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INTERVAL ANALYSIS: ALGORITH-
MIC IMPROVEMENTS USING A
HEURISTIC PARAMETER, RE-
JECTINDEX FOR INTERVAL OPTI-
MIZATION

Interval optimization methods (Interval
analysis: Unconstrained and Constrained
Optimization) have the guarantee not to loose
global optimizer points. To achieve this, a de-
terministic branch-and-bound framework is ap-
plied. Still heuristic algorithmic improvements
may increase the convergence speed while keep-
ing the guaranteed reliability.

The indicator parameter called RejectIndex

pf∗(X) =
f∗ − F (X)

F (X)− F (X)
.

was suggested by L. G. Casado as a measure of
the closeness of the interval X to a global mini-
mizer point [1]. First it was applied to improve
the work load balance of global optimization al-
gorithms.

A subinterval X of the search space with the
minimal value of the inclusion function F (X) is
usually considered as the best candidate to con-
tain a global minimum. However, the larger the
interval X, the larger the overestimation of the
range f(X) on X compared to F (X). There-
fore a box could be considered as a good candi-
date to contain a global minimum just because
it is larger than the others. In order to compare
subintervals of different size we normalize the
distance between the global minimum value f∗

and F (X).
The idea behind pf∗ is that in general we

expect the overestimation to be symmetric,
i.e., the overestimation above f(X) is closely
equal to the overestimation below f(X) for
small subintervals containing a global minimizer
point. Hence, for such intervals X the relative
place of the global optimum value inside the
F (X) interval should be high, while for inter-
vals far from global minimizer points pf∗ must
be small. Obviously, there are exceptions, and

there exists no theoretical proof that pf∗ would
be a reliable indicator of nearby global mini-
mizer points.

The value of the global minimum is not avail-
able in most cases. A generalized expression for
a wider class of indicators is:

p(f̂ , X) =
f̂ − F (X)

F (X)− F (X)
,

where the f̂ value is a kind of approximation of
the global minimum. We assume that f̂ ∈ F (X),
i.e., this estimation is realistic in the sense that
f̂ is within the known bounds of the objective
function on the search region. According to the
numerical experience collected, we need a good
approximation of the f∗ value to improve the
efficiency of the algorithm.
Subinterval selection.

I. Among the possible applications of these
indicators the most promising and straightfor-
ward is in the subinterval selection. The theo-
retical and computational properties of the in-
terval branch-and-bound optimization has been
investigated extensively [6, 7, 8, 9]. The most im-
portant statements proved are the following for
algorithms with balanced subdivision direction
selection:

1. Assume that the inclusion function of the
objective function is isotone, it has the zero
convergence property, and the p(fk, Y ) parame-
ters are calculated with the fk parameters con-
verging to f̂ > f∗, for which there exists a
point x̂ ∈ X with f(x̂) = f̂ . Then the branch-
and-bound algorithm that selects that interval
Y from the working list which has the maxi-
mal p(fi, Z) value can converge to a point x̂ ∈ X

for which f(x̂) > f∗, i.e., to a point which is not
a global minimizer point of the given problem.

2. Assume that the inclusion function of
the objective function has the zero convergence
property, and fk converges to f̂ < f∗. Then the
optimization branch-and-bound algorithm will
produce an everywhere dense sequence of subin-
tervals converging to each point of the search
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region X regardless of the objective function
value.

3. Assume that the inclusion function of
the objective function is isotone and has the
zero convergence property. Consider the interval
branch-and-bound optimization algorithm that
uses the cut-off test , the monotonicity test , the
interval Newton step and the concavity test as
accelerating devices, and that selects as next
leading interval that interval Y from the work-
ing list which has the maximal p(fi, Z) value.
A necessary and sufficient condition for the con-
vergence of this algorithm to a set of global min-
imizer points is that the sequence {fi} converges
to the global minimum value f∗, and there exist
at most a finite number of fi values below f∗.

4. If our algorithm applies the interval selec-
tion rule of maximizing the p(f∗, X) = pf∗(X)
values for the members of the list L (i.e., if
we can use the known exact global minimum
value), then the algorithm converges exclusively
to global minimizer points.

5. If our algorithm applies the interval selec-
tion rule of maximizing the p(f̃ , X) values for
the members of the list L, where f̃ is the best
available upper bound for the global minimum,
and its convergence to f∗ can be ensured, then
the algorithm converges exclusively to global
minimizer points.

6. Assume that for an optimization prob-
lem minx∈X f(x) the inclusion function F (X)
of f(x) is isotone and α-convergent with given
positive constants α and C. Assume further that
the pf∗ parameter is less than 1 for all the subin-
tervals of X. Then an arbitrary large number
N(> 0) of consecutive leading intervals of the
basic B&B algorithm that selects the subinter-
val with the smallest lower bound as next lead-
ing interval may have the properties that:

i, none of these processed intervals contains
a stationary point, and

ii, during this phase of the search the pf∗ val-
ues are maximal for these intervals.

7. Assume that the inclusion function of the
objective function is isotone and it has the
zero convergence property. Consider the interval
branch-and-bound optimization algorithm that
uses the cut-off test, the monotonicity test, the
interval Newton step and the concavity test as
accelerating devices, and that selects as next
leading interval that interval Y from the work-
ing list which has the maximal pf(fk, Z) value.

i, The algorithm converges exclusively to
global minimizer points if

f
k
≤ fk < δ(fk − f

k
) + f

k

holds for each iteration number k, where
0 < δ < 1.

ii, The above condition is sharp in the sense
that δ = 1 allows convergence to not opti-
mal points.

Here f
k

= min{F (Y l), l = 1, ..., |Lk|} ≤
fk < f̃k = fk, where |L| stands for the cardi-
nality of the elements of the list L.

II. These theoretical results are in part
promising (e.g. 7.), in part disappointing as 5.
and 6. The conclusions of the detailed numer-
ical comparisons were that if the global mini-
mum value is known then the use of the pf∗

parameter in the described way can accelerate
the interval optimization method by orders of
magnitude, and this improvement is especially
strong for hard problems.

In case the global minimum value is not avail-
able, then its estimation, fk that fulfills the con-
ditions of 7. can be utilized with similar efficacy,
and again the best results were achieved on dif-
ficult problems.
Multisection. I. The technique multisection is
a way to accelerate branch-and-bound methods
by subdividing the actual interval into several
subintervals in a single algorithm step. In the
extreme case half of the function evaluations can
be saved [5, 10]. On the basis of the RejectIndex
value of a given interval it is decided, whether
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simple bisection or two higher degree multisec-
tion is to be applied [2, 11]. Two threshold val-
ues, 0 < P1 < P2 < 1 are used for selecting the
proper multisection type.

This algorithm improvement can also be
cheated in the sense that there exist global op-
timization problems for which the new method
will follow for an arbitrary long number of iter-
ation an embedded interval sequence that con-
tains no global minimizer point, or that intervals
in which there is a global minimizer have mis-
leading indicator values.

According to the numerical tests, the new
multisection strategies resulted in substantial
decrease both in the number of function eval-
uations and in the memory complexity.

II. The multisection strategy can also be ap-
plied for constrained global optimization prob-
lems [11]. The feasibility degree index for con-
straint gj(x) ≤ 0 can be formulated as

puGj (X) = min
{ −Gj(X)

w(Gj(X))
, 1

}
.

Notice that if puGj (X) < 0 then the box is
certainly infeasible, and if puGj (X) = 1 then
X certainly satisfies the constraint. Otherwise,
the box is undetermined for that constraint. For
boxes which are not certainly infeasible, i.e., for
which puGj (X) ≥ 0 for all j = 1, . . . , r holds,
the total infeasibility index is given by

pu(X) =
r∏

j=1

puGj (X).

We must only define the index for such boxes
since certainly infeasible boxes are immediately
removed by the algorithm from further consid-
eration. With this definition,

• pu(X) = 1 ⇔ X is certainly feasible, and
• pu(X) ∈ [0, 1) ⇔ X is undetermined.

Using the pu(X) index, we now propose the
following modification of the RejectIndex for
constrained problems:

pup(f̂ , X) = pu(X) · p(f̂ , X),

where f̂ is a parameter of this indicator, which is
usually an approximation of f∗. This new index
works like p(f̂ , X) if X is certainly feasible, but

if the box is undetermined, then it takes the fea-
sibility degree of the box into account: the less
feasible the box is, the less the value of pu(X)
is.

A careful theoretical analysis proved that the
new interval selection and multisection rules en-
able the branch-and-bound interval optimiza-
tion algorithm to converge to a set of global opti-
mizer points assumed we have a proper sequence
of {fk} parameter values. The convergence prop-
erties obtained were very similar to those proven
for the unconstrained case, and they give a firm
basis for computational implementation.

A comprehensive numerical study on stan-
dard global optimization test problems and on
facility location problems indicated [11] that the
constrained version interval selection rules and
to a less extent also the new adaptive multi-
section rules have several advantageous features
that can contribute to the efficiency of the in-
terval optimization techniques.
Heuristic rejection. RejectIndex can also be
used to improve the efficiency of interval global
optimization algorithms on very hard to solve
problems by applying a rejection strategy to get
rid of subintervals not containing global mini-
mizer points. This heuristic rejection technique
selects those subintervals on the basis of a typi-
cal pattern of changes in the pf∗ values [3, 4].

The RejectIndex is not always reliable: as-
sume that the inclusion function F (X) of f(x) is
isotone, and α-convergent. Assume further that
the RejectIndex parameter pf∗ is less than 1 for
all the subintervals of X. Then an arbitrary large
number N(> 0) of consecutive leading intervals
may have the properties that:

i, neither of these processed intervals con-
tains a stationary point, and

ii, during this phase of the search the pf∗ val-
ues are maximal for these intervals as com-
pared with the subintervals of the current
working list.

Also, when a global optimization problem
have a unique global minimizer point x∗, then
there always exists an isotone and α-convergent

heuristic rejection
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inclusion function F (X) of f(x) such that the
new algorithm does not converge to x∗.

In spite of the possibility to lose the global
minimum, obviously there exist such implemen-
tations that allow a safe way to use heuristic
rejection. For example, the selected subintervals
can be saved on a hard disk for further possible
processing if necessary.

Although the above theoretical results were
not encouraging, the computational tests on
very hard global optimization problems were
convincing: when the whole list of subintervals
produced by the B&B algorithm is too large for
the given computer memory, then the use of
the suggested heuristic rejection technique de-
crease the number of working list elements with-
out missing the global minimum. For hard to
solve problems the new rejection test may make
it possible to solve them, which are otherwise
unsolvable with usual techniques.
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[10] Markót, M.Cs., Csendes, T., and Csallner,

A.E.: ‘Multisection in Interval Branch-and-Bound

Methods for Global Optimization II. Numerical

Tests’, J. Global Optimization 16 (2000), 219–228.
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