> <embi/>

Attacker
1 2 3 4

[age, sex, ethn.]

Social network

5

Figure 1: The considered attack when a malicious third party reconstructs demographic data
from embeddings and re-identifies the embedding by looking up potential data subjects on
social networking sites.

Attacker models
Unique pieces of information can be combined indirectly with other data sources in order

to put back the names over de-identified data (i.e. where all directly identifying attributes are
removed). We call such procedures re-identification attacks. Consider an example where a
company publishes a database with information about its employees, de-identified by remov-
ing explicitly identifying fields (names, email, etc.) and replacing them with unique random
IDs. While this database alone might be considered de-identified, an attacker may link records
from this company-related dataset by using the demographic data to the corresponding records
in a medical dataset.

In our work we consider re-identification attacks related to embeddings. There are several
ways how an attacker can be successful at re-identification by using face embeddings:

• By matching embeddings, e.g. the attacker has a photo, extracts an embedding and
looks for a match. As mentioned in the Introduction: if the distance between the two
embeddings is below a threshold then the embeddings belong to the same person with
some probability.

• If direct search of embeddings is not possible, the attacker could reconstruct the face from
the embedding in the database [6], and run a visual search in a face database (e.g. photos
on a social network).

• Assuming that embeddings may contain demographic data about the data subject, the
attacker can try reconstructing such data from the embedding itself (for example using a
machine learning model trained for this task) and looking that up in another database.
As reconstruction of faces is possible, this should be possible too, however, the accuracy
of such attacks are still questionable (we leave the exploration of this as future work).

In our work, we consider the third class of attacks. Latanya Sweeney showed in 2000 that
the zip code, sexuality and date of birth combined together provide a unique identifier for 87%
of the population based on US census data. [8]

Therefore, if an attacker accurately predicts such demographic data from embeddings, and
knows further pieces of background information such as place of work, she may learn the
identity of the anonymized person by looking him on social network sites (e.g. on LinkedIn).

Let us explain this attack as follows (see Figure 1). In the 1st step a camera takes the photo
of a person and extracts a face embedding, and in the 2nd step this embedding is stored in a
database. In the 3rd step the attacker gets the database of embeddings, where she predicts the
related demographic data (age, sexuality, ethnicity) in the 4th step. The final 5th step is when
the attacker uses this demographic data to re-identify the person on a social network site.

Risk level estimation
We demonstrate the previously discussed attack. We consider different scenarios, based

on the number of people in the database and the accuracy of the algorithm that’s trying to
predict demographic data from the embeddings. To determine the feasibility and threat level

93

of the attack, we ran simulations on the UCI Machine Learning Repository’s Adult Dataset [3].
This dataset contains demographic information (including age, sex and race) for more than
30,000 records of people. Furthermore, these records are not of individuals, but of types of
individuals, where the "finalweight" column describes the number of people represented by
the given record. Our aim with the simulations is to examine what level of re-identification is
theoretically possible for a database of 10, 50, 100 and 300 people randomly sampled from [3],
if the accuracy for predicting all age, race and sex vary (60%, 75% and 90%). We assumed a
machine learning model that can predict age in 10 year intervals.

As per our attacker model, the database sizes were chosen to be reasonable assumptions
for the number of employees of a small or medium sized company. To construct the smaller
original databases of size 10, 50, 100 and 300 for the simulation, we randomly sampled the
required number of entries from [3] using the values in the ‘fnlwgt‘ column as weights, which
indicate the number of people believed to be represented by a given entry. After sampling,
according to the prediction accuracy percentage (90%, 75%, or 60%) the corresponding number
of rows were left untouched, while the remaining rows’ age attributes were randomly permuted
to simulate the inaccurate predictions. This random permutation was then repeated with the
same prediction accuracy percentage for the other two attributes, too (sex and ethnicity). This
way we ended up with three predicted databases for each smaller original database, where all
three attributes were predicted with either 90%, 75%, or 60% accuracy. As the last step, for each
database we counted what percentage of data subjects were correctly predicted to fall in an
equivalence class of size 1, 2-5, 6-10, 11-20 and 20+. We then repeated this procedure 100 times
and averaged out the results.

Figures 2a-d show our findings. We can observe that there are many records in unique or
small equivalence classes both in smaller and larger databases, which pose high privacy risks.
The attacker is the most successful at re-identification in the case of the database of 10 with
the highest 90% prediction accuracy, when 50.1% of people fall in a unique equivalence class,
and all the others fall in an equivalence class of size 2 to 5. If the accuracy is decreased to 60%,
still 27.7% falls in a unique equivalence class, and 33.9% falls in an equivalence class of size
2 to 5 (see Figure 2a). Regarding the largest database of 300, 3.75% of people are in a unique
equivalence class, and 11.79% are in an equivalence class of size 2 to 5. Even in the worst
case scenario for the attacker, which is 60% accuracy for a database of 300, the rate of people
in unique equivalence classes doesn’t fall below 1.38%, and nor does the rate of people in an
equivalence class of size 2 to 5 fall below 4.64% (see Figure 2d). Thus, it’s worth noting that
while a decrease in accuracy results in a decrease in re-identification probability, risks are not
diminished drastically. As a result, due to the privacy risk presented, the actual achievable
prediction accuracy must be examined in future work.

In summary, as expected, the smaller the database size, the higher the re-identification risk
is, because smaller sized databases have a higher chance of being reconstructed in such a way
that people are correctly mapped to an equivalence class of size 1 to 5. Indeed, the higher the
prediction accuracy, the higher the re-identification risk is, because the higher percentage of
people are predicted to be in the correct equivalence class.

Conclusion
In this paper we have presented the potential privacy risks in relation to the processing

of face embeddings. We have discussed why face embeddings must be considered sensitive
biometric data and we looked at various attacker models that could pose a threat to data
subjects’ privacy via re-identification.

In particular, we analyzed the risks of re-identification by reverse-engineering demographic
data (age, sexuality, ethnicity) from embeddings stored in a database. We found that the smaller
the database and the higher the accuracy of prediction, the higher the re-identification risks are.

94

Original 90% 75% 60%
Prediction accuracy

0

20

40

60

80

100
Ra

tio
 o

f d
at

a
su

bj
ec

ts
 (%

) EC sizes
1
2-5

6-10
11-20

20+

Original 90% 75% 60%
Prediction accuracy

0

20

40

60

80

100

Ra
tio

 o
f d

at
a

su
bj

ec
ts

 (%
) EC sizes

1
2-5

6-10
11-20

20+

Original 90% 75% 60%
Prediction accuracy

0

20

40

60

80

100

Ra
tio

 o
f d

at
a

su
bj

ec
ts

 (%
) EC sizes

1
2-5

6-10
11-20

20+

Original 90% 75% 60%
Prediction accuracy

0

20

40

60

80

100

Ra
tio

 o
f d

at
a

su
bj

ec
ts

 (%
) EC sizes

1
2-5

6-10
11-20

20+

(a) D = 10 (b) D = 50 (c) D = 100 (d) D = 300

Figure 2: The ratio of equivalence classes (EC) in the predicted database (D) for various
database sizes and prediction accuracies.

In the case of a 10 person database and 90% accuracy, 50.1% of people belonged to a unique
equivalence class, while this number decreased to 27.7% at 60% prediction accuracy. The risks
are also not negligible even for larger databases, because for a database of 300 we showed
that at 90% accuracy 3.75% of people are in a unique equivalence class, and 11.79% are in an
equivalence class of size 2 to 5.

In the future, we aim to train a machine learning model to find out the actual achievable
prediction levels for these demographic data. We are also working on ways to modify the
embeddings in such a way to make these predictions harder, without compromising the usability
of the embeddings.

Acknowledgments
The research has been supported by the European Union, co-financed by the European Social
Fund (EFOP-3.6.2-16-2017-00013, Thematic Fundamental Research Collaborations Grounding
Innovation in Informatics and Infocommunications). Project no. FIEK_16-1-2016-0007 has
been implemented with the support provided from the National Research, Development and
Innovation Fund of Hungary, financed under the Centre for Higher Education and Industrial
Cooperation - Research infrastructure development (FIEK_16) funding scheme.

Icons made by Pixel perfect, fjstudio, Freepik, Pause08, surang from www.flaticon.com.

References

[1] Daniel Le Métayer Inria Claude Castelluccia. Impact analysis of facial recognition:
Towards a rigorous methodology, 2020.

[2] Jiankang Deng, Jia Guo, Zhou Yuxiang, Jinke Yu, Irene Kotsia, and Stefanos Zafeiriou.
Retinaface: Single-stage dense face localisation in the wild. In arxiv, 2019.

[3] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition, 2015.

[5] Matthew Keegan. Big brother is watching: Chinese city with 2.6m cameras is world’s most
heavily surveilled, 2019.

[6] Guangcan Mai, Kai Cao, Pong C. Yuen, and Anil K. Jain. On the reconstruction of face
images from deep face templates, May 2019.

[7] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding
for face recognition and clustering. 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Jun 2015.

[8] Latanya Sweeney. Simple demographics often identify people uniquely. 2000.

95

Towards Version Controlling in RefactorErl

Jenifer Tabita Ciuciu-Kiss, István Bozó and Melinda Tóth

Abstract: Static source code analysers are operating on an intermediate representation of
the source code that is usually a tree or a graph. Those representations need to be updated
according to the different versions of the source code. However, the developers might be
interested in the changes or might need information about previous versions, therefore, keeping
different versions of the source code analysed by the tools are required. RefactorErl is an open-
source static analysis and transformation tool for Erlang that uses a graph representation to
store and manipulate the source code. The aim of our research was to create an extension of
the RefactorErl’s Semantic Program Graph that is able to store different versions of the source
code in a single graph. The new method resulted in 30% memory footprint decrease compared
to the available workaround solutions.

Keywords: Erlang, RefactorErl, graph version control, optimisation

Introduction

Static source code analyser tools are heavily used in software development and maintenance
processes. RefactorErl [5, 3] is an open-source static source code analyzer and transformer tool
for Erlang [2]. During the initial analysis, the tool builds a Semantic Program Graph (SPG) [4].
In order to make the source code analysis result available for further use, we need to save the
graph. The SPG is stored in a database. If the source code is changed, the tool updates the
graph, so in the new graph, only the new information is available. Any kind of backups about
different versions are really expensive. This is the reason why we need to save the backups in
a much more effective way. An adequate solution to this problem is to save the differences in
the same graph. In this way, we do not need to make a whole graph for every small change.
This solution leads to an average 30% of memory save, but it always depends on the analyzed
source code.

The SPG is a three-layered rooted, directed, labelled graph structure that contains the lexical,
syntactic and semantic information about the source code. The different kinds of data are stored
in the nodes of the graph that are linked through tagged edges. These edges contain structural
information about the nodes. The graph has a specified structure. It starts with a root node,
which is followed by a node containing the information about the file (the name, absolute path,
etc.). They are linked with an edge tagged with the file. The file node is linked to its forms: the
function definitions and attributes. The function definition forms are linked to its clauses, and
so on. In addition, there are module and function semantic nodes to represent the semantic
information as well. Based on the structure of the graph we were able to define an algorithm
to find the differences between two versions of the source code by traversing the representing
syntax trees in parallel.

In Section 2 we demonstrate this algorithm and present the graph storing two versions of
the source code. In Section 3 we present some related work. Finally, Section 4 concludes the
paper.

Detecting and storing the source code change

The algorithm gets two SPG subgraphs and it does a breadth-first search in parallel on the
two subgraphs to find the differences between them. When a difference is found we save it and
separate the deletion and the insertions.Then we go through on the list of found differences.

96

We might found a similar structure in the graph, where the attribute values or the types
of the nodes are different. These cases considered as an update in the source code. When
we found a node that does not have a version in the other graph with the different value we
consider that is was either a deletion or insertion depending on where was it found: in the old
or the new graph. So we insert the updated part of the graph first (as we will describe later in
this section), and we delete these updates from the saved differences. After this, we know it for
sure that the left part is an insertion if it appears only in the new graph and it is a deletion if it
can be found only in the old graph. Since we saved them separately, the only thing we do now
is to insert them using the algorithms mentioned below.

After finding and identifying the different types of changes we need to represent them in
the SPG. The basic idea is that we introduce two different types of tags for the edges. Updates,
deletions and insertions are handled in a similar way. Thanks to RefactorErl, we can easily and
efficiently insert new nodes and edges. In the following, we will demonstrate the algorithm for
each case.

Figure 1. presents two simple Erlang functions and Figure 3. shows the corresponding
graph representation. Although the latter figure shows only the syntactic information, it is
already quite big, nonetheless, the analyses are fast.

foo(0) -> zero.
op(A, B) -> A * B.

Figure 1: Example Erlang function

Update

We talk about an update when we have had something in a version, and we changed
something in it, without inserting a new part or deleting a whole part of the source code.

Let us consider Figure 2. as a modified version of our original example. We can see that
we have a small update between Figure 1. and Figure 2., which is the change of the symbol
from ∗ to + in the body. In this specific case, we are going to find that difference. We insert
the whole subgraph under the found difference with a versioned edge (Figure 3.). An edged is
versioned when it has the same name as before except it has a v at the beginning of its name.
In the resulted graph under the difference node, we can find the content of both versions in the
different subgraphs.

op(A, B) -> A + B.
bar(1) -> one.

Figure 2: Modified source code

In this way, we can easily find the versioned part in the graph and we can keep all the
previous features of the tool. An obvious question may arise, whether it is possible to store
more than two versions in this way. Yes, it is possible, but we need to make it customisable by
the users.

Deletion

A deletion is when we have had something in the source code in a previous version, and we
deleted it in a version after that.

The handling of this difference is very similar to the algorithm from the previous subsection.
Let us consider the modified example in Figure 2. again. We can see that the first function

97

Figure 3: The resulted SPG

(foo(0) -> zero.) has been deleted. To handle this we insert the deleted subgraph under
its parent node (the original function node) with a versioned edge.

Insertion

An insertion is, when we insert a totally new part in the source code, what did not exist in
the previous version.

As an obvious example we can insert bar(1) -> one. as a new function into our module
(Figure 2.). For that, we insert the difference in the same way but for the tag of the edge, we
insert an n at the beginning instead of the v. When we do that, we keep the not versioned edge
as well, because it does not bother us and it is needed to have a syntactically correct graph.
Now we can easily find the insertions since it had a different concept than the deletions and
updates.

Related work

In computer science, a finger tree is a purely functional data structure that can be used
to implement other functional data structures. A finger tree gives amortized constant time
access to the "fingers" (leaves) of the tree, which is where data is stored, and concatenation and
splitting logarithmic time in the size of the smaller piece. It also stores in each internal node
the result of applying some associative operation to its descendants. This "summary" data
stored in the internal nodes can be used to provide the functionality of data structures other
than trees [6]. The SPG (Semantic Program Graph) structure does not have the "summary" data
property, thus the finger tree change detection mechanism cannot be adopted easily for our use
case.

A component of software configuration management, version control, is the management of
changes to documents, computer programs, large web sites, and other collections of information.

98

Changes are usually identified by a number or letter code, termed the "revision". For example,
an initial set of files is "revision 1". Today, the most capable (as well as complex) revision control
systems are those used in software development, where a team of people may concurrently
make changes to the same files [1]. In RefactorErl the version control is very important because
the analyzed graphs are huge. We would like to extend our algorithm to handle multiple
revisions.

Conclusion

The proof of concept implementation of the algorithm is integrated within the RefactorErl
environment. In general, it has an overhead on the run-time, but it has a smaller memory
footprint. The previous graphs for previous versions do not need to be saved, because the
annotated new graph is storing all the required information about the different versions. The
algorithm can be optimized for different resources and different projects. We are investigating
the possible usages of the versioned graph now.

Without this algorithm, the version control could be done with another software like git but
it is not as efficient and does not assure any features that RefactorErl does. Analysis of different
versions of the code with RefactorErl by storing the whole graph for all states is also possible,
but it is slow, and takes a lot of memory.

Acknowledgements

The research has been supported by the European Union, co-financed by the European
Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002), and by the project no. ED_18-1-2019-0030
(Application-specific highly reliable IT solutions) has been implemented with the support pro-
vided by the National Research, Development and Innovation Fund of Hungary, financed
under the Thematic Excellence Programme funding scheme.

References

[1] Eric Sink: Version Control by Example (1st. ed.). PYOW Sports Marketing. 2011.

[2] Joe Armstrong: Programming Erlang. The Pragmatic Bookshelf. 546 pages. 2013.

[3] RefactorErl: Static source code analyser and refactoring tool for Erlang. https://plc.
inf.elte.hu/erlang

[4] Zoltán Horváth and László Lövei and Tamás Kozsik and Róbert Kitlei and Anikó
Nagyné Víg and Tamás Nagy and Melinda Tóth and Roland Király: Modeling Semantic
Knowledge in Erlang for Refactoring. Proceedings of the International Conference on
Knowledge Engineering, Principles and Techniques, KEPT 2009, Cluj-Napoca, Romania,
Studia Universitatis Babes-Bolyai, Series Informatica, vol. 54(2009), Sp. Issue

[5] Bozó, I. and Horpácsi, D. and Horváth, Z. and Kitlei, R. and Köszegi, J. and Tejfel, M. and
Tóth, M: RefactorErl - Source Code Analysis and Refactoring in Erlang, In Proceedings of
the 12th Symposium on Programming Languages and Software Tools, ISBN 978-9949-23-
178-2, pages 138–148, Tallin, Estonia, October 2011

[6] Ralf Hinze and Ross Paterson: Finger Trees: A Simple General-purpose Data Structure,
Journal of Functional Programming 16(2):197–217, 2006.

99

https://plc.inf.elte.hu/erlang
https://plc.inf.elte.hu/erlang

Using the Fisher Vector Approach for Cold Identification

José Vicente Egas-López and Gábor Gosztolya

Abstract: In this paper, we present a computational paralinguistic method for assessing whether
a person has an upper respiratory tract infection (i.e. cold) by using their speech. Having a
system that can accurately assess a cold can be helpful in the sense of being able to predict its
propagation. For this purpose, we utilize Mel-frequency cepstral coefficients (MFCC) as audio-
signal representations, extracted from the utterances, which allowed us fitting a generative
Gaussian Mixture Model (GMM) that serves to produce an encoding based on the Fisher Vector
(FV) approach. The classification is done by a linear kernel SVM (Support Vector Machines),
which jointly learns from the training and development set via a Stratified Group K-fold Cross
Validation. Owing to the high imbalance of classes on the training dataset, we opt for under-
sampling the majority class, that is, reducing the number of samples to those of the minority
class. We find that applying Power Normalization (PN) and Principal Component Analysis
(PCA) on the Fisher vector features is an effective strategy as a score of 67.81% of Unweighted
Average Recall (UAR) on the test set is achieved.

Keywords: computational paralinguistics, speech processing, machine learning, fisher vector

Introduction
Upper respiratory tract infection (URTI) is an infectious process for any of the components

of the upper airway; e.g., the common cold, a sinus infection, amongst others. Being able to
automatically assess whether a subject has a cold can be relevant when one wants, for example,
to prevent the spread of a cold by predicting its patterns of propagation. In this study, we make
use of the Upper Respiratory Tract Infection Corpus (URTIC) [4] that contains 630 recordings,
which will be described in Section 2. Thus, the task requires healthy and cold speech to be
classified from the utterances.

Frame-level features (Mel-frequency cepstral coefficients), extracted from the utterances, are
utilized to fit a generative GMM (Gaussian Mixture Model). Next, the computation of low-level
patch descriptors together with their deviations from the GMM gives us an encoding (features)
called Fisher Vector. FV features are learned using a SVM classifier, where the prediction is 1
(cold) or 0 (healthy). In order to search for the best complexity value (C) of the SVM, Stratified
Group k-fold Cross Validation (CV) was applied on the training and development sets. UAR
scoring was used to measure the performance of the model. To the best of our knowledge, this
is the first study that focuses on making use of a FV representation in order to detect a cold.

Data
The entire dataset consists of 382 male speakers, 248 female speakers, with a mean age of

29.5 years; and a sampling rate of 16kHz. The following tasks (the number varied for each
speaker) were performed by the speakers: reading short stories, producing voice commands,
and narrating spontaneous speech. The recordings were split into 28652 chunks of 3 to 10
seconds in length. Specifically, the division of the chunks was carried out in a speaker-indepen-
dent fashion, each partition (i.e. train, development, and test) having 210 speakers. The
training and development sets are both comprised by 37 subjects having a cold and 173 subjects
not having a cold. See more details in [4].

100

Methodology
Feature extraction

The features we employed were the well-known MFCCs. With a dimension of 13, plus
their first and second order derivatives, with frame-length and frame-shift of 25 ms and 10 ms,
respectively.

Fisher Vector (FV)

The FV approach is an image representation that pools local image descriptors [1]. It was
originally intended for image classification but here we exploit its ability to generate a complete
representation of the samples which are later characterized by their deviation from a generative
GMM. The samples can be thought as of local patch descriptors of an image; in our case, they
are the frame-level features of an audio signal. FV is an improved version of the general case
called the Fisher Kernel (FK) [5], which measures the similarity of two objects from a parametric
generative model of the data. FV basically assigns a local descriptor to elements in a visual
dictionary, got using generative GMM. This approach stores visual word occurrences and takes
into account the difference between dictionary elements and pooled local features, and stores
their statistics as well.

Let X = {Xt, t = 1 . . . T} be the set of D-dimensional local SIFT descriptors extracted from
an image and let us assume that the samples are independent. Then we have the following
formula:

GX
λ =

T∑
t=1

Lλ 5λ log υλ(Xt), (1)

where λ = [λ1, . . . , λM] ′ ∈ RM stands for the parameter vector υλ [1]. The assumption
of independence permits the FV to become a sum of normalized gradients statistics Lλ 5λ

log υλ(xt) calculated for each SIFT descriptor:

Xt → ϕFK(Xt) = Lλ 5λ log υλ(Xt), (2)

which describes an operation that is a higher dimensional space embedding of the local descrip-
tors Xt.

The FV representation, regardless of the number of local features (i.e. SIFT), or in our case,
frame-level features (MFCCs), extracts a fixed-sized feature representation from each image (i.e.
from each MFCC representation). Here, we use FV features to encode MFCC features extracted
from audio-signals of HC and PD subjects. FV allows us to give a complete representation of
the sample set by encoding the count of occurrences and higher-order statistics associated with
its distribution.

Classification

SVM is the classification algorithm that was used to assess the recordings (this algorithm
can achieve a good performance when used with FV [1, 6]), where the prediction is 1 (cold) or
0 (healthy). In order to search for the best complexity value (C) of the SVM, Stratified Group
k-fold Cross Validation (CV) was applied over the training and development sets. This type of
CV allowed us avoiding the same speaker from being present in more than one specific fold,
while simultaneously preserving the percentage of samples for each class within each fold.
UAR is the proper way to measure the performance of our model, principally because it is
commonly used when there is the need to handle class imbalance situations. We employed the
libSVM implementation [8] with a linear kernel and, as in our previous studies [9, 10, 11], the
C complexity parameter was set in the range 10−5, . . ., 101.

101

Table 1: UAR scores obtained when SVM classifies the data using Fisher vectors.

GMM Performance (%)
Features size Cross-Val Test
ComParE (baseline) - 64.54% 68.16%
Fisher Vectors 64 63.98% 66.12%
Fisher Vectors + PCA 64 64.72% 67.65%
Fisher Vectors + PN + PCA 64 64.92% 67.81%
ComParE + Fisher Vectors (+PN+PCA) - 63.01% 70.17%

Experiments and results

The datasets utilized have a high class imbalance, this can diminish the performance of the
SVM classifier. Namely, the training dataset consists of 9505 utterances, where 8535 (89.8%)
are labeled as healthy and the rest, 970 (10.2%), are labeled as cold. To overcome this, we used
a random undersampling technique, which reduces the number of samples associated to all
classes to that of the minority class, i.e. cold. We relied on imbalanced-learn [7] which is a
Python package offering several resampling methods used in datasets that have a between-
class imbalance. Due to the large number of dimensions, before fitting the SVM classifier,
the features (Fisher vectors) were normalized (l2) and later we reduced their dimensions via
Principal Component Analysis [2] with a variance of 0.95. Chatfield et al. demonstrate that
applying PCA before classification enhances the discrimination task with FV and reduces the
memory consumption as well [13]. The Power Normalization (PN) was found to be helpful for
FVs representations [1]. Here, we applied PN before normalizing the features.

The GMM used in our experiments to compute the FVs was set to operate with varying
number of components: Gc ranged from 2 to 128. Hence, the construction of the FV representa-
tions was made with the help of a Python-wrapped version of the VLFeat library [12]. Table 1
shows the results obtained when using Fisher vectors with their complete number of features as
a function of their reduced number of features. As can be seen, when the classifier learned the
raw Fisher features it achieved a UAR score of 63.98% within the Stratified Group k-fold Cross
Validation (CV) using a complexity value of 0.1. On the test set the performance was higher
(64.72%). PCA proved to be useful in our study by providing the higher UAR scores of 66.12%
and 64.65% in CV and test, correspondingly. On the other hand, we encountered that applying
PN was effective as the UAR score increased to 67.81%. Next, we used the ComParE [4] feature
set combined with the (power-normalized and reduced) Fisher vectors, that is, we averaged
their posteriors. Results indicate an increase to 70.17% of UAR score on test set.

Conclusions
Here, we presented the Fisher Vector approach as a method that was able to achieve reason-

able results on cold speech assessment. We found that, in contrast to studies done by other
authors using the same dataset [4, 14, 15], our pipeline is much simpler and the performance is
good and competitive. With the SVM classifier we managed to achieve a UAR score of 66.12%
on the test set. The scores were later improved by applying PN and a dimension reduction on
the Fisher vector features, i.e., PCA with a variance of 0.95. PN and dimensionality reduction
could give a better UAR score (67.81%) on test set; such results are higher compared to those
got using the Bag-of-Audio-Words approach (67.3%) described in [4]. We therefore say that
PCA with the SVM (linear kernel) allowed us to perform a better classification of the actual
data while taking care of the memory consumption.

References

[1] Sánchez, J., Perronnin, F., Mensink, T., and Verbeek, J. (2013). Image classification with
the fisher vector: Theory and practice. International journal of Computer Vision, 105(3),

102

222-245.

[2] Wold, S., Esbensen, K., and Geladi, P. (1987). Principal component analysis. Chemometrics
& intelligent laboratory systems, 2(1-3), 37-52.

[3] Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J., and Scholkopf, B. (1998). Support vector
machines. IEEE Intelligent Systems and their applications, 13(4), 18-28.

[4] Schuller, B., Steidl, S., Batliner, A., Bergelson, E., Krajewski, J., Janott, C., ... & Warlaumont,
A. S. (2017). The interspeech 2017 computational paralinguistics challenge: Addressee,
cold & snoring. In Computational Paralinguistics Challenge (ComParE), Interspeech 2017
(pp. 3442-3446).

[5] T. S. Jaakkola and D. Haussler, Exploiting generative models in discriminative classifiers,
in Proceedings of NIPS, Denver, CO,USA, 1998, pp. 487-493.

[6] D. C. Smith and K. A. Kornelson, A comparison of Fisher vectorsand Gaussian
supervectors for document versus non-document image classification, in Applications of
Digital Image Processing XXXVI, vol. 8856.International Society for Optics and Photonics,
2013, p. 88560N.

[7] Lemaitre, G., Nogueira, F., & Aridas, C. K. (2017). Imbalanced-learn: A python toolbox
to tackle the curse of imbalanced datasets in machine learning. The Journal of Machine
Learning Research, 18(1), 559-563.

[8] C.C. Chang and C.J. Lin, LIBSVM: A library for supportvector machines, ACM
Transactions on Intelligent Systems and Technology, vol. 2, pp. 1-27, 2011

[9] López, E., Vicente, J., Orozco-Arroyave, J. R., & Gosztolya, G. (2019). Assessing
Parkinson’s Disease From Speech Using Fisher Vectors.

[10] G. Gosztolya, Conflict intensity estimation from speech using greedy forward-backward
feature selection, in Proceedings of Interspeech, Dresden, Germany, Sep 2015, pp. 1339-
1343.

[11] G. Gosztolya, T. Grósz, R. Busa-Fekete, and L. Tóth, Determining native language
and deception using phonetic features and classifier combination, in Proceedings of
Interspeech, San Francisco, CA, USA, Sep 2016, pp. 2418-2422.

[12] A. Vedaldi and B. Fulkerson, VLFeat: An open and portable library of computer vision
algorithms, in Proceedings of the 18th ACM international conference on Multimedia.
ACM, 2010, pp.1469-1472.

[13] Chatfield, K., Lempitsky, V. S., Vedaldi, A., & Zisserman, A. (2011, September). The devil
is in the details: an evaluation of recent feature encoding methods. In BMVC (Vol. 2, No.
4, p. 8).

[14] Huckvale, M. A., & Beke, A. (2017). It sounds like you have a cold! Testing voice features
for the Interspeech 2017 Computational Paralinguistics Cold Challenge. International
Speech Communication Association (ISCA).

[15] Cai, D., Ni, Z., Liu, W., Cai, W., Li, G., Li, M., ... & Cai, W. (2017). End-to-End Deep
Learning Framework for Speech Paralinguistics Detection Based on Perception Aware
Spectrum. In INTERSPEECH (pp. 3452-3456).

103

A Novel JWT Revocation Algorithm

László Viktor Jánoky, János Levendevoszky and Péter Ekler

Abstract: JSON Web Tokens (JWT)[1] provide a scalable, distributed way of user access control
for modern web-based systems. The main advantage of the scheme, is that the tokens are valid
by themselves - through the use of digital signing - also imply its greatest weakness. Once
issued, there is no trivial way to revoke a JWT token. In our work, we present a novel approach
for this revocation problem, overcoming some of the problems of currently used solutions.

Keywords: JWT, JSON Web Tokens, User access control

Introduction

In our previous paper in the field, titled as An analysis on the revoking mechanisms for
JSON Web Tokens[2], we examined the currently used solutions of token revocation and laid
out the mathematical foundations and introdued a novel approach. In this paper, we further
elaborate on the new solution and provide general guidelines how to use it in a real-world
application.

This paper is structured as follows: (I) in this first section, we quickly recap the currently
used revocation schemes and their main characteristics, (II) in the second section, in which
we provide a detailed description of our new approach and give some recommendations for
its real-world use, (III) the third section deals with the evaluation of performance in different
cases, comparing our solution with existing one, and finally (IV) the fourth and final section
wraps the discussion by providing an overview of the work done.

A JWT token used to determine access for a protected resource is called an access token. The
token is usually digitally signed, or otherwise cryptographically secured [3], in both cases we
simply refer to the signing key or the public key as secret. In most scenarios, the access tokens
are issued along with a second, more traditional; server-side token called a refresh token. This
second token makes it possible for the client to acquire a new access token in the future.

When a client logs out from the system, the refresh token is destroyed, and existing JWT
tokens are revoked. There are three main methods of this revocation that are currently used[4].

Short-lived tokens: Each generated JWT token has a finite, usually very short lifespan. In
this scheme, a token is never directly revoked, but the means of acquiring new tokens are made
unavailable, hence when the short lifespan runs out, no further access is possible to the system.

Blacklist: In case of a blacklist, revoked tokens are placed in a shared location (typically a
database), where each consuming service can check for invalidated tokens. The big downside
of this approach is that it requires data access for each request served - even for ones with valid
tokens thus, the validity of the token can no longer be determined in itself.

Secret change: A rarely used solution for invalidation, is the changing of the cryptographic
secret used to issue and check the validity of tokens. Changing this secret leads to all tokens
being revoked, but still logged in users can apply for new ones using their refresh token.

The revocation algorithm

Our novel revocation strategy is based on the extension of the third option, which is changing
the secret. In this section, we give a quick overview of this approach.

104

Basic principle

When a JWT secret is changed, all the tokens issued with it become invalid. In practice, this
means that if a user logs out, every other user in the system must request a new token.

This effect can be controlled by arranging the users in groups (for example, by hashing their
usernames) and assigning a different secret for each group. If a token is revoked in a group,
only tokens signed with the group secret will be revoked, instead of all the tokens.

As log-outs are typically infrequent events, one can use statistical methods (such as described
in our previous paper), to calculate an optional group size, which minimizes the number of
unnecessary revocations, while maintaining a manageable number of secrets.

Propagating secret change events

With this method, revocation is instantaneous, and the basic premise of JWT tokens remain
intact, that the tokens are valid by themselves.

This solution requires the existence of a channel for propagating the information about the
change of the JWT secret. The channel must be available between the token issuer and each
service consuming the tokens.

For cases when such a channel is unavailable, we have come up with an alternate solution.
In this approach the JWT Secret is generated as a rolling code by a pseudo random number
generator[6], each service keeping track of the currently active value. When a token is revoked
and the group’s secret is changed, the new tokens are issued with the new secret. When a
service, still using the old code, receives a token signed with the new secret (a next value from
the rolling code), it will also update the secret accordingly.

This method provides eventual consistency for the system in the long run, without the
need for a dedicated channel for JWT secret change event prorogation. As a trade-off, the
instantaneous revocation is lost, a token is only revoked after the code is rolled (another token,
using the new secret is received).

Cost model of running the algorithm

In our previous work on the topic, we prove that any system can be parametrized in a way,
for our solution to be better in terms of performance than the previous solutions.

In this paper, we further examine the performance and the costs of our solution and provide
a mathematical model to aid in system design and capacity planning.

To accurately model the performance impact of different solutions, a common framework
must be set. As the basis of this framework, we determined a set of basic operations, which
make up each approach. The costs of these operations can be parametrized, which can be based
on estimations or measurements. The following main costs are identified:

• Ci (Issue cost): the cost of issuing a new token.

• Cv (Validation cost): the cost of checking the validity of a token.

• Cc (Communication cost): the cost of system modules communicating with each other.

• Cd (Data access cost): the cost of accessing data stored in a persistent storage.

In order to predict the performance of a system, it is not enough to know the cost of these
atomic operations, one must also calculate how many times they will occur. The performance
cost of a system comes from the clients consuming its service. By characterizing the client
sessions, one can come up with predictions for their impact on the system[5]. In order to
calculate the former, the following properties must be known (by measurements or estimation).

105

• N : the number of clients in the system.

• fi(t): probability distribution of client session lengths.

• r: average number of protected resource access / client / second.

As we have demonstrated in our earlier work on the topic, from these metrics, one can
calculate the average time between token revocations in a group of clients. This value is
denoted as Trvk.

Knowing both the cost and occurrences of typical operations in the system, one can come
up with a cost function, which describes the average cost of operation.

Performance evaluation

To predict the performance characteristics of a system, one must first determine the costs
associated with the operations defined in the previous section. The second step is to measure
the characteristics of the client population. The third step is to choose a revocation algorithm.

These three steps together determine the overall performance metrics. Each revocation
algorithm has a unique cost function, which maps the client pool behavior to system operations,
which in turn are used to calculate the overall performance cost of a given solution. Some
revocation algorithms have variable parameters, which can be optimized trough the usual
means.

Short-lived tokens

The short-lived approach has one parameter, Tlife, which denotes the lifetime of a token.
As for maximizing the performance of this approach, this Tlife should be chosen as the longest
tolerable time for token revocation after logout.

The overall cost function consists of two parts, the cost of validating the tokens of the
incoming requests, and the cost of issuing new tokens to replace the expiring ones.

C = (N ∗ r ∗ Cv) + (N ∗ 1

Tlife
∗ Ci)

Blacklist

In the case of a blacklist, the main cost factor comes from the necessity to check whether a
token is on the blacklist for each request. This extra checking makes this approach the worst in
terms of scaling in the case of an increasing number of requests.

After accounting for this factor, there are no other costs associated with this method. There-
fore the cost function can be defined as the following.

C = N ∗ r ∗ Cv ∗ Cd

Secret change

In case of a secret change, the baseload of authorizing incoming request is still present, but
it is accompanied by the load of new token generation for each client in case of each revocation.

C = (N ∗ r ∗ Cv) + (N ∗ 1

Trvk
∗ Ci)

Notice that the formula is very similar to the short-lived cost function. This is not a coinci-
dence; in both cases, the number of token revocations depends heavily on the average lifespan

106

of a token. In the first case its purely determined by the age of token itself, while in the second
case, client logout events trigger it.

The cost evaluation of our method

As our method builds on the secret change event, the cost function is similar too. The main
difference being, the introduction of parameter K, which denotes the number of groups the
clients are separated to. Because of this separation, the Trvk calculated for the whole client
population size must be recalculated to the number of NK clients. This value is denoted by Trvk.
As K increases, Trvk monotonously increasingly approaches the mean value of fi(t).

C = (N ∗ r ∗ Cv) + (K ∗ 1

T ′rvk
)(
N

K
∗ Ci + Cc)

Overview

In this paper, we described the main approaches of JWT revocation and introduced our
novel solution. We provided a toolset for characterizing different systems based on the cost
of common operations when dealing with JWT tokens. We outlined the necessary parameters
to measure in a client population of such a system. We determined the cost functions for each
solution, based on the previously described characteristics and client behaviour.

With the mathematical framework at hand, one can find the optimal revocation solution for
any system, by choosing the minimal cost function. In cases where the function has additional
variable parameters, traditional approaches like linear search can be used to find the optimal
solutions.

Ultimately, we hope that our work will aid capacity planning and system design of distribut-
ed systems, as the JWT based solutions have the highest potential in this area.

Acknowledgements

This work was supported by the BME-Artificial Intelligence FIKP grant of EMMI (BME
FIKP-MI/SC) and by the János Bolyai Research Fellowship of the Hungarian Academy of
Sciences.

References

[1] M. Jones, J. Bradley, and N. Sakimura, "JSON Web Token (JWT)," RFC Editor, RFC 7519,
May 2015.

[2] L. V. Jánoky, J. Levendovszky, and P. Ekler, "An analysis on the revoking mechanisms for
JSON Web Tokens," International Journal of Distributed Sensor Networks, vol. 14, no. 9, p.
1550147718801535, Sep. 2018, doi: 10.1177/1550147718801535.

[3] M. Jones, J. Bradley, and N. Sakimura, "JSON Web Signature (JWS)," RFC Editor, RFC 7515,
May 2015.

[4] dWTV, "Learn how to revoke JSON Web Tokens," developerWorks TV, 2017. Available:
https://developer.ibm.com/tv/learn-how-to-revoke-json-web-tokens/.

[5] M. Arlitt, "Characterizing web user sessions," ACM SIGMETRICS Performance Evaluation
Review, vol. 28, no. 2, pp. 50–63, 2000.

[6] M. Blum and S. Micali, "How to generate cryptographically strong sequences of
pseudorandom bits," SIAM journal on Computing, vol. 13, no. 4, pp. 850–864, 1984.

107

https://developer.ibm.com/tv/learn-how-to-revoke-json-web-tokens/

Towards Secure Remote Firmware Update
on Embedded IoT Devices

Márton Juhász, Dorottya Papp and Levente Buttyán

Abstract: An important security problem in IoT systems is the integrity protection of software,
including the firmware and the operating system, running on embedded IoT devices. Digitally
signed code and verified boot only partially solve this problem, because those mechanisms do
not address the issue of run-time attacks that exploit software vulnerabilities. For this issue,
the only known solution today is to fix the discovered vulnerabilities and update embedded
devices with the fixed software. Such an update should be performed remotely in a secure and
reliable way, as otherwise the update mechanism itself can be exploited to install compromised
software on devices at large scale. In this work, we propose a system and related procedures for
remotely updating the firmware and the operating system of embedded IoT devices securely
and reliably.

Keywords: Embedded Systems, Internet of Things, Security

Introduction

IoT systems are built from network connected embedded devices, and their security heavily
rely on the security of those embedded devices. One of the most important security aspects in
this context is the integrity of the software running on embedded devices. The reason is that
unauthorized modification of software can result in arbitrary behavior of those devices, and as
a consequence, loss of trust in the entire IoT system built upon them. In particular, protecting
low level software, such as the operating system (OS) and the firmware, is important, because
typically these components are responsible for implementing many security controls and they
provide trusted services (e.g., in the form of system calls) to higher layer software.

Digitally signing software components, including the firmware and the OS kernel, and
important data, such as configuration files, combined with some hardware based root-of-trust
and a secure boot process, which ensures that software components are loaded and executed
only if their signature is valid, can help protecting the integrity of software, but does not
entirely solve the problem. In particular, signed code and verified boot ensure that the device
runs intact code right after a reset, but software can also be compromised at run-time by
exploiting design and implementation level vulnerabilities in it. For instance, an attacker may
be able to execute arbitrary injected code on a device by exploiting software bugs, such as
not checking the amount of data copied into a limited size buffer or using dangling pointers,
leading to memory corruption [1].

When software vulnerabilities are discovered, they need to be fixed, and embedded devices
need to be updated with the fixed software. This applies to the OS and the firmware too. In
addition, due to the potentially large number of embedded devices used in IoT applications
and their often special operating environment, it is preferable that the update process can be
carried out remotely, without the need to physically approach each and every device. Remote
firmware and OS update is sometimes also called over-the-air (OTA) update, because the update
may be downloaded by the devices over wireless communication links.

Security of the remote update process itself is of paramount importance [2], as we would
like to avoid that attackers exploit an insecure update mechanism to install a compromised
OS or firmware remotely at large scale. Potentially, such compromised updates may prevent
any further legitimate update, leaving the control of all compromised devices in the hand of
the attacker. Recovering from such a situation would require manual update of every device,
which would be time consuming and expensive.

108

Besides security, the update process must be reliable and fail-safe, by which we mean that
an unsuccessful update should not leave the devices in a state where they cannot boot and
operate properly, but it should be possible to detect if the update failed and to load the last
stable version of the updated software. At the same time, attackers should not be able to force
a version rollback when the devices run a stable version of the software, because if that was
possible, then they could force the devices to re-install an old, potentially vulnerable version of
the software through which they can compromise the devices again.

In this extended abstract, we introduce a remote firmware and OS update system and mecha-
nism for embedded IoT devices that satisfy the above requirements on security, reliability, and
rollback protection.

Architecture

In this section, we give a high level overview on our update system architecture, which
consists in partitions on the persistent storage (e.g., flash disk) of the embedded device, different
images stored on those partitions, and a few log files.

We use 3 partitions with different access restrictions. The device boots from the boot partition,
which holds the firmware image of the device and the kernel images of 2 OSs, the MainOS
(typically some embedded Linux) and the UpdateOS (a trusted OS with minimal functionality,
e.g., a stripped down Linux or some formally verified microkernel such as seL41), as well as the
root file system of the MainOS and 3 log files, called updatelog_Firmware, updatelog_UpdateOS,
updatelog_MainOS, where different update events are logged and a control file, called nextOSto-
boot, indicating which OS to boot. Application data is stored on a separate data partition.
Firmware and OS kernel images, as well as root file system images for the MainOS, downloaded
from an update server are logged in the downloadlog on the images partition and stored on the
images partition, from which they are copied on the boot partition during the secure update
process. Another log file, called selftestlog, can also be found on the images partition that stores
information about the result of self-testing by a freshly updated MainOS.

In order to protect the update log files (i.e., updatelog_Firmware, updatelog_UpdateOS, and
updatelog_MainOS) from being updated by a potentially compromised MainOS, the boot parti-
tion can be written only by the firmware and the UpdateOS. The MainOS can write on the data
and images partitions; the latter is needed in order for the MainOS to be able to download and
store updates.

Boot process

Our architecture supports a secure boot process. After reset, code in a boot ROM verifies
the digital signature of the firmware image on the boot partition, and on success, it loads and
executes the firmware. The hash of the signature verification public key used by the boot ROM
code is stored in a special, one-time programmable memory, which is written during device
customization, after which this signature verification public key can no longer be modified.
The firmware performs low level system verification, initializes trusted software components,
such as a Trusted Execution Environment, and eventually executes the OS boot loader (e.g.,
U-Boot2).

The OS boot loader has another signature verification public key, which is used to verify
the digital signatures of the OS kernel images on the boot partition. The OS boot loader always
checks the nextOStoboot control file, and acts according to what is indicated in that file. When

1https://sel4.systems
2https://www.denx.de/wiki/U-Boot/

109

https://sel4.systems
https://www.denx.de/wiki/U-Boot/

the MainOS is about to be booted, the OS boot loader writes in the nextOStoboot that the
UpdateOS should be loaded next time, makes the boot partition write protected, and gives
control to the MainOS kernel. Finally, the MainOS kernel verifies the integrity of the root file
system image on the boot partition, and on success, it mounts the root file system, after which
the device is up and running. When the UpdateOS is about to be booted, the OS boot loader
writes in the nextOStoboot file that the MainOS should be loaded next time, and gives control
to the UpdateOS kernel.

Update process

Updates are downloaded and written on the images partition by an update service running
on the MainOS. Upon the next boot, the UpdateOS detects the update image from the download-
log, verifies its digital signature, and on success, it places the update image on the boot partition.
In case of an update of the firmware or the UpdateOS, the update image replaces the old
version, as we assume that these are thoroughly tested images that function properly. However,
in case of a MainOS update, both the update image and the old image are kept on the boot
partition. If the digital signature verification fails, the update image is deleted by the UpdateOS.
In any case, an appropriate log entry is created in the corresponding updatelog file and the
device is rebooted.

Figure 1: Simplified flowchart of updating the MainOS

In the sequel, we explain how the the MainOS is updated. The process is illustrated in
Figure 1. When the device executes the boot process next time, the OS boot loader detects
from the updatelog_MainOS that it should load and start an updated MainOS for the first time.
It writes in the updatelog_MainOS the version to be booted, makes the boot partition write
protected, and transfers control to the MainOS kernel. The MainOS mounts the root file system
and performs self-testing. If everything goes well, the result of the self-testing is written in the

110

selftestlog. Upon next boot, the UpdateOS detects that the update was successful by observing
the updatelog_MainOS and the selftestlog, so it deletes the old MainOS image from the device
and logs in the updatelog_MainOS that the update was successful.

However, the self-testing may fail or the new version of the MainOS may hang or crash.
Such hangs or crashes are handled with a watchdog mechanism that reboots the device. In
this case, the UpdateOS detects the failed self-testing of the updated MainOS by observing in
the updatelog_MainOS that an update was booted, while missing any indication of a successful
self-test in the selftestlog. When this happens, the UpdateOS deletes the failing update from the
device, logs the failure in updatelog_MainOS, and reboots the device. After the reboot, the latest
stable MainOS is loaded and executed.

Security is achieved by installing only properly signed updates by the trusted UpdateOS
and logging all relevant events to the updatelog files that cannot be modified by the potentially
compromised MainOS or any applications running on it. Trust in the UpdateOS is based on the
following factors: (1) the UpdateOS is signed and its signature is verified before loading and
executing it; (2) the UpdateOS executes only for a limited amount of time; (3) the UpdateOS has
a reduced functionality (e.g., all unnecessary features and services are disabled, including even
network access); and (3) the UpdateOS can potentially be formally verified due to its stripped
functionality.

Fail-safety is achieved by using a watchdog mechanism that reboots the device upon failures
and by using log files in order to detect a failed self-test after an update. Moreover, the latest
stable version of an updated component is kept on the device until the success of the update
can be verified, so in case of failure, the device can still boot the latest stable version.

Finally, rollback protection is achieved by keeping information about updates in the updatelog
files, which cannot be modified by the potentially compromised MainOS or the applications
running on it, and by removing old versions from the device after a successful update.

The described architecture and update process are complex enough to warrant for a thorough
verification. For this reason, we used the UPPAAL3 model checker to model the update process
and to formally verify its correctness. We checked the following two properties:

• Update is possible: When a given version of the MainOS is running and there is a
functioning update available, it is possible to reach a state where this update is successfully
installed.

• Rollback is impossible: It can never occur that a given version of the MainOS is success-
fully installed when a newer version was running and marked as stable in the past.

Our update process described above satisfies both properties.

Acknowledgment

The presented work was carried out within the SETIT Project (2018-1.2.1-NKP-2018-00004),
which has been implemented with the support provided from the National Research, Develop-
ment and Innovation Fund of Hungary, financed under the 2018-1.2.1-NKP funding scheme.

References

[1] L. Szekeres, M. Payer, L. T. Wei, and R. Sekar. Eternal war in memory. IEEE Security and
Privacy Magazine, 12, May-June 2014.

[2] TCG IoT-SG. TCG Guidance for Secure Update of Software and Firmware on Embedded
Systems – version 1.0, revision 64. TCG Reference Document – Draft, July 2019.

3http://www.uppaal.org/

111

http://www.uppaal.org/

Quadric tracing: A geometric method for accelerated sphere tracing
of implicit surfaces

Mátyás Kiglics and Csaba Bálint

Abstract: Sphere tracing is a common raytracing technique used for rendering implicit surfaces
defined by a signed distance function (SDF). However, these distance functions are often expen-
sive to compute, prohibiting several real-time applications despite recent efforts to accelerate it.
This paper presents a method to precompute a slightly augmented distance field that hugely
accelerates rendering. This method supports two configurations: (i) accelerating raytracing
without losing precision, so the original SDF is still needed; (ii) entirely replacing the SDF and
tracing an interpolated surface.

Keywords: Computer Graphics, Quadrics, Signed Distance Function

Introduction

A signed distance function (SDF) f : IR3 → IR returns the Euclidean distance from the
surface {f = 0} = {x ∈ IR3 | f(x) = 0} for a given point in space. Any p ∈ {f < 0} point is
inside, while any p ∈ {f > 0} is outside the geometry. Various sphere tracing algorithms exist
for surface visualization. These raytracing techniques often start a ray through each pixel of the
virtual camera and march along the ray, taking distance sized steps [1]. This is because, for any
p ∈ IR3 point, there are no surface points within f(p) distance: this is called the unbounding
sphere. When the point-to-surface distance becomes negligible, the surface is reached.

However, all sphere tracing algorithms slow down near the surface regardless of the direction
taken [2, 3, 7]. The only exception is when the derivative of f is known and the geometry
is convex in which case very large steps can be taken [1]. This is because, instead of an
unbounding sphere, we can draw a separating plane with normal ∇f(p) and surface point
p − f(p) · ∇f(p). Nonetheless, the surface is often concave, and the derivative might be
undefined or unknown. For this reason, we generalize the unbounding sphere and separating
plane approach to unbounding quadrics [5] for any SDF.

Our method consists of two steps. During precomputation, we store distance values in
a regular or an octree grid. For each cell, the eight distance values are stored along with a
single k ∈ [−1, 1] parameter describing the shape of the quadric the cell defines. During the
rendering step, quadric tracing intersects the ray with the precomputed quadric to accelerate
tracing convergence.

Conic sections of k ∈ [−1, 1]
We define a series of conic sections parameterized by k ∈ [−1, 1]. Since the curve will be

symmetric about the y-axis, its implicit equation has the following form:

A(k) · x2 +B(k) · y2 + C(k) · y = 0 (A,B,C : [−1, 1]→ IR). (1)

We define the functions above to have the desired eccentricity, shape, and curvature at the
origin, such as A := A(k) := |k| , B := B(k) := 2(|k| − 0.5), and C := C(k) := −k, as seen on
Figure 1a. For brevity we omit the function notation.

We can obtain a parameterization s(t) of this conic by intersecting it with lines through the
origin that has t ∈ [0, 2π) angle with the x-axis. That is, by substituting polar coordinates into
the implicit form in (1) we can solve for r(t):

112

(a) Conic sections with different k ∈ [−1, 1] values (b) Our unbounding quadrics of revolution

Figure 1: Unbounding quadrics: unbounding sphere k = 1, unbounding ellipsoid k ∈ (0.5, 1),
unbounding parabola k = 0.5, unbounding hyperboloid k ∈ (0, 0.5), separating plane k = 0,
bounding hyperboloid k ∈ (−0.5, 0), bounding parabola k = −0.5, bounding ellipsoid k ∈
(0,−0.5), and bounding sphere k = −1.

A · (r(t) · cos t)2 +B · (r(t) · sin t)2 + C · r(t) sin t = 0 .

Assuming r(t) 6= 0 yields the polar parametrization of the conic section

r(t) =
−C · sin t

A · cos2 t+B · sin2 t
=⇒ s(t) :=

[
cos t · r(t)
sin t · r(t)

] (
t ∈ [0, 2π)

)
(2)

For values of k ∈
(
− 1

2 ,
1
2

)
, the s(t) describes a hyperbola with an unwanted branch. Let

L(k) ∈ [0, 2π] denote the value where r(t) has a singularity. Thus, we can restrict s(t) to the
[0, L(k)) interval where

L(k) :=

π
2 , if A(k) ·B(k) ≥ 0,

arctan
√
−A
B , otherwise

(k ∈ [−1, 1]) .

Note that for all of the equations above, the somewhat heuristic A(k), B(k), and C(k) functions
may be redefined if needed.

Unbounding quadrics

We parameterize quadrics of revolution by rotating s(t) in (2) around the vertical axis:

P (u, v) = r(u) ·

cos v · cosu
sin v · cosu

sinu

 (u ∈ [0, L(k)), v ∈ [0, 2π)).

These quadrics can be seen on Figure 1b. Similarly, the implicit equation becomes

A · (x2 + y2) +B · z2 + C · z = 0.

Applying the above, we can calculate the intersection of a ray and the quadric surface. The
ray is given by a point and a vector (p0,v0 ∈ IR3), and any p point of the ray can be written as
p = p0 + tv0, t ∈ IR. Substituting p into the implicit equation of the quadric surface, we get a
quadratic equation for t.

113

(a) Sphere tracing takes many distance-sized steps denoted by the hatched unbounding circles, but the
large number of distance evaluations cause poor performance scaling with scene complexity.

(b) A sphere tracing step was (c) Quadric tracing step is now (d) Quadric step to infinity
taken because it was larger larger then the distance terminates the trace

Figure 2: Comparison of sphere tracing (a) to three steps of quadric tracing (b,c,d) on the same
scene composed of two circles in 2D. The preprocessing step created the pink unbounding
regions to accelerate raytracing whenever the quadric step is larger (c,d).

Quadric tracing

Preprocessing First, a three-dimensional grid is computed to store the signed distance values.
For each cell, we compute the approximate normal direction from the eight SDF values stored
in the corners of the cell. If the normalization cannot proceed due to division by a small number,
then a fixed direction will suffice, such as [1, 0, 0]T . Then, the largest unbounding quadrics that
revolve around this normal direction are obtained for each cell using an algorithm relying on
sphere tracing. The exact method is to be published in another paper.

Raytracing The benefit of quadric tracing is that it takes much larger steps along the ray as
illustrated on Figure 2. For each step, the p0+t·v0 ray is intersected with the quadric defined by
the cell that contains p0. If there are t1 < 0 < t2 solutions, then we can accelerate the distance-
sized step with a ∆t = max(t2, f(p0)) step-size. For this notation, p′0 = p0 + ∆tv0 needs to be
recomputed at the end of the step. Here, f(p0) can be either the original distance function or
the one interpolated from grid values.

114

Conclusion

The unbounding quadrics can turn “inside-out” bounding the whole surface within. This
means that most of the rays that miss the surface will only take one or two iterations to trace,
compared to the hundreds of iterations that sphere tracing usually takes. In summary, this
method trades render time for preprocessing time and memory usage. Even though the memo-
ry usage can be negligible with a sparse representation such as an octree and using the exact
method without interpolation, the surface cannot evolve in time during rendering without
constantly updating all the cells. Applications, empirical results, and quadric construction for
the preprocessing step will appear in a subsequent paper.

Acknowledgements EFOP-3.6.3-VEKOP-16-2017-00001: Talent Management in Autonomous
Vehicle Control Technologies — The Project is supported by the Hungarian Government and
co-financed by the European Social Fund. Supported by the ÚNKP-19-3 New National Excel-

lence Program of the Ministry for Innovation and Technology.

References

[1] John C. Hart. Sphere tracing: A geometric method for the antialiased ray tracing of implicit
surfaces. The Visual Computer, 12:527–545, 1994. https://doi.org/10.1007/
s003710050084

[2] Benjamin Keinert, Henry Schäfer, Johann Korndörfer, Urs Ganse, and Marc Stamminger.
Enhanced Sphere Tracing. In Smart Tools and Apps for Graphics 1–8, Andrea Giachetti (Ed.)
The Eurographics Association, 2014. http://dx.doi.org/10.2312/stag.20141233

[3] Csaba Bálint, Gábor Valasek. Accelerating Sphere Tracing. EG 2018 - Short Papers 19–32,
Olga Diamanti and Amir Vaxman (Eds.) The Eurographics Association, 2018. http://
dx.doi.org/10.2312/egs.20181037

[4] Róbert Bán, Csaba Bálint, Gábor Valasek. Area Lights in Signed Distance Function Scenes.
EG 2019 - Short Papers 85–88, Paolo Cignoni, Eder Miguel (Eds.) The Eurographics
Association, 2019. https://doi.org/10.2312/egs.20191021

[5] Silvio Levy. Geometry Formulas and Facts. 30th Edition of CRC Standard Mathematical
Tables and Formulas, CRC Press, 1995.

115

https://doi.org/10.1007/s003710050084
https://doi.org/10.1007/s003710050084
http://dx.doi.org/10.2312/stag.20141233
http://dx.doi.org/10.2312/egs.20181037
http://dx.doi.org/10.2312/egs.20181037
https://doi.org/10.2312/egs.20191021

Private/Public Resource Discovery for IoT: A Two-Layer
Decentralized Model

Mohammed B. M. Kamel, Peter Ligeti and Christoph Reich

Abstract: Billions of resources are connected to each other through the Internet of Things (IoT).
Due to the huge number of connected resources in IoT, the challenge is how to discover the
appropriate resources efficiently. The task becomes more challenging by taking into considera-
tion the limited storage and computation power of devices and the distributed nature of the
network. In addition, some of the resources such as a private camera are private to one or
a set of clients. Therefore, making these private resources discoverable through the whole
network increases the danger of being compromised by an unauthorized entity. In this paper,
we proposed a two layer model of resources discovery for the IoT. The proposed model is based
on the Distributed Hash Table (DHT) overlay. It allows a resource to be registered publicly or
privately, and to be discovered in a decentralized scheme in the IoT network.

Keywords: Resource Discovery, IoT, Decentralized Scheme

Introduction

In order to make a resource (i.e. an IoT thing, a meta-data or a service provided by an IoT
thing) be discoverable, it has to be registered in the IoT network. Later on and depending on
the used architecture in the network (i.e. centralized or decentralized), this registered resource
is discoverable through a single or multiple points in the network. The resource discovery is a
mechanism to return the address of a resource (e.g. its URI, other metadata and further links
about the resource) based on the information provided during the lookup operation.

Important requirement of the IoT is the avoidance of single point of failures as it can be a
centralized discovery service, even if implemented using redundancy and replication. One of
the main goals of a decentralized discovery approach is to make the data distributed among
multiple entities. Therefore, avoidance of single point of failure and keep the data close to its
origin point are two main features of using a decentralized rather that a centralized scheme. As
the connected devices become more powerful in term of connectivity and computing power,
this goal becomes a realistic and necessary to achieve.

While some of the resources in the IoT are public resources, such as a temperature sensor
attached to a public building, but there are some other resources that are private to one or a set
of clients. Therefore, making these private resources discoverable through the whole network
increases the danger of being compromised by an unauthorized entity. A private camera does
not have to be discoverable by the whole network.

In this paper, we proposed a two-layer discovery model in which a resource can be registered
publicly and therefore be discoverable through the whole network. In addition, a resource can
be registered privately which makes it discoverable only to a subset of clients in the network.
While this work uses the same methodology used in [1] and [2], it shares the main concepts with
[3] such as the adoption of the Distributed Hash Table (DHT) with improvements in different
aspects of the model.

Proposed Model

There are three main sets in the proposed model: set of clients (C), set of objects (O) and set of
gateways (W). The finite set C consists of the IoT clients in the network. An object o ∈ O is any
device in the IoT network with proper computational power that handles a resource u. The set

116

N is a combination ofC andO (N = C∪O). Subsets of N are connected to different IoT gateways
in W. A gateway w’s responsibility may vary from handling a few nodes (e.g. smart home) to
hundreds of nodes (e.g. environmental monitoring). The proposed model uses a p2p structure
with DHT that provides a structured method of addressing and discovery of the peers. The
members of W represents the peers in the p2p overlay. Let H(.) be a collision resistant one-way
hash function with d bits message digest, Enck(m) be an encryption of the message m using
symmetric key k and Signw(m) be a digital signature for message m generated by w ∈ W

gateway.

Resource Registration

A resource u in the network has its specific address and a set of attributes that describe its
properties (e.g. its type, location, etc.). When an object o ∈ O wants to put its resource u in the
network, it has to add the required information in the p2p overlay through a member of W.
The required information consists of a pair of <tag, data> that is described later in details. Each
resource in the network has one or more tags which are used to discover it in the network. The
resource’s tags are generated based on the set of attributes that describe the resource. The access
data of a resource u is stored in the IoT network based on the its tags with a predefined number
of replicas (The actual number depends on the replication factor rp). Choose an appropriate rp
parameter depends on the nature of the network. As a general rule for choosing the appropriate
rp value, the probability of existence of a subset of offline peers Offline ⊂ G with cardinality
greater than the number of replicas has to be negligible ε. This is shown in equation 1. In
addition, the existence of replicas increases the system performance by reducing the access
load on any specific peer in the overlay.

P (‖Offline‖ ≥ rp) < ε (1)

An object o ∈ O puts its resource u in the network as pairs of <tag, data>. The data parameter
consists of the URI and other metadata about the resource u. The set of the attributes that
describe resource u are fed into the hash function to generate the tag parameter. The direct peer
in the overlay (i.e. the IoT gateway w that the object o is connected to) stores these pairs locally
for a specific time depending on the caching expiry parameters. Additionally, the close peers
in W to tag parameter of the generated pairs are responsible for storing <tag, data> pair. The
model does not depend on any specific distance function (dst) to computer the closeness, it can
be any particular distance function.

Let Id be a set of all possible sequence of d-bit binary digit (i.e. identifiers) and each peer
w ∈ W has an identifier idw ∈ Id and each resource u has a tagu ∈ Id. Let define the following
set of peers

M(u) = {w : tagu ≈ idw,@w′ | dst(idw′ , tagu) < dst(idw, tagu)} (2)

The set M(u) links each resource u depending on its attribute identifiers tag to a peer w ∈
W that its identifier idw ∈ Id is close or equal to tagu. The cardinality of M(u) depends on
the replication factor rp parameter. The rp indicates the number of close peers to w that are
responsible for storing a replica of the pair <tag, data>. The procedure of registering a resource
u in the network consists of three steps:

• Tag Definition and Generation: The object o determines the address data and the
attributes that describe the resource u and send the generated hash value of the attributes
(i.e. tags) along with the corresponding data to directly connected w, structured as <tag,
data>.

117

• Tag pair Signing: In this step the appropriate set of pairs of the resource u is signed
by w ∈W.

• Resource Registration: The gatewayw puts the set of pairs in the overlay by storing
the pairs at the corresponding peer in the overlay. The possible set of generated pairs of
a temperature sensor is shown in table 1.

Table 1: set of pairs for a temperature sensor in the overlay

Attribute tag Tag pair
building d ba7..984 <ba7..984, { resourceuuri } >

hmp7 1ad..8e8 <1ad..8e8, { resourceuuri } >
room v 665..fd3 <665..fd3, { resourceuuri } >

temperature d96..664 <d96..664, { resourceuuri } >

Public Resource Discovery

The resources that are registered without any restrictions in the IoT network can be discov-
ered by all clients in the network based on their attributes. The proposed model allows search
for one or more attributes. A client c ∈ C lookup for a resource by sending a lookup request with
the required set of attributes to the gateway w that is directly connected to it. The gateway w
after receiving a discovery request from a client c generates the appropriate tags for the lookup
process in the overlay based on the received attributes. The discovery process contains three
main steps as follows.

• Query Generation: In the first step, the gateway w generates the set of tags based on
the received attributes from a client c. This is done by hashing each of the requested
attributes in the client’s request.

• Lookup: The second step starts by issuing the lookup request by w in the overlay. The
result Ri of each of the lookup operations is a set of data parameters that indicates the
resources with the specific attribute i.

• Result Gathering: After receiving the results and verifying them based on their at-
tached digital signatures, the intersected members of sets R0∩R1∩··∩Rn will be returned
as a result to the requested client c.

Private Resource Discovery

Every object o in the IoT network is able to keep a resource private and discoverable only
by a predefined set Fo. An object o has a set of its friends Fo =

{
f1,...,fn

}
⊂ C that can be

communicated with in a secure and trusted way. The members of a friend set Fo of an object
o are connected through members of W but they are not part of the p2p overlay itself. Each
private resource has a private identifier idu that is chosen uniformly at random from a given
range, e.g. from bit strings of length 512. An identifier idu is known only by the members of
Fo. Additionally, each c ∈ C has also a private identifier idc that is chosen uniformly at random
from a given range. The object o stores the private identifiers of each f ∈ Fo ⊂ C locally. In
addition, for every object o and for each f ∈ Fo an initial value (IV of) and a common secret
key (kof) are generated and shared between them on a secure channel. The key kof is used to
encrypt the transmitted data between them. These keys are stored at each node locally at the
setup phase and its future distribution scheme is out of the scope of this paper.

118

If an object o registers its resource u privately, only the members of Fo can discover and
access this specific resource of o. To do so, an object has to generate a specific identifier
privateTag for a resource u using equation 3. The communication address of the resource
is then encrypted using the shared key kof . Then, the corresponding gateway after receiving
the resulted pairs <privateTag, encryptedData> (a single pair for each f ∈ Fo) put them in the
overlay. Later, the members of Fo can discover this private resource by computing its private
tag privateTag. Each object has different private tags. These private tags are not permanent
and used only once. The privateTagnew parameter can be calculated using privateidold, idu and
idf values. At any given time, the current private tag of a resource is computed as 3:

privateidnew = H(privateTagold ⊕ idu ⊕ idf) (3)

where privateTagold is the previous private tag of the resource u (i.e. the output of the
previous hash) and privateTag0 = H(IV ⊕ idu⊕ idf). While the discovery process of a private
resource in the network resembles the public discovery, but there are two differences. First
is that in order to be able to discover a resource u handles by o, a client has to be able to
compute its private tag, i.e. being a valid member of F. Secondly, after receiving the result of
the lookup, the returned data is confidential and can be read only by knowing the secret key k
corresponding to this specific node.

Discussion

In this paper a two layer discovery model is proposed. The model enables a resource to
be registered in the network in a decentralized scheme. This improves the availability of a
resource and removes the bottleneck of a centralized resource discovery entity. In addition to
the public resources, the private resources can be registered and discovered in the network.
The private resources are discoverable by a predefined set of clients in a secure approach.

Acknowledgements

This research has been partially supported by project no. ED_18-1-2019-0030 (Application-
specific highly reliable IT solutions) has been implemented with the support provided from the
National Research, Development and Innovation Fund, financed under the Thematic Excellence
Programme funding scheme and by the European Union, co-financed by the European Social
Fund. (EFOP-3.6.2-16-2017-00013, Thematic Fundamental Research Collaborations Grounding
Innovation in Informatics and Infocommunications) and by SH Programme. The authors thank
ELTE Eotvos Lorand University and HFU Hochschule Furtwangen University for their support.

References

[1] Kamel, M., Ligeti, P., Nagy, A., 2019 AN ADDRESS PROPAGATION MODEL IN P2P AND F2F
NETWORKS, Studia Informatica 64 (1), pp. 91-101.

[2] Kamel, M., Ligeti, P., Nagy, A., 2018 IMPROVED APPROACH OF ADDRESS PROPAGATION

FOR F2F NETWORKS, Proc. of IEEE 2nd European Conference on Electrical Engineering &
Computer Science

[3] Kamel, M., Crispo, B., Ligeti, P., 2019. A DECENTRALIZED AND SCALABLE MODEL FOR

RESOURCE DISCOVERY IN IOT NETWORK, IEEE 15th International Conference on Wireless and
Mobile Computing, Networking and Communications

119

Improving keyword spotting with limited training data using
non-sequential data augmentation

Mohammed Mohammed Amin and István Megyeri

Abstract: Nowadays, deep learning models achieve state-of-the-art results in many fields. A
common criticism of these algorithms is their need for a very large training set. In this work,
we consider two augmentation strategies to mitigate this issue. We applied them for enhancing
classification performance on the Speech Commands database using only 10 samples per class.
The sequential combination is widely applied when every transformation performed consecu-
tively. In contrast, we recommend the non-sequential approach that uses transformations
uniformly but only one at a time. Our method achieves 78% test accuracy. 9% improvement
comparing to the non-augmented case and outperforms the sequential one.

Keywords: data augmentation, speech recognition, convolutional neural network

Introduction

In recent years deep learning brings huge improvements in speech recognition [5, 4]. Per-
haps the reasons behind these improvements are the era of big data, improved optimization
methods, and the ability to train very deep networks. The point is that these methods give
similar performance to classical approaches or may overperform them. However, these algo-
rithms are not without drawbacks. It is known that training a deep learning model requires
a sufficient amount of data and computational power. Further, these models are not directly
applicable when the task is the same, but the data distribution differs slightly from training
data. In speech, it is common difficulty to obtain a speaker agnostic model that able to generalize
well. In order to successfully adopt deep learning, these problems need to be solved.

For mitigating the training data problem, there are several approaches like [7, 6]. Those
take advantage of other data sources. In few-shot learning at training time, there are only a
"few" examples of the targeted class but many others of non-targeted classes. Those can help to
improve the targeted class performance. Another direction is unsupervised or semi-supervised
model pre-training on a large unlabeled data set [6]. Later this model can be adjusted to the
target problem and usually gives better results than using only the available training data.

In a sense, pre-training or existing few-shot methods do not handle the main problem. Those
still rely on large amounts of training data in the form of other classes or unlabeled examples.
On the other hand, there are a lot of augmentation methods like [10, 3]. Those can naturally
increase training data using only given samples. However, due to some reasons, they are
applied mainly to improving some already well-performing models.

In this study, we use multiple audio augmentation methods to increase test accuracy. We
formed a 10-shot problem from the Speech Commands data set [9] using ten speakers and
those recording for all classes. Note, this training set is very challenging because of both sample
size and number of speakers. Usually, deep learning is not used in such cases.

Data augmentations can be combined in many ways as long as they preserve the sample
label. Here, we define two strategies. The first is sequential, which uses all the transformations
consecutively. The second performs non-sequential augmentation, using only one at a time.
One may form new transformations by composing some existing ones or changing the transfor-
mation order. The number of possibilities is almost infinite. To the best of our knowledge,
there is no good practice of how to exploits the potential of several transformations, even for
the simple question using them sequentially or non-sequentially.

120

We carry out multiple experiments to answer this question. We show that sequentially
combining transformations may achieve poor results. Further, we demonstrate the non-sequen-
tial approach can increase the test accuracy significantly on the 10-shot learning problem.

Materials and method

We experimented with the Speech Commands data set [9]. It contains one second long
audios of 30 possible classes like bed, bird, yes or no, etc. In total, there are 64723 samples
and six additional for background noises. The test and validation set include 6836 and 6799
samples, respectively. Those samples are from speakers that are not present in the training
data.

As feature extraction, we considered Mel-frequency cepstral coefficients (MFCCs) and Mel-
spectrogram. We used the librosa1 library. MFCCs were extracted using a 16000 sampling
rate, and the remaining parameters are the defaults. The mel-spectrogram computed on 80 mel
filters with 256 FFT windows length and 128 as hop size. The sampling rate is the same.

Here, we considered four transformations: noise injection, time-shifting, pitch changing,
and time stretching. Noise injection has done with available noises. Each transformation has
a range of modifications. Those can be seen in Table 2. The noises have different ranges to
prevent making the sample unrecognizable. We ascertained the ranges empirically preserve
class information and still recognizable when all the transformations applied.

All the transformations were applied in training phrase before feature extraction. The amount
of modification was uniformly sampled from the given ranges. To combine the transformations,
we investigate two strategies. First is sequential when all the available transformations are
applied consecutively. This option is provided by many deep learning libraries as default.
This way, the sample number increases exponentially by the availability of transformations.
However, we have only one transformation that is the composite of all the modifications.

The second is called non-sequential when, unlike in the previous, only one transformation is
used at a time. The applied one is selected uniformly. This approach may obtain fewer new
examples, but those are in different regions of the space. Hence it may absorb larger capacity
of the model.

We used a convolutional neural network for comparing the strategies. It has five convolution
layers; each applies 5× 5 convolutions with increasing filter sizes 32, 64, 128, 256 and 512. Each
convolution is followed by batch normalization [2] then pooling. Each pooling is a 2 × 2 max-
pooling with strides 1 except the last one, which is a global max pooling. The last convolution is
followed by two dense layer. Those have 512 and 30 neurons with relu and softmax activation,
respectively. The relu dense layer also followed by a batch normalization. The network has
4637854 parameters in total.

The model was trained using the categorical cross-entropy loss function and Adam [1] as the
optimizer. The batch size was 10 for the 10-speaker set otherwise 30. We used early stopping
during optimization based on validation accuracy. The patience was 300 for 10-speaker, 30 for
the rest. The reason behind different tolerance and batch sizes for 10-speaker data is two way.
Training on smaller data was faster; hence we afford longer runs. Second, we were interested
in finding the best model setting that may need larger patience of early stopping. From all
training, those model states were restored that gave the best validation accuracy. For further
regularization, we used Dropout [8] after the first dense layer with a dropping rate of 0.5.

1https://librosa.github.io

121

https://librosa.github.io

Table 1: Training and test set accuracy
using different training data sizes.
Test accuracy drops significantly for
the 10-speaker case.

Train-data Train-acc Test-acc
100% 0.999 0.965
25% 0.999 0.956
15% 1 0.948
10% 0.999 0.936
5% 0.999 0.876
10-speaker 0.993 0.69

Table 2: Test accuracy and ranges of separately applied
augmentations using the 10-speaker training set. Each
transformation improves the test accuracy comparing to
the unmodified 10-speaker case.

ID Transformation(s) Test-acc Ranges

T1
pink and white noise

0.723
[0, 0.03]

bike, running [0, 0.1]
dishing, cat [0, 0.03]

T2 time shifting 0.707 [0, 0.2]
T3 stretching 0.701 [0.95, 1.05]
T4 pitch changing 0.716 [−0.5, 0.5]

Results

We evaluated the two feature set MFCCs and Mel-spectrogram. Those give 0.942 and 0.965
test accuracy with our convolutional network. Therefore we used the Mel-spectrogram. Then
we artificially reduced the training set size to find where our model performance drops signifi-
cantly. The results can be seen in Table 1. Interestingly the test performance is the same till
the 10% data. Below this, it starts to fall down. As we expected, the 10-speaker set gives the
poorest result. The goal is to improve it using the two augmentation strategies.

The test accuracy using the transformations separately are in Table 2. Each transformation
improves accuracy. Especially T1 and T4 seem useful, those increase accuracy by 3%. Figure
1 contains the results of multiple transformations using the two strategies. It is not expected
that combining some transformation may worsen the results. Interestingly the non-sequential
method outperforms the sequential in all cases. The test accuracy difference is 5% between
them when all transformation used. Recall that the sequential approach gives more varied
combinations and is widely adopted. Nevertheless, the non-sequential strategy increased the
test accuracy by 9% comparing to the non-augmented case.

Conclusions

We compared two methods for combining several augmentation transformations. We found
that the non-sequential strategy outperforms the widely adopted sequential method. After
using all the four transformations combined with it, the test accuracy improvement is 9%
comparing to the not augmented case. We decreased the gap significantly between the full data
and 10-speaker performance. Evaluating the non-sequential strategy with more transformations
and using other data sets is underway.

References

[1] Jimmy Ba and Diederik Kingma. Adam: A method for stochastic optimization. In 3rd Intl.
Conf. on Learning Representations (ICLR), 2015.

[2] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In Francis R. Bach and David M. Blei, editors,
ICML, volume 37 of JMLR Workshop and Conf. Proc., pages 448–456. JMLR.org, 2015.

[3] Tom Ko, Vijayaditya Peddinti, Daniel Povey, and Sanjeev Khudanpur. Audio
augmentation for speech recognition. In INTERSPEECH, pages 3586–3589. ISCA, 2015.

[4] Xin Lei, Andrew W. Senior, Alexander Gruenstein, and Jeffrey Scott Sorensen. Accurate

122

 0.6

 0.65

 0.7

 0.75

 0.8

T1+T2

T1+T3

T1+T4

T2+T3

T2+T4

T3+T4

T1+T2+T3

T1+T2+T4

T1+T4+T3

T2+T3+T4

T1+T2+T3+T4

te
st

 a
cc

u
ra

cy

sequential
non-sequential
no augmentation

Figure 1: Sequential and non-sequential augmentation test accuracy as a function of applied
transformations. Non-sequential outperforms sequential in all cases. It achieves a 9%
improvement over the non-augmented case.

and compact large vocabulary speech recognition on mobile devices. In Proc. Interspeech,
2013.

[5] Tara Sainath and Carolina Parada. Convolutional neural networks for small-footprint
keyword spotting. In Interspeech, 2015.

[6] Steffen Schneider, Alexei Baevski, Ronan Collobert, and Michael Auli. wav2vec:
Unsupervised Pre-Training for Speech Recognition. In Proc. Interspeech 2019, pages 3465–
3469, 2019.

[7] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot
learning. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages 4077–
4087. Curran Associates, Inc., 2017.

[8] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15(56):1929–1958, 2014.

[9] Pete Warden. Speech commands: A dataset for limited-vocabulary speech recognition. 04
2018.

[10] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup:
Beyond empirical risk minimization. In Int. Conf. on Learning Representations, 2018.

123

Social network characteristics from the viewpoint of centrality
measures

Orsolya Kardos and Tamás Vinkó

Abstract: Identifying important actors in a social network or predicting the possible connec-
tions between them can be of high practical importance regarding many real-life applications in
the field of social networks. One of these is the Influence Maximization problem, which aims at
finding the most influential users or nodes in a network i.e. the ones whose opinion can spread
through the network in the most successful way. Another interesting application is the field
of link prediction where algorithms attempt to decide wether a connection will be present in a
future version of the network. Centrality measures on the other hand are node characteristics
that assign a real number to every node in the network which denominates its importance
by different aspects depending on the concrete measure. In this paper besides using different
parameters in order to better estimate the influence spreading capability of the nodes, we also
introduce a more general model that can be used for graph attribute characterization with the
use of centrality measures.

Keywords: centrality measures, social networks, influence maximization, link prediction

Introduction

Given a social network like the online social media platforms or real-life friendships the
topology of the underlying graph can easily provide an insight about the most important
contributors of the network. In the context of complex networks node centrality measures
are the metrics designed in order to identify those nodes which provide a better understanding
regarding the functional and structural behavior of the network. Importance in general being a
rather vague concept resulted in several different interpretations and thus countless coexisting
centrality measures. This is the main reason why we can state that not the values themselves
are the important factors, but rather the node rankings provided by these centrality measures.
The most commonly known and used centrality measures are degree [15], closeness [2, 17],
eigenvector [3], betweenness [7], PageRank [4] and HITS [11].

Different studies put the emphasis on trying to find a connection between the ranking
by centrality measures and their influence spreading capability. The Influence Maximization
(IM) problem in general tries to find a small number of nodes that are able to influence as
many other nodes as possible in a graph or network. Several algorithmic approaches were
developed in order to address the mentioned NP-hard combinatorial optimization problem.
Evaluating the nodes by their influence spreading capability can result in a ranking among
nodes. These evaluations are the results of computationally costly propagation simulations.
When considering directed graphs and speaking about the spread of an idea, gossip, opinion
or similar we can categorize the nodes as active or inactive i.e. the ones who are affected by an
idea and the ones who are not. In the Independent Cascade Model [9] when a node v becomes
active in time step t, it is given only one chance to activate its each currently inactive neighbor
w. Based on a probabilistic approach, if the activation is successful w will become active in time
step t+ 1, whereas if the activation resulted in failure, node v will not get the chance to activate
node w again. If in a given time step t more than one attempt from different neighboring nodes
will try to influence w these attempts will be processed as an arbitrary ordered sequence. The
process only terminates if no more activations can happen in the network.

124

Preliminaries and Datasets

In our experiments we consider both directed and weighted graphs G = (V,E,W) and also
directed graphs without edge weights G = (V,E). Regarding the influence simulations both
randomized weight assignment and also the Weighted Cascade Setting (WCS) model is used.
The WCS model states that for every edge e = (u, v) ∈ E the edge weight value is defined as
P (e) = 1/(IDC(v)) where IDC(v) is the in-degree centrality value of node v.

Jia et al. [8] introduced an improvement method for degree centrality and its extending
centralities in directed networks. They proposed the usage of an α parameter in order to take
in consideration not only the existence of an edge when calculating the centrality measure
vector, but also its direction. The main motivation behind this is the general behavior of the
Influence Maximization models, i.e. the fact that a nodes ability to infect and to being infected
can be analyzed separately. In order to evaluate their results they used the SIR model. Their
extension model for centralities is proposed as follows.

CαD(v) = dout(v)αdin(v)1−α,

where CαD(v) is the extended version of the degree centrality, dout(v) and din(v) denominate the
out-degree and in-degree of node v respectively. In our experiments the above extension will
provide the foundation to proposing different new combinations of centrality measures.

In order the compare the ranking provided by the combined centrality measures and the one
provided by the IC model the Kendall’s Tau rank correlation coefficient was used that measures
the relationship by considering the number of concordant and discordant pairs. A pair of
observations (ri(t), rj(t)), (ri(t+1), rj(t+1)) is concordant if ri(t) > rj(t) and ri(t+1) > rj(t+1)
or if ri(t) < rj(t) and ri(t+1) < rj(t+1). It is discordant if ri(t) > rj(t) and ri(t+1) < rj(t+1)
or if ri(t) < rj(t) and ri(t + 1) > rj(t + 1). A pair is said to be tied if ri(t) = rj(t) and
ri(t + 1) = rj(t + 1). In order to take in consideration the ties the formula for calculating the
correlation coefficient as in [10] is as follows:

τ =
nc − nd√

(n0 − n1)(n0 − n2)
,

where nc is the number of concordant pairs, nd is the number of discordant pairs, n0 = n(n−1)
2 ,

n1 =
∑
ta(ta − 1)/2, n2 =

∑
ua(ua − 1)/2, ta is the number of values in the ath group of ties

for variable i, ua is the number of values in the ath group of ties for variable j.
Three real-world networks from "the Koblenz Network Collection" project (KONECT) [13]

were used in our experiments being the Blogs [1], Ucsocial [16] and Adolescent Health [14]
networks. Besides the KONECT project graphs two artificial networks were used the first being
a network generated by the Cooper-Frieze graph process [6]. Lastly the SF-1 [5] network was
analyzed which is an empirical scale free network whose out-degree and in-degree both follow
power law distribution.

Experiments

Regarding our numerical experiments the first attempt was to extend the above described
α-parameter setup to a broader spectrum of centrality measures. Firstly we selected shortest
path based metrics like closeness and betweenness centrality measures in order to investigate
the Kendall’s Tau rank correlation coefficient between the ranking of the measures and the
information spreading capability of the nodes. On Figures 1a and 1b the Kendall correlation
coefficient values are present for the combination of out-degree and in-degree and out-closeness

125

0.2

0.3

0.4

0.5

0.6

0.00 0.25 0.50 0.75 1.00
alpha value

K
e

n
d

a
ll’

s
 t
a

u

0.0

0.2

0.4

0.6

0.00 0.25 0.50 0.75 1.00
alpha value

K
e

n
d

a
ll’

s
 t
a

u

(a) out-degree and in-degree (b) out-closeness and in-closeness

Figure 1: The evolution of the Kendall’s tau correlation coefficient based on the change of the
alpha-parameter on the Blogs network

and in-closeness respectively. Afterwards the estimate versions of these measures were calcu-
lated, and interestingly higher correlation coefficients appeared when calculating with the
estimated values rather than the concrete values. By determining the most important nodes
based on the different centrality measures we randomly chose pairs and triplets among them
to analyze the correlation between the order of the pairs when it comes to group centrality and
the diffusion capability of the given set of nodes used as initial seed nodes in the influence
maximization model. In order to do so a tensor like structure was implemented that contained
the values for the given pairs and triplets of nodes. Based on our experiments a generalized
model was built aiming at finding the best α-parameter for the input vectors in order to approx-
imate a given feature, like for example the ranking vector based on the propagation model. In
this setup the first two input vectors are centrality measure vectors and the third vectors is the
node ranking based on the propagation results from the IC model. The optimization problem
is designed to find the best fitting α-parameter in order to maximize the Kendall correlation
coefficient between the rank vector provided by the IC model and the ranking provided by
the extended centrality measure calculated with the given α-parameter. In this setup the two
parametrized vectors are multiplied in an element-wise manner. Based on this idea the well-
known fact regarding the several different approaches of calculating the product of two vectors
from linear algebra got involved. For example when talking about edge weight prediction, if
we want to calculate the edge weights for every possible pairing of the nodes that results in
a matrix, thus in this situation we are calculating the outer product of the two input vectors.
We applied the α-parameter to a link prediction problem introduced in [3] in order to find
better estimations for signed edge weights. The two input vectors in this situations were the
fairness and goodness measures proposed by the mentioned article. The third option is taking
the inner product of the two vectors, which results in a scalar. If we think of this scalar as a
graph attribute, the optimization model will search for the best fitting parameter in order to
approximate a global graph attribute based on two centrality measure vectors.

Conclusion

Motivated by the use of α-parametrized centrality measures we have been building a more
general optimization model aiming to find the best possible parameter for its input vectors
in order to approximate a given graph property. In our future work we aim to apply the

126

model on different real-world social networks driven by the above mentioned applications like
selecting a group of seed nodes for the Independent Cascade influence maximization model,
or improving a missing link prediction method, but also calculating the inner dot product of
the input vectors in order to make experiments with global graph features like graph diameter
of clustering coefficient.

Acknowledgements

The project has been supported by the European Union, co-financed by the European Social
Fund (EFOP-3.6.3-VEKOP-16-2017-00002) and by grant TUDFO/47138-1/2019-ITM of the Min-
istry for Innovation and Technology, Hungary.

References

[1] Lada A Adamic and Natalie Glance. The political blogosphere and the 2004 us election:
divided they blog. In Proceedings of the 3rd international workshop on Link discovery, pages
36–43, 2005.

[2] Murray A Beauchamp. An improved index of centrality. Behavioral Science, 10(2):161–163,
1965.

[3] Phillip Bonacich. Factoring and weighting approaches to status scores and clique
identification. Journal of Mathematical Sociology, 2(1):113–120, 1972.

[4] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search
engine. Computer Networks and ISDN Systems, 30(1-7):107–117, 1998.

[5] Young Sul Cho, Jin Seop Kim, Juyong Park, Byungnam Kahng, and Doochul Kim.
Percolation transitions in scale-free networks under the achlioptas process. Physical review
letters, 103(13):135702, 2009.

[6] Colin Cooper and Alan Frieze. A general model of web graphs. Random Structures &
Algorithms, 22(3):311–335, 2003.

[7] Linton C Freeman. A set of measures of centrality based on betweenness. Sociometry,
pages 35–41, 1977.

[8] Peng Jia, Jiayong Liu, Cheng Huang, Lin Liu, and Chunyang Xu. An improvement
method for degree and its extending centralities in directed networks. Physica A: Statistical
Mechanics and its Applications, 532:121891, 2019.

[9] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through
a social network. In Proceedings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 137–146, 2003.

[10] Maurice G Kendall. The treatment of ties in ranking problems. Biometrika, 33(3):239–251,
1945.

[11] Jon M Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the ACM,
46(5):604–632, 1999.

[12] Srijan Kumar, Francesca Spezzano, VS Subrahmanian, and Christos Faloutsos. Edge
weight prediction in weighted signed networks. In Data Mining (ICDM), 2016 IEEE 16th
International Conference on, pages 221–230. IEEE, 2016.

127

[13] Jérôme Kunegis. Konect: the koblenz network collection. In Proceedings of the 22nd
International Conference on World Wide Web, pages 1343–1350, 2013.

[14] James Moody. Peer influence groups: identifying dense clusters in large networks. Social
Networks, 23(4):261–283, 2001.

[15] UJ Nieminen. On the centrality in a directed graph. Social Science Research, 2(4):371–378,
1973.

[16] Tore Opsahl and Pietro Panzarasa. Clustering in weighted networks. Social networks,
31(2):155–163, 2009.

[17] Gert Sabidussi. The centrality index of a graph. Psychometrika, 31(4):581–603, 1966.

128

Toolset for supporting the number system research

Péter Hudoba and Attila Kovács

Abstract: The world of generalized number systems contains many challenging areas. In
some cases the complexity of the arising problems are unknown, but computer experiments
are able to support the theoretical research. In this talk we introduce a new toolset that helps
to analyze number systems in lattices. The toolset is able to analyze the expansions; decide
the number system property; classify and visualize the periodic points; calculate correlations
between system data, etc.

The generalized number system functionality is implemented in Python, published alongside
with a database that stores plenty of candidates of number systems and is able to store the
custom properties like signature, matrix eigenvalues, etc. The researchers can connect to the
server and request candidates by custom filters to perform experiments on them or upload new
properties/candidates.

We present an introductory usage of the toolset and detail the experimental obervations that
can be achieved with the toolset and the database.

Keywords: radix system, generalized number system, simulation

Introduction

Let Λ be a lattice in Rn and let M : Λ → Λ be a linear operator such that det(M) 6= 0. Let
furthermore 0 ∈ D ⊆ Λ be a finite subset. Lattices can be seen as finitely generated free Abelian
groups. In this talk we consider number expansions in lattices.

Definition 1. The triple (Λ,M,D) is called a number system (GNS) if every element x of Λ has a
unique, finite representation of the form

x =

L∑
i=0

M idi ,

where di ∈ D and L ∈ N .

Here M is called the base and D is the digit set. It is easy to see that similarity preserves the
number system property, i.e., if M1 and M2 are similar via the matrix Q then (Λ,M1, D) is a
number system if and only if (QΛ,M2, QD) is a number system at the same time. If we change
the basis in Λ a similar integer matrix can be obtained, hence, no loss of generality in assuming
that M is integral acting on the lattice Zn.

If two elements of Λ are in the same coset of the factor group Λ/MΛ then they are said to be
congruent modulo M . If (Λ,M,D) is a number system then

1. D must be a full residue system modulo M ;

2. M must be expansive;

3. det(In −M) 6= ±1 (unit condition) .

If a system fulfills the first two conditions then it is called a radix system.
Let ϕ : Λ → Λ, x

ϕ7→ M−1(x − d) for the unique d ∈ D satisfying x ≡ d (mod M). Since
M−1 is contractive and D is finite, there exists a norm ‖.‖ on Λ and a constant C such that the
orbit of every x ∈ Λ eventually enters the finite set S = {x ∈ Λ | ‖x‖ < C} for the repeated
application of ϕ. This means that the sequence x, ϕ(x), ϕ2(x), . . . is eventually periodic for all

129

x ∈ Λ. Clearly, (Λ,M,D) is a number system iff for every x ∈ Λ the orbit of x eventually
reaches 0. A point p is called periodic if ϕk(p) = p for some k > 0. The orbit of a periodic point
p is a cycle. The set of all periodic points is denoted by P. The signature (l1, l2, . . . , lω) of a radix
system is a finite sequence of non-negative integers in which the periodic structure P consists
of #li cycles with period length i (1 ≤ i ≤ ω).

The following problem classes are in the mainstream of the research.

Definition 2. For a given (Λ,M,D) the decision problem asks if the triple form a number system or
not.

Definition 3. For a given (Λ,M,D) the classification problem means finding all cycles (witnesses).

Definition 4. For a given (Λ,M,D) the parametrization problem means finding parametrized families
of number systems.

Definition 5. For a given (Λ,M,D) the construction problem aims at constructing a digit set D
to M for which (Λ,M,D) is a number system. In general, construct a digit set D to M such that
(Λ,M,D) satisfies a given signature.

The algorithmic complexity of the decision and classification problems are still unknown.

The toolset

To support the theoretical research of the area, we built a Python based toolset that helps the
investigations and experiments. The toolset implements the base features of a number systems,
like addition, multiplication with any matrix based system. It gives multiple possibilities to
solve a decision or a classification problem, starting with a simple brute force, to probabilistic
solutions.

To speed up the solving of these problems we can initiate optimization algorithms, that
rotates the lattice into a more optimal state, where we can solve the problems faster. We can
visualize the expansion of the numbers in system to understand the deeper structure, like we
can see on the Figure 1.

Figure 1: An expansion graph of a non-number
system candidate, drawn by the toolset

The area has a plenty of unsolved
problems in general, but most of the
problems have solutions for a specific forms
of number systems. To test conjectures of
specific forms it is necessary to be able to
collect candidates, filter them and organize
the results. Therefore we implemented
a server-side application which is able
to store various data on number system
candidates. The database already contains
more than 10 000 candidates. We uploaded
cases by generating companions of expansive
polynomials with constant terms ±2,±3,±5,
±7). We used canonical, shifted canonical,
symmetric digit sets as well and we calculated
many combinations of product systems.

The data server allows to read data from
the server publicly via a JSON API and the
registered users with own API token can

send new properties to the database. The candidates can be filtered by any custom property.

130

Figure 2: Runtime comparison of the simple decide method and the smart one by the size of
the space where the witnesses can be found

The server already stores plenty of properties, like eigenvalues, eigenvectors, periodic points
and orbits, classification details, etc. In this talk we present an introductory usage of the toolset.

Experimental observations

We investigated many candidates and filled up the publicly available database. With the aid
of the database any researcher can easily check his/her conjecture.

Using the toolset we found out multiple conjectures. We generalized a previous conjectures
that says if the absolute value of the contant term of the polynom is 2, then we can find a
witness that shows if it is a number system or not. Our conjecture is that we can find a witness
to counterproove the number system property of a candidate within a constant term absolute
value sized box.

In 2-dimensional product system cases we found a connection between the eigenvector
directions and the number system property. As we can see in Figure 3, if the eigenvalues can
be enclosed in a π degree max, then the product will be a number system as well.

Figure 3: 2-dimensional examples of base matrix eigenvalues in GNS or non-GNS cases.
Eigenvalues visualized on the complex plane. The candidates are denoted by the polynomials
that generated them.

131

References

[1] Kovács, A., On computation of attractors for invertible expanding linear operators in Zk , Publ.
Math. Debrecen, 56/1–2, (2000), 97–120.

[2] Kovács, A., On number expansions in lattices, Math. and Comp. Modelling, 38, (2003), 909–
915.

[3] Burcsi, P., Kovács, A., Papp-Varga, Zs., Decision and Classification Algorithms for Generalized
Number Systems, Annales Univ. Sci. Budapest, Sect. Comp., 28, (2008), 141–156.

[4] Hudoba, P., Kovács, A., Some improvements on number expansion computations, Annales Univ.
Sci. Budapest, Sect. Comp., 46, (2017), 81–96.

132

Geometric Distance Fields of Plane Curves

Róbert Bán and Gábor Valasek

Abstract: This paper introduces a geometric generalization of signed distance fields for plane
curves. We propose to store simplified geometric proxies to the curve at every sample. These
proxies are constructed based on the differential geometric quantities of the represented curve
and are used for queries such as closest point and distance calculations. We investigate the
theoretical approximation order of these constructs and provide empirical comparisons be-
tween geometric and algebraic distance fields of higher order. We apply our results to font
representation and rendering.

Keywords: Computer Graphics, Signed Distance Fields, Plane Curves

Introduction

Signed distance functions are a versatile implicit representation of shapes that possess im-
portant practical advantages over standard implicit expressions [3, 4, 5]. Formally, they map
a signed distance to every point in space, i.e. f : En → R is a signed distance function of a
F ⊂ En volume in the n dimensional Euclidean space En iff

f(x) =

{
−d(x, ∂F) if x ∈ F
d(x, ∂F) if x 6∈ F

where d(x, F) = infy∈F ‖y − x‖2. Despite their attractive properties, factoring free-form ge-
ometries in terms of signed distance functions is not tractable in closed form in general; the
signed distance function of a complex scene is only available procedurally. This poses difficul-
ties in their real-time applicability.

Signed distance fields overcome this difficulty by sampling the signed distance function and
using a reconstruction filter to compute a local approximation to the actual signed distance for
all points in space. Performance concerns usually limit this filtering to bi- and trilinear filtering
for planar and spatial distance fields, respectively. Signed distance fields saw a wide adaptation
in high quality font rendering [1] and they are used in high performance game engines for
effects such as soft shadows and ambient occlusion [6, 7].

Our paper introduces a higher order geometric generalization of signed distance fields.
Instead of storing an algebraic approximation to the signed distance function at every sample,
we propose the use of a geometric approximation to the local geometry. We show that our
geometric approach is equivalent to the higher order approximation of the signed distance
function itself but at a reduced storage cost.

Theoretical background

Algebraic distance fields

Algebraic distance fields are generalizations of distance fields. Instead of storing the distance
value at every sample, we store a polynomial approximation of the distance function around
the sample point.

First, let us show that the distance samples of an arbitrary distance field can be considered
as zero order, i.e. a constant Taylor approximations to the distance field, as presented in [2].

133

Let α = (α1, . . . , αn) denote a multi-index where |α| = α1 + · · · + αn, xα = xα1
1 · . . . · xαn

n ,
∂αf = ∂α1

1 . . . ∂αn
n f , α! = α1! · . . . ·αn!. The degree k multivariate Taylor polynomial about x0 is

Tk,x0(x) =
∑
|α|≤k

∂αf(x0)

α!
(x− x0)

α .

The degree 0 Taylor-polynomial is the value of the function itself: T0,x0(x) = f(x0), that is
indeed, the classical distance fields are order 0 algebraic distance fields. By the order of a distance
field we refer to the highest order derivative of the signed distance function incorporated into
the distance field.

In higher orders, we store the coefficients of the polynomial Taylor approximation. At
degree 1, the polynomial ax+ by+ c is represented by the (a, b, c) tuple of coefficients in power
basis. This linear polynomial implicitly describes a line. To express its power basis coefficients
with the derivatives of the signed distance function f : E2 → R, let x = (x, y)T ∈ E2,
x0 = (x0, y0)

T ∈ E2, then

T1,x0(x) = f(x0) + ∂xf(x0)(x− x0) + ∂yf(x0)(y − y0) =

∂xf(x0)︸ ︷︷ ︸
a

·x+ ∂yf(x0)︸ ︷︷ ︸
b

·y + f(x0)− ∂xf(x0) · x0 − ∂yf(x0) · y0︸ ︷︷ ︸
c

Note that the constant term c is not simply the function value f(x0), but a translated value.
Similarly, the coefficients of the second degree polynomial ax2 + by2 + cxy+ dx+ ey+ g are

expressed by the first (∂xf, ∂yf) and second order (∂xxf, ∂xyf, ∂yyf) derivatives of the signed
distance function. This means that we have to store six coefficients for every second order
algebraic distance field sample.

By increasing the per sample Taylor approximation order, we can increase the accuracy of
the distance field. However, as the order increases, we need to store more coefficients per
sample: an order n Taylor approximation uses the derivatives of the signed distance function
up to order n. As such, it requires

(
n+2
n

)
coefficients in two variables.

To counter this coefficient explosion, we propose the use of geometric distance fields.

Geometric distance fields

For our proposed geometric distance fields, we store different geometric proxies that ap-
proximate the local differential geometry of the represented shape at the closest point to the
sample position.

The main theoretical insight of this paper is that the order n geometric contact of surfaces
guarantees that the derivatives of the signed distance functions of said geometries coincide at
the position of the join.

In order 0, the geometric proxy is the foot point, which is the closest point on the curve.
Compared to the 0th order algebraic distance field, a geometric sample contains two scalars
instead of one. The foot point can be encoded either in a global coordinate system or relative to
the sample point – a vector from the sample point to the foot point. This storage method doesn’t
contain the sign of the distance field, and thus it is less useful than the other constructions.

The first order geometric proxies to a plane curve are its tangent lines. For every first
order sample we store the tangent line of the foot point. We investigate several possible
representations of this tangent line, as well as the half-spaces that these tangent lines encode
in case of signed distance functions. We evaluate these in terms of expressive power and
construction.

The second order geometric proxy is the osculating circle of the plane curve. This circle is
tangent to the curve at the foot point and it has the same curvature (κ). A circle – as seen with

134

the tangent line – can be represented in many ways. We carry out the same evaluation of these
various representations as with the tangent lines.

Conclusion

This paper generalizes classic planar signed distance fields to higher order algebraic distance
fields. We show that the increased accuracy comes at a cost of coefficient increase. We propose
geometric distance fields to retain accuracy at a decreased per-sample coefficient requirement.

We compare these constructs in terms of theoretical approximation properties. We propose
practical construction algorithms for said fields and also carry out empirical comparisons bet-
ween algebraic and geometric distance fields.

Acknowledgement

EFOP-3.6.3-VEKOP-16-2017-00001: Talent Management in Autonomous Vehicle Control Tech-
nologies – The Project is supported by the Hungarian Government and co-financed by the
European Social Fund.

References

[1] Chris Green. Improved alpha-tested magnification for vector textures and special effects. In ACM
SIGGRAPH 2007 courses, 9–18, 2007.

[2] Róbert Bán and Gábor Valasek. First Order Signed Distance Fields. Eurographics 2020 -
Short Papers 33–36, Wilkie, Alexander and Banterle, Francesco (Ed.) The Eurographics
Association, 2020.

[3] John C. Hart. Sphere tracing: A geometric method for the antialiased ray tracing of implicit
surfaces. The Visual Computer, 12:527–545, 1994.

[4] Bernhardt, A., Barthe, L., Cani, M.-P. and Wyvill, B. Implicit Blending Revisited. Computer
Graphics Forum, 29:367–375, 2010.

[5] Benjamin Keinert, Henry Schäfer, Johann Korndörfer, Urs Ganse, and Marc Stamminger.
Enhanced Sphere Tracing. In Smart Tools and Apps for Graphics, Giachetti A., (Ed.) The
Eurographics Association, 2014.

[6] Daniel Wright. Dynamic Occlusion with Signed Distance Fields. Advances In Real-Time
Rendering, SIGGRAPH 2015. http://advances.realtimerendering.com/s2015/
DynamicOcclusionWithSignedDistanceFields.pdf . Retrieved 26. 03. 2020.

[7] Róbert Bán, Csaba Bálint, Gábor Valasek. Area Lights in Signed Distance Function Scenes. EG
2019 - Short Papers, Cignoni P., Miguel E. (Ed.) The Eurographics Association, 2019.

135

http://advances.realtimerendering.com/s2015/DynamicOcclu sionWithSignedDistanceFields.pdf
http://advances.realtimerendering.com/s2015/DynamicOcclu sionWithSignedDistanceFields.pdf

Towards Rootkit Detection on Embedded IoT Devices

Roland Nagy and Levente Buttyán

Abstract: Rootkits are malicious programs that try to maintain their presence on infected
computers while remaining invisible. They have been used to attack traditional computers
(PCs and servers), but they may also target embedded IoT devices. In this work, we propose a
rootkit detection approach for such embedded IoT devices, where the detection mechanism is
executed in an isolated execution environment that protects it from manipulation by the rootkit.
Our rootkit detection approach is focused on detecting Direct Kernel Object Manipulation
(DKOM) and it is based on detecting inconsistencies caused by the presence of a rootkit in
various Linux kernel data structures such as the process list, the process tree, and different
scheduling queues. We also report on the current status of our implementation using OP-TEE,
an open source Trusted Execution Environment.

Keywords: Embedded Systems, Internet of Things, Security, Malware

Introduction

Connecting embedded devices to the Internet (a.k.a. the Internet of Things or shortly IoT)
enables new applications such as smart homes, intelligent transportation systems, and person-
alized healthcare. However, many of these new applications have stringent security and privacy
requirements. Unfortunately, IoT systems are notoriously insecure. One of the reasons is
that IoT devices are rather easy to compromise by exploiting weaknesses in the way they are
operated and vulnerabilities of the software components running on them. A consequence of
this is that malware for IoT has appeared [1, 4] and gaining momentum [5].

Sophisticated malware tries to maintain its presence on infected devices while remaining
invisible for the operators of those devices. This sort of malware is called rootkit. Typically,
rootkits run with elevated (root) privileges and they modify system commands and/or low
level data structures in the operating system (OS) kernel such that their files and running
processes do not appear in the output of various system tools used to monitor the operation
of the devices. Detecting such a rootkit is challenging, mainly because any detection program
running at the same or lower privilege levels than the rootkit may also be compromised or may
be misled by the tricks used by the rootkit to hide itself.

In this work, we aim at rootkit detection on embedded IoT devices, and we address the
above challenge by running our rootkit detection tool in a Trusted Execution Environment
(TEE), which is isolated from the main OS of the device, and hence the rootkit – even running
with root privileges on the main OS – cannot interfere with its operation. In this extended
abstract, we introduce the concept of TEE and describe how our rootkit detection tool running
in the TEE detects active rootkits.

Trusted Execution Environments

A TEE is an execution environment which is isolated from the main OS and applications
running on the device (the so called Rich Execution Environment or shortly REE) by software
and hardware mechanisms (e.g., based on the ARM TrustZone1 technology). Within the TEE,
trusted applications (TAs) run on top of a trusted OS. The isolation mechanisms ensure, that
system resources (e.g., memory) of the REE can be accessed from the TEE, but not vice versa.
Thus, secrets (e.g., keys) can be kept and critical computations can be executed within the TEE

1https://developer.arm.com/ip-products/security-ip/trustzone

136

https://developer.arm.com/ip-products/security-ip/trustzone

without the risk of being observed or manipulated by potentially malicious software running
in the REE.

Our thesis is that an active rootkit must introduce inconsistencies in the data structures
of the main OS kernel, since it must remove its own processes from some data structures
used by system monitoring tools in order to maintain stealthiness, while it must keep its own
processes in other data structures for being eventually scheduled and executed. Hence, our
rootkit detection approach is based on detecting inconsistencies in OS kernel data structures
by a TA running in the TEE. For this, our TA needs to access the memory of the main OS
running in the REE.

As a TEE implementation, we use OP-TEE2, which is an open source TEE, compliant with
a widely accepted standard3 for TEEs. In OP-TEE, by default, simple TAs are not capable for
accessing the memory regions of the REE; such an access requires a so called Pseudo-TA (PTA).
Our PTA is running with the privileges of the trusted OS kernel, and we can instruct this kernel
to map the memory regions used by the main OS (typically Linux on embedded devices) in the
REE, such that our PTA can access them.

Rootkit detection

Rootkits use different cloaking mechanisms to hide their presence on infected systems.
A simple idea, for instance, is to hide something by corrupting the tool used for gathering
information about it. On Linux, an example would be modifying the ps program such that it
does not list some specific processes. This type of attack can be easily detected by verifying the
integrity of important system programs, which we do not discuss here.

In this work, we focus on rootkits that use Direct Kernel Object Manipulation (DKOM)
[3]. Such rootkits modify the underlying data structures that the kernel uses to maintain
information about its specific components. For instance, if one can determine what data struc-
ture is used to populate the /proc virtual filesystem on Linux, then he may be able to remove a
specific process from that data structure, which will then remain hidden from the ps command.

As, in the IoT domain, the main OS running on embedded devices is often Linux, we
describe some relevant Linux kernel data structures that may be manipulated by DKOM:

task_struct: Inside the Linux kernel, this structure holds most of the information associated
with processes. Internally, tasks are equivalent to threads, and any process may have
several threads. Tasks of the same process share one virtual address space and many
more resources.

Process list: The task structures inside the kernel memory are chained into a doubly linked
circular list. In previous kernel versions, the kernel iterated through this list to populate
the /proc directory.

Process tree: Processes are related to each other via a parent-child relationship. Every process
has a parent that created it, and processes might start other processes that become their
children. The task_struct holds a pointer to the parent of the given task, a list of
pointers for its children, and another list of pointers for its siblings.

Pid namespace, IDR and the struct pid: Each namespace maintains a radix tree4, containing
pointers to pid structures5. These structures have lists of pointers for the tasks using
them. This data structure is responsible for accounting for taken pids and for fast access

2https://www.op-tee.org
3https://globalplatform.org
4https://lwn.net/Articles/175432/
5https://lwn.net/Articles/195627/

137

https://www.op-tee.org
https://globalplatform.org
https://lwn.net/Articles/175432/
https://lwn.net/Articles/195627/

to tasks via their pids6. In recent kernel versions, this mechanism populates the /proc
directory.

Run queues: Each CPU has a runqueue structure, holding inline structures for the available
schedulers. These have their own methods to keep track of runnable processes. The CFS
and DL schedulers are using red-black trees7 for this, while the real-time scheduler has a
so-called rt_prio_array; a bitmap and an array of lists for each priority level8.

Wait queues: Every time a process must wait for something, it is placed in a waitqueue9,
containing wait entries. Each such entry has a pointer to the task waiting, and to a
function to execute when it is time to wake up the task.

The basic idea of our rootkit detection mechanism is simple: We iterate through the previously
mentioned data structures, collect pids into different lists, and look for inconsistencies in the
obtained lists. For instance, it is abnormal if a pid can be found in the process tree, but it is
missing from the process list.

Implementation

Our rootkit detection solution is implemented in an OP-TEE TA, which uses a PTA to access
the Linux kernel’s memory in the REE as we mentioned before. In order to be able to use types
and structures of the Linux kernel, we generated header files from the DWARF section of a
dummy kernel module with the dwarfparse script10. In addition, we were able to retrieve
useful addresses from the System.map file of the compiled kernel, with which we were able
to locate the data structures described in the previous section.

So far, we managed to implement the following: We can request a copy of the init task,
from which we can iterate through the list of all processes using the process list. We save the
pid of each task found in the process list into an arraylist. Then, from the init task again, we
run a depth-first search on the process tree, saving the pids found there into a separate arraylist.
For each element of these lists, we look for that pid in the other list, and if not found, we save it
to yet another list. If this differential list is not empty, then we found suspicious processes that
appear in one of the kernel data structures but missing from the other one. After this check, a
unified list is created from the first two collections of pids, and we check if all the pids found
in the schedulers of all the CPUs are also a part of this list.

We tested our implementation with a simple rootkit, which creates a bind shell and removes
it from the process list. We detected the rootkit by identifying a pid in the process tree that was
missing from the process list.

Conclusion and future work

Rootkits are malicious programs that try to maintain their presence on infected devices
while remaining invisible for the operators of those devices. They have been used to attack
traditional computers (PCs and servers), but they may also target embedded IoT devices. In
this work, we proposed a rootkit detection approach for such embedded IoT devices, where the
detection mechanism is executed in a TEE, which protects it from manipulation by the rootkit
running in the REE. Current technologies (e.g., ARM TrustZone) supports the implementation

6https://lore.kernel.org/patchwork/patch/834401/
7https://lwn.net/Articles/184495/
8https://www.linuxjournal.com/article/10165
9https://lwn.net/Articles/577370/

10https://github.com/realmoriss/dwarfparse

138

https://lore.kernel.org/patchwork/patch/834401/
https://lwn.net/Articles/184495/
https://www.linuxjournal.com/article/10165
https://lwn.net/Articles/577370/
https://github.com/realmoriss/dwarfparse

of TEEs on embedded devices, hence, our approach does not rely on far fetched assumptions,
but can be readily used even today on commodity embedded boards.

The work presented here is work-in-progress. We are currently experimenting with iterating
through the IDR of the initial pid namespace and collecting pids from waitqueues. We also
plan to extend the functionality of our detection tool with features beyond DKOM, and we
would like to cover kernel resources other than processes. Finally, we would like to test our
implementation against real rootkits captured in the wild.

Acknowledgment

The presented work was carried out within the SETIT Project (2018-1.2.1-NKP-2018-00004),
which has been implemented with the support provided from the National Research, Develop-
ment and Innovation Fund of Hungary, financed under the 2018-1.2.1-NKP funding scheme.

References

[1] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z. Durumeric,
J. A. Halderman, L. Invernizzi, M. Kallitsis, D. Kumar, C. Lever, Z. Ma, J. Mason,
D. Menscher, C. Seaman, N. Sullivan, K. Thomas, and Y. Zhou. Understanding the Mirai
botnet. In USENIX Security Symposium, August 2017.

[2] W. Blunden. The Rootkit Arsenal: Escape and Evasion: Escape and Evasion in the Dark Corners
of the System. Jones & Bartlett Learning, 2009.

[3] J. Butler. DKOM – Direct Kernel Object Manipulation. In BlakHat USA, 2004.

[4] S. Herwig, K. Harvey, G. Hughey, R. Roberts, and D. Levin. Measurement and analysis
of Hajime, a peer-to-peer IoT botnet. In Network and Distributed Systems Security (NDSS)
Symposium, 2019.

[5] P.-A. Vervier and Y. Shen. Before toasters rise up: A view into the emerging IoT threat
landscape. In IoT Security Foundation Conference, 2018.

139

Use data mining methods in quality measurement in the education
systems

Sándor Balázs Domonkos and Németh Tamás

Abstract: Our basic problem is rooted in the educational systems, where measurement and
evaluation of the pedagogical work and pedagogical developments is a must from year to year.
These measurements can be used for the individuals to get information on which field they
need to improve and can be used for rewarding systems. We get real data from 58 different
schools from 2007-2016, from nearly 8000 educators. All these survey’s ratings and other
data got collected and processed to get in a usable form. The schools make statistics with the
collected data every year, but the results depend on individuals, and because of that these have
a lot of distortions for example personal dependencies or connections. To get a workaround
of the "personal" dependencies of these statistics, we use the PageRank algorithm with the
Comparability graph[12]. With the comparability graph, we could compare two attributes with
each other not heavily depend on the persons who fill the survey.

Keywords: data mining, pagerank, comparability graph

Introduction

The main problem is raising from the education system quality and evaluation system about
the educators. This system is really important for the schools, because only in this way they
can monitor the educators’ progression and other workers’ qualities and working capabilities.
These data that they collected via surveys are not just used to personal evaluation and ratings,
but to get a view of the workload for each individual, for example, it also can help to make
a better timetable for everyone with this data. So we examined the data and the statistical
style old system and we got the conclusion that the statistics-based system is can be very noisy
and heavily depends on the person to person connections and depends on a considerable luck
factor for the drawing system.

Examination and explanation

So to take an overview of the whole process and the problems, in the beginning, the schools
use a default survey system with given attributes, and the evaluator teachers can give 1-5 scores
to every attribute. There is a drawing for every teacher, everyone gets a few evaluator teachers
but not the same ones - and this is the main problem. Because if Teacher A is lucky and Teacher
B is unlucky at the drawing system, that not so life like thing/distosion can happen that Teacher
A only gets higher point giver evaluators and get only good points for every attribute, and
Teacher B get unlucky and get only strict evaluators and only get lower points for everything.
One mor factor that is complicate and invalidate the statistical results, that things can happens
if Teacher A get X amount of evaluators and Teacher B get a lower amount, that can distort the
year to year and teacher to teacher comparsions.

Graph Based Solution

After we researched the other researcher articles that mentioned before and these other
articles [1] [2] [3] [5] [6] [7]. We decide that Our solution for this problem will based on graphs
and a combination of pagerank algorithm. We analize the raw datas try out different methods
and learning from the other articles [4] to break up the datas for different viewpoints and

140

build different types of graphs. After a lots of experiencing we decide to use Comparability
graphs for every attributes. First of all we need to break up the datas for 3 parts: evaluating
lecturer, attributes for the evaluated lecturer, evaluated lecturer. So in this way we can construct
comparability graphs for every attributes. In this way 2 evaluation can be compared if they
are from the same evaluator lecturer and for the same attributes, in this way the data noise
is dampening down,because its compare data from the same evaluator. From these datas we
construct Comparability graphs for every attributes. As the first figures show it is building
the Comparability graph for a single attributes after we build a simple graph where the edges
contains the given evaluator values and we paired them up to each evaluator lecturer with
each evaluated lecturer as you can see in the figure. After that we build up the Comparability
graphs in this way, for example Lecturer1 get 3 points and Lecturer2 got 4 points from the
same nice evaluator so they can be compared so on the Comparability graph they got an edge
labeled 1 from Lecturer1 to Lecturer2 so they can be compared because they get evaluated by
the same evaluator for the same attributes. The next step Lecturer2 is compared with Lecturer3
when they get numbers from a Strict Evaluator, Lecturer2 gets 3 and Lecturer3 gets 1. So these
two values are can be compared again on the Comparability attributes graph and the edge is
pointing to Lecturer2 from Lecturer3 and get a label 2 that means Lecturer2 is "bette" here with
2 points. In these values we put them on the edges, and the edges are directed.

On these new graphs we can use the PageRank algorithm as mentioned before [8][9][10], to
get quantified results for every evaluated lecturer for every attribute without the distortions of
the personal conflicts or any other type of distortions like the luck factor of the drawing system
mentioned above. We modify the PageRank algorithm a little bit that when building up the
values the modified PageRank algorithm can be set to take into account the edge values of the
graphs, not only the incoming and outgoing edge numbers and the importance of them. In
this way, we can use the plus information that we generated with the comparability, graph to
compare the teachers’ attributes for each other only if they have a common evaluator teacher.
The modified PageRank algorithm gives more data about the evaluating lecturers too for each
attribute after the modified PageRank is done these values are just more well adjusted for every
attributes for every evaluated lecturer. For example on the old-style method if someone is
getting a few bad results because of the drawing system luck factor or any personal issues, these
bad ratings can really pull down the person numbers, but with our method the comparability
graph for attributes processed with the modified PageRank methods these bad ratings can ease
down the input data, cause the algorithm will ease out if someone gives only bad points for
an individual and good points for everyone else or give bad points for everyone because it is a
strict evaluator or give only good points for everyone these evaluators can only be compared on
the teacher attributes level if they have a common teacher evaluated, so in this way we double
defend against the people and the luck factor. Because the comparability graph generation
only compares the teachers with common evaluators for common attributes, and the modified
PageRank was taken into account these edge values too that we generated in the comparability
graph between the nodes.

My Page Rank algorithm

Input Analog paper type survey coming from evaluator teachers year to year
Output Digital and comparable digital data for every evaluated teacher for every year.

1. Collect the analog data from the schools

2. Group the datas by teacher and secondary by year

141

3. Make the first simple graph for evaluator to evaluated teacher attributes

4. Use the simple graphs to build up the Comparability Graph for every attributes with the
edges contains the compare values numerically

5. On the Comparability Graph for every attributes for every teacher we can run the modified
page ranking algorithm that consider the edge values too to calculate the correct values. The
algorithm has a sub part that count the numericall values on the edges, like if there are multiple
edges there.So if the edge value from A to B is 2, than the algorithm count it as 2 piece of A to
B edge, like on value 3 it counts as 3 piece of A to B edge. This sub part everytime run down
and give the simulated data back to the original page rank algorithm.

6. We get the output for every teacher for every attributes that can be compared and these
values doesn’t distorted by the luck factor of the drawing system.

Results

The quantified values are less likely to depend on the evaluator person and much more
like depends on the evaluated person cause the comparability graph and modified PageRank
method helps us to get the right value for every teacher and defend against the drawing system
luck and personal factor distortions. This method the year to year improvements are taking
shape in a better way and more readable way and more lifelike. This way we not just only
get the results for the evaluated people attributes it can work back way too, we can get data
from the evaluators too. So we can make some conclusions in the lecturers have a personal
or work-related problem with each other. If the results give back significant value distortions
to A teacher to B teacher versus A teacher to all other teachers, this can give a warning sign.
For results we got a much lower dispersion level and with a lower dispersion and very low
fluctuation level we can much easier fit line to yearly improvement attributes too. These
numbers are much more like living in a mathematical way too because it is not life-like if
teacher performance is going down for half of them to a year to next year or go up by double.
On figure 10, for example, we can see that from 2009 to 2010 there is a big jump in statistical
data and that wasn’t very acceptable and that was clearly a statistical method failure by data
distortions. The average dispersion level for the results can be 30-50 percent better than the
statistics ones summarized for the whole school level, and these data not just look better but
checked by persons at the schools and they confirm that these data are much more like real life
and give a better understanding.

Future plans

In the future we want to spread these methods with these data we gathered and processed
by successfully, on the student level as well.

For example on the student level, they need to be a better compare system as another article
mentioned before to use PageRank methods on the values too. But with our method, we can use
the processed comparability graph values to give another comparability graphs for student-
level where we can only compare students where they get the same teacher and with similar
attributes. On the evaluator’s side, we can get extra pieces of information about the strictness
of the teachers too. This info also can get into account when we want to compare student grade
results. So widely we try to make a better system to follow the students’ progress on each
subject and not only based on the grades. Above all we try to make a manual override for

142

the algorithm that we can give importance for certain evaluators for example principals or HR
managers that they values can be multiplied and counted in with more weight on it.

Acknowledgements

This work was supported by Enaplo and snw systems.

References

[1] C. Romero, S. Ventura, M. Pechenizkiy and R. Baker, Ryan, Handbook of educational data
mining, CRC Press, 2011.

[2] C. Romero and S. Ventura, Educational data mining: A survey from1995 to 2005 , Expert
systems with applications volume 33 no. 1 pp. 135-146 2007

[3] C. Heiner, N. Heffernan, and T. Barnes, Educational data mining , In Supplementary of
Proceedings of the 12th International Conference of Artificial Intelligence

[4] Fiala, D., Rousselot, F., and Jezek, K., Pagerank for bibliographic networks. Scientometrics
76, 1 (2008)

[5] Isaac, Stephen, and William B. Michael.,Handbook in research and evaluation: A collection
of principles, methods, and strategies useful in the planning, design, and evaluation of
studies in education and the behavioral sciences. Edits publishers, 1995.

[6] Kuzmanovic, Marija, Gordana Savic, Milena Popovic, and Milan Martic., "A new approach
to evaluation of university teaching considering heterogeneity of students preferences."
Higher Education 66, no. 2 (2013): 153-171.

[7] Braga, Michela, Marco Paccagnella, and Michele Pellizzari., "Evaluating students
evaluations of professors." Economics of Education Review 41 (2014): 71-88.

[8] Bar-Yossef, Z., and Mashiach, "Evaluating students evaluations of professors." Economics
of Education Review 41 (2014): 71-88.

[9] Brin, S., and Page, L. The anatomy of a large-scale hypertextual web search engine.
Computer networks and ISDN systems 30, 1 (1998)

[10] Chen, Y.-Y., Gan, Q., and Suel, T., Local methods for estimating pagerank values. In
Proceedings of the 13th ACM International conference on Information and knowledge
management (2004)

[11] A. London. A local PageRank algorithm for evaluating the importance of scientific articles
,Annales Mathematicae et Informaticae 44:131-140 2015.

[12] A. London. A local PageRank algorithm for evaluating the importance of scientific articles
,Annales Mathematicae et Informaticae 44:131-140 2015.

[13] S. Brin and L. Page, engine The anatomy of a large-scale hypertextual Web search ,
Computer networks and ISDN systems, vol. 30, no. 1, pp. 107-117, 1998

143

Feature Extraction from JavaScript

Tamás Aladics, Judit Jász and Rudolf Ferenc

Abstract: Source code analyzation is generally a challenging task and it is especially true for
loosely typed languages like JavaScript. Traditionally analyzation is done by hand with the
help of static analyzation tools which has many disadvantages - one of which is the lack of
robustness. The recent advances in machine learning are promising to increase the robustness
of source code analysis, however for ML models to work a meaningful and compatible represen-
tation is needed. We propose a specific way of extracting features of JavaScript source code
based on it’s underlying structure (AST) then we embed these features to a fixed length vector
using Doc2Vec. Applying this method on a dataset of 150 000 Java Script source files we
found this representation to be meaningful as the semantically similar AST nodes are grouped
together after the embedding.

Keywords: JavaScript, Feature Assembler, Deep Learning, Doc2Vec

Introduction

Machine learning and recently deep learning has set foot in most subfields of computer
science and source code analysis is no exception. Machine learning can be used by itself or
as a supplementary tool for various tasks in this domain, for example code summarization,
code completion and error detection. For this purpose it is important to find meaningful
representation and attributes of the source code that can be fed to machine learning models
as features.

This is a challenging task for various reasons. For example the lately highly successful
natural language processing methods to process inputs are optimized for natural languages
leaving the domain of artifical languages with potentially better working approaches. Another
challenge is the fact that different programming languages may be better represented in differ-
ent ways as they are highly diverse in their sytax and semantics. Loosely typed languages are
especially challenging in this regard.

In this work we propose a method to extract meaningful features from source code focusing
on JavaScript methods and functions. We took advantage of the strictly structured nature
of programming languages and used source code’s underlying tree repesentation (Abstract
Syntax Tree or AST) to derive features. This involved embedding each function’s AST to
variable length vectors in ways that try to preserve the graph’s structure.

Using this method to produce the input sentences we trained a Doc2Vec embedding [1] on
a database containing 150 000 JavaScript source files [2]. In the end we find that meaningful
representation is indeed apparent as in the resulting embedding space the semantically related
nodes are close to each other.

Related

In the field of source code analysis different methods have been proposed to find ways to
represent source code digestible by machine learning models. One way to categorize these
approaches is their granuality, as it is done by Zimin Chen et al. [3] which we use to present
the related work in this topic.

Various attempts have been made to extract features based on the tokens that build up
the source code. Harer et al. [4] uses these tokens as inputs for Word2Vec to generate word
embedding for C/C++ tokens for software vulnerability prediction. Chen & Monperrus [5] use
Word2Vec to generate java token embedding for finding the correct ingredient in automated
program repair . They use cosine similarity on the embeddings to compute a distance between
pieces of code.

144

Other approaches are based on embedding functions or methods, which is not as fine grained
as representations based on tokens. Devlin et al. [6] use function embedding as input to repair
variable misuse in Python. They encode the function AST by doing a depth first traversal and
create an embedding by concatenating the absolute position of the node, the type of node,
the relationship between the node and its parent and the string label of the node. DeFreez
et al. [7] generate function embeddings for C code using control-flow graphs. They perform a
random walk on interprocedural paths in the program, and used the paths to generate function
embeddings. The embedding is used for detecting function clones.

In the realm of JavaScript source analyzation a related work is done by Theeten et al. [8]
who presented Import2Vec, an embedding of software libraries for (among other languages)
JavaScript. They create vectors based on import statements to indicate similarity between
software libraries. A lot of other methods to tackle source code analysis are based on metrics.
Gregor Richards et al. [9] uses various (both general and dynamic language related) metrics to
analyse the dynamic behaviour of JavaScript.

Taking the work of Zimin Chen et al. [3] as basis, numerous papers have been published in
the field of feature extraction but only a small subset of these use AST as we propose. Also,
most of the publications are focused around Java, C/C++ or Python; the publications involving
JavaScript are very limited in quantity. This small number of publication for JavaScript are
solely based on metrics and static analysis tools [9, 10], or they are problem specific [8]. Our
method tries to specialize for JavaScript (as we took extra steps to take care of the heavy use of
anonymous functions, which is not that elemental in the more object oriented languages) but
still remain general.

Methodology and results

The first step of deriving important features of source code was to get the underlying struc-
ture of it. For this we used SourceMeter, an open source static analysis framework [11]. Analyz-
ing with SourceMeter generates various results and one of them is an AST representation which
we used. However, AST in itself is not a compatible format for machine learning algorithms as
it is a graph.

To map each AST to a form that is usable by ML algorithms we flattened them to AST node
sequences with the use of SourceMeter tools. Constructing the sequence consists of traversing
the AST, getting each node’s kind (ie. identifier, assignment, for loop etc.) then outputting
these types. Furthermore, we needed to find a way to take the overall structure of the code
into account so that if(cond) exp1; expr2; and if(cond) expr1; expr2; will not be mapped to the
same node sequence. For this end we introduced a separate identifier that is inserted into the
node sequence everytime the scope is changed. With this extra step we tried to ensure that
the resulting vector will be specific enough to reflect the structure but still remain general and
simple. Another note be added that JavaScript has heavy use of nested functions. We took the
path of only flattening the most outer function, the inner functions are flattened in place and
are not added as separate node sequences.

After flattening the AST we acquired a node sequence, each element in the sequence is an
identifier of a node kind. However, these sequences hold no semantic information yet. We used
Doc2Vec [1] to map these node sequences into meaningful representations in form of vectors.
Doc2Vec in general is an extension of Word2Vec [12], and it’s purpose is to generate vectors
for documents and for the words that build the documents up, using a specific mapping. This
mapping’s objective is to map semantically similar words and documents to vectors whose
distance is minimal for words/documents that are semantically similar. There are two main
approaches for this mapping: PV-DM and PV-DBOW. Both algorithms use a sliding windows
(context) around each word (center), and a paragraph vector for each document. The difference
is in the way of vector generation: PV-DM adjusts vectors so that context words and the

145

Figure 1: For Statement in the dimension reduced embedding space

paragraph vector predict the center word. PV-DBOW tries to do the opposite in a generative
manner: it calibrates vectors so that the central word generates the context words and the
paragraph vector. In the end both PV-DM and PV-DBOW finds an embedding where word
vectors will hold semantic information on word level, and document (or paragraph) vectors
will hold information on document level.

The embedding must be trained on a corpus that is large enough. We used a dataset made
up of 150 000 JavaScript source codes from more than 9300 projects [2]. This codebase is
promising to be diverse enough: it contains projects that consist of only a few configuration
files to complex systems. Using SourceMeter we generated the ASTs for the whole code base,
then on each AST we ran our AST flattener which resulted in 597 074 functions flattened into
node kind sequenes.

In our work, using the Doc2Vec lingo the "documents" are the node kind sequences (that
corresponds to a function), and the "words" are the node kinds in them. We used the genism [13]
library’s PV-DM algorithm implementation to generate the embedding, using the vector size
of 50, windows size of 10 with 8 epochs over the 597074 functions acquired from the 150k
JavaScript dataset.

We found that using the described AST Flattening on a function level then utilizing Doc2Vec
to get the embedding for the vectors resulted in a meaningful representation of the source code.
To illustrate these results we used Tensorboard, Tensorflow’s profiler and visualization toolkit,
which has built-in ways to present higher dimension vectors in 3D, in our case we used PCA
to do the dimensionality reduction. For exmaple, on Figure 1 we can see that the node kind
corresponding to for loops is most similar to loops and other control flow statements.

Conclusions and future works

To concolude our work it is apparent that this way of representing JavaScipt source code
can be promising as it preserves semantic information to an extent. However for it to be truly
usable as part of an ML model it must be modified for the specific task: a database with fine
tuned features and labels and different parameters can be tried for the Doc2Vec embedding to
find the most optimal settings.

Some modification in the AST Flattener may also be benefical based on the task, for example
the handling of nested function methods. In our work we flattenned the inner methods in
place, however using references and adding them as separate instances of methods could prove
useful as this could potentially increase the number of available function methods at the cost
of losing some structural information.

Another possible modification in future works could be to use different ways to learn the

146

embeddings than Doc2Vec. Graph2Vec for example is a good candidate as it may be better at
capturing the behaviour of the AST as it is a special graph.

Acknowledgements
The presented work was carried out within the SETIT Project (2018-1.2.1-NKP-2018-00004)1.

References

[1] Quoc V. Le and Tomas Mikolov. Distributed representations of sentences and documents.
CoRR, abs/1405.4053, 2014.

[2] ETH Zürich. 150k Javascript Dataset. https://www.sri.inf.ethz.ch/js150.

[3] Zimin Chen and Martin Monperrus. A literature study of embeddings on source code.
CoRR, abs/1904.03061, 2019.

[4] Jacob Harer, Louis Kim, Rebecca Russell, Onur Ozdemir, Leonard Kosta, Akshay
Rangamani, Lei Hamilton, Gabriel Centeno, Jonathan Key, Paul Ellingwood, Marc
McConley, Jeffrey Opper, Sang Chin, and Tomo Lazovich. Automated software
vulnerability detection with machine learning. 02 2018.

[5] Zimin Chen and Martin Monperrus. The remarkable role of similarity in redundancy-
based program repair. CoRR, abs/1811.05703, 2018.

[6] Jacob Devlin, Jonathan Uesato, Rishabh Singh, and Pushmeet Kohli. Semantic code
repair using neuro-symbolic transformation networks. CoRR, abs/1710.11054, 2017.

[7] Daniel DeFreez, Aditya V. Thakur, and Cindy Rubio-González. Path-based function
embedding and its application to specification mining. CoRR, abs/1802.07779, 2018.

[8] Bart Theeten, Frederik Vandeputte, and Tom Van Cutsem. Import2vec - learning
embeddings for software libraries. CoRR, abs/1904.03990, 2019.

[9] Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. An analysis of the dynamic
behavior of javascript programs. volume 45, pages 1–12, 05 2010.

[10] Wei-Hong WANG, Yin-Jun LV, Hui-Bing CHEN, and Zhao-Lin FANG. A static malicious
javascript detection using svm. In Proceedings of the 2nd International Conference on
Computer Science and Electronics Engineering. Atlantis Press, 2013/03.

[11] FrontEndArt Software Ltd. Sourcemeter. https://www.sourcemeter.com/.

[12] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In C. J. C. Burges,
L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems 26, pages 3111–3119. Curran Associates, Inc., 2013.

[13] Radim Řehůřek and Petr Sojka. Software Framework for Topic Modelling with Large
Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks,
pages 45–50, Valletta, Malta, May 2010. ELRA. http://is.muni.cz/publication/
884893/en.

1Project no. 2018-1.2.1-NKP-2018-00004 has been implemented with the support provided from the National
Research, Development and Innovation Fund of Hungary, financed under the 2018-1.2.1-NKP funding scheme.

147

https://www.sri.inf.ethz.ch/js150
https://www.sourcemeter.com/
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en

Minimal solution for ellipse estimation from sphere projection
using three contour points

Tekla Tóth and Levente Hajder

Abstract:
This paper introduces a minimal solution for ellipse estimation in images interpolating only

three inlier points in the fitting algorithm. In classical methods, five contour points are required
for this task. However, applying two additional constraints based on the properties of the
special case because of the sphere projection, we can reduce the minimal size of the inlier
pointset. Hence, the computation cost can be reduced, and the minimal method can be more
robust against noise which gives more accurate result.

Keywords: Ellipse parameter estimation, Conic section detection in images, Geometric computer vision

Introduction

In computer vision, the camera matrix containing the intrinsic camera parameters defines
the link between a 3D environment and the projected 2D camera image. Our main assumption
is that if this intrinsic variables are known, a fitting algorithm requires fewer contour points in
minimal case to estimate the parameters of the two-dimensional projected shapes. One benefit
of this modified algorithm is that using them in e.g. RANSAC [3]-like robust algorithms need
fewer iterations. Hence, the computational time is shorter. This concept can be tested against
the existing fitting methods.

Our goal is to detect sphere projections in images. These conic sections require five points
for the interpolation, and the spheres projections are usually ellipses in real-word images.
In this paper, specific constraints are defined which come from the special properties of the
perspective projection. These constraints are applied to the searched coefficients of the implicit
ellipse representation. Our aim is to modify a minimal solver, of the general case, by exploiting
these additional conditions to reduce the required point number.

Related work

There are many alternative methods available for solving ellipse fitting problems. These
algorithms can be divided into two groups : (i) Hough transformation or (ii) edge following
based approaches. The classical method using Hough transformation has a five dimensional
parameter space, where the detection has very high time and memory demands [1]. A huge
amount of scientific papers have shown that this problem can be overcome by using fitting
methods processing some contour points of the ellipse. One of the fastest method is a direct
fitting from Fitzgibbon et.al. [2]. Moreover, few other contour point based studies have focused
on using four or three inliers; however, these points cannot be selected randomly and applied
in a general case because of some geometric restrictions. On the other hand, our algorithm
needs only three independently chosen points without any restriction.

The fitting procedures can be applied as the part of a robust sampling algorithm like
RANSAC [3], where the minimally required inlier number is a critical point considering the
iteration number as it is shown in Table 1. Hence, our main goal is to reach a minimal solution
to this problem.

148

N 50% 65% 80% 90% 95%
1 7 11 20 44 90
3 35 106 573 4602 ∼ 104

4 72 305 2875 ∼ 104 ∼ 105

5 146 875 ∼ 104 ∼ 105 ∼ 107

Table 1: Iteration number required for RANSAC [3] algorithm if confidence is set to 99%. N
denotes the number of sample points. A general ellipse needs 5 points. Using one or two
constraints this number can be reduced to 4 or 3. Columns are varying w.r.t. outlier ratio from
50% to 95%. It can be observed that these cases are drastically faster when fewer sampling
points are required.

Parameter constraints

This section introduces the theoretical background of our proposed method based on cali-
brated camera and sphere projection in the image.

Our model uses a calibrated pin-hole camera. Thus the intrinsic parameters are known. Let
K denote the camera matrix. Its elements are as follows:

K =

 suf 0 u0
0 svf v0
0 0 1

 , (1)

where su, sv, f , and location [u0 v0]
T are the horizontal and vertical sensor scales, the focal

length and the principal point [4], respectively.
The general implicit equation of a conic section contains six parameters:

Au2 +Buv + Cv2 +Du+ Ev + F = 0, (2)

where u and v are the pixel coordinates in the image along x and y axes. The degree of freedom
of ellipse is five, but in case of spherical projection, two constraints have to be fulfilled.The first
one describes that the main axis of ellipse always intersects the centre of image. The second
one defines a relation between the camera parameters and the ellipse coefficients.

Axial constraint

The first constraint C1 can be defined as follows [7, 8, 5] :

C1 : D(BD −AE)− 2E(BE − CD) = 0. (3)

This is the formal definition of the fact that the main axis of the ellipse should intersect the
principal point if the ellipse is the contour of a projected sphere. A general scenario is visualised
in Figure 1. It can be observed that the ratio of the axes only depends on the relative distance of
the ellipse from the principal point, and it is independent of the direction of the ellipse center
position to the principal point.

Projection constraint

The second constraint C2 can be defined as follows [5] :

C2 : B(AE −BD)f2 − E(DE −BF)(l2 − 1) = 0, (4)

where l = 0 if a pinhole camera model is considered and f is the focal length. This statement
is the formal description of the connection between the ellipse coefficients and the intrinsic
parameters of the camera.

149

Figure 1: Schematic image of the problem containing a sphere in a 3D scene, an image plane and
a camera. The projected sphere image is an ellipse. The main axis (int red) should go through
the principal point of the image. The camera center, the principal point, and the sphere center
are denoted by C, P , and O, respectively.

Minimal solution

The key question becomes how to define the algorithm using three independent points
and the two constraints. Normalized image coordinates are used because of the numerical
robustness. Thus the first step is this normalization. Then the equation system can be written
in matrix form, based on Equation 2, as follows:

u21 u1v1 v21 u1 v1 1
u22 u2v2 v22 u2 v2 1
u23 u3v3 v23 u3 v3 1

A
B
C
D
E
F

=

0
0
0

 , (5)

where [ui vi]
T are the normalized coordinates of the ith sample point, i ∈ {1, 2, 3}. In general,

it can be written as

PΦ = 0, (6)

where P is the matrix containing the polynomial coordinate functions and Φ is the vector
containing the ellipse coefficients.

Matrix P has three right null vectors, the linear combination of those yields the solution for
the ellipse parameters. The weights for the linear combination should be computed considering
the two constraints, discussed above. When the parameters are calculated, a RANSAC-like
algorithm can separate the inlier and outlier points related to the fitted model. We will compare
the results of the proposed method with the traditional methods using synthetic and real-world
tests. The ground truth data of the synthetic tests will clearly exhibit the performance of our
algorithm both in time and precision.

150

Conclusion

In summary, this paper argued that 3 randomly chosen ellipse contour points are sufficient
to construct a fitting method to estimate the ellipse parameters in case of a projected sphere.
The novelty of the method is this minimal solution in opposition to the widely use five-point
based model. This algorithm will be applied in our sphere-based camera calibration task [6].
Hence, in further research, the calibration pipeline can be more fast and accurate.

Acknowledgements

Tekla Tóth was supported by the project EFOP-3.6.3-VEKOP-16- 2017-00001: Talent
Management in Autonomous Vehicle Control Technologies, by the Hungarian Government
and co-financed by the European Social Fund. Levente Hajder was supported by the project no.
ED_18-1-2019-0030 (Application domain specific highly reliable IT solutions subprogram-
me). It has been implemented with the support provided from the National Research, Develop-
ment and Innovation Fund of Hungary, financed under the Thematic Excellence Programme
funding scheme.

References

[1] R. O. Duda and P. E. Hart. Use of the Hough Transformation to Detect Lines and Curves in
Pictures, Commun. ACM, 1972

[2] A.W. Fitzgibbon and M. Pilu and R.B. Fisher, Direct Least Square Fitting of Ellipses, IEEE
Trans. on PAMI, 1999

[3] M. Fischler and R. Bolles, RANdom SAmpling Consensus: a paradigm for model fitting
with application to image analysis and automated cartography, Commun. Assoc. Comp.
Mach., 1981

[4] R. I. Hartley and A. Zisserman,Multiple View Geometry in Computer Vision, Cambridge
University Press, 2003

[5] X. Ying and Z. Hu, Catadioptric Camera Calibration Using Geometric Invariants IEEE
PAMI , 2004

[6] L. Hajder, T. Toth and Z. Pusztai, Automatic estimationof sphere centers from images
of calibrated cameras, InProceedingsof the 15th International Joint Conference on Computer
Vision,Imaging and Computer Graphics Theory and Applications, Imagingand Computer Graphics
Theory and Applications, 2020

[7] G. Shivaram, G. Seetharaman, A New Technique for Finding the Optical Center of Cameras,
ICIP1998, 1998

[8] N.Daucher, M.Dhome, J.T.Laprets, Camera Calibration From Spheres Images, ECCV1994,
1994

151

Side road to axioms for two-dimensional centralities:
Network reconstruction from hub and authority values

Viktor Homolya and Tamás Vinkó

Abstract: In a network, determine which node is the most important in an aspect is a frequent
task. We call centrality the function which gives the values to ranking. A lot of centralities
have been created, they have their method to compute. In a recent paper of Sciearra et al. [4]
it is shown how to calculate for directed graphs the degree and the HITS (Hyperlink-Induced
Topic Search)centralities by using matrix factorization. Extending the centrality measures for
weighted signed networks (WSN) is far from trivial (consider, e.g., the degree centrality: differ-
ent nodes can easily get 0 value). On the other hand, signed-HITS has been introduced for
WSNs [5]. We demonstrate that by using matrix factorization we do not obtain the signed-
HITS values. In this case the factorization does not give a centrality, or is the signed-HITS not a
decent extension? A set of axioms need to be proposed in order to see what properties might be
requested for a function C : V → Rn to be centrality. On the way to find these axioms we have
formulated an optimization model for the following problem: Given the hub and authority
vectors of a directed network G. Is it possible to reconstruct the adjacency matrix A of graph
G?

Keywords: graph reconstruction, centrality, HITS algorithm

Introduction

Node centrality is a function of form C : V → Rn, where V is the set of nodes of graph
G. Centrality values can be used to determine the order of importance of nodes. The well-
known centrality measures are defined on directed weighted graphs. These assign values from
[0, 1] to every node. There are centralities that assign more than one value to a node. We can
call them multi-dimensional centralities. Some examples for 2-dimensional functions are: in-
and out-degree, HITS (Hyperlink-Induced Topic Search), Fairness-Goodness [3], PageRank-
CheiRank. Some of these can be used on weighted signed networks (WSN), where weights
can be negative. Sometimes the codomain of these functions is not the interval [0, 1], negative
values are allowed. For example, fairness value can be in [−1, 1].

There are only a few proposed centralities for WSNs. The HITS algorithm’s generalizations
for WSN are the signed-HITS and the Fairness-Goodness. The Fairness-Goodness values are
efficient in edge prediction, which formalism is resembling to a low-rank factorization of the
adjacency matrix. Other centralities can be calculated via low-rank factorization [4]. We made
tests to see that signed-HITS, Fairness-Goodness and other values from factorization correlate.
The result is that the signed-HITS has no similarity with other tested values.

The question is, if they are different, which one is better for the generalization of HITS? To
decide the question we create axioms such as in [1] to one-dimensional centralities on unsigned
networks. Most of the well-known centralities do not fulfill all the mentioned axioms. It is also
shown that these centralities made for various problems.

Trustworthiness between identities usually be represented as WSN. In these networks the
general task is ordering the nodes by reliability or utility. Our goal is to make axioms to judge
2D centralities for reliability problems on WSNs. First of all, we decided to examine what are
the expected attributions that a 2D centrality has to fulfill on weighted (unsigned) networks.

Axioms for centralities

We got some idea for our work from [1]. The mentioned axioms’ shorter, informal versions:

152

• Size axiom: can change the size of a (special) subgraph to decrease the rank of nodes from
this subgraph (be first).

• Density axiom: value depends on the number of neighbors connected by incoming edges

• Score / Rank-monotonicity axiom: with added, new in-edges to a node, its score won’t
be lower / it will get higher rank.

These axioms do not consider weights and deal only with incoming edges. To HITS also,
because they tested only the hubs values.

Other ideas for WSNs came from [2], e.g., what is the minimum/worst node in a network
where negative and zero weights exist? The isolated node or node with lowest sum of incoming
weights? In the current work we pay attention axioms for 2D centralities on directed weighted
networks. Some of these axioms, where f and g mean the first and second dimension centralities,
are the followings:

• Homogeneity axiom: when two nodes have equal quantities of edges and the weights are
same in pairs the centrality values have to be equal.

• Quantity (Density) axiom: if the f values of node x and y are the same and different from
0, but the number / expected value of weights / variation of weights of incoming edges
are different, then g valuees of x and y have to be different or equal to zero.

• Quality axiom: if f (or g) centrality values of node x and y are equal and the number
of incoming edges are the same but the weights of these edges are not, then the f (or g)
centrality values of the neighbors have to be different, except when the values are 0.

Multi-dimensional centralities made for sort nodes by various criteria. With Quantity and
Quality axioms if two nodes are equal in an aspect can sort by another one.

While testing if HITS fulfills the Quantity axiom, a problem has arisen. To prove that the
axiom fails (a guess), we tried to create an unweighted graph where two nodes have the same
(non-zero) hub and authority values, but have different number of incoming edges. It was an
idea to reconstruct the graph from the known conditions. In the two vectors, hub and authority
values’ vectors, the ith and the jth elements are the same (can be different between the vectors).

Graph reconstruction from degree sequence is an active research field. The degree is a
centrality value. Is it possible to reconstruct graphs from other centrality values? The new
problem is creating graph when we know only the hub and authority values.

Graph reconstruction

The HITS centrality measure for directed unweighted graph G is calculated in the following
way. Let A ∈ [0, 1]n×n be the adjacency matrix of G, h ∈ [0, 1]1×n is the hub values’ vector, and
a ∈ [0, 1]1×n is the vector of authority values. Let C1 = A · AT and C2 = AT · A. Then h is the
dominant eigenvector (eigenvector of the largest eigenvalue in absolute terms) of C1 and a is
the dominant eigenvector of C2.

A real, symmetric M matrix always has an eigendecomposition: M = V DV T , where D
is real, diagonal matrix formed from eigenvalues of M , and V is real, orthogonal matrix, its
columns are the corresponding eigenvectors. If A is not symmetric because directed edges,
even so C1 and C2 will be symmetric. All elements of C1 and C2 are non-negative integers. The
eigenvalues of these matrices are the same and non-negatives.

We created an optimization model that contains the conditions to find a C1 matrix whose
dominant eigenvector is h. The diagonal elements of C1 are the out-degree, non-diagonal

153

elements show how many joint out-neighbors have the two nodes. For C2 it is similar, but
with in-degree and in-neighbors. From C1 (or C2) we can create an A′ matrix (similarly as in
binary tomography).

This approach has some problems. The search space of this model to find C1 is non-convex.
Solvers usually cannot guarantee a solution in acceptable time. With knowledge of C1 and
C2 matrix A′ can be different from A. As an illustrative example, let’s consider the following
adjacency matrices:

A : A′ :

0 0 0 0 1 0 0 0 0 1
0 0 1 1 1 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 1 0 1 0 0
1 0 1 0 0 0 1 1 0 0

Note that both have the same C1 and C2 matrices. The hub and authority scores are the
same. If we work only from one of these Ci matrices the problem is even worse. We can get
an A′ matrix, whose in-degree sequence is the same as that of A, but the out-degree sequences
are different. The reason for work from one vector (hub or authority values) that it is an easier
problem, with less variables and less conditions. Another motivation is we want to reconstruct
a graph, when some values are missing, like the majority of authority values.

Brief conclusion and future plans

In this work we draw up some axioms to 2-dimensional centralities for weighted networks.
To test one of the axioms another problem has appeared: reconstruct a graph from its hub and
authority values. Some problems with this task have been presented.

This work offers two paths for future plans: research reconstruction from other centralities
and create axioms for 2-dimensional centralities on WSNs.

Acknowledgements. This research has been partially supported by the project “Integrated
program for training new generation of scientists in the fields of computer science”, no EFOP-
3.6.3-VEKOP-16-2017-0002. The project has been supported by the European Union and co-
funded by the European Social Fund.

References

[1] Paolo Boldi & Sebastian Vigna, Axioms for Centrality, Internet Mathematics, 10:3-4, 22-262,
2014.

[2] Csató László "Rangsorolás páros összehasonlításokkal." Kiegészítések a felvételizői prefe-
rencia-sorrendek módszertanához. Közgazdasági Szemle 60 (2013): 1333-1353

[3] S. Kumar, F. Spezzano, V. Subrahmanian, and C. Faloutsos. Edge weight prediction in
weighted signed networks. In 16th International Conference on Data Mining (ICDM), pages
221–230. IEEE, 2016.

[4] C. Sciarra, G. Chiarotti, F. Laio, and L. Ridolfi. A change of perspective in network
centrality. Scientific reports, 8(1):15269, 2018.

[5] M. Shahriari and M. Jalili, Ranking nodes in signed social networks, Social Network Analysis
and Mining, 4(1), 2014.

154

A Combination of Attribute-Based Credentials with Attribute-Based
Encryption for a Privacy-friendly Authentication

Yuping Yan and Péter Ligeti

Abstract: Attribute-based credentials (ABC) is an authentication scheme to identify an entity
without revealing its identity. Privacy-friendly ABC mechanism does not ask for the revelation
of users’ whole attributes, instead it only requests a predicate over the attributes which is
different from traditional PKI and ABC. No full identification is required in privacy-ABC by
following the zero-knowledge property and combining identity attributes. Attribute-based
encryption (ABE) is a new cryptographic primitive with additional functionalities in
fine-grained access control mechanisms and one-to-many flexible encryption mode. However,
most of the ABE schemes are not privacy-friendly. In this paper, we propose a privacy-friendly
ABC system with ABE mode, which has several in attribute revocation problem, privacy-
friendly ABE scheme, flexible access control in ABC, data protection, and user authentications.

Keywords: Attribute-based encryption, Attribute-based credentials, Authentication, Access Control

Introduction

In contrast with traditional authentication methods, the privacy-friendly attribute-based
credentials (ABC) uses attributes rather than identities to authenticate an entity. In this way,
authentication authority does not need to verify all the properties of users. For example,
usually, the name, age, sex, birthday, and identity card numbers are standard information to
guarantee a person’s identity. However, if we want to know whether a person can buy alcohol,
age is the only attribute that matters. Thus, instead of reveling the whole identity, it provides
some level of privacy by just revealing few attributes. The sets of attributes signed by an issuer
are called credentials. However, all the ABC systems require authentication from a third party,
which can cause privacy problems.

Attribute-based encryption (ABE) is an extension of public key cryptography and identity-
based encryption. In ABE scheme, both the ciphertext and the key are related to a set of
attributes. According to the characteristics of information and the attributes of receivers, the
encryptor can customize an encryption strategy. The generated ciphertext can be decrypted
only by the users whose attribute satisfies the encryption policy. If one could use attributes -
like the ones used in ABC - and define access polices over them, fine-grained access control
could be obtained [4].

Privacy-enhancing Attribute-Based Credentials (Privacy-ABCs) are innovative technologies
that both provide authentication and access control for the digital services, and enhance user’s
privacy [5]. By combining attribute-based credentials with attribute-based encryption it is
possible to achieve privacy and data protection together. In such a system, the data is authorized
by the user attributes. On the other hand, there no third party is required, which solves the
privacy problem of ABC.

In this paper, we focus on a technique of the combination of ABCs with ABE for a privacy-
friendly authentication. In section we introduce the necessary background on access control,
attribute-based encryption modes, the revocation problem, and the privacy-enhancing attribute-
based credentials techniques. In section we propose a combination of ABC and ABE achieving
privacy-friendly authentication by multi-authority Cipher Policy Attribute-based encryption.

155

Background

This chapter provide a brief introduction to the used cryptographic primitives.

Attribute-based Credentials

In the general architecture of Privacy-ABC technology, there are three main parties, a User,
an Issuer, and a Verifier. The issuer will issue the credentials to the users for further authenti-
cation by the Verifier. A credential is a set of attributes that is (digitally) signed by an issuer.[1]

The most critical features of the Privacy-friendly ABCs scheme are the untraceability and
unlinkability between the credentials of different users. Untraceability means that users’ cre-
dentials can not be traced between different interactive protocols and credentials claims. Un-
linkability means that different sets of credentials of the same user can not be linked.

Access Control

Access control mechanisms are methods that imply to enforce the authentication policies
which define what an individual can get access to. It refers to a set of policies for restricting
access to information. The main traditional access control techniques are discretionary access
control, mandatory access control, role-based access control, and other models. However, there
are two problems with these classical access control systems. The first one is that it asks for an
online authentication server, which is vulnerable to Denial of Service Attacks. Additionally,
once the server gets attacked, attackers can get access to all the stored plain-text.

In order to solve these problems, we switch into encryption-based and attribute-based access
control. We encrypt data in the web-server instead of storing plain data directly, and then users
can decrypt the content with decryption key associated with several attributes. Thus, access
control is defined by key issuers. The main difference of encryption access control is that the
authorization takes place in users’ decryption phase.

Attribute-based Encryption

As a public key encryption algorithm, ABE’s decryption object is a group, not a single user. It
uses the combinations of groups’ attributes as the public key to encrypt all the data. In contrast,
the private key is calculated and assigned to the individual by the attribute authority based on
the user attribute. Standing on the bilinear pairing techniques, the ABE builds various access
structures to achieve fine-grained access control of data. The basic ABE consists of the following
four phases: Setup() to initialize, KeyGen() to generate the keys, Encrypt() to encrypt and
Decrypt() to decrypt.

In traditional ABE mode, there is only one trusted organization to manage all attributes.
However, it is impractical to use a single authority to distribute all attributes in distributed and
large-scale environment. Chase et [2] propose Multi-authority attribute-based encryption(MA-
ABE), in which multiple organizations manage different attribute sets and distribute the keys
within their authority.

In the CP-ABE mechanism, we embed the tree access structure into ciphertext, and combin-
ing attributes sets to generate the users’ secrete keys. The CP-ABE is different from the basic
ABE algorithm. The length of public keys and public parameters are independent of the
number of system attributes.

156

Revocation problem

In ABE systems, it is hard to revoke the attributes in the existing applications, which makes
ABE modes complicated to implement. In stock, the rights or the attributes of the users change,
and we have to modify the access structure accordingly. However, the revocation of attributes
is quite tricky.

There are two main current approaches of keys and attributes revocation of ABE modes:
indirect revocation and direct revocation. In direct revocation mode, the sender specifies the
revocation list when encrypting the messages, achieving the revocation directly. In indirect
revocation mode, the authorized institution releases the key periodically, and only the non-
revoked users can update the key.

Our contribution: combination of ABC and ABE

ABCs have a comprehensive implementation of smart cards, combining with IBM’s Identity
Mixer (Idemix) technology. In [3], a privacy-friendly key generation for smart card-based
attribute-based encryption is proposed. It uses CP-ABE to encrypt data while adopts ABCs
to authenticate users’ identities.

In the following paragraphs, we will propose a solution for combination of attribute-based
credentials and attribute-based encryption as illustrated in Figure 1.

In our proposed system, the principal participant is the revocation referee. By working
together with the Authority in CP-ABE, the users’ attributes can be changed accordingly, which
improve the efficiency and solve the problem of attribute revocation in encryption and decryp-
tion. Secondly, the ABCs itself does not support access control. When we combine these two
techniques, CP-ABE provides a more flexible way for users by checking whether the attributes
satisfy the access policies. Additionally, in this mode, users do not need to reveal all of its
attributes in the decryption step. Once an attribute requirement is met, the user is able to
decrypt since CP-ABE can support "or" gate operation. Hence, in this case, the privacy of CP-
ABE is also improved.

Figure 1: The combination of ABCs and ABE

Attribute revocation is a technical problem in the implementation of ABE schemes. However,
ABC can help to solve this problem with the presentation token. Some credentials are revocable

157

because, in the ABC system, the revocation authorities are stated and specified. A user can
form a presentation token that contains a subset of the certified attributes, provided that the
corresponding credentials have not been revoked. See [1] for more details.

Let us note that the simple ABCs and ABE can not reach the privacy-friendly authentication
and encryption requirements. It is easy to see that ABCs can not prevent collusion attacks;
different users can join their attributes and reach the attribute access control requirements.
However, attribute-based encryption does prevent against collusion attack. No group of users
can share and combine their keys to decrypt the ciphertext from the encryption and decryption
mode of ABE. Thus, the combination of ABCs and ABE can efficiently prevent collusion attacks
for users authentication.

Cipher-policy ABE is not privacy-friendly in a sense, that we have to fully reveal the at-
tributes when we want to encrypt and decrypt with users’ attributes. However, if we combine
ABCs inside, only a certain of attributes are satisfied, we can use ABE to encrypt and decyrpt.
By this method, the privacy and security can be efficiently improved. Meanwhile, ABE mode
can support different access controls and structures, while ABC can not realize any access
control. Thus, if we combine these two techniques, we can provide a flexible access structure
in authentication and encryption.

Another problem in most ABE schemes is the frequent usage of attribute authorities and
key generation centers. In this case, we need to ensure the honesty and efficiency of Attribute
Authorities(AAs) and Key Generation Center(KGC). However, by implying a blind ABE
scheme, this problem can be efficiently solved.

Note that, this paper contains a proof-of-concept of the combination of ABC and ABE only.
Further research is needed to analyze and validate the proposed method from theoretical and
practical point of view, like security analysis and implementation on IoT devices or smart
cards. Additionally, this protocol model has some possible applications in cloud environment
to achieving privacy and user authentication.

Acknowledgements

This research has been partially supported by project no. ED_18-1-2019-0030 (Application-
specific highly reliable IT solutions) has been implemented with the support provided from the
National Research, Development and Innovation Fund of Hungary. This work was supported
by Péter Ligeti and Mohammed B. M. Kamel. With all of their help, I have a better understand-
ing of how to organize my PhD life and how to do researches.

References

[1] Camenisch, J., Concepts Around Privacy-Preserving Attribute-Based Credentials.IFIP
PrimeLife International Summer School on Privacy and Identity Management for Life. Springer,
Berlin, Heidelberg, 2013.

[2] Chase, M., Multi-authority attribute based encryption. Proc of Theory of Cryptography Conf.
Berlin: Springer, 2007: 515-534

[3] Hanzel, M., and Clément, C., Blockchain for Clinical Decision Support Systems.

[4] Kamp, T. R., Combining ABCs with ABE Privacy-Friendly Key Gengeration for Smart Card
Based Attribute-based Encryption, Master’s thesis Computer Science, University of Twente,
2014.

[5] Veseli, F., and Serna, J., Evaluation of privacy-ABC technologies-a study on the
computational efficiency,IFIP International Conference on Trust Management. Springer, Cham,
2016.

158

Crosslayer Cache for Telemedicine

Zoltán Richárd Jánki and Vilmos Bilicki

Abstract: In modern Web applications, it is essential to be robust, responsive and present
consistent data with as low latency as possible. Regarding the category of telemedicine Web
applications, indeed, consistency and low latency need the highest attendance. Since the
amount of electronic healthcare records is rapidly increasing, it is also required to store data in
a distributed database system. By taking into account Eric Brewer’s CAP theorem [1], we have
to find the proper balance among consistency (C), availability (A) and partition-tolerance (P).
We have collected real world telemedicine use cases and elaborated an easily adaptable system
model in which the level of consistency can be subtly tuned. Based on a given scenario and
the accepted staleness of data, we can provide recommendations for consistency configuration,
caching strategy and cache points on data path.

Keywords: consistency, latency, cache, telemedicine, CAP theorem

Introduction

As Web became worldwide, it has come to be a platform for modern applications. Today,
a Web application has to be not only robust and responsive, but it also has to respond with
low latency. In order to support users and applications accessing and sharing remote resources
easily and in no time, server-side is more and more frequently consists of well-scalable distribut-
ed systems [2]. Besides considering the advantages, a distributed system has weaknesses too.

As telemedicine entered in the cloud era, most of telemedicine Web applications are based
on distributed systems. It is a requirement, since the amount of electronic healthcare records
(EHR) is rapidly growing. According to Eric Brewer, a distributed system can guarantee at
most two of three desirable properties: consistency (C), availability (A) and partition-tolerance
(P) [1]. Finding the appropriate balance among the above mentioned properties is not easy
at all, but in order to set up an efficient configuration, the capabilities has to be measurable.
We did research on metrics of distributed system properties. Peter Bailis et al. introduced the
so-called Probabilistically Bounded Staleness (PBS) technique that offers metrics for measuring
consistency and availability [3]. Based on their metrics, we elaborated a system model that is
applicable for many telemedicine use cases.

State of the art

We have discussed in our paper published in 2018 [4] that modern Web applications have to
be robust, responsive and have to give responses as soon as possible. As technologies are de-
veloping, users are becoming less and less tolerant for latency. Regarding distributed systems
and CAP theorem, we have to make a trade-off between consistency and availability because
there are no distributed systems that can achieve consistency and availability at the same time
[5].

Meanwhile, PBS - presented by Peter Bailis - introduced a metric set for measuring consis-
tency and availability of quorum-replicated data stores, like Apache Cassandra [6]. t-visibility
and k-staleness are the metrics of this technique that can help to describe other type of distribut-
ed systems as well after a small adaptation. For evaluation, they introduced a model of message
latency called WARS that stands for Write, Ack, Read and Response. WARS was implemented
in an event-drive simulator for use in Monte Carlo methods. They noticed that changing the
quorum sizes of read and write can radically affect k and t properties. Differences in latencies
can be even hundreds of milliseconds high.

159

Microsoft designed Azure Cosmos DB in such a way that consistency can be parameterized.
They defined 5 levels of consistency: strong, bounded staleness, session, consistent prefix and
eventual. They specified and verified their work with a formal specification language called
TLA+ [7][8].

In the next section, we will review our motivations and list telemedicine use cases in which
consistency is critical. Regarding our motivations and use cases we will present a system model
that provides a solution for consistency and availability trade-off problem. After describing our
model, we will prove its correctness.

Motivation

Since most of Web applications can be opened on mobile platforms too, we cannot leave out
of consideration the trends that are followed by the main participants of mobile marketplace.
As an example, application users are gotten used to low latency since Android is continuously
monitoring rendering time of user interface (UI) frames. Improving app quality, if an applica-
tion cannot render a frame within 700 milliseconds (ms), then the given UI frame is considered
frozen. Google recommends apps to render a frame within 16 ms in order to have smooth UI
[9].

On the other hand, latency can arise from data transmission too. High transport delay can
occur because of network issues, huge distances or simple server and database problems. Also,
the delay of transatlantic cables is about 100 ms in one direction. We can approach the 16 ms
limitation, if we use Content Distribution Networks (CDNs). Through the use of CDNs, Web
caches are becoming more and more important. CDNs are responsible for installing many
geographically distributed caches throughout the Internet, so that much of traffic could be
localized [10]. Additionally, we can cache at different levels of data path in order to reduce
latency and increase availability.

Patient ECG Holter monitor

Database Server

Practitioner

Upload data

Process data

Retrieve data

Retrieve data

Monitoring system

Figure 1: ECG use case

However, during our former telemedicine
projects, we met scenarios that required
consistency against availability. We collected
an incomplete list of non-invasive measure-
ments that can be carried out at home and
need strong consistency in given circum-
stances.

1. Electrocardiography
2. Blood pressure monitoring
3. Blood glucose monitoring
From an electrocardiography (ECG) mea-

surement, several evidences of a sickness can
be taken, like atrial fibrillation, ventricular
fibrillation, extrasystole, and so on. For
instance, atrial fibrillations can lead to stroke

when every second counts. The following scenario is shown in Figure 1.
ECG measurements can be done at home by using a holter monitor that can upload realtime

data to the cloud. In practice, uploaded samples have a few seconds length, and the data
process and evaluation is executed in longer windows. The processed data is sent back to
the practitioner who is notified too if his or her patient has problems. In this case, missing
a window of data due to weak consistency can lead to the patient’s serious health damages.
Naturally, besides consistency, there are other factors that can block or influence data transmis-
sion.

160

Summary of our work

Our goal is to elaborate a system that makes a trade-off between consistency and availability,
although we take into account that it has to be easily tuned. In order to make sure that our
system works as it should, we need to prove its correctness. One approach could be a simple
simulation in which we can test a finite set of possible inputs. Simulating a networked system
that works with small latencies is not only very difficult but also several cases remain untested.
For this purpose, we choose logical modelling. Writing down a system specification with a
modelling language, we can create a state space that can be explored via state graph. We
created a logical model using TLA+, and made executions in different environments. Our
specification was written in PlusCal which is a formal specification language that transpiles to
TLA+. PlusCal resembles imperative programming languages in which writing a specification
is easier for us.
read ∆

= ∧ pc[“crud”] = “read”
∧ if lat1 ≥ cacheLat

then ∧ lat1′ = 0
∧ history ′ = Append(history , “client read”)
∧ if (cacheVer < Len(ecgData)−MaxStaleness)

then ∧ cacheContent ′ = ecgAF
∧ cacheVer ′ = Len(ecgData)

else ∧ true
∧ unchanged 〈cacheVer , cacheContent〉

∧ readData ′ = Append(readData, cacheContent ′)
else ∧ lat1′ = lat1 + 1

∧ unchanged 〈readData, cacheVer , cacheContent , history〉
∧ pc′ = [pc except ! [“crud”] = “client actions”]
∧ unchanged 〈ecgData, ecgDataSum, ecgAF , ecgAFData, dbLat , cacheLat ,

calcLat , lat2, lat3, numOp, af , dataTail〉

Figure 2: Read operation

write ∆
= ∧ pc[“crud”] = “write”
∧ if lat2 ≥ dbLat

then ∧ lat3′ = lat3 + 1
∧ lat2′ = 0
∧ ∃ d ∈ 1 . . DataRange :

ecgData ′ = Append(ecgData, d)
∧ history ′ = Append(history , “client write”)

else ∧ lat2′ = lat2 + 1
∧ unchanged 〈ecgData, lat3, history〉

∧ pc′ = [pc except ! [“crud”] = “read”]
∧ unchanged 〈ecgDataSum, ecgAF , ecgAFData, readData, cacheVer ,

cacheContent , dbLat , cacheLat , calcLat , lat1, numOp,
af , dataTail〉

Figure 3: Write operation

In our spec, we defined 3 entities that can communicate with each other. These are client,
database and cache. We implemented the possible actions that describe the entities’ operations.
A client can read and write data, a database can make data aggregation and cache can update
its content. The implementation of client read and write operations are shown in Figures 2 and
3. In our model, we have two parameters, one is the staleness that can influence consistency
and the other one is the latency that can affect availability. Latency is assigned to all entities,
staleness is taken into account on client reads. We examined three K values, K = 0, K = 1
and K = 2. K = 0 means that client reads the most up-to-date version of data, while K = 1
and K = 2 let client read 1 and 2 version older data. K values can be used to configure cache.
Since we combined the staleness with delays, we also checked the probability of retrieving
inconsistent data depending on latency.

78.89%

(k=0)

60.52%

(k=0)

15.35%

(k=0)

24.11%

(k=1)

15.37%

(k=1)

83.88%

(k=1)

0.0%

(k>=2)

24.11%

(k>=2)

0.77%

(k>=2)

K=0 K=1 K=2
0

20

40

60

80

100

k=0

k=1

Configured K values

P
r
o
b
a
b
il
it
y
 o

f
k
-
s
t
a
le

n
e
s
s

Figure 4: Probability of reading consistent data with configured K staleness values

Considering our tele-
medicine use cases, we
focused on consistency be-
cause it is the most critical
parameter in scenario. We
executed TLC model
checker on our model
with given parameters and
that resulted in a state
graph. We processed
the raw graph markup
file that was written in
DOT graph description
language and we con-

structed a two-dimensional tabular data structure called dataframe. The dataframe processing
resulted in 1,270,930 distinct states that contained 985,020 client read operations. After studying

161

the whole state space, we drew the following inferences. Our consequences are also visualized
in Figure 4.

As we are increasing the allowed staleness parameter, the probability of retrieving consistent
data is getting lower. With K = 0 configuration parameter we can guarantee having consistent
data in 78.89%. If K is set to 2, this probability is under 20%. So with higher staleness
parameters, we can miss data windows with huge percentage. Recalling ECG monitoring, with
higher K values, it is possible that a queue of data samples that contained atrial fibrillation is
missed, which can lead to patient’s health damage. Another interesting fact is that the staleness
of retrieved data (k) is varying due to latencies.

Table 1: Retrieved data with given staleness affected by latency

Configuration (K) Staleness of data (k) latency: 0 latency > 0

K = 0
k = 0 65.89% 34.11%
k = 1 0% 100%
k = 2 0% 0%

K = 1
k = 0 69.92% 30.08%
k = 1 50% 50%
k = 2 0% 100%

K = 2
k = 0 50% 50%
k = 1 50% 50%
k = 2 50% 50%

In table 1, we collected the
situations when delay matters.
As we can see, setting up K =
0 for consistency, the probability
of fetching not up-to-date data
is 24.11% which is quite high
regarding our configuration.
However, 100% of these cases occured due to latency. We can also see that, we can further
reduce latency if we place caches on data path that decrease delay of data transmission.

Conclusions

In our paper, we introduced a system model that offers a solution for consistency and
availability trade-off problem in distributed systems. We listed such telemedicine use cases
where consistency is crucial. The consistency level of our system is easily tuneable, but we
noticed that consistency is highly influenced by latency even if the consistency level is set
to strong. As a result, we can guarantee strong consistency with configuration, and also can
increase availability with caches. In our future work it is planned to create a program that can
construct system specifications from real telemedicine implementations. With such specs, we
can prove the correctness of our implementations amd we can detect bugs, like deadlocks.

Acknowledgements

This work was supported by the construction EFOP-3.6.3-VEKOP-16-2017-00002. The project
was supported by the European Union, co-financed by the European Social Fund.

References

[1] E. Brewer, CAP Twelve years later: How the "Rules" have Changed, Computer, vol. 45,
February 2012, pp. 23–29

[2] M. van Steen and A.S. Tanenbaum, A brief introduction to distributed systems, Computing
98, pp. 967–1009 (2016). https:doi.org10.1007s00607-016-0508-7

[3] Bailis, Peter, et al., Probabilistically Bounded Staleness for Practical Partial Quorums, Ion.,
Proceedings of the VLDB Endowment. 5., 2012., 10.14778/2212351.2212359.

[4] Z. R. Jánki and V. Bilicki, Full-stack FHIR-based MBaaS with Server- and Client-side Caching
Capable WebDAO, CSCS, The 11th Conference of PhD Students in Computer Science, 2018,
pp. 179–183

[5] M. Kleppmann, (2015)., A Critique of the CAP Theorem

162

[6] A. Lakshman and P. Malik., 2008., Cassandra - A Decentralized Structured Storage System,
InLADIS, pp. 35–40

[7] L. Lamport, J. Matthews, M. R. Tuttle, Y. Yu. (2002.) Specifying and verifying systems with
TLA+, Proceedings of the 10th Workshop on ACM SIGOPS European Workshop, EW 10.
45–48., 10.1145/1133373.1133382.

[8] L. Lamport. 2002. Specifying Systems: The TLA+ Language and Tools for Hardware and Software
Engineers, Addison-Wesley Longman Publishing Co., Inc., USA.

[9] Frozen frames, Available: https://developer.android.com/topic/performance/vitals/frozen,
Accessed: 20 March 2020

[10] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Approach, 7th Edition, 2017,
Pearson Education Limited, Edinburgh Gate, Harlow, Essex CM20 2JE, England

163

EHR Data Protection with Filtering of Sensitive Information in
Native Cloud Systems

Zoltán Szabó and Vilmos Bilicki

Abstract: In recent years, software development with native cloud support became a more and
more popular practice, despite providing several serious challenges for developers, especially
in the field of healthcare software development, where the applications used to originally run
in isolated, well-protected environments where the handling of crucial, sensitive information
in readable, standardized format without the necessary authorization was nearly impossible.
The most popular current standard concerning the format of digital healthcare data is the Fast
Healthcare Interoperability Resources, or FHIR, developed by the Health Level 7 organization,
which unfortunately provides only drafts, recommendations and tools [2] for the crucial autho-
rization and security management. In this paper, we summarize the various requirements
of healthcare application security, establish metrics from the collected requirements, then use
the metrics to compare and validate the services of several popular PaaS providers while also
introducing the concept of a custom, cloud-independent solution for these problems.

Keywords: FHIR, full-stack, security, healthcare, PEP, policy engine, Google Cloud, Azure, AWS

Introduction

The most prominent standard in healthcare software development is without any doubt the
Fast Healthcare Interoperability Resources, of FHIR [1] for short from the HL7 organization,
which establishes a set of customizable documents to describe the entire medical infrastructure
from general practitioners to administration level in a standardized XML or JSON format with
a pre-defined REST API to retrieve and modify said resources. Despite the popularity, FHIR in
its current state still possesses some shortcomings, especially in the area of data protection and
security, where developers are only provided with a set of security labels and some recommen-
dations, but nothing more. This makes the adaptation of FHIR more and more challenging,
given the growing concerns with the usage and protection of personal data, and the establish-
ment of international acts and regulations such as GDPR [11] and HIPAA [10]. The sensitive
nature of healthcare datasets continually proves to be a difficult aspect of application develop-
ment to overcome, resulting in solutions, which even though satisfy the legal requirements, not
necessarily provide correct answers to realistic scenarios and use cases [4].

State of the Art

The popularity of the FHIR standard is well-indicated by the fact that more and more of
the great cloud providers start to adapt it and offer the format along with the REST API as the
de facto solution for storing and communication healthcare data. The majority of these solve
the security problem with the extension of their default role-based access control methodology
to the healthcare resources, but, as we are going the showcase it, mere access control is not a
complete answer to every question and requirement established by the users and developers
of the healthcare applications. The most complex solution of the cloud-based FHIR services
is offered by Microsoft Azure [5] in the form of the FHIR Services for Azure, which not only
provides a custom FHIR REST API with the integration of the popular SMART on FHIR [3]
proxy and the Azure Active Directory to handle the identification of various users, groups and
applications, but also makes it possible to integrate a custom virtual FHIR server in the same
environment. The Google Cloud [6] also supports the FHIR format as the default healthcare

164

communication format of the Cloud Healthcare API, while the Amazon AWS [7], although
offers the virtual deployment of an FHIR server, it provides the lowest level of support to
develop healthcare applications in their cloud with the standard. In the comparison below we
defined the requirement metrics as the following categories based on several sources examining
the problem [9] [12] [13]: first, the cloud has to provide the tools to separate the various roles
and attach them to users, groups or applications, second the cloud has to provide tools to
include inner attributes and context-based information while evaluating the authorization,
third, there has to be a way to mark several documents or fields to be removed from the results
or replaced by placeholder values and finally, the cloud has to provide a way to implement
solutions for break-the-glass scenarios, events, when an unauthorized user has to gain access
to critical information to provide the necessary care. We also included in the comparison the
Open Policy Agent [8] policy engine, our chosen engine for the implementation of a cloud
neutral PEP.

Table 1: Cloud Provider Comparisons

Requirement Google Cloud Microsoft Azure Amazon AWS OPA
Separation of Roles Yes Yes Yes Yes

Context-based Authorization Partially with Native Rules or Full With Cloud Functions With Azure Functions With Lamdba Functions Yes
Modification of the Result Set Only With Cloud Functions Only With Azure Functions Only With Lamdba Functions Yes

Break-the-Glass Yes, but without specific access restriction Yes, but without specific access restriction Yes, but without specific access restriction Yes

Evaluation

As shown on Table 1, although the major cloud providers offer high level security solutions,
when it comes the to complex requirements of the healthcare applications, they can only meet
the requirements by extending their logic with custom query hooks implemented through
scripting solutions. This is the main reason why for our own approach we chose to implement
a cloud neutral solution in the form of an external PEP. The storage is only accessible through
a proxy which checks the user identity and has to ability to modify the query and even the
results. Open Policy Agent is a rather new, open source policy engine with an emphasis on
high performance during policy decisions. OPA separates the decision making and the policy
enforcement modules, requiring only the input dataset it needs to apply the rules (written in
OPA’s custom Rego language) on. To evaluate the effectiveness of a solution as shown on
Figure 1 we have defined a set of Rego rules, modeling the four main categories of security
requirements and run them on separate input datasets containing json objects of the FHIR
Observation resource, describing various vital signs of the patient, such as bloodpressure, body
weight and bloodalcohol level. During the evaluation we measured the maximum CPU usage
and memory usage of the OPA process while applying the rules to the input data. We also
chose to increment the size of the dataset with each input set - while the initial only contained
a mere 10 records, the next one had a 100 and the final exactly 1 million Observations. The tests
were run in an environment with a 4-core Intel i5-3750K processor, 8 GB DDR4 RAM and 120
GB SSD.

In the first category, the rule only filtered the Observations based on the owner aka. the
identity of the patient, in the second we also filtered using several inner attributes including
the exact value, and to put the system under a heavier load, we first calculated the average of
the entire input set, then returned only the Observations which were created after a specific
date with a value higher than the average. The third not only applied several filters but also
removed one of the fields from every document passing the query, while the fourth, the break-
the-glass scenario removed and rewrote specific fields in every instance.

As shown in Table 2 and Table 3, the size of the dataset had a much more significant impact
on the resource consumption of the OPA process, than the complexity of the rules. In all
cases the smaller datasets required nearly insignificant resources, while with the 100.000 and 1

165

Figure 1: The layout of our planned architecture including the OPA PEP

Table 2: Maximum Percentage of CPU Usage

Input Size Role Evaluation Context with Aggregation Context with Modification Break Glass
10 0,00 0,00 0,00 0,00
100 0,00 0,00 0,00 0,00

1000 1,56 6,34 1,56 1,56
10.000 10,84 28,07 17,43 23,37

100.000 130,86 127,74 135,53 129,43
1.000.000 326,94 357,63 334,93 328,10

Table 3: Memory Requirement in MBytes

Input Size Role Evaluation Context with Aggregation Context with Modification Break Glass
10 15,039 14,867 13,66 14,8
100 15,094 14,949 16,234 14,87

1000 16,187 16,488 17,757 15,46
10.000 44,863 44,929 44,835 47,367
100.000 398,968 395,3 329,043 400,227

1.000.000 3806,277 3933,394 3937,359 3839,019

million sized sets the consumption levels quickly increased. If we take it into account that in
practice, most queries use paging solutions, and the queried datasets are rarely downloaded
from the cloud to local devices in batches larger than 250 or at most 500 at a time, these
attributes seem very promising. It is also worth mentioning that while the latency seemed
to have a random variance during each evaluation, which is why we chose not to include
it among the test results, but with the exception of the 1 million size, it never took longer
than 1-2 seconds, clearly showcasing the promised low-latency feature of OPA. Based on these
results, we are ready to take the next step forward and implement a full implementation of the
planned architecture in a healthcare development project with the integration of our general
healthcare ACL syntax [14], and further evaluate our solution by implementing a complete,
real-life requirement set and measuring it against a normal workload.

Acknowledgement

This research was supported by the EU-funded Hungarian grant EFOP-3.6.1-16-2016-00008.

166

References

[1] FHIR Overview, Available: https://www.hl7.org/fhir/overview.html, Accessed:
21 March 2020

[2] FHIR Data Segmentation for Privacy, Available: http://build.fhir.org/ig/HL7/
fhir-security-label-ds4p/branches/master/index.html, Accessed: 21 March
2020

[3] Mandel, Joshua C., et al., SMART on FHIR: a standards-based, interoperable apps platform for
electronic health records., Journal of the American Medical Informatics Association 23.5, 2016,
pp. 899-908.

[4] Altamimi, Ahmad Mousa. Security and privacy issues in eHealthcare systems: towards trusted
services. International Journal of Advanced Computer Science and Applications 7.9 (2016):
229-236.

[5] Azure API for FHIR Documentation, Available: https://docs.microsoft.com/en-us/
azure/healthcare-apis/, Accessed: 21 March 2020

[6] Cloud Healthcare API, Available: https://cloud.google.com/healthcare/docs,
Accessed: 21 March 2020

[7] Building a Serverless FHIR Interface on AWS, Available: https://aws.amazon.com/
blogs/architecture/building-a-serverless-fhir-interface-on-aws,
Accessed: 21 March 2020

[8] Open Policy Agent Official Documentation,
Available: https://www.openpolicyagent.org/docs/latest/, Accessed: 18
March 2020

[9] Marcus, Andrew Security in FHIR at DevDays Redmond 2019, Available: https://
tinyurl.com/ryk9zlu, Accessed: 17 March 2020

[10] Ness, R. B., and Joint Policy Committee. (2007). Influence of the HIPAA privacy rule on health
research. Jama, 298(18), 2164-2170.

[11] Orel, A., and Bernik, I. (2018, October). GDPR and Health Personal Data; Tricks and Traps of
Compliance. In EFMI-STC (pp. 155-159).

[12] Gajanayake, R., Iannella, R., and Sahama, T. R. (2012, March). Privacy oriented access
control for electronic health records. In Data Usage Management on the Web Workshop at
the Worldwide Web Conference. ACM.

[13] Finance, Beatrice, Saida Medjdoub, and Philippe Pucheral. Privacy of medical records:
From law principles to practice. 18th IEEE Symposium on Computer-Based Medical Systems
(CBMS’05). IEEE, 2005.

[14] Z. Szabó, V. Bilicki Felhőben tárolt egészségügyi adatok védelme ABAC modellel in 31th
Neumann Colloquium, November 2018

167

https://www.hl7.org/fhir/overview.html
http://build.fhir.org/ig/HL7/fhir-security-label-ds4p/branches/master/index.html
http://build.fhir.org/ig/HL7/fhir-security-label-ds4p/branches/master/index.html
https://docs.microsoft.com/en-us/azure/healthcare-apis/
https://docs.microsoft.com/en-us/azure/healthcare-apis/
https://cloud.google.com/healthcare/docs
https://aws.amazon.com/blogs/architecture/building-a-serverless-fhir-interface-on-aws
https://aws.amazon.com/blogs/architecture/building-a-serverless-fhir-interface-on-aws
https://www.openpolicyagent.org/docs/latest/
https://tinyurl.com/ryk9zlu
https://tinyurl.com/ryk9zlu

LIST OF AUTHORS

Ádám Fodor: Eötvös Loránd University, Hungary

Ahmad T. Al-Anaqreh: University of Szeged, Hungary

Ali Al-Haboobi: University of Miskolc, Hungary

András Márkus: University of Szeged, Hungary

Artúr Poór: Eötvös Loránd University, Hungary

Attila Szatmári: University of Szeged, Hungary

Balázs Szűcs: AUDI HUNGARIA Zrt., Hungary

Bence Bogdándy: Eszterházy Károly University, Hungary

Biswajeeban Mishra: University of Szeged, Hungary

Csaba Bálint: Eötvös Loránd University, Hungary

Dániel Balázs Rátai: Eötvös Loránd University, Hungary

Dániel Pásztor: Budapest University of Technology and Economics, Hungary

Dávid Papp: Budapest University of Technology and Economics, Hungary

Dilshad Hassan Sallo: University of Miskolc, Hungary

Dorottya Papp: Budapest University of Technology and Economics, Hungary

Ebenezer Komla Gavua: University of Miskolc, Hungary

Gábor Karai: University of Szeged, Hungary

Gábor Székely: Budapest University of Technology and Economics, Hungary

Gabriella Tóth: Eötvös Loránd University, Hungary

György Papp: University of Debrecen, Hungary

Hamza Baniata: University of Szeged, Hungary

Hayder K. Fatlawi: Eötvös Loránd University, Hungary

István Fábián: Budapest University of Technology and Economics, Hungary

Jenifer Tabita Ciuciu-Kiss: Eötvös Loránd University, Hungary

José Vicente Egas-López: University of Szeged, Hungary

László Kopácsi: Eötvös Loránd University, Hungary

László Viktor Jánoky: Budapest University of Technology and Economics, Hungary

Levente Buttyán: Budapest University of Technology and Economics, Hungary

168

Márton Juhász: Budapest University of Technology and Economics, Hungary

Mátyás Kiglics: Eötvös Loránd University, Hungary

Mohammed B. M. Kamel: Eötvös Loránd University, Hungary

Mohammed Mohammed Amin: University of Szeged, Hungary

Orsolya Kardos: University of Szeged, Hungary

Péter Hudoba: Eötvös Loránd University, Hungary

Péter Ligeti: Eötvös Loránd University, Hungary

Róbert Bán: Eötvös Loránd University, Hungary

Roland Nagy: Budapest University of Technology and Economics, Hungary

Sándor Balázs Domonkos: University of Szeged, Hungary

Tamás Aladics: University of Szeged, Hungary

Tekla Tóth: Eötvös Loránd University, Hungary

Viktor Homolya: University of Szeged, Hungary

Yuping Yan: Eötvös Loránd University, Hungary

Zoltán Richárd Jánki: University of Szeged, Hungary

Zoltán Szabó: University of Szeged, Hungary

Zsolt Tóth: Eszterházy Károly University, Hungary

169

NOTES

CSCS2

INVESTING IN YOUR FUTURE

European Social

Fund

Supported by the project “Integrated program for training
new generation of scientists in the fields of computer science”,
� EFOP-3.6.3-VEKOP-16-2017-00002. The project has
been supported by the European Union and co-funded
by the European Social Fund.

	Preface
	Contents
	Program
	Plenary talks
	Tibor Gyimóthy: Software Maintenance and Evolution of Large Systems
	Gábor Tardos: Fingerprinting Digital Documents

	Short papers
	 Ali Al-Haboobi, Gábor Kecskeméti: Reducing Execution Time of An Existing Lambda based Scientific Workflow System
	 Ádám Fodor, László Kopácsi, Zoltán Á. Milacski, András Lorincz: Speech de-identification with deep neural networks
	 Ahmad T. Anaqreh, Boglárka G.-Tóth, Tamás Vinkó: Symbolic Regression for Approximating Graph Geodetic Number A preliminary study
	 András Márkus: Task allocation possibilities in simulated Fog environments
	 Artúr Poór: Static Analysis Framework for Scala
	 Attila Szatmári: An Evaluation on Bug Taxonomy and Fault Localization Algorithms in JavaScript Programs
	 Balázs Szucs, Áron Ballagi: An Industrial Application of Autoencoders for Force-Displacement Measurement Monitoring
	 Bence Bogdándy, Zsolt Tóth: Overview of Artificial Neural Network Abduction and Inversion Methods
	 Biswajeeban Mishra, Biswaranjan Mishra: Evaluating and Analyzing MQTT Brokers with Stress-testing
	 Csaba Bálint: Iterative Operations on Footpoint Mappings
	 Dániel Balázs Rátai, Zoltán Horváth, Zoltán Porkoláb, Melinda Tóth: Traquest model - a novel model for ACID concurrent computations
	 Dániel Pásztor, Péter Ekler, János Levendovszky: Energy-efficient routing in Wireless Sensor Networks
	 Dávid Papp: Spectral Clustering based Active Zero-shot Learning
	 Dilshad Hassan Sallo, Gábor Kecskeméti: Parallel Simulation for The Event System of DISSECT-CF
	 Ebenezer Komla Gavua, Gábor Kecskeméti: Improving MapReduce Speculative Executions with Global Snapshots
	 Gábor Karai, Péter Kardos: Distance-based Skeletonization on the BCC Grid
	 Gábor Székely, Gergo Ládi, Tamás Holczer, Levente Buttyán: Towards Reverse Engineering Protocol State Machines
	 Gabriella Tóth, Máté Tejfel: Component-based error detection of P4 programs
	 György Papp, Miklós Hoffmann, Ildikó Papp: Embedding QR code onto triangulated meshes
	 Hamza Baniata: Fog-enhanced Blockchain Simulation
	 Hayder K. Fatlawi, Attila Kiss: Activity Recognition Model for Patients Data Stream using Adaptive Random Forest and Deep Learning Techniques
	 István Fábián, Gábor György Gulyás: On the Privacy Risks of Large-Scale Processing of Face Imprints
	 Jenifer Tabita Ciuciu-Kiss, István Bozó, Melinda Tóth: Towards Version Controlling in RefactorErl
	 José Vicente Egas-López, Gábor Gosztolya: Using the Fisher Vector Approach for Cold Identification
	 László Viktor Jánoky, János Levendevoszky, Péter Ekler : A Novel JWT Revocation Algorithm
	 Márton Juhász, Dorottya Papp, Levente Buttyán: Towards Secure Remote Firmware Update on Embedded IoT Devices
	 Mátyás Kiglics, Csaba Bálint: Quadric tracing: A geometric method for accelerated sphere tracing of implicit surfaces
	 Mohammed B. M. Kamel, Péter Ligeti, Christoph Reich: Private/Public Resource Discovery for IoT: A Two-Layer Decentralized Model
	 Mohammed Mohammed Amin, István Megyeri : Improving keyword spotting with limited training data using non-sequential data augmentation
	 Orsolya Kardos, Tamás Vinkó: Social network characteristics from the viewpoint of centrality measures
	 Péter Hudoba, Attila Kovács: Toolset for supporting the number system research
	 Róbert Bán, Gábor Valasek: Geometric Distance Fields of Plane Curves
	 Roland Nagy, Levente Buttyán: Towards Rootkit Detection on Embedded IoT Devices
	 Sándor Balázs Domonkos, Tamás Németh: Use data mining methods in quality measurement in the education systems
	 Tamás Aladics, Judit Jász, Rudolf Ferenc: Feature Extraction from JavaScript
	 Tekla Tóth, Levente Hajder: Minimal solution for ellipse estimation from sphere projection using three contour points
	 Viktor Homolya, Tamás Vinkó: Side road to axioms for two-dimensional centralities:Network reconstruction from hub and authority values
	 Yuping Yan, Péter Ligeti: A Combination of Attribute-Based Credentials with Attribute-Based Encryption for a Privacy-friendly Authentication
	 Zoltán Richárd Jánki, Vilmos Bilicki: Crosslayer Cache for Telemedicine
	 Zoltán Szabó, Vilmos Bilicki: EHR Data Protection with Filtering of Sensitive Information in Native Cloud Systems

	List of Authors

