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Hatvani? ? ?4

1 Institute of Informatics, University of Szeged, Hungary,
P. O. Box 652, H-6701 Szeged, Hungary

Email: banhelyi@inf.u-szeged.hu
2 Institute of Informatics, University of Szeged, Hungary,

P. O. Box 652, H-6701 Szeged, Hungary
Email: csendes@inf.u-szeged.hu

3 Department of Mathematics, Budapest University of Technology,
H1521 Budapest, Hungary
Email: garay@math.bme.hu

4 Bolyai Institute, University of Szeged, Hungary,
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Abstract. J. Hubbard [4] has discovered that some motions of the damped
forced pendulum

x′′ + 10−1x′ + sin x = cos t

are chaotic in the sense that on the consecutive time intervals (2kπ, 2(k +
1)π) (k ∈ Z) they can freely “choose” between the following possibilities:
the pendulum either crosses the bottom position clockwise exactly once or
does not cross the bottom position at all or crosses the bottom position
counterclockwise exactly once. (The pendulum does not point downwards
at the time instants t = 2kπ, k ∈ Z.) We give a review of our work [1],
in which we prove rigorously this assertion. The proof is based upon a
theorem detecting chaos in general discrete dynamical systems. To check
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conditions of this theorem we need reliable computer simulations using the
methods of interval arithmetic.

MSC 2000. 34C28, 37D45, 70K40, 70K55, 65G30

1 Introduction

The mathematical pendulum is a material point of mass m hanging on a weightless
rod of length ` in the gravitational field. The other end of the rod is fixed, and
the rod can move in a plane (see Figure 1). Let x denote the angle measured
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Fig. 1. Mathematical pendulum

counterclockwise from the direction of the gravity to the rod. If there acts also
friction, i.e., the pendulum is damped, then, by Newton’s Second Law, the motions
of the pendulum are described by the second order differential equation

m`x′′ = −mg sin x− bx′, (1)

where g is the magnitude of the gravity, b > 0 is the damping coefficient; x′ =
dx/d t denotes the angle velocity. The motions can be represented by trajectories
on the phase plane (x, x′) which are curves t 7→ (x(t), x′(t)) belonging to solutions
x of equation (1) (see Figure 2). There are asymptotically stable equilibria (sinks)
x = 2kπ, x′ = 0 (k ∈ Z) at the downward position of the pendulum and unstable
equilibria (saddles) x = (2k+1)π, x′ = 0 at the upward position of the pendulum.
The basins of the sinks are “vertical strips” separated by the ingoing curves of the
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Fig. 2. Phase plane of the damped pendulum

saddles. We can say that almost all trajectories tend to sinks, and some exceptional
trajectories tend to saddles as t →∞.

The situation becomes essentially more difficult when a periodic external force
also acts on the point:

m`x′′ = −mg sinx− bx′ + A cos ωt, (2)

where A is the amplitude and ω is the frequency of the external force. R. Borelli
and C. Coleman [2] observed that numerical solutions of equation (2) were very
sensitive to the integration method, step-length, initial conditions near some points
of the plane (x, x′) at certain values of the parameters in the equation. We can
illustrate this phenomenon integrating numerically the equation

x′′ + 10−1x′ + sin x = cos t (3)

starting from the three initial points

P1(0, 1.98), P2(0, 2.00), P3(0, 2.01).

The t − x graphs of the corresponding solutions can be seen on Figure 3. One
has to observe that the solutions look asymptotically periodic with period 2π
(period of the external force). This experiment suggests that there exists a stable
periodic motion around the downward position, which ultimately attracts all the
three solutions. This attracting periodic motion appears at different “levels” in our
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Fig. 3. Sensitivity to initial conditions

experiment; e.g., in the case of start point P2 the motion goes “over the top” three
times counterclockwise before settling down. After this experiment a superficial
observer could think that a 2π- periodic solution attracts all solutions. But this
is not true! J. Hubbard [4] has discovered uncountably many “strange” motions
of the damped forced pendulum (3) whose asymptotic behaviour is unpredictable.
He stated the following surprising result on the existence of chaos formulated by
natural terms of the dynamics of such a natural mechanical system of one degree
of freedom as the damped forced pendulum.

Theorem 1 (J.H. Hubbard [4]). Suppose that there is a biinfinite sequence
{εk}k∈Z given, where the numbers εk ∈ {−1; 0; 1} are arbitrarily chosen. Then
the forced damped pendulum described by equation (3) has at least one motion that
corresponds to the biinfinite sequence {εk}k∈Z in the sense that during the time
interval (2kπ, 2(k + 1)π) the pendulum

– crosses the bottom position clockwise exactly once if and only if εk = −1,
– does not cross the bottom position at all if and only if εk = 0,
– crosses the bottom position counterclockwise exactly once if and only if εk = 1,

and does not point downwards at the time instants t = 2kπ, k ∈ Z.

This theorem can be interpreted in the following way: εk is an event, so a
biinfinite sequence {εk}k∈Z is an “itinerary” for the past and the future of the
pendulum during a motion. The theorem says that for an arbitrary itinerary there
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exists a motion of the forced damped pendulum that during each time interval
(2kπ, 2(k + 1)π) will “do” εk. For example, during the motion corresponding to
the itinerary {. . . , 0, 0, 0, . . .} the pendulum never crosses the bottom position. In
fact, we can prove that there exists an unstable 2π-periodic solution around the
upper position not touching the bottom position.

Therefore, comparing the motions of the forced damped pendulum with those
of the unforced damped pendulum we can say that, as an influence of the forcing,
the stable and unstable equilibria of the unforced damped pendulum disappear,
and a stable and an unstable periodic solution with the period of the forcing are
born instead. The stable periodic solution attracts almost all motions, but there
are exceptional motions, which are chaotic in some sense.

In [4] Hubbard did not prove Theorem 1. In a forthcoming paper we give a
general theorem for detecting chaos in systems of differential equations, which can
be applied to prove Theorem 1. The application of our theorem needs rigorous
methods of computations, which will be done by interval arithmetic. By the same
method we can prove the existence of a stable and an unstable periodic solution
to equation (3). Here we give a review of these results.

2 The tools of the proof

Let x(·; t0, x0, x
′
0) denote the solution of (3) satisfying the initial condition

x(t0; t0, x0, x
′
0) = x0, x′(t0; t0, x0, x

′
0) = x′0. The mapping

P : R2 → R2, P : (x0, x
′
0) 7→ (x(2π; 0, x0, x

′
0), x′(2π; 0, x0, x

′
0))

is called the period mapping or Poincaré mapping to equation (3). If we are in-
terested in stability properties of solutions of (3), then, instead of the differential
equation (3), we can investigate the discrete dynamical system

P k := P ◦ P ◦ · · · ◦ P︸ ︷︷ ︸
k−times

: R2 → R2 (k ∈ Z). (4)

An orbit of (4) is a biinfinite sequence

{P k(x0, x
′
0)}k∈Z ((x0, x

′
0) ∈ R2).

Solution x(·; 0, x0, x
′
0) of (3) is 2π-periodic if and only if (x0, x

′
0) is a fixed point

of P . A 2π-periodic solution of (3) is stable if and only if the corresponding fixed
point of P is stable in the discrete dynamical system (4).

J. Mawhin [5] gave sufficient conditions for the existence of periodic solutions to
so-called “pendulum-like” second order differential equations. This theory guaran-
tees at least one 2π-periodic solution to equation (3). We will prove that P has ex-
actly two fixed points in the region (0, 2π)×(−∞,∞): a sink s0(4.236 . . . , 0.392 . . .)
and a saddle u0(2.634 . . . , 0.026 . . .). The function x 7→ sin x is 2π-periodic, so a
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horizontal 2π-shift of a fixed point of P is a fixed point, too. This means that we
have infinitely many sinks and saddles:

sk := s0 + (2kπ, 0), uk := u0 + (2kπ, 0) (k ∈ Z).

The basins of the sinks are of a very sophisticated structure. They are tangled;
every basin meander around the plane. To be more precise: the basins seem to have
the Wada property, i.e., every point of the boundary of any basin belongs to the
boundaries of all others [4]. This is the root of the chaotic behaviour formulated
in Theorem 1.

In the proof of Theorem 1 we will need certain quadrilaterals {Qk}k∈Z “long”
in the unstable and “short” in the stable directions so that there are “exceptional”
orbits of Poincaré mapping P with the following properties:

– an exceptional orbit is contained in ∪k∈ZQk;
– an exceptional orbit visits the quadrilaterals consecutively: if Pn(x0, x

′
0) ∈ Qk

for some k, n ∈ Z, then either Pn+1(x0, x
′
0) ∈ Qk−1 or Pn+1(x0, x

′
0) ∈ Qk or

Pn+1(x0, x
′
0) ∈ Qk+1.

In the main step of the proof of Theorem 1 we will show that for an arbi-
trary consecutive order {Qik

}k∈Z of quadrilaterals there is an exceptional orbit
visiting the quadrilaterals in the prescribed order. To this end we have to know
forward images P (Qk) and backward images P−1(Qk). Thanks to the horizon-
tal 2π-periodicity of the discrete dynamical system (4) it is enough to know the
images P (Q0) and P−1(Q0). For suitably chosen quadrilaterals the forward im-
age P (Q0) crosses Q−1, Q0, Q1 in long and thin “vertical strips”, and the back-
ward image P−1(Q0) crosses Q−1, Q0, Q1 in short and flat “horizontal strips”
(see Figure 4). Let us denote these horizontal strips by R−1,M0, L1, respectively.
(P moves R−1 ⊂ Q−1 to the right, it leaves the middle strip M0 ⊂ Q0 in Q0,
and it moves L1 ⊂ Q1 to the left.) The same connection is true for any triple
Qk−1, Qk, Qk+1 (k ∈ Z) with Rk−1 ⊂ Qk−1, Mk ⊂ Qk, Lk+1 ⊂ Qk+1. Using the
method of interval arithmetic we can prove by reliable computer simulations that
such {Qk, Rk,Mk, Lk}k∈Z exist.

3 A topological theorem detecting chaos

Let us give rectangular sets Tj = Uj×Sj ⊂ Rm×Rn (where Uj ⊂ Rm and Sj ⊂ Rn

are compact topological balls, j ∈ Z) and a continuous function φ : X := ∪j∈ZTj →
Rm×Rn whose coordinate functions are denoted by φu : X → Rm, φs : X → Rn.
We define a so-called transition graph G(φ) to these objects. The vertex set of G(φ)
is Z, and (j, j′) ∈ Z2 belongs to the edge set E(φ) if and only if the following two
conditions are satisfied:

(i) φ(Tj) ⊂ (Rm × Rn) \ (Uj′ × (Rn \ Sj′)) (φ contracts in the stable direction);
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(ii) set φu(∂ Uj × Sj) “surrounds” set Uj′ (φ dilates in the unstable direction).

For example, on the plane (m = n = 1) Tj , Tj′ are real rectangles and the first con-
dition says that the image of Tj has no point in the columns located “above” and
“below” Tj′ . The second condition means that the interval Uj′ is located between
the projections onto the horizontal u-axis of the images of the two vertical sides
of Tj . (The rather sophisticated precise analytical formulation of the geometrical
condition (ii) can be found in [1].) (j0, . . . , jN ) ∈ ZN+1 (N ≥ 0) is a directed circle
in G(φ) by definition if (jk, jk+1) ∈ E(φ) (k = 0, 1, . . . , N ; jN+1 := j0).

Theorem 2. Suppose that j0, j1, . . . , jN form a directed circle of G(φ). Then there
exist points q0, q1, . . . , qN such that

qk ∈ Tjk
, φ(qk) = qk+1 (k = 0, 1, . . . , N ; qN+1 := q0).

In other words, for every directed circle (j0, j1, . . . , jN ) of the transition graph G(φ)
there exists an (N + 1)-periodic orbit of φ visiting the rectangles of the circle in
order j0, j1, . . . , jN .

The main tool of the proof (see [1]) is Brower’s Fixed Point Theorem. Ear-
lier proofs to similar results [8,7] were based on various topological index/degree
arguments.

4 Sketch of the proof

We apply Theorem 2 to the rectangles

{Tj}j∈Z := {. . . , L−1,M−1, R−1, L0,M0, R0, L1, M1, L1, . . .}
and to the Poincaré mapping P in (4). The edges of the corresponding transition
graph G(P ) can be deduced from Figure 4 ( see Figure 5; since the graph is 3-

Li Mi RiLi−1 Mi−1 Ri−1 Li+1 Mi+1 Ri+1

Fig. 5. The transition graph of the Poincaré mapping P

periodic, we drew in only the edges outgoing from Li, Mi, and Ri.)
Let us given an itinerary

{. . . ε−3 ε−2 ε−1. ε0 ε1 ε2 ε3 . . .}.
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In the first step we realize a finite piece

{ε−k ε−k+1 . . . ε−1. ε0 ε1 . . . εk−1 εk} (k ∈ Z). (5)

We illustrate the procedure by the example

{−1 − 1 0 . 1 − 1 0 0} (k = 3). (6)

We construct the chain of consecutive rectangles

{Tj−3 Tj−2 Tj−1 . Tj0 Tj1 Tj2 Tj3}

to be visited by the desired orbit realizing (6). We start from Q0. Since ε0 = 1,
we have to move to the right into Q1; therefore, Tj0 = R0. ε1 = −1, hence we
have to move from Q1 to the left into Q0; therefore, Tj1 = L1. In the same way
we get Tj2 = M0, Tj3 = M0. On the other hand, ε−1 = 0 means that during the
time interval [−2π, 0] the phase point has to move from Q0 into R0, so Tj−1 = M0.
Similarly, Tj−2 = L1, Tj−3 = L2, so the chain of rectangles sought for is

{L2 L1 M0 . R0 L1 M0 M0}.

Since the transition graph G(P ) is connected (see Figure 4), this chain can be
completed by auxiliary edges into a circle:

{L2 L1 M0. R0 L1 M0 M0 R0 R1︸ ︷︷ ︸
auxiliary

}, (Tj4 := R0, Tj5 := R1)

Theorem 2 yields a periodic orbit {qji}5i=−3 whose part {qji}3i=−3 realizes (6).
Similarly, we can construct a periodic orbit {qk

ji
∈ Tji}Nk

i=−k (Nk ≥ k) with a
section realizing the finite itinerary (5). We can make the same procedure for all
k’s. But qk

j0
∈ Q0 (k ∈ Z) and Q0 is compact; consequently, we may suppose that

lim
k→∞

qk
i0

=: q0 ∈ Q0 exists. Then lim
k→∞

qk
ji

=: qi also exist for every i ∈ Z, and

{qi}i∈Z is the desired orbit realizing the itinerary {εi}i∈Z.

5 Reliable computer simulations

While applying Theorem 2 in the proof of Theorem 1 we essentially used the
structure of transition graph G(P ) (see Figure 5). To complete the proof we have
to show that there are Rk,Mk, Lk (k ∈ Z) such that G(P ) has the edges drawn in
Figure 4; e.g., P (R−1) ∩Q0 is a “long strip” in Q0 crossing Q0 in the way which
can be seen in the figure. The problem is that the Poincaré mapping P is defined
by solutions of differential equation (3). However, these solutions are not known,
they have to be found numerically so that the assumed mutual positions of P (R−1)
and R0, M0, L0 could be verify reliably. Using the method of interval arithmetic
to find validated solutions of initial value problem for ODE’s [6] we could prove



10 Bánhelyi, Csendes, Garay, and Hatvani

Fig. 6. Construction of R0, M0, and L0

the existence of quadrilaterals Qk (k ∈ Z). The result is represented in Figure 6
(for details see [3,1]).

There is another step in the proof that needs validated computations. For
example, to realize ε0 = 1 in example (6) we choose Tj0 = R0, Tj1 = L1 guaran-
teeing that the solution curve t 7→ (x(t; 0, x0, x

′
0), x′(t; 0, x0, x

′
0)) starts from Q0

at t = 0 and meets Q1 at t = 2π. Consequently, the curve crosses the vertical
line x = 2π, i.e., the pendulum crosses the bottom position counterclockwise at
least once. However, ε0 = 1 means that this happens exactly once. To this end it
is enough to show that if (x0, x

′
0) ∈ R0 and x(2π; 0, x0, x

′
0) ∈ Q1, then

x(t; 0, x0, x
′
0) 6= 0, x(t; 0, x0, x

′
0) 6= 4π

x(t; 0, x0, x
′
0) = 2π ⇒ x′(t) > 0

}
(0 ≤ t ≤ 2π).

(Geometrically, the second condition excludes the behaviour shown by the broken
curve in Figure 7). To show these properties we gave a reliable enclosure of the
curves starting from R0. Figure 8 shows one step of this procedure. While the small
rectangles a, b, . . . contained in the large rectangles A,B, C, . . . give an enclosure
for the points of the curve at certain finite values of t ∈ [0, 2π], the large rectangles
give an enclosure for the bundles of curves starting from the small rectangles. This
enclosure guarantees the desired behaviour of solutions curves, and it completes
the proof.
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