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Abstract. In this two-part article, nonlinear coordinate transformations are dis-
cussed to simplify unconstrained global optimization problems and to test their
unimodality on the basis of the analytical structure of the objective functions. If
the transformed problems are quadratic in some or all the variables, then the opti-
mum can be calculated directly, without an iterative procedure, or the number of
variables to be optimized can be reduced. Otherwise the analysis of the structure
can serve as a first phase for solving unconstrained global optimization problems.

The first part treats real-life problems where the presented technique is applied
and the transformation steps are constructed. The second part of the article deals
with the differential geometrical background and the conditions of the existence of
such transformations.
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1 Introduction

In [6], a parameter estimation problem was studied, with an objective func-
tion of the sum-of-squares form

F (Raw, Iaw, B, τ) =

[
1

m

m∑
i=1

|ZL(ωi)− Z ′
L(ωi)|2

]1/2
, (1)

where ZL(ωi) ∈ C is the measured complex impedance value; Z ′
L(ωi) is the

modelled impedance at frequencies ωi for i = 1, 2, . . . ,m and Raw, Iaw, B, τ

1



are the model parameters. The model function was

Z ′
L(ω) = Raw +

Bπ

4.6ω
− j

(
Iawω +

B log(γτω)

ω

)
, (2)

where γ = 101/4 and j is the imaginary unit. For this model identification
problem, a different yet equivalent model function was found:

Z ′
L(ω) = Raw +

Bπ

4.6ω
− j

(
Iawω +

A+ 0.25B +B log(ω)

ω

)
, (3)

where the model parameters are Raw, Iaw, A and B. This model function is
linear in the parameters, the objective function value goes to infinity as the
absolute value of any parameter grows, and thus the optimization problem
has a unique minimum. The minimum can be calculated directly, without
an iterative procedure (the zero of the gradient can be determined by a finite
procedure, that is much easier than the solution of the global optimization
problem in general). The reason for the existence of (3) is that the parame-
ter B can be obtained via the fitting of the real part of the model function,
and this value can be used to identify the product B log(γτω). The vari-
able transformation that gives (3) from (2) is A = B log(τ). This simple
finding and many other practical problems [1, 3] where analytical relations
are a priori known between the variables motivated the present study to in-
vestigate nonlinear variable transformations for testing the unimodality of
unconstrained nonlinear minimization problems.

In contrast with traditional numerical methods [2, 4], the technique to be
presented utilizes the analytical expression of the objective function. Similar
methods are rather rare in the literature. Stoutemyer discussed an analytical
optimization method [9], and a program that can yield a problem class (such
as linear, quadratic, separable, etc.) for a problem given in symbolic form
[10]. The algorithm studied by Hansen, Jaumard and Lu [5] is intended to
solve constrained global optimization problems, and it also uses the expres-
sion of the constraints in a branch-and-bound framework. This algorithm
gave the exact solution of many global optimization problems. The method
presented in this paper can be applied as a further test procedure in this
branch-and-bound algorithm. Redkovskii and Perekatov described nonlinear
coordinate transformations [7, 8] to achieve positive definite Hessian matrices
for the Newton local minimization method.
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In the first part of our article, nonlinear variable transformations are
discussed to simplify the nonlinear objective function and to test whether it
is unimodal. The conditions of the existence of such transformations are also
studied. The second part treats the differential geometrical background of
these transformations.

2 Unimodality and Parameter Transforma-

tions

Consider the unconstrained nonlinear optimization problem

min
x∈IRn

f(x), (4)

where f(x) : IRn → IR is a nonlinear function with continuous second
derivatives. We study homeomorph coordinate transformations, i.e. invert-
ible continuous one-to-one mappings IRn → Y ⊆ IRn, for which the inverse
mapping Y → IRn is also continuous. We wish to find a transformation
y = h(x) such that f(x) = f(h−1(y)) = g(y), where g(y) is a quadratic
function, and thus its optimum can easily be calculated.

For the sake of simplicity, we consider here only the unconstrained non-
linear optimization problem, although practical problems are usually con-
strained. In parameter estimation problems such as those in [6], a unique
global minimum may be of interest, even if it is outside the bounds (which
typically give only a region of reasonable starting points).

A one-dimensional function f(x) is defined to be unimodal [4] if there ex-
ists a point x⋆ such that for any points x1 and x2 for which x1 < x2: if x2 < x⋆

then f(x1) > f(x2), and if x⋆ < x1 then f(x1) < f(x2). If f(x) is continu-
ous, then f(x⋆) is the unique local minimum, and thus the global minimum.
What is more, the statements that a one-dimensional continuous function is
unimodal, and that it has a unique local minimum and no local maximum,
are equivalent (for the unconstrained case considered here). The unimodality
is usually not defined for n-dimensional functions. The main reason for this
is that the simple minimization algorithms based on the unimodal property
of a function [4] cannot be generalized for the multidimensional case.

We now define an n-dimensional continuous function to be unimodal on an
open set X ⊆ IRn if there exists a set of infinite continuous curves such that
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the curve system is a homeomorphic mapping of the polar coordinate system
of the n-dimensional space, and the function f(x) grows strictly monotoni-
cally along the curves. This definition means in other words that a function
is unimodal if it has a single region of attraction on the given set X. For
a smooth function, unimodality clearly ensures that it has only one local
minimizer point, and there exists no maximizer point in X. This definition
fits the optimization usage well, since multimodal and multiextremal func-
tions are regarded as synonyms. An n-dimensional unimodal function does
not necessarily satisfy the conditions of one-dimensional unimodality along
every line in the n-dimensional space. Consider, for example, the well-known
Rosenbrock or “banana” function [4]: it is clearly unimodal, yet the one-
dimensional unimodality does not hold along the line x2 = 1, for instance.

Theorem 1 discusses the relationship between homeomorph variable trans-
formations and the unimodality of nonlinear functions.

THEOREM 1 The continuous function f(x) is unimodal in the n-dimensi-
onal real space if and only if there exists a homeomorph variable transfor-
mation y = h(x) such that f(x) = f(h−1(y)) = yTy + c, where c is a real
constant, and the origin is in the range S of h(x).

Proof. If f(x) is unimodal with the only local minimizer point of x⋆, then
the constant c in Theorem 1 is equal to f(x⋆) and the point x have to be

transformed to a y for which |y| =
√
f(x)− f(x⋆). If x ̸= x⋆, then the points

satisfying this equation form a sphere around the origin. Choose now that
candidate point y, which is the intersection of the sphere and the half-line
that is the homeomorphic transform of the curve passing through x. The
global minimizer point x⋆ must be transformed to the origin. The range S
of the presented transformation may be a subset of IRn (e.g. if the range
of f(x) is finite). For each point y in S, there is exactly one half-line that
starts at the origin and goes through y. The respective curve determines the
inverse of y. The construction of the transformation ensures the necessary
properties.

Consider now the case when there exists a variable transformation satis-
fying the requirements of Theorem 1. The global minimizer point of yTy+ c
on the range of h(x) is then the origin, x⋆ = h−1(0) must be a global min-
imizer point of f(x). The half-lines starting from the origin form the set
of curves for which the conditions of unimodality are fulfilled. The inverse
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transformation h−1 is continuous according to the assumption, hence it gives
the set of curves that prove the unimodality of f(x). 2

The transformation introduced in the proof cannot be used directly to test
the unimodality of a nonlinear function and to determine the global mini-
mum, since e.g. the global minimizer point must be known to construct the
transformation. Nevertheless, because of the uniqueness of this transforma-
tion (up to an appropriate rotation), we may make use of the form of this
transformation.

3 Basic Transformation Steps

The main difference between model functions (2) and (3) is that B log τ is
replaced by a new parameterA. This was possible since the objective function
is separable, it can be written as a sum of squared functions, and thus the
optimal value of B is determined by fitting the term Bπ/4.6ω. Having an
optimal value for B, the fitting of the product B log τ merely involves fitting
here a single parameter A and then calculating τ from A = B log τ .

Assume that a variable xi occurs in the expression f(x) everywhere in
the form of h(x). Change every occurrence of h(x) in the expression of f(x)
to yi, and rename the remaining variables xj as yj providing the transformed
function g(y). Some variables may disappear from the expression via the
substitution, and in this case g(y) is constant as a function of these vari-
ables. The transformed function may be independent of a variable yj, even if
∂f(x)/∂xj is not zero. Consider for instance f(x) = (x1+x2)

2, h(x) = x1+x2,
g(y) = y21. Such a case was reported for a biomedical parameter estimation
problem in [1]. The transformation between the two IRn spaces is a diffeo-
morphism, yet it makes sense to omit the variables that does not affect the
objective function value. The recognition of such a redundant parameter is
very important for the user, it is not trivial (see again [1] and Example 4),
and in general it is not detectable by usual numerical techniques. Computer
algebra systems (such as Derive, Mathematica, or Reduce) can facilitate the
variable transformations discussed in this paper.

The following statement is true for the introduced transformation:

THEOREM 2 If h(x) is smooth and strictly monotonic in xi, then the cor-
responding transformation simplifies the function in the sense that each oc-
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currence of h(x) in the expression of f(x) is padded by a variable in the
transformed function g(y), while every local minimizer (or maximizer) point
of f(x) is transformed to a local minimizer (maximizer) point of the function
g(y).

Proof. Assume that x⋆ is a local minimizer point with the function value
f ⋆ = f(x⋆). Denote its transform by y⋆. The neighbourhood N(x⋆) is trans-
formed to the neighbourhood N ′(y⋆) (possibly in a lower-dimensional space),
since h(x) is a smooth function. The strict monotonicity ensures that only
the points of N(x⋆) are transformed to the points of N ′(y⋆). The transfor-
mation does not change the function values, and hence g(y) ≥ g(y⋆) holds for
each y ∈ N ′(y⋆). This indicates that the transform of a local minimizer point
is a local minimizer point of the transformed problem. The same procedure
can be carried out for local maximizer points. 2

It would be sufficient to prove Theorem 2 that h(x) has different values for
different xi variables. However, this property together with the smoothness
of h(x) implies its monotonicity. The following theorem discusses the case
when the range of h(x) is the whole real space.

THEOREM 3 If h(x) is smooth, strictly monotonic as a function of xi, and
its range is equal to IR, then for every local minimizer (or maximizer) point
y⋆ of the transformed function g(y) there exists an x⋆ such that y⋆ is the
transform of x⋆, and x⋆ is a local minimizer (maximizer) point of f(x).

Proof. Set x⋆
j = y⋆j for all yj variables of g(y) except from yi. If some of the

original variables xk (for k ̸= i) of f(x) were deleted by the transformation
then set these variables to zero. This setting of the deleted variables defines a
hyperplane S in IRn. Having fixed every x⋆

j for j = 1, 2, . . . , i−1, i+1, . . . , n,
the value of x⋆

i can be determined for every y⋆i value, since h(x) is strictly
monotonic and its range is equal to IR. The function h(x) is invertible for
the coordinate xi, and thus its inverse is continuous.

Consider a neighbourhood N(y⋆) of the local minimizer point y⋆. A
neighbourhoodN ′(x⋆) is obtained with the presented transformation in which
x⋆ is a local minimizer point. If no variable was deleted in the transformation
yi = h(x) then this conveys the proof of the Theorem. Otherwise, N ′(x⋆)
is a neighbourhood in the hyperplane S, and the hypersurfaces h(x) = c
where c is a real constant cover the original n-dimensional variable space.
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The function f(x) is obviously constant on such a hypersurface. The point
x⋆ is thus a local minimizer point in the region specified by N ′(x⋆) and the
hypersurfaces that intersect N ′(x⋆). This region is not of zero measure, and
hence x⋆ is a local minimizer point of f(x) in IRn. This train of thoughts can
be repeated for local maximizer points. 2

If the transformation suggested by Theorem 2 is invertible and smooth, then
this transformation can be regarded as a transformation step, a sequence of
which may form the transformation discussed in Theorem 1 (as in the case
of the problem shown in the Introduction).

The following assertion (that can readily be proved with the rules of differ-
entiation) facilitates the automatic recognition of possible variable transfor-
mations.

ASSERTION 1 If a variable xi appears everywhere in the expression of a
smooth function f(x) in a term h(x), then the partial derivative ∂f(x)/∂xi

can be written in the form (∂h(x)/∂xi)p(x), where p(x) is continuously dif-
ferentiable.

Obviously, a number of other factorizations exist besides the one men-
tioned in this Assertion, yet a canonical form can be derived for a wide class
of functions (e.g. for the algebraic functions). Even if ∂h(x)/∂xi is known,
it may be difficult to determine a good transformation function h(x). If
∂f(x)/∂xi is not factorizable, then h(x) is linear in xi for the only possible
transformation (satisfying the conditions of Theorem 2).

The condition of the existence of a variable transformation h(x) that
decreases the number of variables of an unconstrained nonlinear optimization
problem is given in the following statement:

ASSERTION 2 If the variables xi and xj appear everywhere in the expres-
sion of a smooth function f(x) in a term h(x), then the partial derivatives
∂f(x)/∂xi and ∂f(x)/∂xj can be factorized in the forms (∂h(x)/∂xi)p(x) and
(∂h(x)/∂xj)q(x), respectively, and p(x) = q(x).

Again, the proof can be obtained via simple calculations. Nonlinear opti-
mization problems are usually multiextremal and they can be simplified only
in rare cases. However, the presented symbolic manipulation techniques may
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transform the original problem to a new one that is substantially easier to
solve. The cases referred to indicated that a surprisingly large proportion of
practical problems could be simplified by the presented procedure.

4 Examples

1. Consider first the Rosenbrock function [4]: f(x) = 100(x2
1−x2)

2+(1−x1)
2.

The usual bounds of the variables are −2 ≤ x1 ≤ 2 and −2 ≤ x2 ≤ 2.
Factorization of the gradient of f(x) showed that only linear transformations
(in the transformation variable) are possible. There is no matching pattern
for all occurrences of x1; it appears in the expression of f(x) as x2

1, 1 − x1,
x2
1−x2, (1−x1)

2 and (x2
1−x2)

2. The variable x2 appears in the forms x2
1−x2,

(x2
1 − x2)

2 and 100(x2
1 − x2)

2, and these forms characterize all occurrences of
x2. The last two terms are not monotonic as functions of the variable x2,
and hence they cannot fulfil the conditions of Theorems 2 and 3.

With the transformation y1 = x1 and y2 = x2
1 − x2, the function g(y) =

(1 − y1)
2 + 100y22 is obtained. This transformation is obviously smooth, its

range is IR2, and it is also invertible. The transformed function g(y) has a
diagonal Hessian, and thus it is separable. The function g(y) is now quadratic
and the only local minimum is easy to calculate: y1 = 1, y2 = 0. The inverse
of the applied transformation is x1 = y1 and x2 = y21 − y2. Hence, the unique
local minimizer point of the original unconstrained problem is x⋆

1 = 1, x⋆
2 = 1.

This point is inside the bounds, and thus x⋆ is a global minimizer of the
Rosenbrock problem, and the uniqueness of this minimum is guaranteed by
the applied procedure.

2. Consider the function f(x) = cos(ex1 + x2) + cos(x2). The symbolic
derivation and factorization now indicated that a transformation in the form
ex1 + h(x2) might be possible. With the smooth but not invertible variable
transformation y1 = ex1 + x2, y2 = x2, we obtained g(y) = cos(y1) + cos(y2).
This has local maximizers (e.g. y1 = −2π, y2 = 0) that are not transforms
of local maximizers of f(x) (cf. Theorem 2). However, g(y) is separable and
simpler to optimize, and the transformation clearly indicates the structure
of the optimizers of the original problem.

3. Problem (1), presented in the Introduction, proved to be simplifiable. For
the sake of simplicity, delete the square root and the term 1/m in (1), and
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use the squares of the real and imaginary differences instead of the absolute
values of complex differences. The only partial derivative which proved to
be factorizable is ∂F/∂τ , and a factor of B/τ appeared. By integrating this,
we obtain the transformation function B log(τ), which was evaluated in the
Introduction with the help of the understanding of the problem structure.

4. Consider a parameter estimation problem [1] as the last example. The
underlying Otis model of respiratory mechanics was earlier widely studied. In
[1], by utilizing the properties of the particular electric model, it was proved
that the model function has a redundant parameter. The objective function
again has the least-squares form as in (1), but we now concentrate on the
model function

Zm(s) =
Ds3 + Cs2 +Bs+ 1

Gs2 + Fs
(5)

where s = jω and

B = RC(C1 + C2) +R1C1 +R2C2, (6)

C = IC(C1 + C2) + [RC(R1 +R2) +R1R2]C1C2, (7)

D = IC(R1 +R2)C1C2, (8)

F = C1 + C2, (9)

G = (R1 +R2)C1C2. (10)

Although some simplifications are possible (e.g. R′
1 = R1C1) by apply-

ing the technique presented in this paper, the number of model parameters
cannot be decreased in this way. However, equations (7)-(11) also represent
a smooth nonlinear variable transformation. Each new parameter is a linear
function of a given old one (having the other old parameters fixed), and thus
the conditions of Theorem 3 are fulfilled. According to the arguments of the
proof of Theorem 3, a local minimizer point of the transformed problem can
be transformed back to a hypersurface of the original parameter space, every
point of which is a local minimizer with the same function value. This ex-
ample indicates further methods for the recognition of simplifying parameter
transformations.
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