1 Introduction

Our original task [8] was to solve parameter estimation problems having very complex nonlinear objective functions with a relatively small number of parameters. It is quite expensive to evaluate them: about 100 times as much CPU time is needed as to the standard test functions. The objective functions turned out to have usually a large number of local minima in the region of interest. Although we can compute these functions, sometimes we do not even know their explicit form. Thus, the determination of the exact, analytical derivatives is impossible in such cases, and we are forced to use non-derivative techniques.

The literature on global optimization [5] suggested that the method of Boender et al. [2] was the most promising for our purposes. Although a
later version of this algorithm [11] seemed to be more efficient, we did not implement this modification because it was less reliable.

In this paper we discuss the relationship between the nonlinear least squares problem and global optimization, and we deal with the efficiency and reliability of the mentioned global optimization method using a quasi-Newton procedure and a random walk direct search technique.

2 Nonlinear parameter estimation and global optimization

The nonlinear parameter estimation problem is usually given as

$$\min_{\hat{x}} F(\hat{x})$$ \hspace{1cm} (1)

where $F(\hat{x}) : \mathbb{R}^n \rightarrow \mathbb{R}$,

$$F(\hat{x}) = \left(\sum_{i=1}^{m} (J_i - f_i(\hat{x}))^2 \right)^{1/2}$$

$J_i \in \mathbb{R}$; $f_i(\hat{x}) : \mathbb{R}^n \rightarrow \mathbb{R}$ \hspace{0.5cm} $i = 1, 2, \ldots, m$; $m > 0$ integer; $\hat{x} \in S \subseteq \mathbb{R}^n$, where the region of interest S is a compact set. S is in most cases a hypercube $a_i \leq x_i \leq b_i$; $a_i, b_i \in \mathbb{R}$ \hspace{0.5cm} $i = 1, 2, \ldots, n$. Thus the objective function $F(\hat{x})$ is of least squares type.

In solving (1), it is often supposed that $F(\hat{x})$ is unimodal (it has only one local minimum) or that a suitable starting point is at hand for the iterative solving algorithm [6]. Since we have found many practical nonlinear parameter estimation problems whose objective functions were not unimodal, we
examine the relationship between the nonlinear least squares problem (1) and the global optimization problem:

Consider a compact set S in \mathbb{R}^n and a not necessarily unimodal function $G(\vec{x}) : \mathbb{R}^n \rightarrow \mathbb{R}$. The problem is to find a global minimizer $\vec{x}^* \in S$ so that $G(\vec{x}) \geq G(\vec{x}^*)$ for all $\vec{x} \in S$.

S is usually given by simple bounds on the parameters of $G(\vec{x})$:

$$a_i \leq x_i \leq b_i, \quad a_i, b_i \in \mathbb{R}, \quad i = 1, 2, \ldots, n$$

We found that the structure of $F(\vec{x})$ guarantees only the non-negativity of $F(\vec{x})$. More exactly:

Proposition For every non-negative real function $G(\vec{x}) : \mathbb{R}^n \rightarrow \mathbb{R}$, positive integer m and real numbers $\vec{f}_i \in \mathbb{R} \quad i = 1, 2, \ldots, m$ there are such real functions $f_i(\vec{x}) \quad i = 1, 2, \ldots, m$ that

$$F(\vec{x}) = \left(\sum_{i=1}^{m} (\vec{f}_i - f_i(\vec{x}))^2 \right)^{1/2}$$

and $G(\vec{x}) = F(\vec{x})$ for every $\vec{x} \in \mathbb{R}^n$.

Let e.g. $g_i(\vec{x}) \quad i = 1, 2, \ldots, m$ such real, non-negative functions, that

$$G(\vec{x})^2 = \sum_{i=1}^{m} g_i(\vec{x})$$

There exist such functions $g_i(\vec{x})$, since e.g. $g_i(\vec{x}) = G(\vec{x})^2 / m$ is suitable. Then let

$$f_i(\vec{x}) = g_i(\vec{x})^{1/2} + \vec{f}_i$$
Note that the functions $g_i(x)$ can be almost freely chosen, and in this way we can ensure further desirable properties of the functions $f_i(x)$. For example, when $G(x)$ is continuous, then all $f_i(x)$ can be continuous, too. On the other hand, for all sets of functions $f_i(x), i = 1, 2, \ldots, m$ there exists obviously a real function $f(i, x): \mathbb{R}^{m+1} \rightarrow \mathbb{R}$, so that $f_i(x) = f(i, x)$ for all $i = 1, 2, \ldots, m$; and $f(i, x)$ is even continuous in the variable i.

According to the Proposition, the objective function of a nonlinear parameter estimation problem can be any non-negative real function. Thus, a nonlinear parameter estimation problem can have an arbitrary great number (or even a continuum) of local minima. The structure of $F(x)$, i.e. the least squares form results only in the non-negativity of $F(x)$, and not in any further regularity.

Since the global minimum of a well-posed global optimization problem is finite (e.g. $G(x^*) \in \mathbb{R}$), every such problem can be transformed with $G'(x) = G(x) - G(x^*)$ and $S' = S$ to a problem having a non-negative objective function and the same structure of local minima. Thus, loosely to speak, every global optimization problem can be written in the form of a nonlinear parameter estimation problem with any m, and T_i values fixed in advance. This confirms the use of a global optimization algorithm to solve problems like (1).
3 Implementations

We discuss here an algorithm to solve the global optimization problem defined in the previous section. In most cases the result of a global optimization algorithm is only an approximation of the global optimum, though the precision of the modern sophisticated nonlinear optimization methods approaches that of the given computer.

The global optimization method of Boender et al. [2] has been implemented in two versions. These have the same structure, the only difference between them being the local search procedure (an algorithm to find a local minimizer) used: a quasi-Newton procedure with the DFP update formula [6] and a random walk type direct search method UNIRANDI [9, 12]. In the following these algorithms are denoted by A and B, respectively. Both are derivative-free, i.e. they do not use the partial derivatives of the objective functions. The evaluation of the later would be difficult or even impossible in the case of our original problem [8]. UNIRANDI proved to be robust but inefficient, whereas the quasi-Newton method was rather sensitive to the initial points but more accurate [3]. The global optimization method and UNIRANDI were implemented by using solely [2] and [12].

The global optimization algorithm discussed in this paper can be described concisely as follows:

Step 1 Draw N points with uniform distribution in S, and add them to the current sample C. Construct the transformed sample T by taking the
\(\gamma \) percent of the points in \(C \) with the lowest function values.

Step 2 Apply the clustering procedure to \(T \). If all points of \(T \) can be assigned to a cluster, go to Step 4.

Step 3 Apply the local search procedure to the points in \(T \) not yet clustered. Repeat Step 3 until every point has been assigned to a cluster. If a new local minimizer has been found, go to Step 1.

Step 4 Determine the smallest local minimum value found, and stop.

The local search procedure mentioned here is one of the quasi-Newton method and UNIRANDI. We chose the single linkage clustering procedure as being the more promising of the two discussed in [2]. The aim of this procedure is to recognize those sample points starting from which the local search would possibly result in an already found local minimizer. Clusters are grown around seed points (local minimizers or such starting points of the local search procedure from which an already known local minimum was reached). A distance \(d(\mathbf{x}, \mathbf{x}') \) is defined [2] for the clustering between two points \(\mathbf{x} \) and \(\mathbf{x}' \) in the neighbourhood of a local minimizer \(\mathbf{x}^* \) by

\[
d(\mathbf{x}, \mathbf{x}') = ((\mathbf{x} - \mathbf{x}')^T H(\mathbf{x}^*)(\mathbf{x} - \mathbf{x}'))^{1/2}
\]

The quasi-Newton method of algorithm A gives a good approximation to the Hessian \(H(\mathbf{x}^*) \) of the objective function. In the case of UNIRANDI the identity matrix replaces \(H(\mathbf{x}^*) \) (cf. [2]). A new point \(x \) is added to a cluster,
if there is a point \(x' \) in this cluster for which
\[
d(x, x') \leq \left[\frac{\Gamma(1 + \frac{1}{2} n)}{\pi^{n/2}} |H(x^*)|^{1/2} m(S) (1 - \alpha^{1/(N'-1)}) \right]^{1/n}
\]
where \(|H(x^*)| \) denotes the determinant of \(H(x^*) \), \(m(S) \) is a measure of the set \(S \), \(N' \) is the total number of sampled points, and \(0 < \alpha < 1 \) is a parameter of the clustering procedure [2].

The two most important changes in the original algorithm are as follows:

1. We do not use a steepest descent step to transform the current sample. Its efficiency was examined in the early phase of the implementation, and it turned out to be omittable.

2. The parameters of the objective function are scaled [6] by the global optimization subroutine with the transformations
\[
x'_i = \frac{2x_i - a_i - b_i}{b_i - a_i} \quad i = 1, 2, \ldots, n
\]
This can be made of course without using the explicite form of the objective function. The scaling does not have much effect on the efficiency of algorithms A and B in the case of the test functions. On the other hand, it is indispensable to solve practical problems.

The result of the implementation was a FORTRAN subroutine of just over 400 program lines occupying 44 kilobytes of core space (without the local search routines). It serves to solve global optimization problems of up to 15 parameters. The program documents its progress, and when the problem is solved it makes a list of local minima with increasing function values.
4 Efficiency

The numerical tests were carried out on a ROBOTRON R55M computer. The programs were coded to use the single precision arithmetic (with 7.2 decimal digits). The standard time unit (1000 evaluations of the S5 function at \(x^T = (4.0, 4.0, 4.0, 4.0)^T \)) was measured ten times. The average of these was 2.00 seconds with a standard deviation of 0.15. We used the usual test functions whose detailed description can be found in [5], [4] and [7]. With these functions, mostly the efficiency of a global optimization algorithm can be measured. Wherever possible, the results of the original papers are included in our tables. These data differ slightly from those in [5] and [2]. Algorithms A and B were applied ten times to each test function. The parameters of the procedures were chosen so that they were able to find the global minimum each time.

We found that the computational effort (CPU time and number of function evaluations) was proportional to the required precision of the estimation of local minima. Thus, when different global optimization methods are compared, their accuracy should also be taken into account. First of all, the exact global minimum values should be determined. Table 1 gives the accurate global minimum and global minimizer values for every test function. These data are in good agreement with the results of Price [10]. It has to be mentioned that slightly different numbers can be obtained with another computer precision. Certain global minimizer values in this Table are given
by four or five decimal digits only. The reason for this is that for these test functions the same global minimum value can be achieved with somewhat different minimizers.

We determined subsequently the precision of the results obtained with the global optimization methods cited in [2] wherever this was possible. The number of significant digits was defined by

$$- \log \frac{F(x') - F(x^*)}{F(x^*)}$$

where x^* is a global minizer of the given test function $F(x)$, and x' is its estimate. In the particular case of the Rosenbrock function (RB) when the global minimum is zero, the following expression was used for this:

$$- \log F(x')$$

The numbers of significant digits are listed in Table 2 for every test function.

We tried to tune the procedures A and B so that they achieve a similar accuracy (2) on the various test functions. The reliability and the accuracy of our method can be tuned almost independently.

The number of function evaluations required by the global optimization methods to solve test functions are given in Table 3. Since those local minimization procedures that are not allowed to use the partial derivatives of the objective function are usually less efficient than the others, the efficiencies of algorithms A and B should be compared only with those of the similar non-derivative methods. The methods known to be non-derivative are marked by asterisks in Tables 2–4. The numbers in these Tables are results of one
sample run for the first four methods, the average of four independent runs for the method of Boender et al., and the average of ten runs for algorithms A and B. Table 3 indicates that the procedure of Boender et al. works best of all, and the non-derivative methods of Törn [12] and Price [10] are less efficient than A and B.

Table 4 contains the numbers of standard time units required. As concerns these data, algorithms A and B seem to be definitely quicker than the other non-derivative ones, and procedure A is about as rapid as that of Boender et al. [2]. From the user’s point of view Table 3 is more important, since in practical cases the evaluation of the objective function is more expensive than that of the standard test functions. Therefore, Table 4 is informative on the overhead costs.

To summarize our numerical experience, we can state that these two non-derivative versions of Boender et al.’s global optimization method work definitely better than the other non-derivative procedures. The efficiency of implementation A approaches that of the original one. The discussed global optimization method with a non-derivative quasi-Newton procedure can be well recommended for the solution of smooth global optimization problems when calculation of the partial derivatives is inconvenient or impossible. The same global optimization method, together with a direct search method UNIRANDI, can be an efficient tool for locating the global minimum of non-smooth or non-differentiable objective functions.
5 Reliability

Almost all global optimization methods use only local information, i.e. the values of the objective function and its first and second derivatives at certain points. It is easy to show that for the solution of this problem in general there is no algorithm that uses only such local information at a finite number of points. For this reason, the research efforts on global optimization are concentrated mainly on evaluating increasingly reliable and efficient heuristics.

The size of the region of attraction [1] of the global minimum (the points of such continuous curves in \mathbb{R}^n that end in a global minimizer, and along which the objective function decreases strictly monotonously) characterizes the difficulty of a given problem. From this point of view, the most frequently used test problems [5] are rather easy to solve, and mostly the efficiency of an algorithm can be tested with them.

A new global optimization test problem is proposed below for comparing algorithms in terms of reliability and for testing the degree of difficulty of global optimization problems that can be solved with them.

The suggested n-dimensional test function is very simple:

$$F(x) = \sum_{i=1}^{n} f_i(x_i)$$

where for every $i = 1, 2, \ldots, n$:

$$f_i(x_i) = x_i^6 (\sin(1/x_i) + 2)$$

if $x_i \neq 0$, and

$$f_i(0) = 0$$
If $x_i \neq 0$, the gradient and Hessian of $F(x)$, respectively, are

$$g_i(x) = 6x_i^5\sin(1/x_i) + 2 - x_i^4\cos(1/x_i) \quad (4)$$

and

$$H_{i,j}(x) = 0 \quad (i \neq j) \quad (5)$$

$$H_{i,i}(x) = 30x_i^4\sin(1/x_i) + 2 - 10x_i^3\cos(1/x_i) - x_i^2\sin(1/x_i)$$

$i, j = 1, 2, \ldots, n$. Otherwise $g_i(x)$ and $H_{i,j}(x)$ are zeros, $i, j = 1, 2, \ldots, n$. The gradient and the Hessian are continuous everywhere in \mathbb{R}^n. Since

$$\sum_{i=1}^{n} x_i^6 \leq F(x) \leq 3\sum_{i=1}^{n} x_i^6 \quad (6)$$

the global minimum of $F(x)$ on \mathbb{R}^n is zero, and this value is reached only in the origin.

Theorem. The function $F(x)$ has a countable infinity of local minima and maxima. All these extrema are in the hypercube

$$-1 \leq x_i \leq 1 \quad i = 1, 2, \ldots, n \quad (7)$$

Proof. First consider the case when $n = 1$. Supposing that the first derivative is equal to zero and $x \neq 0$, it holds that

$$6x(\sin(1/x) + 2) = \cos(1/x) \quad (8)$$

The right side of this equation varies from -1 to 1, while the left side is between $6x$ and $18x$. Hence, the first derivative can be zero only in the
interval \((-1/6, 1/6)\). The right side of equation (8) takes the values -1 and 1 in each interval of

\[[(1/2k\pi), 1/(2(k+1)\pi)] \quad k = \pm 3, \pm 4, \ldots \]

(9)

whereas in the same interval

\[-1 < 6x(\sin(1/x) + 2) < 1 \]

(10)

This proves that the function \(F(x)\) has at least one local minimum and one local maximum in every interval of (9), since the first derivative is a continuous function. These extrema are diverse, because they are all inside the intervals. Thus there is at least a countable infinity of local minima and maxima in (7).

It can be seen easily that the first and the second derivatives of \(F(x)\) cannot be zeros in the same place. Since the second derivative is continuous, each local extremum is associated with an open interval of \(\mathbb{R}\), in which it is the only local extremum. Consequently, there cannot be a continuum of local extrema of \(F(x)\) in \(\mathbb{R}\).

For any positive integer \(n\) the same proof holds, by using the fact that \(F(x)\) is separable. □

Thus, the unconstrained problem has the same set of local minima as the problem with the bounds (7). The global minimizer is non-isolated, in the sense that it is an accumulation point of local minimizers [1] (and it is the only one). The region of attraction of the global minimum is obviously of zero measure. The most important property of \(F(x)\) is that the smaller the
local minimum, the smaller the measure of the region of attraction relating to this local minimum. This feature can be used to assess the degree of difficulty of global optimization problems that can be solved by the given method.

The local minimizers of the one-dimensional version of the test function can be ordered according to the magnitude of the function value. The serial number \(N_x \) of the local minimizer \(x \) can be calculated using the equation

\[
N_x = 2\lfloor |1/x|/2\pi \rfloor - 1 + (\text{sgn}(x) - 1)/2
\]

where \(\lfloor . \rfloor \) denotes the largest integer not greater than the argument, and \(\text{sgn} \) stands for the signum function. In the one-dimensional case the size of the region of attraction \(A_x \) of local minimizer \(x \) can be well estimated by using equation (8), provided that the absolute value of \(x \) is small. The left side of this equation is then close to zero, and \(A_x \) is approximately equal to the distance between the two zeros of the right side of equation (8) that are adjacent to \(x \):

\[
A_x \approx \frac{2}{1/x - \pi^2}
\]

The numerical form of \(F(x) \) differs obviously from the analytical one, especially just near the origin. Thus, it is important to code this test function very carefully. Our version was written in FORTRAN and run on the mainframe R55M, by using single precision arithmetic.

The proposed test function can be computed quickly: in the one-dimensional case 1000 evaluations of \(F(x) \) need \(0.306 \pm 0.006 \) (SD) standard time units [5]. When \(n = 4 \), the corresponding figure is \(0.829 \pm 0.001 \) (SD). Accordingly,
the computation of even the four-dimensional version requires somewhat less computational effort than that of the S5 function [5]. The numerical form of $F(x)$ is zero in the hypercube $x_i \in (-1.0 \times 10^{-13}, 1.0 \times 10^{-13})$, $i = 1, 2, \ldots, n$. In spite of this, there are more than one million local minima whose regions of attraction contain at least 100 points that can be represented by using single precision.

The algorithm A was tested by running it independently ten times on the one- and four-dimensional versions of this test problem with the bounds (7). The parameters of the algorithm were set so that the estimate of the global minimum was as close to zero as possible, and thus they were different from those used in the previous section. From the point of view of this reliability test the type of the local search procedure is indifferent.

In the one-dimensional case the smallest minimum found was 5.23449×10^{-52} in 1.93281×10^{-8}. This was the 164,687,623rd local minimizer in the sequence discussed before, and the size of its region of attraction A_x was 2.3472×10^{-16} according to (12). The worst estimate of the global minimum was 0.319144×10^{-23} in -0.119009×10^{-3}; this was the 2673rd local minimizer with $A_x = 0.88989 \times 10^{-7}$. The average run consumed 33.5 standard time units and 22,137 function evaluations. In the four-dimensional case, the best and the worst estimates of the global minimum were 2.72099×10^{-8} and 0.598347×10^{-6}, respectively. The average run consumed 46.1 standard time units and 22,020 function evaluations.

In conclusion, the results of this reliability test have shown that the stud-
ied global optimization method can be tuned to solve most practical problems with satisfying reliability.
References

Abstract

In this paper we first show that the objective function of a least squares type nonlinear parameter estimation problem can be any non-negative real function, and therefore this class of problems corresponds to global optimization. Two non-derivative implementations of a global optimization method are presented; with nine standard test functions applied to measure their efficiency. A new nonlinear test problem is then presented for testing the reliability of global optimization algorithms. This test function has a countable infinity of local minima and only one global minimizer. The region of attraction of the global minimum is of zero measure. The results of efficiency and reliability tests are given.

Key words. Global optimization, nonlinear parameter estimation, sum of squares, least squares, test problem.

T. Csendes
Kalmár Laboratory of Cybernetics
József Attila University
Árpád tér 2.
Szeged
Hungary
Table 1: Global minimum and global minimizers of the test functions

<table>
<thead>
<tr>
<th>Test function</th>
<th>$F(x^*)$</th>
<th>x_1^*</th>
<th>x_2^*</th>
<th>x_3^*</th>
<th>x_4^*</th>
<th>x_5^*</th>
<th>x_6^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>S5</td>
<td>-10.153206</td>
<td>3.99995</td>
<td>4.00014</td>
<td>4.00011</td>
<td>4.00016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S7</td>
<td>-10.402947</td>
<td>4.00061</td>
<td>4.00072</td>
<td>3.99945</td>
<td>3.99958</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S10</td>
<td>-10.536416</td>
<td>4.00075</td>
<td>4.00061</td>
<td>3.99967</td>
<td>3.99948</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H3</td>
<td>-3.8627815</td>
<td>0.1146</td>
<td>0.5557</td>
<td>0.8525</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H6</td>
<td>-3.3223667</td>
<td>0.201536</td>
<td>0.149909</td>
<td>0.476906</td>
<td>0.275239</td>
<td>0.311593</td>
<td>0.657353</td>
</tr>
<tr>
<td>GP</td>
<td>2.9996490</td>
<td>0.000068</td>
<td>-1.0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCOS</td>
<td>0.39788723</td>
<td>-3.1416</td>
<td>12.275</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.39788723</td>
<td>3.1416</td>
<td>2.2750</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.39788723</td>
<td>9.425</td>
<td>2.4750</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHCB</td>
<td>-1.0316286</td>
<td>0.0899</td>
<td>-0.7126</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1.0316286</td>
<td>-0.0899</td>
<td>0.7126</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RB</td>
<td>0.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2: Number of significant digits in the global minimum

<table>
<thead>
<tr>
<th>Method</th>
<th>Test function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S5</td>
</tr>
<tr>
<td>Branin</td>
<td>–</td>
</tr>
<tr>
<td>Törn*</td>
<td>3.0</td>
</tr>
<tr>
<td>Price*</td>
<td>6.2</td>
</tr>
<tr>
<td>De Biase</td>
<td>2.9</td>
</tr>
<tr>
<td>Boender</td>
<td>–</td>
</tr>
<tr>
<td>A*</td>
<td>7.0</td>
</tr>
<tr>
<td>B*</td>
<td>4.9</td>
</tr>
</tbody>
</table>

* These methods do not use the partial derivatives of the objective function.
Table 3: Number of function evaluations

<table>
<thead>
<tr>
<th>Method</th>
<th>Test function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S5</td>
</tr>
<tr>
<td>Branin</td>
<td>5500</td>
</tr>
<tr>
<td>Törn*</td>
<td>3649</td>
</tr>
<tr>
<td>Price*</td>
<td>3800</td>
</tr>
<tr>
<td>De Biase</td>
<td>620</td>
</tr>
<tr>
<td>Boender</td>
<td>567</td>
</tr>
<tr>
<td>A*</td>
<td>990</td>
</tr>
<tr>
<td>B*</td>
<td>1083</td>
</tr>
</tbody>
</table>

* These methods do not use the partial derivatives of the objective function.
Table 4: Number of standard time units

<table>
<thead>
<tr>
<th>Method</th>
<th>Test function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S5</td>
</tr>
<tr>
<td>Branin</td>
<td>9.0</td>
</tr>
<tr>
<td>Törn*</td>
<td>10.0</td>
</tr>
<tr>
<td>Price*</td>
<td>13.9</td>
</tr>
<tr>
<td>De Biase</td>
<td>26.1</td>
</tr>
<tr>
<td>Boender</td>
<td>3.5</td>
</tr>
<tr>
<td>A*</td>
<td>3.0</td>
</tr>
<tr>
<td>B*</td>
<td>3.5</td>
</tr>
</tbody>
</table>

* These methods do not use the partial derivatives of the objective function.