
Springer Nature 2021 LATEX template

Nonlinear Symbolic Transformations for

Interval Optimization Problems

Tibor Csendes1* and Elvira D. Antal2

1*Institue of Informatics, University of Szeged, Árpád tér 2,
Szeged, H-6720, Hungary.

2Department, John von Neumann University, Street, Kecskemét,
H-6000, Hungary.

*Corresponding author(s). E-mail(s): csendes@inf.szte.hu;
Contributing authors: antale@inf.szte.hu;

Abstract

With the spreading of the symbolic algebra systems it is more and
more obvious that they can be utilized to transform optimization prob-
lems automatically. Such simplifications can have some advantages.
At one hand the related functions can be calculated by less opera-
tions, and hence quicker. Then we can recognize substructures in the
computation tree that are redundant – which remain usually hidden.
Finally the possible dimension reduction can result in the decrease
of the necessary number of iterations of the optimization method
applied. Due to the automatic simplification, our procedure does not
require human overhead and larger complex problems can be solved.

In the present paper we give an overview of our work done in this subfield,
and provide new computational results for an interval arithmetic based
global optimization algorithm in terms of precision and efficiency. Closely
18% of the standard global optimization problems could be simplified
automatically, and we could achieve dramatic improvements of many
orders of magnitude in precision of the place or value of the minima.

Keywords: Symbolic manipulation, Global optimization, Interval arithmetic,
Verification of neural networks

MSC Classification: 65K05 , 90C30

1

Springer Nature 2021 LATEX template

2 Nonlinear Symbolic Transformations for Interval Optimization Problems

1 Introduction

Symbolic tools have a long history in the solution of optimization problems. For
example, such are the symbolic preprocession in linear programming [17], or
such transformations as the “presolving” mechanism of the AMPL [10, 11]. A
recent example is the Reformulation-Optimization Software Engine by Liberti
and coworkers for mixed integer optimization [15].

The papers of Csendes and Rapcsák [8, 20] demonstrated that it is possi-
ble to transscribe unconstrained nonlinear optimization problems by symbolic
tools in such a way that a bijection exists between the extrema of the two opti-
mization problems. This method is capable to get rid of redundant variables,
and to simplify the problem in other way too.

The original motivating problem was a bit complex, related to parameter
estimation of the function for respiratory system modelling [5, 14]:

F (Raw, Iaw, B, τ) =

[
1

m

m∑
i=1

|ZL(ωi)− Z ′
L(ωi)|

2

]1/2

.

This function is to be minimized, where ZL(ωi) ∈ C is the measured impedance
value, and Z ′

L(ωi) is the model function of the impedance for the ωi frequency
values (i = 1, 2, . . . ,m). The parameters to be determined are Raw, Iaw, B,
and τ . The original nonlinear model function is with its physical parameters:

Z ′
L(ω) = Raw +

Bπ

4.6ω
− ı

(
Iawω +

B log(γτω)

ω

)
,

where γ = 101/4 and ı is the imaginary unit.
The development of the symbolic algorithm was motivated by the simplified

model function, which is obviously linear in the new model parameters:

Z ′
L(ω) = Raw +

Bπ

4.6ω
− ı

(
Iawω +

A+ 0.25B +B log(ω)

ω

)
.

The hard to find clever substitution is A = B log(τ). The number of model
parameters remained the same. The substantial merit of the transformation is
that the linear model function can be fitted in the least-squares sense directly,
no optimization algorithm is needed.

In the second section we introduce the idea and give the found supporting
theoretical results. The third section will provide the details on the advantages
obtained by using the suggested procedure.

Springer Nature 2021 LATEX template

Nonlinear Symbolic Transformations for Interval Optimization Problems 3

2 The simplification method, idea, and
theoretical results

Consider the unconstrained nonlinear optimization problem in the form

min
x∈Rn

f(x), (1)

where f(x) : Rn → R is a smooth function that is also known in expression
form. Here we understand expression as the series of symbols (constant, vari-
able, operation sign, function sign and brackets) written in a closed form, in a
syntactically correct form. This expression can be given in a directed acyclic
graph [21] form in a symbolic algebra system (such as Mathematica). The
availability of the symbolic form is a natural precondition, although the objec-
tive function of an optimization problem is often given only as a calculation
procedure, or in the form of an approximation scheme or e.g. available through
some simulation.

The simplification procedure will decide whether (1) can be transformed
into such an equivalent form, that is preferable according to some features,
e.g. the evaluation of the new function requires less arithmetic operations, the
dimension of the problem is smaller, or it is easier to solve for some reason.
The equivalent form means here that a bijection exists between the extrema of
the original and transformed problems. Csendes and Rapcsák showed [8] that
an objective function g(y) is equivalent with f(x), if g(y) can be provided by
the following transformation:

• apply a substitution for f(x)-re:

yi := h(x) , 1 ≤ i ≤ n,

where h(x) is a smooth function, the range of which is R, and it is strictly
monotonous at least in one xi variable,

• rename the remaining variables:

yj := xj , j = 1, . . . , i− 1, i+ 1, . . . , n,

and
• delete those yi variables, that do not appear in the resulting objective
function.

We call a yi = h(x) substitution to be a suitable substitution, if it fulfills
the conditions:

• h(x) is smooth, monotonous at least in one variable xi, and its range is R,
• at least for a variable xi the expression h(x) represents all occurrences of
the variable xi, i.e. the variable xi will disappear from the computation tree
of f(x)-ből, if we substitute h(x) everywhere by yi, and

• yi = h(x) is not a simple renaming, in other words h(x) ̸= xi, i = 1, . . . , n.

Springer Nature 2021 LATEX template

4 Nonlinear Symbolic Transformations for Interval Optimization Problems

After the yi = h(x) substitution the number of y variables is at most
so much as the dimension of x. The redundant variables will be deleted,
when h(x) gives all the occurrences of some variables. In other words, we can
recognize that the model can be formulated with less unknowns. The given
conditions for the substitution are satisfactory, but not always necessary. In
this way, our proposed algorithm is just one of the possible techniques, but
other procedures may also exist.

Consider for example the minimization of the function f(x1, x2) = (x1 +
x2)

2. This is obviously equivalent with finding the minimum of g(y1) = y21 ,
and the respective optimal values of x1 and x2 can be determined by the
equation y1 = x1 + x2, that gives a proper substitution. In this way we can
handle an infinity of minimizer points, that would not be possible by traditional
computational techniques. This is one of the main aims of our method: by
symbolic substitution to recognize redundancy, and to get rid of it in our
function by the proper substitution.

The following two theorems proved in [8] gives conditions for the applied
transformations to have an applicable way to calculate the extrema of the
simplified function from those of the original one, and vice versa.

Theorem 1 If h(x) is smooth and strictly monotonic in xi, then the corresponding
transformation simplifies the function in the sense that each occurrence of h(x) in
the expression of f(x) is padded by a variable in the transformed function g(y), while
every local minimizer (or maximizer) point of f(x) is transformed to a local minimizer
(maximizer) point of the function g(y).

Theorem 2 If h(x) is smooth, strictly monotonic as a function of xi, and its range is
equal to R, then for every local minimizer (or maximizer) point y∗ of the transformed
function g(y) there exists an x∗ such that y∗ is the transform of x∗, and x∗ is a local
minimizer (maximizer) point of f(x).

The same paper suggested a method to find the suitable substitution
expressions in the Assertions 1 and 2 of [8]. This method requires the
∂f(x)/∂xi partial derivatives, it will factorize them, and find the suitable
substitution expressions on the basis of the factors.

Assertion 1 If a variable xi appears everywhere in the expression of a smooth
function f(x) in a term h(x), then the partial derivative ∂f(x)/∂xi can be written
in the form (∂h(x)/∂xi) p(x), where p(x) is continuously differentiable.

Assertion 2 If the variables xi and xj appear everywhere in the expression of a
smooth function f(x) in a term h(x), then the partial derivatives ∂f(x)/∂xi and
∂f(x)/∂xj can be factorized in the forms (∂h(x)/∂xi) p(x) and

(
∂h(x)/∂xj

)
q(x),

respectively, and p(x) = q(x).

Springer Nature 2021 LATEX template

Nonlinear Symbolic Transformations for Interval Optimization Problems 5

In the case when ∂f(x)/∂xi cannot be factorized, then only such proper
substitutions can be applied for which the expression is linear in xi.

On the basis of the mentioned theoretical results, we can write a computa-
tional program that is capable to automatically find proper substitutions for
the simplification of unconstrained optimization problems. This implementa-
tion has the following steps.

1. Determine the gradient of the objective function.
2. Factorize the partial derivatives.
3. Collect the subexpressions of the proper substitutions for xi in the list li:
(a) Initialize li by the empty set.
(b) If the factorization of ∂f(x)/∂xi was successful, then add to the list li

the integrals of the factors.
(c) Complete the list li with the subexpressions of f(x) that are linear in xi.
(d) Delete those elements of li, that do not fulfil the necessary conditions of

proper substitutions (the expressions in li have to be monotonous in xi).
4. Compose a list S of proper substitutions of f(x) S =

⋃
li, i = 1, . . . , n.

5. Select that element from S, which gives the least computational complexity
simplified objective function.

6. Solve the simplified objective function minimization problem (if possible).
7. Determine the solution of the original problem by applying the inverse

transformation.

The majority of the steps required by the algorithm (partial differentiation,
factorization, symbolic integration and substitution) are directly available in
computer algebra systems. On the other hand, our first implementation in
Maple showed that even market leading computer algebra systems can be
error prone regarding their substitution and calculation with infinite intervals
capabilities [4].

The monotonicity of a function can easily be checked by interval calcula-
tions. An f : Rn → R function is monotonous exactly when for all x,y ∈ Rn,
x ≤ y imply that f(x) ≤ f(y) (f(x) ≥ f(y)) holds. This can be checked by
calculating the range of the derivative of f : if it does not contains zero, then the
function f is monotonous. In our algorithm we have to check whether it holds
for the substitution expression hi(x) the partial derivative ∂hi(x)/∂xi cannot
have the zero value. If the derivative of our objective function is monotonous
in one of its variables, then the objective function of the related unconstrained
optimization problem is unimodal, in other words it can only have a single
extremum.

We mention that the recognition of the monotonicity of a function can
be hardened by the overestimation property of interval calculations, since the
obtained lower and upper bounds are typically not sharp.

Springer Nature 2021 LATEX template

6 Nonlinear Symbolic Transformations for Interval Optimization Problems

3 Implementation and computational results

The Maple implementation introduced in [4] had some weaknesses with the
substitution, so we have reimplemented the procedure in Mathematica [3].
Mathematica has some advantages [25]. First, the substitutions required by
our procedure work better, since the programming in Mathematica is based on
term rewriting [16]. More precisely, the substitution routine of Mathematica
can be controlled by regular expressions, and what is more, these rules, defined
by the users, have higher degree of precedence compared to the system built
in tools. [12].

Our special substitution subroutine is a complex procedure of ca. 50 lines,
what tells a lot for those who know the elegant, expressive language of Math-
ematica. A dozen delayed rules were introduced, that are evaluated in four
different way, involving the simplified, expanded, and factorized forms of our
expression. Probably it is the most important part of our algorithm, since it
is called several times in different phases, and in this way, that result of the
simplification procedure can be improved.

Mathematica has also better interval arithmetic implementation: this was
crucial for quick and reliable range calculation on the expressions to be sub-
stituted. Naive interval inclusion for the enclosure of the ranges have been
realized with the standard range arithmetic of Mathematica.

The new version supports the listing of all the possible substitutions too,
and the selection of the best fitting one for the Steps 4 and 5 in our algorithm.
The running time is compatible with the earlier simple Maple version that
selected in a greedy way the first proper substitution. This is due to the func-
tional programming paradigm offered by both computer algebra systems, but
this feature is more useful again in Mathematica [13, 24]. Mathematica has a
parallelization scheme for the list manipulation. Still, a branch-and-bound pro-
cedure applied on the search space of all possible proper substitutions could
speed up the algorithm.

3.1 Improvements compared to the previous version

The new version was first tested on our own test set, especially on those which
could not be solved correctly by the earlier version. The results of the new
version for these problem cases are comprised in Table 1. The results for all
other problems were the same for the algorithm versions. For the sake of better
readability, we have not listed the simple renaming (yj := xj).

Notations: Id: identifier of the problem, PT: problem type, RT: result type.
The meaning of the last two qualifiers: we define the type of the problem A
if simplifying transformations can be given in accordance with the introduced
theory. The problem type is D if we do not expect to have any useful transfor-
mations. The type of the result shows whether our procedure provided a correct
result (1), it has not suggested any substitutions (2). This categorization was
more detailed in our earlier publications on the subject [2–4].

Springer Nature 2021 LATEX template

Nonlinear Symbolic Transformations for Interval Optimization Problems 7

Table 1 The results of the new, Mathematica based algorithm for those problem
instances which were not correctly solved earlier. Abbreviations: Id identifier of the
problem, PT problem type, RT result type.

Id Function f Function g Substitutions PT RT

Sin2 2x3 · sin(2x1 + x2) 2x3 sin(y1) y1 = 2x1 + x2 A 1

Exp1 ex1+x2 ey1 y1 = x1 + x2 A 1

Exp2 2ex1+x2 2ey1 y1 = x1 + x2 A 1

Sq1 x21x
2
2 nothing nothing D 2

Sq2 (x1x2 + x3)
2 y21 y1 = x1x2 + x3 A 1

SqCos1 (x1x2 + x3)
2 − cos(x1x2) y21 − cos(x1x2) y1 = x1x2 + x3 A 1

SqExp2 (x1 + x2)
2 +2e1ex1+x2 y21 + 2e1+y1 y1 = x1 + x2 A 1

SqExp3 (x1 + x2)
2 +2e1+x1+x2 y21 + 2e1+y1 y1 = x1 + x2 A 1

Because of the anomalies caused by the interval arithmetic of Maple we
have implemented a heuristic in the earlier implementation for the estimation
of the range bounds. The found other errors were caused by the weak sub-
stitution routine. In the following, we discuss the details on the differences
between the implementations. For the Sin2 problem the new algorithm has
found a proper substitution, while the old method found a more complex, but
not monotonous substitution expression.

For the function Exp2 the range of the expression ex1+x2 is not the full
set of real numbers, still the heuristic range estimation routine of our earlier
implementation found that it is a proper substitution. Our new method’s range
bounding routine worked better.

In the case of the Sq1 problem the earlier implementation has not recog-
nized in x2

1x
2
2 the x1x2 proper substitution expression, although for Sq2 it has

found x1x2 + x3 in the squared term. Since the latter is in the upper level of
addition type in stead of multiplication, the representation is different. For the
Mathematica implementation the case is similar, still the special subroutine
that makes use of unique substitution rules was successful for this problem
instance. On the other hand, x1x2 is not monotonous neither in the variable
x1, nor in x2 for the whole search space (considered to be R), this is why it
was not considered to be a proper substitution expression,

In a similar way for the test problem SqCos1 the new, Mathematica based
procedure recognized correctly that y1 = x1x2 is not monotonous, and hence
it has removed this expression from the list of possible proper substitution
expressions.

In the case of SqExp2-3 again the sample fitting capabilities of the Maple
based algorithm were weak, since x1+x2 was recognized as proper substitution
expression in e1ex1+x2 , but not in e1+x1+x2 . The recent algorithm does not
produce this error.

Summarizing our finding, we can state that the new, Mathematica based
algorithm showed substantial improvements compared to the old one, and it
is functioning more or less as good as it can be expected.

Springer Nature 2021 LATEX template

8 Nonlinear Symbolic Transformations for Interval Optimization Problems

3.2 Computational results on global optimization test
problems

Here we considered the Mathematica implementation on a slightly extended
test set compared to the publication [4] that was discussed in detail in [3]. Most
of the obtained results were the same as those obtained with the first imple-
mentation. The two differing cases were those on the two dimensional versions
of the test problems Schwefel-227 (Sch227) and Schwefel-32 (Sch32). For the
Schwefel-227 problem Maple version gave the y1 = x2

1+x2
2−2x1 substitution.

This substitution obviously covers the variable x2, but is not monotonous in
either variable. This is why the Mathematica version has not suggested it for
substitution. The Schwefel-32 problem is similar to the Rosenbrock function,
and our new algorithm was able to find a proper substitution, while the old
one could not do that.

We have measured also the computation time necessary for the transfor-
mation. The running time was limited to half an hour. The numerical tests
were completed by using Mathematica 9.0, on a 8 GB RAM computer with 64
bit operations system.

Most of the running times were necessary for the transformation with the
symbolic algorithm. Although the preprocessing for the problems in Table 1
required below 0.2 seconds, the computation time needed for the standard
global optimization test problems was much higher. Out of the 45 cases 24
required less than a second. Further 10 cases were simplified within a minute,
but 7 cases would needed more than half an hour.

Out of the 45 studied global optimization problems our Mathematica based
algorithm has found equivalent transformations that simplified the given prob-
lem in 8 cases. In other words, in 18% of the cases we obtained a better
formulation. Since there exists no similar technique to the authors knowledge
that would be capable for such automatic simplifications, these results can be
regarded as remarkable [22].

We have studied what were the effect of the transformations for a classic
multistart global optimization method. On average, the number of objective
function evaluations decreased by 32.0%. In the case of our designed test prob-
lems, this indicator was batter, 51.8%, while for the standard problems it was
slightly less, just 14.7%. For the average of the running time the simplified form
allowed a quicker completion for the GLOBAL algorithm [7]. For the whole
test set, the running time improvement was 31.5%, while for our designed
problems we obtained 56.9% less running times, and for the standard global
optimization problems 9.3%. For all the test results please keep in mind that
the test problems are typically quick to evaluate, and simple expressions, so
for real live problems we can anticipated better improvements in function calls
and running times.

Springer Nature 2021 LATEX template

Nonlinear Symbolic Transformations for Interval Optimization Problems 9

3.3 Improvement of interval inclusion functions

Interval arithmetic based methods [1] are popular for problems when the reli-
able solution of a global optimization problem is needed. The computational
tools like Intlab, the interval package of Matlab, or high level programming
languages having extensions to calculate both the interval inclusion functions
and the derivatives by automatic differentiation (e.g. C-XSC) are capable to
widen the set of possible applications. Still, drawbacks of interval calculations,
such as the overestimation due to the dependency problem can increase the
computation times for finding the optimal solutions.

An often used frightening example for the overestimation is the inclusion
function of f(x) = x2 − x obtained by naive interval extension. Consider the
interval X = [0, 1]. The range of f(x) on this interval is obviously f(X) =
[−0.25, 0], since the zero and 1 are the zeros of the function. The minimum of
f(x) is attained in 0.5, and its value is -0.25. However, the inclusion function
of f(x) is F (X) = X ·X −X. If we evaluate it on the interval [0,1], we obtain
[0, 1] · [0, 1]− [0, 1] = [0, 1]− [0, 1] = [−1, 1]. This interval is eight times wider
than the range of f(x) on the interval [0,1]! We have just two operations in
the function, and obviously for more complex functions we can expect worse
bounding of the respective ranges.

Without going into details we can explain it shortly that the problem is
caused by our assumption that the argument intervals of an operation are
independent in the sense that all possible values of both argument intervals
should be contained in the result interval. If the argument intervals are not
independent, i.e. with the selection of a real number in the first interval we
also determine the only real in the second interval that should be considered,
then the calculation rules of interval operations (based on the lower and upper
bounds of the intervals) are not precise any more in mathematical sense. In
our example above, the two argument intervals of the subtraction are not
independent. According to the rule of thumb for interval calculations, our result
will be sharp mostly if we have a SUE type expression (single use expression),
which uses every variable only once during calculation. In practical problems
we usually cannot assume that the functions to be evaluated are of SUE type.
For example large scale modelling of process network synthesis problems [9]
lead to complex computation trees having redundant subexpressions, far from
the SUE requirements.

The method described in our present article is aiming basically to decrease
the number of operations necessary for the calculation of the objective func-
tion, and if possible to recognize the redundancies on the original expression.
It is not exactly what is necessary to decrease the overestimation of interval
evaluations of the respective inclusion functions [6, 23]. Still, as a first step
to improve the computational burden involved in interval based optimization,
we study the effect of nonlinear simplifying transformations on the solution
of global optimization problems by interval methods. The tested algorithm

Springer Nature 2021 LATEX template

10 Nonlinear Symbolic Transformations for Interval Optimization Problems

[18, 19] is a sophisticated branch-and-bound method extended by the inter-
val Newton step. The stopping criterion required at least two precise decimal
digits in the solution.

Consider first the results obtained for the well known Rosenbrock (or
banana) function. Its objective function is (1 − x)2 + 100(x2 − y)2, and the
single minimum point is obviously (1, 1)T with zero objective function value.
The simplification should have spared just a negligible amount of computation,
since the difference between the two expressions is not substantial in terms of
required number of operations. We obtained for the original function:

Function name: ros2

The set of global minimizers is located in the union of the following boxes:

c1: [0.99487304687500, 1.00235210730573] [0.98876953125000, 1.00708007812500]

c2: [1.00271012643331, 1.00488165028086] [1.00097656250000, 1.01318359375000]

The global minimum is enclosed in: [0.000000000000000000, 0.000022260135021864]

Statistics:

Iter Feval Geval Heval MLL Time(sec)

36 251 174 15 10 0.94

We can state that the result is correct, the interval c1 contains the mini-
mizer point, and the obtained relative precision is good too: 3-4 digits regarding
the place and similar in the objective function value as well. Let us see the
output obtained for the simplified problem:

Function name: ros2v

The set of global minimizers is located in the union of the following boxes:

c1: [-0.00000000000000, 0.00000000000000] [-0.00000000000000, 0.00000000000000]

The global minimum is enclosed in:

[0.000000000000000000, 0.000000000000000000]

Statistics:

Iter Feval Geval Heval MLL Time(sec)

9 42 31 1 1 0.11

Note that you can see here the solution of the transformed problem, hence
the minimizer point found at zero is correct together with the minimum value.
The obtained precision value is so good that it cannot even be compared to
that of the original problem. Knowing how Matlab print the results, we can
state that although the given intervals differ from [0, 0], still the difference
is so small that it cannot be printed even with the longer printing format.

Springer Nature 2021 LATEX template

Nonlinear Symbolic Transformations for Interval Optimization Problems 11

Any way, our result obtained for the transformed problem is about ten order
of magnitude more precise. What is more, we have reached this result with
less computational efforts, since every efficiency indicator is now better: in
stead of 36 iterations, now only 9 was enough (iter). Each of the number of
function evaluation (Feval), gradient calls (Geval), and also the Hesse matrix
evaluations (Heval) decreased: from 251 to 42, from 174 to 31, and from 15 to
1, respectively. It is very telling that the maximal number of subintervals in
the working list (MLL) decreased as well: from 10 to 1. This is indicating that
the optimizer algorithm has found the simplified problem the easiest possible.
The decrease in the necessary CPU time is in accordance with the above, but
it has less importance, since for real life problems better the earlier efficiency
indicators count. Summarizing the obtained results, the simplification brought
more than substantial improvements in all efficiency factors.

Let us see now a second example standard global optimization problem in
detail, the Levy-10.

Function name: L10

The set of global minimizers is located in the union of the following boxes:
c1: [0.99999993564181, 1.00000006433416][0.96591507795486, 1.04004632763272]

[0.99366780273703, 1.12761120490455][0.93750000000000, 1.19587646550836]
[0.89381419541709, 1.00189285440539]

The global minimum is enclosed in:
[0.000000000000000000, 0.000567456706858098]

Statistics:
Iter Feval Geval Heval MLL Time(sec)

17 127 85 6 17 3.20

The result obtained for the simplified version of the objective function:

Function name: L10v

The set of global minimizers is located in the union of the following boxes:
c1: [0.00000000000000, 0.00077514614094][-0.01031504005235, 0.02046607537265]

[-0.04137133829842, 0.01705999539191][-0.04080756533673, 0.04296875000000]
[-0.02127534259525, 0.01985113485206]

The global minimum is enclosed in:
[0.000000000000000000, 0.000000000000000000]

Statistics:
Iter Feval Geval Heval MLL Time(sec)
258 2130 1651 133 32 51.73

This time all the efficiency indicators become worse for the transformed
problem, we used one-two order of magnitude more computational resources.
In spite of this, we can be satisfied, since although the stopping criterion was
the same, we obtained much more precise result. If we calculate with the
achieved precision, the number of objective function evaluations etc. decreased

Springer Nature 2021 LATEX template

12 Nonlinear Symbolic Transformations for Interval Optimization Problems

Table 2 Computational results for the interval global optimization procedure ([19]),
average of 10 runs.

Id. Rel. size of min. point (%) Rel. size of min. (%) Run time (s)

Br 6,411 4 · 10−004 1,405 9 · 10−011 1,530 4

Brv 0,000 0 · 10+000 8,734 9 · 10−008 0,424 3

L8 6,368 0 · 10−010 6,457 8 · 10−008 1,049 9

L8v 1,204 9 · 10−005 1,929 3 · 10−031 4,279 1

L9 1,441 4 · 10−009 5,304 9 · 10−008 1,848 6

L9v 1,357 0 · 10−007 3,507 8 · 10−032 16,662 0

L10 1,115 1 · 10−015 1,773 3 · 10−008 3,007 7

L10v 9,544 3 · 10−011 6,377 8 · 10−033 51,223 0

L11 3,711 0 · 10−030 5,552 2 · 10−013 7,307 1

L11v 4,044 0 · 10−015 3,833 4 · 10−035 1 025,000 0

Rb2 7,362 8 · 10−007 5,565 0 · 10−008 0,922 0

Rb2v 0,000 0 · 10+000 3,867 0 · 10−033 0,112 3

Rb5 1,162 2 · 10−011 5,690 1 · 10−006 60,372 0

Rb5v 6,221 4 · 10−091 2,263 7 · 10−007 36,840 0

Sch3.2 9,327 4 · 10−003 4,442 0 · 10−004 0,321 4

Sch3.2v 0,000 0 · 10+000 0,000 0 · 10+000 0,101 4

substantially. Probably the reason behind is that the simplified expression was
preferable for the interval Newton step.

This finding is also supported by the results on the other, here not detailed
test problems, see Table 2. The interval Newton method is the most critical
part of the interval global, it can be very efficient together with other accelera-
tion tools such as the monotonicity test. On the other hand it can also require
too much computation resources that can be unjustified by the uncertainty
decrease achieved.

Table 2 contains the computational test results obtained for all those stan-
dard global optimization problems that could be simplified. Here Id. stands for
the identifier of the test problem, Rel. size of min. point (%) for the relative
size of the interval box we have obtained for the minimizer point (in percent-
ages), Rel. size of min. (%) indicates the relative size of the interval bounding
the minimum value in percentages, and Run time (s) stands for the measured
running time in seconds. The latter has been measured ten times, and the
average of these values can be found in the last column.

The overall picture is similar to that detailed for the two examples before.
Evaluating the results in Table 2 we can state, that in every cases when the
simplification transformation was found at least one of the three major qual-
ifying factors: the precision of the place, the value of the minimum, and the
computation time was improved. In many cases all the three indicators were

Springer Nature 2021 LATEX template

Nonlinear Symbolic Transformations for Interval Optimization Problems 13

better after the symbolic transformation. It should be noted that the improve-
ments in the place or the value of the minima were not only tens of percentages,
but as a rule many order of magnitudes.

We could identify some patterns for the achieved acceleration: For the Levy
functions the improvement comes from the relocation of the solution inside
the search box to the center of it. The Rosenbrock test functions have been
transformed to a quadratic function, hence the interval Newton step could
be extremely efficient. The underlying reason behind the other cases is still
unclear.

4 Conclusion

On the basis of our present work we can draw the cautious conclusion that
the symbolic simplification transformation showed a very promising efficiency
improvements on standard global optimization problems. Closely 18% of the
standard global optimization problems could be simplified automatically, and
we could achieve dramatic improvements of many orders of magnitude in pre-
cision of the place or value of the minima. At present, the main problem with
these improvements are that they are less controllable, i.e. we cannot really
economize on the huge precision improvements. Further developments need
extensive testing, and the deeper understanding of the causes behind the better
bounds.

Declarations

The authors declare that they have no conflict of interest and no compet-
ing interests related to this work. We declare that we have not received any
payment or support in kind for any aspect of the submitted project.

References

[1] G. Alefeld, J. Herzberger, Introduction to Interval Computation, Aca-
demic Press, New York, 1983.

[2] E.D. Antal, A matematikai modellezés hatása nemlineáris optimalizálási
feladatok megoldásának hatékonyságára, PhD Dissertation, University of
Szeged, Szeged, 2017.

[3] E.D. Antal, T. Csendes, Nonlinear Symbolic Transformations for Simpli-
fying Optimization Problems, Acta Cybernetica 22(2016) 715–733.

[4] E.D. Antal, T. Csendes, J. Virágh, Nonlinear Transformations for the Sim-
plification of Unconstrained Nonlinear Optimization Problems, Central
European J. Operations Research 21(2013) 665–684.

Springer Nature 2021 LATEX template

14 Nonlinear Symbolic Transformations for Interval Optimization Problems

[5] G. Avanzolini, P. Barbini, Comment on “Estimating Respiratory Mechan-
ical Parameters in Parallel Compartment Models”, IEEE Trans. Biomed-
ical Engineering 29(1982) 772–774.

[6] T. Csendes and E.D. Antal, Nonlinear Symbolic Transformations for
Optimization Problems (In Hungarian), Szigma 48(2017) 33-46.

[7] T. Csendes, L. Pál, J.O.H. Send́ın, J.R. Banga, The GLOBAL Optimiza-
tion Method Revisited, Optimization Letters 2(2008) 445–454.

[8] T. Csendes, T. Rapcsák, Nonlinear Coordinate Transformations for
Unconstrained Optimization. I. Basic Transformations, J. Global Opti-
mization 3(1993) 213–221.

[9] T. Farkas, E. Rév, and Z. Lelkes, Process flowsheet superstructures:
Structural multiplicity and redundancy: Part I: Basic GDP and MINLP
representations, Computers & Chemical Engineering, 29(2005) 2180–
2197.

[10] R. Fourer, and D.M. Gay, Experience with a Primal Presolve Algo-
rithm. In W.W. Hager, D.W. Hearn, and P.M. Pardalos, editors, Large
Scale Optimization: State of the Art, pages 135–154. Kluwer Academic
Publishers, Dordrecht, 1994.

[11] D.M. Gay, Symbolic-Algebraic Computations in a Modeling Language for
Mathematical Programming, In G. Alefeld, J. Rohn, and T. Yamamoto,
editors. Symbolic Algebraic Methods and Verification Methods, pages 99–
106. Springer-Verlag, Berlin, 2001.

[12] R.J. Gaylord, C. Kamin, S.N. Wellin, and R. Paul, An Introduction to
Programming with Mathematica, Springer New York, 1996, 141–143.

[13] A. Heck, Introduction to computer algebra, In Introduction to Maple,
Springer New York, 2003, 11.

[14] Z. Hantos, B. Daróczy, T. Csendes, B. Suki, and S. Nagy, Modeling of Low-
frequency Pulmonary Impedance in the Dog, J. of Applied Physiology
68(1990) 849–860.

[15] L. Liberti, S. Cafieri, D. Savourey, The Reformulation-Optimization Soft-
ware Engine, Mathematical Software – ICMS 2010, LNCS 6327, 303–314,
2010.

[16] R.E. Maeder, The Mathematica Programmer, Academic Press, 1994, 8.

[17] Cs. Mészáros, U.H. Suhl, Advanced preprocessing techniques for linear
and quadratic programming, OR Spectrum 25(2003) 575–595.

Springer Nature 2021 LATEX template

Nonlinear Symbolic Transformations for Interval Optimization Problems 15

[18] L. Pál, Global optimization algorithms for bound constrained problems.
Ph.D. dissertation, University of Szeged, 2011.

[19] L. Pál and T. Csendes, INTLAB implementation of an interval global
optimization algorithm, Optimization Methods and Software 24(2009)
749–759.

[20] T. Rapcsák and T. Csendes, Nonlinear Coordinate Transformations
for Unconstrained Optimization. II. Theoretical Background, J. Global
Optimization 3(1993) 359–375.

[21] H. Schichl, A. Neumaier, Interval Analysis on Directed Acyclic Graphs
for Global Optimization, J. Global Optimization 33(2005) 541–562.

[22] D.R. Stoutemyer, Ten commandments for good default expression simpli-
fication, J. Symbolic Computation 46(2011) 859–887.

[23] B. Tóth, T. Csendes, Empirical investigation of the convergence speed of
inclusion functions, Reliable Computing 11(2005) 253–273.

[24] P. Wellin, Functional programming. In Programming with Mathematica:
An Introduction, Cambridge University Press, 2014, 115–188.

[25] Wolfram Mathematica 9 Documentation Center, Mathematica Tutorial:
Basic Internal Architecture, available at: https://reference.wolfram.com/
mathematica/tutorial/BasicInternalArchitecture.html

https://reference.wolfram.com/mathematica/tutorial/BasicInternalArchitecture.html
https://reference.wolfram.com/mathematica/tutorial/BasicInternalArchitecture.html

	Introduction
	The simplification method, idea, and theoretical results
	Implementation and computational results
	Improvements compared to the previous version
	Computational results on global optimization test problems
	Improvement of interval inclusion functions

	Conclusion

