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INTERVAL ANALYSIS: SUBDIVI-
SION DIRECTIONS IN INTERVAL
B&B METHODS
The selection of subdivision direction is one
of the points where the efficiency of the basic
branch-and-bound algorithm for unconstrained
global optimization can be improved (see In-
terval analysis: unconstrained and con-
strained optimization). The traditional ap-
proach is to choose that direction for subdivision
in which the actual box has the largest width. If
the inclusion function φ(x) is the only available
information about the problem

min
x∈x0

φ(x),

then it is usually the best possible choice. If,
however, other information like the inclusion of
the gradient (∇φ), or even the inclusion of the
Hessian (H) is calculated, then a better decision
can be made.
Subdivision directions.

All the rules select a direction with a merit
function:

k := arg
n

max
i=1

D(i), (1)

where D(i) is determined by the given rule. If
many such optimal k indices exist then the al-
gorithm can chose the smallest one, or it can
select an optimal direction randomly.
Rule A. The first rule was the interval-width ori-
ented rule. This rule chooses the coordinate di-
rection with

D(i) := w(xi). (2)

This rule is justified by the idea that, if the origi-
nal interval is subdivided in a uniform way, then
the width of the actual subintervals goes to zero
most rapidly.

The algorithm with Rule A is convergent both
with and without the monotonicity test [8]. This
rule allows a relatively simple analysis of the

convergence speed (as in [8], Chapter 3, The-
orem 6).
Rule B . E. Hansen described another rule
(initiated by G. W. Walster) [5]. The direct
aim of this heuristic direction selection rule
is to find the component for which Wi =
maxt∈xi φ (m1, . . . ,mi−1, t,mi+1, . . . , mn) −
mint∈xi φ (m1, . . . ,mi−1, t,mi+1, . . . , mn) is the
largest (where mi = (xi + xi)/2 is the midpoint
of the interval xi). The factor Wi, that should
reflect how much φ varies as xi varies over xi, is
then approximated by w(∇φi(x))w(xi) (where
∇φi(x) denotes the i-th component of ∇φ(x)).
The latter is not an upper bound for Wi (cf. [5]
page 131 and Example 2 in Section 3 of [4]), yet
it can be useful as a merit function.

Rule B selects the coordinate direction, for
which (1) holds with

D(i) := w(∇φi(x))w(xi). (3)

It should be noted that the basic bisection al-
gorithm represents only one way in which Rule
B was applied in [5]. There the subdivision was,
e.g., also carried out for many directions in a
single iteration step.
Rule C . The next rule was defined by D.

Ratz [9]. The underlying idea was to mini-
mize the width of the inclusion: w(φ(x)) =
w(φ(x)− φ(m(x))) ≈ w(∇φ(x)(x−m(x))) =∑n

i=1 w(∇φi(x)(xi − m(xi))). Obviously, that
component is to be chosen for which the term
w(∇φi(x)(xi − m(xi))) is the largest. Thus,
Rule C can also be formulated with (1) and

D(i) := w(∇φi(x)(xi −m(xi))). (4)

The important difference between (3) and (4) is
that in Rule C the width of the multiplied in-
tervals is maximized, not the multiplied widths
of the respective intervals (and these are in
general not equal). After a short calculation,
the right-hand side of (4) can be written as
max{|min∇φi(x)|, |max∇φi(x)|}w(xi). This
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corresponds to the maximum smear defined
by R.B. Kearfott (used as a direction selec-
tion merit function solving systems of nonlinear
equations [6, 7]) for the case φ : Rn → R. It
is easy to see that the Rules B and C give the
same merit function value if and only if either
∇φ

i
(x) = 0 or ∇φi(x) = 0.
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Figure 1. Remaining subintervals after 250 it-
eration steps of the model algorithm with the
direction selection rules A, and B for the Three-
Hump-Camel-Back problem [3].

Rule D . The fourth rule, Rule D is derivative-
free like Rule A, and reflects the machine rep-
resentation of the inclusion function φ(x) (see

[5]). It is again defined by (1) and by

D(i) :=
{

w(xi) if 0 ∈ xi,

w(xi)/<xi> otherwise,
(5)

where <x> is the mignitude of the interval x:
<x> := minx∈x |x|.
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Figure 2. Remaining subintervals after 250 it-
eration steps of the model algorithm with the
direction selection rules C, and D for the Three-
Hump-Camel-Back problem [3].

This rule may decrease the excess width
w(φ(x)) − w(φu(x)) of the inclusion function
(where φu(x) is the range of φ on x) that is

mignitude

excess width
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caused in part by the floating point computer
representation of real numbers. Consider the
case when the component widths are of similar
order, and the absolute value of one component
is dominant. The subdivision of the latter com-
ponent may result in a worse inclusion, since the
representable numbers are sparser in this direc-
tion.
Rule E . Similar to Rule C, the underlying idea of
Rule E is to minimize the width of the inclusion,
but this time based on second order information
(suggested by D. Ratz [10]):

D(i) := w((xi −m(xi))(∇φi(m(x)) +

1
2

n∑

j=1

(H ij(x)(xi −m(xi))). (6)

Many interval optimization codes use auto-
matic differentiation to produce the gradient
and Hessian values. For such an implementa-
tion the subdivision selection rule E requires not
much overhead.
Properties of direction selection rules.

Both the theoretical and numerical properties
of subdivision direction selection rules have been
studied extensively [1, 3, 4, 10, 11]. The exact
definitions, theorems and details of numerical
comparison tests can be found in these papers.
Denote the global minimum value by φ∗.
Theoretical properties. In [4] the property of bal-
anced direction selection has been defined. A
subdivision direction selection rule is balanced
basically if the B&B algorithm with this direc-
tion selection rule will not be unfair with any
coordinate direction: each direction will be se-
lected an infinite number of times in each infinite
subdivision sequence of the leading boxes gen-
erated by the optimization algorithm. A global
minimizer point x′ ∈ x0 is called hidden global
minimizer point , if there exists a subbox x′ ⊆ x0

with positive volume for which x′ ∈ x′ and
φ(x′) = φ∗ while there exists an other global
minimizer point x′′ of the same problem such

that φ(x′′) < φ∗ holds for each subbox x′′ ⊆ x0

with positive volume that contains x′′ [11]. Now
the following statements can be made:

1. The basic branch-and-bound algorithm
converges in the sense that lims→∞w(xs) = 0
if and only if the interval subdivision selection
rule is balanced [4] (where xs is the leading box
of the algorithm in the iteration step number s).

2. Assume that the subdivision direction se-
lection rule is balanced. Then the basic B&B
algorithm converges to global minimizer points
in the sense that lims→∞φ(xs) = φ∗, the set
of accumulation points A of the leading box se-
quence is not empty, and A contains only global
minimizer points.

3. Assume that the optimization algorithm
converges for a given problem in the sense that
lims→∞φ(xs) = φ∗. Then either the algorithm
proceeds on the problem as one with a balanced
direction-selection rule, or there exists a box y

such that φ(x) = φ∗ for all x ∈ y, and w(yi) > 0
(i = 1, 2, . . . , n) for all coordinate directions that
are selected only a finite number of times.

4. The subdivision selection rules A and D are
balanced, and thus the related algorithms con-
verge to global minimizer points.

5. Either the subdivision selection rules B and
C choose each direction an infinite number of
times (they behave as balanced), or the related
algorithms converge to a positive width subin-
terval of the search region x0 that contains only
global minimizer points.

6. Sonja Berner proved that the basic algo-
rithm is convergent with Rule E in the sense of
lims→∞φ(xs) = φ∗, if an additional condition
holds for the inclusion function [1].

7. If the branch-and-bound algorithm with
any of the direction selection rules A – E con-
verges to a global minimizer point, then it con-
verges to all non-hidden global minimizer points
[11].
Numerical properties. The numerical compar-
ison tests were carried out on a wide set of
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test problems and in several computational en-
vironments. The set of numerical test problems
contained the standard global optimization test
problems [3, 4], the set of problems studied in [5],
and also some additional ones [10, 11]. The com-
puting environments include IBM RISC 6000-
580 and HP 9000/730 workstations and Pentium
PC-s. The programs were coded in FORTRAN-
90, PASCAL-XSC, and also in C++. The tests
were carried out both with simple natural inter-
val extension and with more sophisticated in-
clusion functions involving centered forms. The
derivatives were handcoded in some test [4],
while they were generated by automatic differ-
entiation in the others [3, 10, 11]. The range
of the investigated algorithms included simple
B&B procedures and also optimization codes
with many acceleration devices (like the Inter-
val Newton method).

The conclusions were essentially the same: the
rules B, C, and E had similar, substantial effi-
ciency improvements against rules A and D, and
these improvements were the greater the more
difficult the solved problem was. The average
performance of Rule D was the worst. Rule C
was usually the best, closely followed by Rule B
and E. It seems that the use of Rule E is justi-
fied only if the second derivatives are calculated
also for other purposes. The numerical results
were diverse, thus if the user has a characteris-
tic problem set, then it is worth to test all the
subdivision direction selection rules to find the
most fitting one.

A computationally intensive numerical study
[2] has proven that the most efficient subdivision
direction selection rules are not those that min-
imize the width of the objective function inclu-
sions for the result subintervals (which was the
common belief), but those that maximize the
lower bound of the worse subinterval obtained
or minimize the width of the intersection of the
result subintervals. The decisions of these a pos-
teriori rules coincide the most with the a priori
rules B, C, and E. These findings confirm the
earlier mentioned numerical efficiency results.
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