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1 Introduction

Our original task [8] was to solve parameter estimation problems having

very complex nonlinear objective functions with a relatively small number

of parameters. It is quite expensive to evaluate them: about 100 times as

much CPU time is needed as to the standard test functions. The objective

functions turned out to have usually a large number of local minima in the

region of interest. Although we can compute these functions, sometimes we

do not even know their explicit form. Thus, the determination of the exact,

analytical derivatives is impossible in such cases, and we are forced to use

non-derivative techniques.

The literature on global optimization [5] suggested that the method of

Boender et al. [2] was the most promising for our purposes. Although a
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later version of this algorithm [11] seemed to be more efficient, we did not

implement this modification because it was less reliable.

In this paper we discuss the relationship between the nonlinear least

squares problem and global optimization, and we deal with the efficiency

and reliability of the mentioned global optimization method using a quasi-

Newton procedure and a random walk direct search technique.

2 Nonlinear parameter estimation and global

optimization

The nonlinear parameter estimation problem is usually given as

min
x

F (x) (1)

where F (x): IRn → IR,

F (x) = (
m∑

i=1

(f i − fi(x))2)1/2

f i ∈ IR; fi(x): IRn → IR i = 1, 2, . . . ,m; m > 0 integer; x ∈ S ⊆ IRn, where

the region of interest S is a compact set. S is in most cases a hypercube

ai ≤ xi ≤ bi; ai, bi ∈ IR i = 1, 2, . . . , n. Thus the objective function F (x) is

of least squares type.

In solving (1), it is often supposed that F (x) is unimodal (it has only one

local minimum) or that a suitable starting point is at hand for the iterative

solving algorithm [6]. Since we have found many practical nonlinear para-

meter estimation problems whose objective functions were not unimodal, we
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examine the relationship between the nonlinear least squares problem (1)

and the global optimization problem:

Consider a compact set S in IRn and a not necessarily unimodal function

G(x): IRn → IR. The problem is to find a global minimizer x∗ ∈ S so that

G(x) ≥ G(x∗) for all x ∈ S.

S is usually given by simple bounds on the parameters of G(x):

ai ≤ xi ≤ bi, ai, bi ∈ IR, i = 1, 2, . . . , n

We found that the structure of F (x) guarantees only the non-negativity of

F (x). More exactly:

Proposition For every non-negative real function G(x): IRn → IR, pos-

itive integer m and real numbers f i ∈ IR i = 1, 2, . . . , m there are such real

functions fi(x) i = 1, 2, . . . , m that

F (x) = (
m∑

i=1

(f i − fi(x))2)1/2

and G(x) = F (x) for every x ∈ IRn.

Let e.g. gi(x) i = 1, 2, . . . ,m such real, non-negative functions, that

G(x)2 =
m∑

i=1

gi(x)

There exist such functions gi(x), since e.g. gi(x) = G(x)2/m is suitable.

Then let

fi(x) = gi(x)1/2 + f i
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Note that the functions gi(x) can be almost freely chosen, and in this way we

can ensure further desirable properties of the functions fi(x). For example,

when G(x) is continuous, then all fi(x) can be continuous, too. On the other

hand, for all sets of functions fi(x) i = 1, 2, . . . , m there exists obviously

a real function f(i, x): IRn+1 → IR, so that fi(x) = f(i, x) for all i =

1, 2, . . . , m; and f(i, x) is even continuous in the variable i.

According to the Proposition, the objective function of a nonlinear pa-

rameter estimation problem can be any non-negative real function. Thus, a

nonlinear parameter estimation problem can have an arbitrary great num-

ber (or even a continuum) of local minima. The structure of F (x), i.e. the

least squares form results only in the non-negativity of F (x), and not in any

further regularity.

Since the global minimum of a well-posed global optimization problem

is finite (e.g. G(x∗) ∈ IR), every such problem can be transformed with

G′(x) = G(x) − G(x∗) and S ′ = S to a problem having a non-negative

objective function and the same structure of local minima. Thus, loosely to

speak, every global optimization problem can be written in the form of a

nonlinear parameter estimation problem with any m, and f i values fixed in

advance. This confirms the use of a global optimization algorithm to solve

problems like (1).
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3 Implementations

We discuss here an algorithm to solve the global optimization problem de-

fined in the previous section. In most cases the result of a global optimization

algorithm is only an approximation of the global optimum, though the preci-

sion of the modern sophisticated nonlinear optimization methods approaches

that of the given computer.

The global optimization method of Boender et al. [2] has been imple-

mented in two versions. These have the same structure, the only difference

between them being the local search procedure (an algorithm to find a local

minimizer) used: a quasi-Newton procedure with the DFP update formula

[6] and a random walk type direct search method UNIRANDI [9, 12]. In the

following these algorithms are denoted by A and B, respectively. Both are

derivative-free, i.e. they do not use the partial derivatives of the objective

functions. The evaluation of the later would be difficult or even impossible

in the case of our original problem [8]. UNIRANDI proved to be robust

but inefficient, whereas the quasi-Newton method was rather sensitive to the

initial points but more accurate [3]. The global optimization method and

UNIRANDI were implemented by using solely [2] and [12].

The global optimization algorithm discussed in this paper can be de-

scribed concisely as follows:

Step 1 Draw N points with uniform distribution in S, and add them to the

current sample C. Construct the transformed sample T by taking the
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γ percent of the points in C with the lowest function values.

Step 2 Apply the clustering procedure to T . If all points of T can be as-

signed to a cluster, go to Step 4.

Step 3 Apply the local search procedure to the points in T not yet clustered.

Repeat Step 3 until every point has been assigned to a cluster. If a new

local minimizer has been found, go to Step 1.

Step 4 Determine the smallest local minimum value found, and stop.

The local search procedure mentioned here is one of the quasi-Newton method

and UNIRANDI. We chose the single linkage clustering procedure as being

the more promising of the two discussed in [2]. The aim of this procedure is to

recognize those sample points starting from which the local search would pos-

sibly result in an already found local minimizer. Clusters are grown around

seed points (local minimizers or such starting points of the local search proce-

dure from which an already known local minimum was reached). A distance

d(x, x′) is defined [2] for the clustering between two points x and x′ in the

neighbourhood of a local minimizer x∗ by

d(x, x′) = ((x− x′)T H(x∗)(x− x′))1/2

The quasi-Newton method of algorithm A gives a good approximation to

the Hessian H(x∗) of the objective function. In the case of UNIRANDI the

identity matrix replaces H(x∗) (cf. [2]). A new point x is added to a cluster,
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if there is a point x′ in this cluster for which

d(x, x′) ≤ [
Γ(1 + 1

2
n)|H(x∗)|1/2m(S)

πn/2
(1− α1/(N ′−1))]1/n

where |H(x∗)| denotes the determinant of H(x∗), m(S) is a measure of the

set S, N ′ is the total number of sampled points, and 0 < α < 1 is a parameter

of the clustering procedure [2].

The two most important changes in the original algorithm are as follows:

1. We do not use a steepest descent step to transform the current sample.

Its efficiency was examined in the early phase of the implementation,

and it turned out to be omittable.

2. The parameters of the objective function are scaled [6] by the global

optimization subroutine with the transformations

x′i =
2xi − ai − bi

bi − ai

i = 1, 2, . . . , n

This can be made of course without using the explicite form of the ob-

jective function. The scaling does not have much effect on the efficiency

of algorithms A and B in the case of the test functions. On the other

hand, it is indispensable to solve practical problems.

The result of the implementation was a FORTRAN subroutine of just over

400 program lines occupying 44 kilobytes of core space (without the local

search routines). It serves to solve global optimization problems of up to 15

parameters. The program documents its progress, and when the problem is

solved it makes a list of local minima with increasing function values.
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4 Efficiency

The numerical tests were carried out on a ROBOTRON R55M computer.

The programs were coded to use the single precision arithmetic (with 7.2

decimal digits). The standard time unit (1000 evaluations of the S5 function

at xT = (4.0, 4.0, 4.0, 4.0)T ) was measured ten times. The average of these

was 2.00 seconds with a standard deviation of 0.15. We used the usual

test functions whose detailed description can be found in [5], [4] and [7].

With these functions, mostly the efficiency of a global optimization algorithm

can be measured. Wherever possible, the results of the original papers are

included in our tables. These data differ slightly from those in [5] and [2].

Algorithms A and B were applied ten times to each test function. The

parameters of the procedures were chosen so that they were able to find the

global minimum each time.

We found that the computational effort (CPU time and number of func-

tion evaluations) was proportional to the required precision of the estimation

of local minima. Thus, when different global optimization methods are com-

pared, their accuracy should also be taken into account. First of all, the

exact global minimum values should be determined. Table 1 gives the ac-

curate global minimum and global minimizer values for every test function.

These data are in good agreement with the results of Price [10]. It has to

be mentioned that slightly different numbers can be obtained with another

computer precision. Certain global minimizer values in this Table are given
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by four or five decimal digits only. The reason for this is that for these test

functions the same global minimum value can be achieved with somewhat

different minimizers.

We determined subsequently the precision of the results obtained with

the global optimization methods cited in [2] wherever this was possible. The

number of significant digits was defined by

− log
F (x′)− F (x∗)

F (x∗)
(2)

where x∗ is a global minizer of the given test function F (x), and x′ is its

estimate. In the particular case of the Rosenbrock function (RB) when the

global minimum is zero, the following expression was used for this:

− log F (x′)

The numbers of significant digits are listed in Table 2 for every test function.

We tried to tune the procedures A and B so that they achieve a similar

accuracy (2) on the various test functions. The reliability and the accuracy

of our method can be tuned almost independently.

The number of function evaluations required by the global optimization

methods to solve test functions are given in Table 3. Since those local mini-

mization procedures that are not allowed to use the partial derivatives of the

objective function are usually less efficient than the others, the efficiencies of

algorithms A and B should be compared only with those of the similar non-

derivative methods. The methods known to be non-derivative are marked

by asterisks in Tables 2–4. The numbers in these Tables are results of one

9



sample run for the first four methods, the average of four independent runs

for the method of Boender et al., and the average of ten runs for algorithms

A and B. Table 3 indicates that the procedure of Boender et al. works best

of all, and the non-derivative methods of Törn [12] and Price [10] are less

efficient than A and B.

Table 4 contains the numbers of standard time units required. As con-

cerns these data, algorithms A and B seem to be definitely quicker than the

other non-derivative ones, and procedure A is about as rapid as that of Boen-

der et al. [2]. From the user’s point of view Table 3 is more important, since

in practical cases the evaluation of the objective function is more expensive

than that of the standard test functions. Therefore, Table 4 is informative

on the overhead costs.

To summarize our numerical experience, we can state that these two

non-derivative versions of Boender et al.’s global optimization method work

definitely better than the other non-derivative procedures. The efficiency

of implementation A approaches that of the original one. The discussed

global optimization method with a non-derivative quasi-Newton procedure

can be well recommended for the solution of smooth global optimization

problems when calculation of the partial derivatives is inconvenient or im-

possible. The same global optimization method, together with a direct search

method UNIRANDI, can be an efficient tool for locating the global minimum

of non-smooth or non-differentiable objective functions.
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5 Reliability

Almost all global optimization methods use only local information, i.e. the

values of the objective function and its first and second derivatives at certain

points. It is easy to show that for the solution of this problem in general there

is no algorithm that uses only such local information at a finite number of

points. For this reason, the research efforts on global optimization are con-

centrated mainly on evaluating increasingly reliable and efficient heuristics.

The size of the region of attraction [1] of the global minimum (the points

of such continuous curves in IRn that end in a global minimizer, and along

which the objective function decreases strictly monotonously) characterizes

the difficulty of a given problem. From this point of view, the most frequently

used test problems [5] are rather easy to solve, and mostly the efficiency of

an algorithm can be tested with them.

A new global optimization test poblem is proposed below for comparing

algorithms in terms of reliability and for testing the degree of difficulty of

global optimization problems that can be solved with them.

The suggested n-dimensional test function is very simple:

F (x) =
n∑

i=1

fi(xi) (3)

where for every i = 1, 2, . . . , n:

fi(xi) = x6
i (sin(1/xi) + 2)

if xi 6= 0, and

fi(0) = 0
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If xi 6= 0, the gradient and Hessian of F (x), respectively, are

gi(x) = 6x5
i (sin(1/xi) + 2)− x4

i cos(1/xi) (4)

and

Hi,j(x) = 0 (i 6= j)

(5)

Hi,i(x) = 30x4
i (sin(1/xi) + 2)− 10x3

i cos(1/xi)− x2
i sin(1/xi)

i, j = 1, 2, . . . , n. Otherwise gi(x) and Hi,j(x) are zeros, i, j = 1, 2, . . . , n.

The gradient and the Hessian are continuous everywhere in IRn. Since

n∑

i=1

x6
i ≤ F (x) ≤ 3

n∑

i=1

x6
i (6)

the global minimum of F (x) on IRn is zero, and this value is reached only in

the origin.

Theorem. The function F (x) has a countable infinity of local minima

and maxima. All these extrema are in the hypercube

−1 ≤ xi ≤ 1 i = 1, 2, . . . , n (7)

Proof. First consider the case when n = 1. Supposing that the first deriva-

tive is equal to zero and x 6= 0, it holds that

6x(sin(1/x) + 2) = cos(1/x) (8)

The right side of this equation varies from -1 to 1, while the left side is

between 6x and 18x. Hence, the first derivative can be zero only in the
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interval (-1/6, 1/6). The right side of equation (8) takes the values -1 and 1

in each interval of

[(1/2kπ), 1/(2(k + 1)π)) k = ±3, ±4, . . . (9)

whereas in the same interval

−1 < 6x(sin(1/x) + 2) < 1 (10)

This proves that the function F (x) has at least one local minimum and

one local maximum in every interval of (9), since the first derivative is a

continuous function. These extrema are diverse, because they are all inside

the intervals. Thus there is at least a countable infinity of local minima and

maxima in (7).

It can be seen easily that the first and the second derivatives of F (x) can

not be zeros in the same place. Since the second derivative is continuous,

each local extremum is associated with an open interval of IR, in which it

is the only local extremum. Consequently, there cannot be a continuum of

local extrema of F (x) in IR.

For any positive integer n the same proof holds, by using the fact that

F (x) is separable. 2

Thus, the unconstrained problem has the same set of local minima as the

problem with the bounds (7). The global minimizer is non-isolated, in the

sense that it is an accumulation point of local minimizers [1] (and it is the

only one). The region of attraction of the global minimum is obviously of

zero measure. The most important property of F (x) is that the smaller the
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local minimum, the smaller the measure of the region of attraction relating to

this local minimum. This feature can be used to asses the degree of difficulty

of global optimization problems that can be solved by the given method.

The local minimizers of the one-dimensional version of the test function

can be ordered according to the magnitude of the function value. The serial

number Nx of the local minimizer x can be calculated using the equation

Nx = 2b|1/x|/2πc − 1 + (sgn(x)− 1)/2 (11)

where b.c denotes the largest integer not greater than the argument, and

sgn stands for the signum function. In the one-dimensional case the size of

the region of attraction Ax of local minimizer x can be well estimated by

using equation (8), provided that the absolute value of x is small. The left

side of this equation is then close to zero, and Ax is approximately equal to

the distance between the two zeros of the right side of equation (8) that are

adjacent to x:

Ax ≈ 2
1
x2 − π2

(12)

The numerical form of F (x) differs obviously from the analytical one, espe-

cially just near the origin. Thus, it is important to code this test function very

carefully. Our version was written in FORTRAN and run on the mainframe

R55M, by using single precision arithmetic.

The proposed test function can be computed quickly: in the one-dimensional

case 1000 evaluations of F (x) need 0.306 ± 0.006 (SD) standard time units

[5]. When n = 4, the corresponding figure is 0.829±0.001 (SD). Accordingly,
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the computation of even the four-dimensional version requires somewhat less

computational effort than that of the S5 function [5]. The numerical form of

F (x) is zero in the hypercube xi ∈ (−1.0 10−13, 1.0 10−13), i = 1, 2, . . . , n.

In spite of this, there are more than one million local minima whose regions

of attraction contain at least 100 points that can be represented by using

single precision.

The algorithm A was tested by running it independently ten times on the

one- and four-dimensional versions of this test problem with the bounds (7).

The parameters of the algorithm were set so that the estimate of the global

minimum was as close to zero as possible, and thus they were different from

those used in the previous section. From the point of view of this reliability

test the type of the local search procedure is indifferent.

In the one-dimensional case the smallest minimum found was 0.523449 10−52

in 0.193281 10−8. This was the 164 687 623rd local minimizer in the se-

quence discussed before, and the size of its region of attraction Ax was

0.23472 10−16 according to (12). The worst estimate of the global mini-

mum was 0.319144 10−23 in −0.119009 10−3; this was the 2673rd local min-

imizer with Ax = 0.88989 10−7. The average run consumed 33.5 standard

time units and 22137 function evaluations. In the four-dimensional case, the

best and the worst estimates of the global minimum were 0.272099 10−8 and

0.598347 10−6, respectively. The average run consumed 46.1 standard time

units and 22020 function evaluations.

In conclusion, the results of this reliability test have shown that the stud-
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ied global optimization method can be tuned to solve most practical problems

with satisfying reliability.
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Abstract

In this paper we first show that the objective function of a least

squares type nonlinear parameter estimation problem can be any non-

negative real function, and therefore this class of problems corre-

sponds to global optimization. Two non-derivative implementations

of a global optimization method are presented; with nine standard

test functions applied to measure their efficiency. A new nonlinear

test problem is then presented for testing the reliability of global op-

timization algorithms. This test function has a countable infinity of

local minima and only one global minimizer. The region of attraction

of the global minimum is of zero measure. The results of efficiency

and reliability tests are given.

Key words. Global optimization, nonlinear parameter estimation, sum of

squares, least squares, test problem.
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Árpád tér 2.

Szeged

Hungary

19



Table 1: Global minimum and global minimizers of the test functions

Test F (x∗) x∗1 x∗2 x∗3 x∗4 x∗5 x∗6

function

S5 -10.153206 3.99995 4.00014 4.00011 4.00016

S7 -10.402947 4.00061 4.00072 3.99945 3.99958

S10 -10.536416 4.00075 4.00061 3.99967 3.99948

H3 -3.8627815 0.1146 0.5557 0.8525

H6 -3.3223667 0.201536 0.149909 0.476906 0.275239 0.311593 0.657353

GP 2.9996490 0.000068 -1.0001

RCOS 0.39788723 -3.1416 12.275

0.39788723 3.1416 2.2750

0.39788723 9.425 2.4750

SHCB -1.0316286 0.0899 -0.7126

-1.0316286 -0.0899 0.7126

RB 0.0 1.0 1.0
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Table 2: Number of significant digits in the global minimum

Method Test function

S5 S7 S10 H3 H6 GP RCOS SHCB RB

Branin – – – – – – – – –

Törn∗ 3.0 2.9 3.2 4.3 2.6 3.9 4.5 – –

Price∗ 6.2 5.3 5.8 6.4 6.0 3.9 6.3 – –

De Biase 2.9 3.4 2.0 4.7 4.7 4.8 – 6.4 –

Boender – – – – – – – – –

A∗ 7.0 6.8 6.7 6.8 6.9 4.3 7.2 7.1 10.1

B∗ 4.9 4.0 5.2 4.3 4.3 4.4 4.1 4.5 4.7

∗ These methods do not use the partial derivatives of the objective

function.
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Table 3: Number of function evaluations

Method Test function

S5 S7 S10 H3 H6 GP RCOS SHCB RB

Branin 5500 5020 4860 – – – – – –

Törn∗ 3649 3606 3874 2584 3447 2499 1558 – –

Price∗ 3800 4900 4400 2400 7600 2500 1800 – –

De Biase 620 788 1160 732 807 378 597 717 –

Boender 567 624 755 235 462 398 235 – –

A∗ 990 1767 2396 216 1446 436 330 233 410

B∗ 1083 1974 2689 697 2610 386 464 267 1524

∗ These methods do not use the partial derivatives of the objective

function.
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Table 4: Number of standard time units

Method Test function

S5 S7 S10 H3 H6 GP RCOS SHCB RB

Branin 9.0 8.5 9.5 – – – – – –

Törn∗ 10.0 12.4 14.4 8.0 15.6 4.1 3.7 – –

Price∗ 13.9 20.0 19.7 7.5 47.5 2.8 4.4 – –

De Biase 26.1 23.0 33.7 17.6 23.1 16.8 15.2 23.2 –

Boender 3.5 4.5 7.0 1.7 4.3 1.5 1.0 – –

A∗ 3.0 4.9 7.0 1.2 4.2 1.3 1.4 1.2 1.0

B∗ 3.5 6.0 8.8 1.9 14.2 1.5 1.6 1.3 1.5

∗ These methods do not use the partial derivatives of the objective

function.
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