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Real life problems

The case of Hans-Paul Schwefel: the problem was to find a better
efficiency positioning of the heating elements of a nuclear power
station produced by Siemens. The approximate solution found by an
evolutionary method was more than 1% better than the know
solution. Although it was not to be cleared whether the found point
was even a local minimizer, or how far it was to the optimum, the
project partner was satisfied (> 108 DEM).

Cutting iron rods of given profils for the building firm (yearly savings
at ten millions of HUF): bin packing + storage management, more
than 1% improvement against earlier algorithm on real life data by
applying a fitting mix of known heuristics.
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Real life problems 2

Optimal packing of buckets with printing ink on euro palettes: the aim
was not saving place but to ensure that the outlying bucket do not open
due to movements on trucks.

  7 circles in the 3x2 unit rectangle

radius   = 0.175328637763
distance = 0.491330276104

density  = 0.676010792872
contacts = 13
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  8 circles in the 3x2 unit rectangle

radius   = 0.166539827660
distance = 0.457500855999

density  = 0.697069501158
contacts = 18
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How to design LED based lighting units that meet

regulations?
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Theoretical questions

Keppler conjecture: what is the densenst packing of circles on the
plane?

Fekete problem: find n points on a sphere that are the farthest to
each other.

Circle packing: e.g. into the unit square, or the Malfatti circles

Kissing numbers: what is the maximal number of n-dimensional unit
spheres that touch a given unit sphere?

min (an + bn − cn)2 + sin2 aπ+ sin2 bπ+ sin2 cπ+ sin2 nπ, where a,
b, and c nonnegative and n > 2.

Introduction to Global Optimization Vienna, 2012
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Malfatti Problem

Gianfrancesco Malfatti (1731–1807) (Chokuen Ajima (1732–1798)):

Consider an orthogonal side triangular prism. How can we cut out 3
(possibly of different radii) cylinders such, that the summed volume of
the cylinders is maximal?

The Malfatti circles.

Introduction to Global Optimization Vienna, 2012
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The solution of the Malfatti problem

In 1930 H. Lob and H. W. Richmond showed, that there exist a more
dense packing of three circles in the equilateral triangle than the Malfatti
circles.

Malfatti circles, and a more dense packing for the equilateral triangle.

Introduction to Global Optimization Vienna, 2012
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Optimization problems requiring a reliable solution

Yes or no questions in practical problems: is there a solution that is
more than 1% more profitable than the existing one?

Critical applications like surgery robot control: there are too many
sources of possible failure – once there exist reliable computational
techniques, why not use them.

Introduction to Global Optimization Vienna, 2012
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The global optimization problem

Definition

The bound constrained global optimization problem is formulated as

min
x∈X⊆Rn

f (x).

Here X is an n-dimensional interval: ai ≤ xi ≤ bi , where ai , bi ∈ R are
real bounds on the variable xi , i = 1, 2, . . . , n. f (x) : Rn → R is a two
times continuously differentiable objective function.

The global optimization problem is unconstrained when set of feasibility,
X is the n-dimensional Euclidean space.

The global optimization problem is constrained, when we add equality
and/or inequality constraints: gi (x) = 0 and/or hj(x) ≤ 0, where
gi (x), hj (x) : R

n → R are real functions, i = 1, 2, . . . ,m1, and
j = 1, 2, . . . ,m2 for some positive integers m1,m2.

Introduction to Global Optimization Vienna, 2012
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Problem subclasses

For the unconstrained global optimization problems m1 = m2 = 0, and
there are no bounds on the variables either.

For the bound constrained problems m1 = m2 = 0.

In case of the sum-of-squares problem, the objective function can be
written as f (x) =

∑m
j=1(fj − fmod (j , x))

2, where m is a positive integer,
fj is real (j = 1, 2, . . . ,m), and fmod (j , x) is the model function.

In the case of the Mixed integer nonlinear optimization problem
(MINLP), some of the variables are integer.

On the basis of the properties of the objective function, we have convex,
concave, smooth (or two times continuously differentiable),
nondifferentiable, quadratic, Lipschitz-continuous etc.

Introduction to Global Optimization Vienna, 2012
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Minima and extremal points

Local minimizer point is x∗, if there exists such a neighbourhood of it
N(x∗), that for all points x ∈ N(x∗) the relation f (x) ≥ f (x∗) holds.

Local minimum value of a local minimizer point x∗ is the respective
objective function value f (x∗).

x∗ is a separated local minimizer point, if it is not an accumulation point
of minimizer points.

A global minimizer point is a local minimizer point, if for all points x of
the set of feasibility X the relation f (x) ≥ f (x∗) holds.

The global minimum is the objective function value at the point x∗:
f (x∗).

A saddle point is such a point, where although the gradient of the
objective function is zero, still in all of its neighbourhood we have smaller
and higher objective function values.

Introduction to Global Optimization Vienna, 2012
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Minima and extremal points 2

The region of attraction of a local minimizer point is the set of points of
those curves that end in that local minimizer point, and along which the
objective function value decreases monotonically.

f (x) is a separable function, if it can be written in the form of
f1(x) + f2(x), and f1(x) has a global minimizer point that is a global
minimizer of f2(x) as well (and thus that of f (x) too).

We call a set to be convex, if for all its points x1 and x2, all points of the
line segment (x1, x2) are points of the set as well.

f (x) is a convex function, if all its level sets are convex.

The negative of a convex function is a concave function.

Introduction to Global Optimization Vienna, 2012
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Classes of global optimization methods

Direct search techniques use only the subroutine that calculates the
objective function value at an argument point: mesh search, random
walk, Monte Carlo search, adaptive random search, nonlinear simplex
method (Nelder-Mead), genetic algorithm, evolutionary methods and
simulated annealing.

Gradient based procedures: gradient methods, conjugated gradient
method, quasi-Newton algorithm, and the Gauss-Newton method.

The algorithms that utilize the second order derivative information, are
the variants of the Newton method.

As a framework for the above procedures, several algorithms serve:
multistart method, adaptive start point selection, filter-function
approach, Bayesian models, clustering, estimation of the Lipschitz
constant, convex underestimation functions, symbolic presolve
procedures, branch-and-bound method.

Introduction to Global Optimization Vienna, 2012
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Optimization with tolerances

The reformulated nonlinear optimization problem for handling production
tolerances: find such an n-dimensional interval X ∗ for which

f (x) ≤ fε := f (x∗) + ε, (1)

gj(x) ≤ 0 j = 1, 2 . . . ,m. (2)

holds for a given ε > 0 and for all x ∈ X ∗.

We have introduced an interval arithmetic based algorithm for the
solution of the above problem, that identifies a maximal interval X ∗

containing a user given seed point. X ∗ has sides parallel to the
coordinate axes, and all points of it are feasible suboptimal points.
Maximal interval is meant here in the way that it cannot be increased
while keeping the given properties.

Introduction to Global Optimization Vienna, 2012
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Automatic Differentiation

Substitute each appearance of a variable x with the pair (x , 1), and each
constant c by the pair (c , 0). Calculate the first element of the resulting
pair as for real numbers, while use the derivation rules for determining
the second elements of the pairs:

y = f (x) a± x a ∗ x a/x
√
x log(x) exp(x) cos(x)

f ′(x) ±1 a −y/x 0.5/y 1/x y − sin(x)

Example: calculate the derivative of f (x) = (x − 1)2 at x = 2. The
derivative function is f ′(x) = 2(x − 1), and its value 2.

The expression in the brackets is (2, 1) − (1, 0) = (1, 1). Implement
square by multiplication: (1, 1) ∗ (1, 1) = (1, 2). The result is then
f (2) = 1, and f ′(2) = 2.

Introduction to Global Optimization Vienna, 2012
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Automatic Differentiation – complexity

Computational- (L) and memory complexity (S) of some differentiating
problems over the set of operations {+,−, ∗, /,√, log, exp, sin, cos}:

Problem Algorithm
forward backward

L(f ,∇f ) ≤ 4nL(f ) ≤ 4L(f )
L(f ,∇f ,H) O(n2L(f )) ≤ (10n + 4)L(f )

L(f, J) O(nL(f)) ≤ (3m + 1)L(f)

S(f ,∇f ) O(S(f )) O(S(f ) + L(f ))
S(f ,∇f ,H) O(S(f )) O(S(f ) + L(f ))

S(f, J) O(S(f)) O(S(f) + L(f))

Here f is an n-dimensional function, f is a vector of length m containing
n-dimensional functions, ∇f is the gradient of f , H is the Hesse matrix
of f , and J is the Jacobi matrix of f.

Introduction to Global Optimization Vienna, 2012
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Penalty functions

One of the usual transformations of constraint optimization problems to
unconstrained ones is made by using penalty functions.

Penalty function is an added term, with which we complete the objective
function of min f (x), gi (x) ≤ 0), i = 1, 2, ...,m to get the solution of
local search methods into the set of feasibility:

f̂ (x) = f (x), if gi (x) ≤ 0, and f̂ (x) = f (x) + C1 + C2d(x ,X ), where C1

and C2 are suitable positive constants, and d(x ,X ) is the distance of the
point x to the set of feasibility X .

C1 should be larger than the supremum value of f (x) on the set of
feasibility.

For interval methods, we apply the Hausdorff metric to describe the
distance of a subinterval to the set of feasibility:
DH(Y ,X ) = supy∈Y infx∈X d(x , y), where d(x , y) is an underlying point
distance, e.g. the Eucledian metric.

Introduction to Global Optimization Vienna, 2012
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Barrier functions

Barrier functions aim to keep the smoothness of the objective function,
and build a strict obstacle for the local search methods, not to cross the
border of the set of feasibility.

For example, if the variable xi should be kept below bi , then add to the
objective function − log(bi − xi) multiplied with a proper small positive
constant.

To ensure that the global minimizer point that is inside of the set of
feasibility can be found, the multiplicative coefficients of the barrier
functions should go to zero as we iterate the local search steps.

Introduction to Global Optimization Vienna, 2012
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Questions and problems

1 How can we transform maximization problems to minimization
ones? What happens with the extremum value and with the solution
points?

2 What kind of functions f (x), gi (x), and hj(x) turn the defined
global optimization problem into a linear one?

3 Show such an optimization problem that cannot be formulated as a
global optimization problem!

4 Prove that the equality constraints can be formulated by inequality
constraints!

5 Why we do not use greater or equal relations?
6 Prove that all sets in R

n can be given by the mentioned constraints!
7 Give those constraints that allow only a single point as feasible!
8 Show a set of constraints that is redundant (at least one of them

can be deleted without changing the set of feasibility)! (Fourier
method...)

Introduction to Global Optimization Vienna, 2012
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Questions and problems 2

1 Show such a set of constraints that is not redundant (i.e. no one can
be left out without changing the set of feasibility)!

2 How can you use the equality constraints for decreasing the problem
dimension? Give an example!

3 Show such a nonlinear optimization problem that has a minimizer
point where the first derivative, or the gradient is not zero!

4 Give the definitions of global maximum, and global maximizer point!

5 Determine that funny class of problems, for which all global
minimizer point is a global maximizer point as well!

6 Determine the optimum of the line fitting problem on the basis of
the zero gradient! (The line fitting problem finds those coefficients
of a linear function, with which the summed squared differences in
the measured points are minimal.)

Introduction to Global Optimization Vienna, 2012
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Questions and problems 3

1 Under which circumstances has the above problem an infinity of
solutions?

2 What happens with the solution of the linear regression problem,
when we change the distance function in it?

3 Determine the best fitting circle accordingly! Define first the
distance of a point to a circle!

4 Try to fit an ellipsoid! (open)

5 How many minima (maxima) can an unconstrained convex
(concave) problem have? Cf. f (x) = 1/x , x ≥ 0.

6 Show a function that is continuously differentiable but not smooth!

Introduction to Global Optimization Vienna, 2012
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Extension of the basic operations for intervals

Set theoretical definition:

A ◦ B = {a ◦ b | a ∈ A and b ∈ B}, A,B ∈ I,
(I is the set of compact intervals (i , j), where i , j ∈ R, and i ≤ j .)

Arithmetic definition:

[a, b] + [c , d ] = [a + c , b + d ],

[a, b]− [c , d ] = [a − d , b − c],

[a, b] · [c , d ] = [min(ac , ad , bc , bd),max(ac , ad , bc , bd)],

[a, b]/[c , d ] = [a, b] · [1/d , 1/c] if 0 /∈ [c , d ].

The two definitions are equivalent.
Introduction to Global Optimization Vienna, 2012
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An example

The inclusion of the function

f (x) = x2 − x

obtained for the interval [0, 1] is [−1, 1],

while the range of it is here just [−0.25, 0.0].

This eight times wider enclosure indicates that interval calculations
should be useless. Still by using more sophisticated techniques the
problem of the too loose enclosure can be overcome – at the cost of
higher computational times.

Good bounds can easily be calculated also for the standard functions like
sin, log, exp etc. too.

Introduction to Global Optimization Vienna, 2012
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Inclusion functions

A function F : In → I is an inclusion function of the real function f if
f (y) ∈ F (Y ) holds for ∀Y ∈ I

n and ∀y ∈ Y , where I stands for the set
of closed real intervals.

The simplest inclusion function is the naive interval extension: we
substitute each real variable, operation and standard function by its
interval equivalent.

More sophisticated inclusion functions are the central forms
(F (X ) = F (c) +∇F (X )(X − c)), the slopes, and the Taylor models.

Introduction to Global Optimization Vienna, 2012
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Properties of inclusion functions

F is said to be an isotone inclusion function over X if
∀Y ,Z ∈ I(X ), Y ⊆ Z implies F (Y ) ⊆ F (Z ).

We say that the inclusion function F has the zero convergence property,
if w(F (Zi )) → 0 holds for all the {Zi} interval sequences for which
Zi ⊆ X for all i = 1, 2, . . . and w(Zi) → 0.

We call the inclusion function F an α-convergent inclusion function over
X if ∀Y ∈ I(X ) w(F (Y ))− w(f (Y )) ≤ Cwα(Y ) holds, where α and C
are positive constants.

Introduction to Global Optimization Vienna, 2012
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Properties of inclusion functions 2

The naive interval extension is inclusion isotone, zero convergent, and
linearly convergent (α = 1).

The central forms are inclusion isotone if c ∈ X , always zero convergent,
and quadratically convergent.

The intersection of inclusion function values keeps the above properties
of the involved inclusion functions.

The algebraic properties of interval arithmetic are not the same as for
real arithmetic (e.g. the distributivity does not hold, in general there is
no inverse for addition etc.).

Introduction to Global Optimization Vienna, 2012
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Implementation issues

In a floating point environment (most cases) the outward rounding is
important to have a conservative inclusion that is a must in computer
supported mathematical proofs.

Outward rounding means that the bounds of the calculated result
intervals are rounded in such a way that all result points are within the
given bounds.

In other words, the lower bound is always rounded toward −∞, and the
upper bound toward ∞. This can easily be realized applying the four
rounding modes of the IEEE 754 standard (available on most
programming languages and computers).

Introduction to Global Optimization Vienna, 2012
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Implementation issues 2

Several programming languages and packages support interval arithmetic
based inclusion function generation: C-XSC, FORTRAN-XSC,
PASCAL-XSC, and PROFIL/BIAS.

Interval packages are available in several numerical languages such as
Maple, Mathematica, Matlab. The latter one, Intlab is especially easy to
use.

By automatic differentiation the inclusion of first and second derivatives
are easy to obtain, as well as multiple precision evaluations to achieve
higher accuracy when necessary.

The interval function evaluations require 4 – 35 times more computation
and time.

Introduction to Global Optimization Vienna, 2012
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Interval B&B algorithm

The Moore-Skelboe algorithm will give lower and upper bounds on the
minimum value of a nonlinear function over a multidimensional interval
X . It locates such a subinterval X ′ ⊆ X that F (X ′) contains the global
minimum value f ∗, and the width of the interval F (X ′) is less than a
preset positive tolerance value ε.

The algorithm will provide a list of subintervals that may still contain
global minimizer points, hence only those points will not be covered by
the subintervals of the result list, that were rejected by the algorithm,
since they surely cannot contain global optimizer points.

The algorithm is described on the next slide.

Introduction to Global Optimization Vienna, 2012
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Interval B&B algorithm 2

1 Set Y := X and y := minF (X ). Initialize the working list L = ((Y , y)).

2 Select such a k coordinate, along which Y = Y1 × · · · × Yn has a maximal width edge.

3 Bisect Y along the direction of k to obtain boxes V1 and V2, for which Y = V1 ∪ V2.

4 Calculate F (V1) and F (V2), and let vi = minF (Vi ) for i = 1, 2.

5 Delete (Y , y) from the list L.

1 Monotonicity test: delete pair (Vi , vi ) if 0 /∈ F ′

j
(Vi ) for a j (1 ≤ j ≤ n), and

i = 1, 2.
2 Cut-off test: delete pair (Vi , vi ), if vi > f̃ (where f̃ is an algorithm parameter, in

general the best known upper bound of the global minimum) and i = 1, 2.
3 Interval Newton step:

Vi :=
(

c(Vi )− H−1(Vi )∇f (c(Vi ))
)

∩ Vi ,

6 Insert the remaining ones from the pairs (V1, v1) and (V2, v2) to the working list. If L is
empty STOP.

7 Denote that pair of the list L with (Y , y) that has the smallest second member y .

8 If the width of F (Y ) is less than ε, then print F (Y ) and Y , and STOP.

9 Continue the execution of the algorithm at Step 2.

Introduction to Global Optimization Vienna, 2012
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Interval Newton Step

Consider the one-dimensional problem of finding a zero of a function
f (x) = 0. We assume that f ′(x) is continuous on the interval [a, b], and

0 /∈ {f ′(x), x ∈ [a, b]} and f (a)f (b) < 0.

When an inclusion Xk of the zero of f (x) is known, then a better Xk+1

inclusion can be obtained by

Xk+1 :=

(

c(Xk)−
f (c(Xk))

F ′(Xk)

)

∩ Xk .

Here c(X ) is an inner point of the interval X (e.g. the center of it).
Consider the function f (x) =

√
x + (x + 1) cos(x) on the interval [2, 3].

Introduction to Global Optimization Vienna, 2012
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Interval Newton Step 2

The obtained iteration sequence together with the widths w(Xk) of the
intervals:

k Xk w(Xk)

1 [2,0, 3,0] 1,0
2 [2,0, 2,3] 0,3
3 [2,05, 2,07] 0,02
4 [2,05903, 2,05906] 0,00003
5 [2,059045253413, 2,059045253417] 0,000000000004

For optimization problems, obviously we look for the zeros of the
derivative function. Then the iteration expression is

Xk+1 :=

(

c(Xk)−
f ′(c(Xk))

F ′′(Xk)

)

∩ Xk .

Introduction to Global Optimization Vienna, 2012
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Interval Newton Step 3

When the objective function is multidimensional, then the respective
iteration is

Xk+1 :=
(

c(Xk)− H−1(Xk)∇f (c(Xk))
)

∩ Xk ,

where H(Xk) is the inclusion of the Hesse matrix of f (x) for the
argument interval Xk . Notice that the iteration does not depend directly
on the objective function. It is in accordance with the fact that we
expect the same iteration sequence for a shifted version f (x) + c) of the
original objective function.

Introduction to Global Optimization Vienna, 2012
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Excel Solver for nonlinear optimization

The Excel program is better for routine calculations on large sets of data
that may change regularly. Still an Add-in procedure of it, Solver is
capable to solve nonlinear optimization problems.

Implementation:

Take Excel version 2007, push the colourful button in the upper left
corner. Ask for the Settings and inside of it for the managing of Add-in
procedures. Check Solver, push the jump button, and check Solver again
in the pop up window. Accept the selection with OK. Now Solver is
ready for use. We can find it in the Data tag in the upper right corner, in
the analysis box.

Introduction to Global Optimization Vienna, 2012



Motivation Basic Notion Interval methods Excel Intlab GLOBAL Simplification Exam References

An Example

Consider the simple bounded nonlinear optimization problem
min x2, x ≥ 1. To solve it with Solver, write the value 2 into the cell A1,
and fill in cell B1 by entering =A1*A1 into the editing line. We can also
show the cell A1 with the mouse, in stead of typing in the name A1.
When everything was set properly, then the content of B1 will be 4.

Now select the Data tag, and the Solver. A new dialog window appears.
The objective cell should contain our function to be optimized. Hence
either write here B1, or show it with the mouse (first the coloured button
must be pushed to the right of the respective input row). By pushing
ENTER, or the button on the right side we can return to the basic dialog
window of Solver.

Solver can minimize, maximize, or set an objective value for a given
function. Select minimization by pushing the radio button in the second
row.

Introduction to Global Optimization Vienna, 2012
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An Example (continued)

In the third line of the Solver dialog window, select A1 as the changing
cell. In case of a multiple variables all of these can be shown by the
mouse, or specified accordingly.

Finally set the constraint of our problem. It should come into the lower
left subwindow of the dialog window. To specify it, push the button Add
to the right of it. In the appearing new dialog box set cell A1 containing
our variable x in the left place. Change the relation sign to ≥, and write
to the right place the number 1. Now if we push OK, then this
constraint will be added to the set of constraints, and we return to the
basic Solver dialog window. When we have many constraints, use the
Add button after specifying one of them.

Introduction to Global Optimization Vienna, 2012
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An Example (continued again)

Now all specifications are set, we are ready to solve the problem. Pushing
the Solution button in the upper right corner in the dialog window, Solver
reports that a solution has been found. It asks whether the old table can
be modified by it. After accepting the modification we can see the correct
result: the minimum and the minimizer point are both equal to one. �

Finding a requested value for the objective function is not the subject of
our course, but can be useful in practical application. If we obtained a
worse than expected solution, we can change the default settings of
Solver by opening the Settings dialog box.

The related keywords for a German language Excel 2010 program are:
Datei / Optionen / Add-Ins / Solver / Gehe zu... Then Daten / Analyse
/ Solver / Ziel Festlegen / Lösen / Hinzufügen

Introduction to Global Optimization Vienna, 2012
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Exercises

1 Determine the minimizer point of the Rosenbrock problem:
f (x) = 100(x21 − x2)

2 + (1− x1)
2 starting from the point (-1, 1)!

Try some settings for the solution method!

2 Find the extreme value and the solution point of the function
f (x) = x6(sin(1/x) + 2) starting from the point 1! Try to find a
better approximation.

3 Try to prove the Fermat conjecture by minimizing the function
(an + bn − cn)2 + sin2(aπ) + sin2(bπ) + sin2(cπ) + sin2(nπ) for
n ≥ 2! Argue that global optimization problems are difficult to solve.

4 How would you use Solver for the solution of multimodal problems
(that have several different local minimizers with substantial size
regions of attraction)?

Introduction to Global Optimization Vienna, 2012
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Matlab as a development platform

Matlab is a professional program for numerical calculation. Its strength is
linear algebra with large and/or sparse matrices. It is interactive, the user
types the commands at a prompt, but the resulting algorithms can be
turned to compilable high level language program codes. Matlab itself is
handling the branch-forecasting of modern processors, hence the pipeline
of the processors can be optimally fed. In this sense it is more efficient,
than a user written average code can be (cf. BLAS).

Some optimization related Matlab commands (not of a package):

>> fzero(’-2*(1-x)+200*(x^2-x)*(2*x-1)’,0)

>> fminbnd(’(1-x)^2+100*(x^2-x)^2’,0,2)

>> fminsearch(’(1-x(1))^2+100*(x(1)^2-x(2))^2’,[0 0])

>> fminsearch(@Rosenbrock,[0 0])

if the subroutine Rosenbrock.m contains the respective test function.

Introduction to Global Optimization Vienna, 2012
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Implementing the Intlab package for Matlab

Intlab is a package of S.M. Rump for Matlab that supports both interval
calculation with proper outward rounding, and automatic differentiation.

The compressed archive can be downloaded from the web page
http://www.ti3.tu-harburg.de/rump/intlab/.

Find the source code for your operating system (Windows or Linux), and
decompress the archive into a directory different from the Matlab home.

Set the path for Matlab in the left subwindow, so that Matlab can
recognize where it should find Intlab.

Type the command >> startintlab at the prompt.

If everything was fine, you have no error message during the
implementation and testing phase, then Intlab reports that it is ready for
use. Type >> infsup(1,2) and >> ans+ans.
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Implementing an interval optimization package

Register yourself at the web page

www.inf.u-szeged.hu/∼csendes/Reg/regform.php

Decompress the obtained file with Winzip or the 7zip utility of Linux (>>
7z x filename). The keyword (s2L5c4b7aT) comes in an email one
day later.

To use the interval global optimization code, set first the main search
path of Matlab (the one highlighted in the top middle position of its
window) to the one, where Intlab is. Start Intlab with the command
startintlab.

Then change the search path to the directory, where the interval
optimization code is, and type >> MainTester.
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Implementing an interval optimization package 2

What happens now, is a test run of the interval global optimization
program on the test function Shekel-5. The respective two description
files are in the directory TestFunctions.

To test a new test problem, the easiest way is to modify (and rename,
respectively) the two files s5.m and s5.bnd. The s5.m file contains the
subroutine that calculates the Shekel-5 test function.

The s5.bnd file has the function name in its first line. Then the problem
dimension is in the next line, followed by the lower and upper bounds for
each variable to be optimized. The last row gives the tolerance value for
the stopping condition.

For many other standard global optimization test functions the two
description files are in the directory Tests.
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An exaple run

>> MainTester

Function name: S5

The set of global minimizers is located in the union of

the following boxes:

c1: [ 4.00003713662883, 4.00003718945147 ]

[ 4.00013323800906, 4.00013329348396 ]

[ 4.00003713910016, 4.00003717168197 ]

[ 4.00013326916774, 4.00013328566954 ]

The global minimum is enclosed in:

[ -10.153199679058694000, -10.153199679058197000 ]

Statistics:

Iter Feval Geval Heval MLL CPUt(sec)

16 126 86 7 10 5.05

Introduction to Global Optimization Vienna, 2012



Motivation Basic Notion Interval methods Excel Intlab GLOBAL Simplification Exam References

The subroutine calculating the function Shekel-5

function y = sh5(x)

m = 5;

a = ones(10,4);

a(1,:)=4.0*a(1,:); a(2,:)=1.0*a(2,:); a(3,:)=8.0*a(3,:); a(4,:)=6.0*a(4,:);

for j = 1:2;

a(5,2*j-1) = 3.0; a(5,2*j) = 7.0; a(6,2*j-1) = 2.0; a(6,2*j) = 9.0;

a(7,j) = 5.0; a(7,j+2) = 3.0; a(8,2*j-1) = 8.0; a(8,2*j) = 1.0;

a(9,2*j-1) = 6.0; a(9,2*j) = 2.0; a(10,2*j-1)= 7.0; a(10,2*j)= 3.6;

end

c(1) = 0.1; c(2) = 0.2; c(3) = 0.2; c(4) = 0.4; c(5) = 0.4;

c(6) = 0.6; c(7) = 0.3; c(8) = 0.7; c(9) = 0.5; c(10)= 0.5;

s = 0.0;

for j = 1:m;

p = 0.0;

for i = 1:4

p = p+(x(i)-a(j,i))^2;

end

s = s+1.0/(p+c(j));

end

y = -s;
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The file s5.bnd providing details on the test problem

Shekel-5

S5

4

0 10

0 10

0 10

0 10

1e-8

Here the function name is given (identical with the file name), the
dimension of the problem, the lower and upper bounds and the tolerance
parameter of the stopping rule.
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Exercises for the interval optimization package

It is worth to see what results can be obtained for the following problems:

min x2, x ∈ [−1, 1]

min x6 ∗ (sin(1/x) + 2), x ∈ [−1, 1]

min 1, x ∈ [−1, 1]

min(x(1)2+x(2)2−x(3)2)2+sin(x(1)∗pi)2+sin(x(2)∗pi)2+sin(x(3)∗pi)2
x ∈ ([2, 10], [2, 10], [2, 10])

In the latter case we expect to see some Euclidean triplets. It is worth to
play with the tolerance value, and with the starting interval as well.
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A clustering multistart stochastic global optimization

method: GLOBAL

It is a multistart procedure, that applies local search methods for finding
local minimizer points.

Two local search algorithms can be selected: the first is UNIRANDI, a
direct search technique. It is a random walk method, that does not
assume differentiability of the objective function, and requires only a
subroutine for the calculation of the objective function value.

The other method is BFGS, that is readily available in Matlab (even
without the optimization packages). This is assumes a smooth objective
function, although requires again only a subroutine for the calculation of
the objective function value.

The framework multistart algorithm assumes that the relative size of the
region of attraction of the global minimizer point(s) is not negligible, i.e.
say larger than 0.00001.
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The algorithm

Step 1: Draw N points with uniform distribution in X , and add
them to the current cumulative sample C . Construct the
transformed sample T by taking the γ percent of the
points in C with the lowest function value.

Step 2: Apply the clustering procedure to T one by one. If all
points of T can be assigned to an existing cluster, go to
Step 4

Step 3: Apply the local search procedure to the points in T not yet
clustered. Repeat Step 3 until every point has been
assigned to a cluster.

Step 4: If a new local minimizer has been found, go to Step 1.

Step 5: Determine the smallest local minimum value found, and
stop.
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Download GLOBAL for Matlab

The GLOBAL algorithm for Matlab is in the same package, that contains
the interval global optimization program.

After decompressing the archive, we can find the code in the directory
named Global Matlab.

The equivalent C and FORTRAN language implementations are in the
directory Global C Fortran.

To use the Matlab version, it is enough to add the directory
Global Matlab to the search path of Matlab.
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How to run GLOBAL inside Matlab

The main function is GLOBAL.m which can be started by the sequence:

[X0,F0,NC,NFE] = GLOBAL(FUN, LB, UB, OPTS);

The function can be called without the OPTS parameter. In this case the
default parameters will be used:

[X0,F0,NC,NFE] = GLOBAL(FUN, LB, UB);

The input parameters are the following:

FUN: Function handler to a function that we want to minimize

LB: Lower bounds on the variables given in the form of a vector

UB: Upper bounds on the variables in the form of a vector

OPTS: An optional MATLAB structure argument to customize the
options for the program
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Control parameters of GLOBAL

OPTS.N100: Number of sample points to be drawn uniformly in one
cycle (20<=N100<=100000), the default value is 10*nvars
OPTS.NG0: Number of best points selected from the actual sample
(1<=NG0<=20), default is min(2*nvars,20)
OPTS.NSIG: Convergence criterion, the number of significant digits
in the result (suggested value = 6,7,8),
default is 6
OPTS.MAXFN: Maximum number of function evaluations for local
search, the default is 1000
OPTS.MAXNLM: Maximum number of local minima (clusters), the
default is 20
OPTS.METHOD: Local method used (’bfgs’ or ’unirandi’), the
default is ’unirandi’
OPTS.DISPLAY: Display intermediary or final results
(’on’,’final’,’off’) the default is ’final’
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A sample run of GLOBAL

>> LB =[-2; -2];

>> UB =[ 2; 2];

>> OPTS.N100 = 50;

>> OPTS.NG0 = 2;

>> OPTS.NSIG = 6;

>> OPTS.METHOD = ’bfgs’;

>> FUN = @ros2;

>> [X0,F0,NC,NFE] = GLOBAL(FUN, LB, UB, OPTS);

where ros2 is the MATLAB function

function y = ros2(x)

y = 100*(x(1).^2-x(2)).^2+(x(1)-1).^2;

end
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A typical result of GLOBAL for the Rosenbrock test

problem

NORMAL TERMINATION AFTER 307 FUNCTION EVALUATIONS

LOCAL MINIMUM FOUND: 1

F0 =

1.927661340730457e-011

X0 =

0.999995637462118

0.999991225458257

GLOBAL MINIMUM VALUE: 0.000000000019277

GLOBAL MINIMUM:

0.999995637462118

0.999991225458257
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Exercises

Check first what GLOBAL can achieve on the test problem Shekel-5.

It is worth again to see what results can be obtained for the following
problems:

min x6 ∗ (sin(1/x) + 2), x ∈ [−1, 1]

Notice that UNIRANDI is more effective for this problem than BFGS due
to its robust behaiour, and its nondifferentiable model. Check starting
intervals zooming in to the origin.

min(x(1)2+x(2)2−x(3)2)2+sin(x(1)∗pi)+sin(x(2)∗pi)+sin(x(3)∗pi)
x ∈ ([2, 10], [2, 10], [2, 10])

In the latter case we expect to see some Euclidean triplets in the interval
[3, 20]4. It is worth to play with the tolerance value, with the starting
interval, and also with the two local search methods as well.
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The motivating problem

Consider the parameter estimation problem given by the sum-of-squares
form objective function:

F (Raw , Iaw ,B , τ) =

[

1

m

m
∑

i=1

∣

∣ZL(ωi)− Z ′
L(ωi)

∣

∣

2

]1/2

,

where ZL(ωi ) ∈ C is the measured impedance value, Z ′
L(ωi) is the

modeled impedance at frequencies ωi for i = 1, 2, . . . ,m and Raw , Iaw ,B ,
and τ are model parameters.
The original nonlinear model function is based on obvious physical
parameters:

Z ′
L(ω) = Raw +

Bπ

4.6ω
− ı

(

Iawω +
B log(γτω)

ω

)

,

where γ = 101/4 and ı is the imaginary unit.
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The motivating problem 2

The original nonlinear model function is based on obvious physical
parameters:

Z ′
L(ω) = Raw +

Bπ

4.6ω
− ı

(

Iawω +
B log(γτω)

ω

)

,

where γ = 101/4 and ı is the imaginary unit.

The symbolic algorithm was motivated by the existence of a simplified
and equivalent model function, that is linear in the model parameters:

Z ′
L(ω) = Raw +

Bπ

4.6ω
− ı

(

Iawω +
A+ 0.25B + B log(ω)

ω

)

.
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Some theoretical results

Theorem

If h(x) is smooth and strictly monotonic in xi , then the corresponding
transformation simplifies the function in the sense that each occurrence of
h(x) in the expression of f (x) is padded by a variable in the transformed
function g(y), while every local minimizer (or maximizer) point of f (x) is
transformed to a local minimizer (maximizer) point of the function g(y).

Theorem

If h(x) is smooth, strictly monotonic as a function of xi , and its range is
equal to R, then for every local minimizer (or maximizer) point y∗ of the
transformed function g(y) there exists an x∗ such that y∗ is the
transform of x∗, and x∗ is a local minimizer (maximizer) point of f (x).
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More theoretical results

Assertion

If a variable xi appears everywhere in the expression of a smooth function
f (x) in a term h(x), then the partial derivative ∂f (x)/∂xi can be written
in the form (∂h(x)/∂xi ) p(x), where p(x) is continuously differentiable.

Assertion

If the variables xi and xj appear everywhere in the expression of a smooth
function f (x) in a term h(x), then the partial derivatives ∂f (x)/∂xi and
∂f (x)/∂xj can be factorized in the forms (∂h(x)/∂xi ) p(x) and
(∂h(x)/∂xj ) q(x), respectively, and p(x) = q(x).
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Algorithm

1 compute the gradient of the original function,

2 factorize the partial derivatives,
3 determine the substitutable subexpressions and substitute them:

1 if factorization was successful, then explore the subexpressions that
can be obtained by integration of the factors,

2 if factorization was not possible, then explore the subexpressions that
are linear in the related variables,

4 solve the simplified problem if possible, and give the solution of the
original problem by transformation, and

5 verify the obtained results.

Introduction to Global Optimization Vienna, 2012



Motivation Basic Notion Interval methods Excel Intlab GLOBAL Simplification Exam References

A successful example

The objective function of the Rosenbrock problem is:

f (x) = 100
(

x21 − x2
)2

+ (1− x1)
2 .

We run the simplifier algorithm with the procedure call:

symbsimp([x2, x1], 100 ∗ (x12 − x2)2 + (1− x1)2);

In the first step, the algorithm determines the partial differentials:

dx(1) = −200x21 + 200x2

dx(2) = 400(x21 − x2)x1 − 2 + 2x1

Then the factorized forms of the partial derivatives are computed:

factor(dx(1)) = −200x21 + 200x2,

factor(dx(2)) = 400x31 − 400x1x2 − 2 + 2x1.
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A successful example 2

The list of the subexpressions of f ordered by the complexity in x2 is the
following:

{100(x21 − x2)
2, (x21 − x2)

2, x21 − x2,−x2, x2, (1 − x1)
2, x21 , 100, 2,−1}.

The transformed function at this point of the algorithm is
g = 100y21 + (1− x1)

2.
Now compute again the partial derivatives and its factorization:

factor(dx(1)) = dx(1) = 200y1,

factor(dx(2)) = dx(2) = −2 + 2x1.

The final simplified function, what our automatic simplifier method
produced is

g = 100y21 + y22 .
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Notions on the quality of the results

A: simplifying transformations are possible according to the presented
theory,

B: simplifying transformations are possible with the extension of the
presented theory,

C: some useful transformations could be possible with the extension of
the presented theory, but they not necessarily simplify the problem at
all points (e.g. since they increase the dimensionality),

D: we do not expect any useful transformation.

Our program produced . . .

1: proper substitutions,
2: no substitutions,
3: incorrect substitutions.

The mistake is due to the incomplete . . .

a: algebraic substitution,
b: range calculation.
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Results for the problems in the original article

ID Function f Function g Substitutions Result type

Cos cos(ex1 + x2) +
cos(x2)

cos(y1) + cos(y2) y1 = ex1 + x2, y2 = x2 A1

ParamEst1 [ 1
3

∑3
i=1 |ZL(ωi )−

Z ′

L
(ωi )|

2]1/2
g1 y1 = ω, y2 =

−Raw , y3 = Iaw , y4 =
B, y5 = τ

A2a

ParamEst2 [ 1
3

∑3
i=1 |ZL(ωi )−

Z ′′

L
(ωi )|

2]1/2
.5773502693y

1/2
5 y1 = ω, y2 =

−Raw , y3 = Iaw , y4 =
B, y5

A3ab

ParamEst3 [ 1
3

∑3
i=1 |ZL(ωi )−

Z ′′′

L
(ωi )|

2]1/2
.5773502693y

1/2
5 y1 = ω, y2 =

−Raw , y3 = Iaw , y4 =
B, y5

A3b

Otis (|ZL(s) −
Zm(s)|2)1/2

(| − ZL[1] +
1. y2

y4
|2)1/2

y1 = s, y2 = IC (R1 +
R2)C1C2y

3
1 +(IC (C1 +

C2) + (RC (R1 +R2) +
R1R2)C1C2)y2

1 +
(RC (C1+C2)+R1C1+
R2C2)y1 + 1, y4 =
(R1 + R2)C1C2y

2
1 +

(C1 + C2)y1

B3
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Results for standard global optimization problems

ID Function g Substitutions Result type

Rosenbrock 100y2
2 + (1− y1)

2 y1 = x1, y2 = y2
1 − x2 A1

Shekel-5 memory error none D2

Hartman-3 none none D2

Hartman-6 none none D2

Goldstein-Prize none none D2

RCOS y2
2 + 10(1 − 1/8/π) ∗
cos(y1) + 10

y1 = x1, y2 = 5/πy1 −
1.275000000y2

1 /π
2+x2−

6

A1

Six-Hump-Camel-Back none none D2
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Other often used global optimization test functions

ID Function g Substitutions Result type

Levy-1 none none D2

Levy-2 none none D2

Levy-3 none none D2

Booth none none C2

Beale none none C2

Powell (y1+10y2)2+5(y3+y4)2+
(y2 − 2y3)4 +10(y1 + y4)4

y1 = x1, y2 = x2, y3 =
x3, y4 = −x4

D2

Matyas none none D2

Schwefel (n = 2) none none C2

Schwefel-227 y2
2 + .25y1 y1 = x1, y2 = y2

1+x22−2y1 A1

Schwefel-31 (n = 5) none none D2

Schwefel32 (n = 2) none none D2

Rastrigin (n = 2) none none C2

Ratz-4 none none C2

Easom none none D2

Griewank-5 none none D2
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Questions of an earlier exam test

1 Give such an optimization problem that has a non-separated local
minimizer point, that is not a global minimizer, but still a local
maximizer point! 4 points

2 Show such a two dimensional optimization problem, for which the
size of the region of attraction of the global minimizer point is one
quarter of that of the search domain. 4 points

3 Is it true that there exists such an optimization procedure that uses
only the subroutine calculating the objective function value, and
which is capable to determine the solution of all nonlinear
optimization problems? Argue why. 4 points

4 Which learned global optimization method you would apply for the
solution of such a minimization problem, that has only simple
bounds for the variables, only the subroutines calculating the
objective function and its gradient are available, and the objective
function is smooth? 4 points
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Questions of an earlier exam test 2

5 Describe in detail one of the learned global optimization procedures,
give that problem class, for the solution of which it is well suited,
and provide its advantages and drawbacks! 9 points

6 Determine the inclusion function of f (x) = x sin(2πx) + 2 with
natural interval extension, and calculate its value at the interval
X = [0, 1]! 3 points

7 Calculate the derivative value of f (x) = (x − 1)(x − 2) at the point
3 with automatic differentiation! 3 points

8 Find the simplifying transformation with the technique learned for
the objective function f (x1, x2) = 10(2x1+3x2)2 , and discuss the
result! 3 points

Evaluation: 27 points and above: excellent, 24 points: good, 21 points:
satisfactory, 17 points: fair.
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Dixon, L.C.W., G.P. Szegő (eds.): Towards Global Optimisation.
North-Holland, Amsterdam, 1974.
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