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Abstract. We present a new verified optimization method to find regions for Hénon
systems where the conditions of chaotic behaviour hold. The present paper provides
a methodology to verify chaos for certain mappings and regions. We discuss first
how to check the set theoretical conditions of a respective theorem in a reliable way
by computer programs. Then we introduce optimization problems that provide a
model to locate chaotic regions. We prove the correctness of the underlying checking
algorithms and the optimization model. We have verified an earlier published chaotic
region, and we also give new chaotic places located by the new technique.
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1. Introduction

Computer-assisted proofs for the existence of chaos are important for
the understanding of dynamic properties of the solutions of differential
equations. These techniques have been intensively investigated recently,
see e.g. (Galias and Zgliczynski, 2001; Neumaier et al., 1993; Rage et
al., 1994; Zgliczynski, 1997; Zgliczynski, 2003). A detailed summary
on the set oriented (Lipschitz constant based) numerical methods for
dynamical systems is given in (Dellnitz and Junge, 2002).

We study verified computational methods to check and locate re-
gions the points of which fulfill the conditions of chaotic behaviour.
The investigated Hénon mapping is H(x, y) = (1 + y − Ax2, Bx).
The paper (Zgliczynski, 1997) considered the A = 1.4 and B = 0.3
values and some regions of the two dimensional Euclidean space: E =
E1 ∪ E2 = {(x, y) | x ≥ 0.4, y ≥ 0.28} ∪ {(x, y) | x ≤ 0.64, |y| ≤ 0.01},
O1 = {(x, y) | x < 0.4, y > 0.01}, O2 = {(x, y) | y < 0}.
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Figure 1. Illustration of the H
7 transformation for the classic Hénon parameters

A = 1.4 and B = 0.3 together with the chaotic region of two parallelograms. The
a, b, c, and d sides of the parallelograms are depicted on the upper left picture of
Figure 2.

According to (Zgliczynski, 1997) Theorem 1 below ensures the chaotic
behaviour for the points of the parallelograms Q0 and Q1 with parallel
sides with the x axis (for y0 = 0.01 and y1 = 0.28, respectively), with
the common tangent of 2, and x coordinates of the lower vertices are
xa = 0.460, xb = 0.556; and xc = 0.558, xd = 0.620, respectively.
The mapping and the problem details (such as the transformed sides
of the parallelograms, H7(a), H7(b), H7(c), and H7(d)) are illustrated
on Figure 1.

THEOREM 1. Assume that the following relations hold for the given
particular Hénon mapping:

H7(a ∪ d) ⊂ O2, (1)

H7(b ∪ c) ⊂ O1, (2)

H7(Q0 ∪ Q1) ⊂ R
2 \ E, (3)

then chaotic trajectories belong to the starting points of the regions Q0

and Q1.

The present paper provides a methodology to verify chaos for certain
mappings and regions. We discuss first how to check the set theoret-
ical conditions of the above theorem in a reliable way by computer
programs. Then we introduce optimization problems that provide a
model to locate chaotic regions. We have checked the correctness of
the earlier published chaotic region, the correctness of the underlying
checking algorithms and the optimization model is proven. We also give
new chaotic places located by the new technique. The paper (Bánhelyi
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et al., 2005) provides additional new chaotic regions located by the
present method.

2. New techniques for checking the chaotic behaviour and

for locating regions containing such points

2.1. A new algorithm to check subset relations

The main difficulty of checking conditions (1) to (3) is that one has to
prove these for a continuum of points. In (Zgliczynski, 1997) the author
calculated the Lipschitz constant, gave an upper bound for the rounding
error committed and thus reduced the whole task to investigating a
finite number of points of a dense enough grid. This method works
basically only with human interaction. To search chaotic regions an au-
tomated checking routine is more appropriate. The technique to be in-
troduced combines interval arithmetic and adaptive branch-and-bound
subdivision of the region of interest.

The applied algorithm first encloses the sets Q0 and Q1 in a 2-
dimensional closed interval I, the starting interval. Then to prove sub-
set relations an adaptive branch-and-bound technique generates such
a subdivision of the starting interval that either:

− for all subintervals the given conditions of chaos hold — in case
they contain points of the respective sets, or

− it is shown that a small subinterval (of a user set size) exists that
contains at least one point of the respective set, and it contradicts
at least one of the relations.

Now the sets O1, O2, and R2 \ E in the conditions (1) to (3) are
all open sets, and the union of a finite number of closed sets is closed
as well. It is why the algorithm should check whether the transformed
subintervals are subsets of the respective sets. For the following we
assume that the conditions of chaos are expressed in a similar form, i.e.
the transformed sets must be subsets of certain open sets.

To realize this algorithm we have applied a modified version of an
earlier procedure to solve constrained nonlinear optimization problems
with tolerance (Csendes et al., 1995; Kristinsdottir et al., 1993; Kristins-
dottir et al., 1996).

The present Algorithm 1 is capable to recognize that a region sat-
isfies the conditions of chaos in the sense given in Theorem 2. Denote
the respective mapping by T , the argument interval to be checked by
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Algorithm 1 : The Checking Routine

Inputs: – ε: the user set limit size of subintervals,

– Q: the argument set to be proved,

– O: the aimed set for which T (Q) ⊂ O is to be checked.

1. Calculate the initial interval I, that contains the regions of interest
2. Push the initial interval into the stack
3. while the stack is nonempty
4. Pop an interval v out of the stack
5. Calculate the width of v
6. Determine the widest coordinate direction
7. Calculate the transformed interval w = T (v)
8. if v ∩ Q 6= ∅, and the condition w ⊂ O does not hold, then

9. if the width of interval v is less than ε then

10. print that the condition is hurt by v and stop

11. else bisect v along the widest side: v = v1 ∪ v2

12. push the subintervals into the stack
13. endif

14. endif

15. end while

16. print that the condition is proven and stop

Q, and the set in which the transformed set must be contained by O:
T (Q) ⊂ O.

The original mapping, T can be applied directly only to points.
To build an adaptive subdivision algorithm we need a representation
that enables us to describe a transformed set (in contrast to point to
point mappings). The new technique uses an interval arithmetic based
inclusion function (Ratschek and Rokne, 1988) for this purpose.

A mapping F : I
n → I

m is an inclusion mapping of the mapping
f : R

n → R
m if for ∀Y ∈ I

n and ∀y ∈ Y f(y) ∈ F (Y ), where I stands
for the set of all closed real intervals.

The lower and upper bounds of an interval Y ∈ I
n are denoted by

Y and Y , respectively. The width of an interval is w(Y ) = Y − Y if
Y ∈ I, and w(Y ) = maxi(Yi−Yi) if Y ∈ I

n is an n-dimensional interval
vector (also called a box). I(X) stands for all intervals in X. F is said
to be an isotone inclusion mapping over X if for ∀Y, Z ∈ I(X), Y ⊆ Z
implies F (Y ) ⊆ F (Z).
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We say that the inclusion mapping F has the zero convergence prop-
erty, if w(F (Zi)) → 0 holds for all the {Zi} interval sequences for which
Zi ⊆ X for all i = 1, 2, . . . and w(Zi) → 0.

One can easily compose an inclusion mapping by substituting the
real operations and standard functions by their interval analogues. This
procedure is called natural interval extension. The inclusion mapping
provided by natural interval extension is an isotone inclusion mapping
that has the zero convergence property (Ratschek and Rokne, 1988).
We assume for the following that either the expression of the mapping is
known, or a computer program is given that calculates it. To enclose the
rounding errors, and to provide verified numerical results it suffices then
to use the so called outside rounding that gives computer representable
result intervals containing all the points of the real operations.

In rare cases it may happen that one of the transformed subin-
tervals fits to the border of the aimed open set, as e.g. the interval
T (I) = [0.0, 0.4] × [0.01, 0.02] fits O1. A careful implementation with
the compulsory outside rounding is needed for the distance of points
or sets that enables to recognize that T (I) has a zero measure set of
points that do not meet the condition T (I) ⊂ O1.

THEOREM 2. Assume that the underlying mapping T is given by an
inclusion mapping T and the algorithm returns that the checked condi-
tion T (Q) ⊂ O is fulfilled. Then Algorithm 1 generates a subdivision
of the initial interval I around the search region in such a way that for
all subintervals either

i, the subinterval does not contain a point of the argument region
Q, or

ii, the transformed subinterval is a subset of the respective set of
the condition O.

Proof. In case the algorithm returned that the checked condition was
fulfilled, it must have stopped in Step 16. It means that the starting
interval I has possibly been subdivided into subintervals that covered
I, nevertheless for none of these subintervals was the condition hurt
(since the algorithm has not terminated in Step 10).

On the other hand Step 16 can only be reached if all the subinter-
vals generated during the execution of Algorithm 1 were either further
subdivided in Step 11, or skipped from further subdivision since the
condition in Step 8 was not fulfilled.

Now since Step 16 was reached, the starting interval I was fully
covered by subintervals {Ik}

n
k=1 that fit the above mentioned cases i,
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and ii. The inclusion property of mapping implies that then the original
condition

T (Q) ⊂ ∪m
l=1T (Il) ⊂ O

holds, where ∪m
l=1T (Il) is the union of those transformed subintervals

that no Ij ∈ {(Il)}
m
l=1 is disjunct of Q. In this sense Algorithm 1 is

correct. 2

After proving the correctness the following theorem discusses which
property of the inclusion mapping is required to ensure that Algorithm
1 can recognize that a condition of chaotic behaviour is fulfilled.

THEOREM 3. Assume that the underlying mapping T is given by an
inclusion function T that has the zero convergence property, ε = 0, and
T (Q) ⊂ O holds. Then Algorithm 1 concludes after a finite number of
iteration steps that the condition of chaotic behaviour is fulfilled.

Proof. Assume that the statement of the theorem is false. Then there
exist an infinite number of subintervals generated by the algorithm.
Select an arbitrary infinite subsequence {(Ii)}

∞
i=1 of these subintervals

that converges to a point: lim∞
i=1(Ii) = x. It is obviously possible by

compactness. Two cases must be distinguished.

1. Consider first the case when the sequence of subintervals converges to
such a point x, that x ∈ Q holds. Due to the zero convergence property
of the inclusion mapping lim∞

i=1 w(T (Ii)) = 0, i.e. lim∞
i=1 T (Ii) = T (x).

We have assumed that T (Q) ⊂ O holds, hence T (x) ∈ O. This fact
and that O is an open set, imply that T (Ii) ⊂ O holds for all i indices
that are larger than a certain threshold index K. For the latter subin-
tervals, however, Algorithm 1 does not make further subdivision, and
it contradicts that the subinterval sequence is infinite as assumed.

2. Now when lim∞
i=1 Ii = x /∈ Q, then, again we find that in Step 8

of Algorithm 1 the condition of further subdivision cannot be fulfilled,
since after a certain iteration index L for all subintervals Ii (Ii 6⊂ Q)
holds. This fact however implies that the condition of subdivision can-
not be satisfied for i > L. In other words, Algorithm 1 cannot generate
an infinite subinterval sequence that converges to a point outside Q.

Now since ε = 0, thus Algorithm 1 cannot terminate in Step 10,
only in Step 16. This concludes the proof. 2

Consider now the case when the algorithm has to prove that the
studied region does not meet the criteria of chaos.
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THEOREM 4. Assume that the underlying mapping T is given by an
inclusion function T , ε = 0, and there exist a point x ∈ Q such that
T (x) /∈ O. Then Algorithm 1 cannot conclude after a finite number of
iteration steps whether the condition of chaotic behaviour is fulfilled.

Proof. Consider the subintervals generated by Algorithm 1 that contain
the point x for which T (x) /∈ O holds. For such an I subinterval T (I)
must contain T (x), and in this way T (I) cannot be a subset of O.

It is why at least one subinterval containing x always remains in the
stack, they cannot be skipped in Step 14 (as they do fit to the then

branch of Step 8). On the other hand these subintervals can neither
be deleted in Step 10, since the widths of generated subintervals are
positive. 2

In other words, the main conclusion of Theorem 4 is that although
Algorithm 1 can prove the chaotic behaviour of a mapping in a finite
number of iteration steps, to prove that the respective conditions do
not hold the algorithm is less suitable. When ε is set to zero, then the
algorithm will not terminate. When we set ε to a positive value the
user will obtain a result interval of width just below ε, for which the
conditions of chaos could not be proven (although they may hold).

The checking routine has also been successfully used for a different
chaos related problem (Csendes et al., 2005).

2.2. A global optimization model for locating chaotic

regions

Once we have a reliable computer procedure to check the conditions
of chaotic behavior of a mapping it is straightforward to set up an
optimization model that transforms the original chaos location problem
to a global optimization problem.

The chaotic regions have several parameters that identify them. In
the early phase of our investigation we have restricted the search to lo-
cate two parallelograms similar to that used in the article (Zgliczynski,
1997): we have allowed to change the vertical and horizontal positions
and also the common tangent, but the parallelograms always had two
sides parallel to the x axis. It is also possible to find fitting parame-
ter values for the Hénon mapping, i.e. for the mapping parameters A
and B, and furthermore also for parameters of the aimed sets of the
underlying theorem, e.g. the border coordinates of the set E.

The search for a chaotic region was modelled as a constrained global
optimization problem, subsequently the constraints were represented
by a penalty function approach. The original objective function was
constant, still the possibility exists to extend it to a more complex
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form that expresses further aims, e.g. to locate a second chaotic region,
different from the known one.

The key question for the successful application of a global optimiza-
tion algorithm is how to compose the penalty functions. On the basis of
earlier experiences collected solving similar constrained problems, we
have decided to add a nonnegative value proportional to how much the
given condition was hurt, plus a fixed penalty term in case at least one
of the constraints was not satisfied.

As an example, consider the case when one of the conditions for the
transformed region was hurt, e.g. when (2), i.e. the relation

Hk(b ∪ c) ⊂ O1

does not hold for a given kth iterate, and for a region of two parallelo-
grams. For such a case the checking routine will provide a subinterval
I that contains at least one point of the investigated region, and which
contradicts the given condition. Then we have calculated the Hausdorff
distance of the transformed subinterval Hk(I) to the set O1 of the right
side of the condition,

max
z∈Hk(I)

inf
y∈O1

d(z, y),

where d(z, y) is a given metric, a distance between two two-dimensional
points. Notice that the use of maximum in the expression is crucial, with
minimization instead our optimization approach could provide (and
has provided) result regions that do not fulfill the given conditions of
chaotic behaviour. On the other hand, the minimal distance according
to points of the aimed set (this time O1) is satisfactory, since it en-
ables the technique to push the search into proper directions. In cases
when the checking routine answered that the investigated subinterval
has fulfilled the given condition, we have not changed the objective
function.

Summing it up, we have considered the following bound constrained
problem for the T inclusion function of the mapping T :

min
x∈X

g(x), (4)

where

g(x) = f(x) + p

(

m
∑

i=1

max
z∈T (I)

inf
y∈Si

d(z, y)

)

,

X is the n-dimensional interval of admissible values for the parameters
x to be optimized, f(x) is the original, nonnegative objective function,
and p(y) = y + C if y is positive, and p(y) = 0 otherwise. C is a
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positive constant, larger than f(x) for all the feasible x points, m is
the number of conditions to be fulfilled, and Si is the aimed set for the
i-th condition.

In this discussion I is the subinterval returned by the checking rou-
tine in Step 10 (or the empty set). The interval I depends implicitly
on the parameter x to be optimized. At this point we do not have any
assumption on the order of the subintervals handled by the checking
routine. It may be advantageous to set the priority of the stack in
such a way that we obtain that infeasible subinterval that has the
largest distance to the aimed set. The function f(x) can be used to find
parameters implying certain properties. In our present numerical study
we have set f(x) = 0, i.e. we simply aimed to prove subset relations
according to Theorem 1. Notice also that when f(x) is constant then the
problem (4) is basically a constraint satisfaction problem (Neumaier,
2004).

For more complicated cases the fixed sets given in Theorem 1 should
also be changed subject to certain structural constraints, e.g. the xa,
xb, xc, and xd coordinates of the parallelograms have to follow this
order. These new conditions can also be represented in a similar way,
following the penalty function approach of (4).

We have followed a stepwise approach, i.e. first we have formulated
a simple, low-dimensional optimization problem, and we have increased
the number of parameters to be optimized only if the earlier try was
not successful.

The most important properties of the bound constrained global op-
timization problems related to chaos verification are summarized in the
following statement.

THEOREM 5. For the bound constrained global optimization problem
defined in (4) the following properties hold:

1. In case a global optimization algorithm finds a point for which the
objective function g has a value below C, i.e. when each penalty term
maxz∈T (I) infy∈Si

d(z, y) is zero, then all the conditions of chaos are
fulfilled by the found region represented by the corresponding optimal
parameters x found. At the same time, the checking routine provides
a guaranteed reliability computational proof of the respective subset
relations.

2. In case the given problem does not have a parameter set within
the bounds of the parameters to be optimized such that the correspond-
ing region would fulfill the criteria of chaos, then the optimization of
g(x) cannot result in an approximate optimizer point with an objective
function value below C.
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Proof. Consider first the case when a parameter set has been found
for which g(x) < C for the problem of the form (4). Then, due to the
definition of g we have

p

(

m
∑

i=1

max
z∈T (I)

inf
y∈Si

d(z, y)

)

= 0,

that is
max

z∈T (I)
inf
y∈Si

d(z, y) = 0 (5)

holds for each i = 1, . . . , m. Now (5) can hold only when I = ∅, since the
checking routine returns a subinterval I only when T (I) has not been
contained in the respective set of the checked condition. In addition
to that, the checking routine applies a safe, interval arithmetic based
adaptive subdivision scheme, and no returned subinterval means that
a computational proof has been completed that the checked region
was covered by such subintervals that all fit into the aimed set of the
condition (after the respective transformation). This proves the first
part of Theorem 5.

Assume now that we have a mapping for which our conditions of
chaos are not satisfied. In other words it means that for all possible
regions there exists a subinterval I that contains at least one point
of the investigated region q, and the transformed set of which has a
point outside the set O in the right hand side of a condition. Now
the checking routine cannot accept the given region, since then all
points of the transformed I interval should have been feasible. Then the
subinterval returned by the checking routine must have a point with a
positive distance to all points of the aimed set of the condition, i.e. the
argument of the penalty function p cannot be zero. Hence g(x) > C,
and that was to be proved. Notice that here this is true even for the
inclusion X of the parameter vector x . 2

The cases not covered by the two statements of Theorem 5 are those
when the checking was inconclusive, e.g. since the excess width of the
interval inclusion functions did not allow to cover the examined region
with out of question intervals (I ∩ Q = ∅), and with fully feasible
subintervals of size larger than the user set threshold value. Although
more precise results can be achieved at the cost of higher computational
complexity and memory requirements, due to the high degree of non-
linearity involved, one cannot expect that all problems can be solved in
reasonable time. On the other hand, substantial problem understanding
can be utilized by the proper setting of the parameter bounds — as it
is also demonstrated by our computational results summarized in the
next section.
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3. Numerical results

For the computational experiments we have applied the C-XSC pro-
gramming language (CXSC, 2005; Klatte et al., 1993) supporting in-
terval arithmetic. The results were obtained both in Linux and in the
Cygwin environment, on an average personal computer. In the present
paper we just provide some demonstrative examples for the functioning
of the suggested and introduced technique. First we have checked the
reported chaotic region (Zgliczynski, 1997) by our checking routine
(Algorithm 1).

3.1. Proving the chaotic behaviour for the 7th iterate

Hénon mapping

We have investigated the seventh iterate of the Hénon mapping with the
parameters of A = 1.4 and B = 0.3. The checked region consists of two
parallelograms with sides parallel to the x-axis, the first coordinates of
the lower corner points were 0.460, 0.556, 0.588, and 0.620, while the
second coordinates were the same, 0.01. The common y coordinate for
the upper corner points was 0.28, and the tangent of the sides was 2.
We have set the ε threshold value for the checking routine to be 10−10.

First the algorithm determined the starting interval, that contains
the region to be checked:

[0.46000000000, 0.75500000000] × [0.01000000000, 0.28000000000].

Then the three conditions were checked one after the other. All
of these proved to be valid — as expected. The amount of function
evaluations (for the transformation, i.e. for the seventh iterate of the
Hénon mapping in each case) were 273, 523, and 1613, respectively.
The algorithm stores those subintervals for which it was impossible to
prove directly whether the given condition holds, these required further
subdivision to achieve a conclusion. The depth of the stack necessary
for the checking was 11, 13, and 14, respectively. The CPU time used
proved to be negligible, only a few seconds.

The obtained results are demonstrated also on Figure 2 (together
with the parallelograms). The density of the subintervals indicates
that in the related subregion the given condition was just fulfilled,
the overestimation involved in the interval calculations required much
refinement.

Summarizing the results, we were able to prove with an acceptable
amount of computation and human overhead that the published sys-
tem is chaotic in the given, known regions. This confirms the result of
Zgliczynski.
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a b c d

Q1Q0

Figure 2. The parallelograms and the starting interval covered by the verified subin-
tervals for which the given condition holds (in the order of mentioning in Theorem
1).

As a second step, randomly chosen A and B values were checked close
to the classical parameters. The following ones ensured chaos for the H7

Hénon system with unchanged other region and algorithm parameters:

A B

1.3555400848181643, 0.32668379383472889

1.3465721096594685, 0.32450555140362324

1.4403201855906845, 0.22585009468060412

1.4136297518450903, 0.26880306437090162

1.3702743902664050, 0.30756016043366862

Notice that without our automatic checking of the conditions for
chaos it could have been very difficult when not even impossible to
arrive at the above results, since the human interaction and insight
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necessary plus the required overhead could be prohibitive.

As a third way of applying the checking routine, we have determined
parameter intervals around A = 1.4 and B = 0.3 for which mapping
H7 still has chaos on the same pair of parallelograms. The obtained
intervals were A ∈ [1.377599, 1.401300] and B ∈ [0.277700, 0.310301].
Notice that these intervals do not contain all the A, B pairs given on
the previous page.

The technique with which this result was obtained is an earlier
interval optimization procedure able to solve tolerance optimization
problems (Csendes et al., 1995; Kristinsdottir et al., 1993; Kristins-
dottir et al., 1996). The key feature necessary for this algorithm is
that the checking routine can accept interval valued parameters for the
calculated mapping.

3.2. Locating chaotic regions for the 5th Hénon iterate

The most interesting question is obviously whether the interval arith-
metic based reliable checking routine together with the penalty function
approach applies to finding chaotic regions for different mappings. Since
the lower the iterate, the more difficult to find a chaotic region, we have
studied the fifth Hénon iterate. (The reason why the sixth iterate was
disregarded is that, assuming B > 0, even iterates of the Hénon map-
ping preserve whereas odd iterates change the orientation. In particular,
the geometry of H6 on the plane differs considerably from those of H5

and of H7.)
First we have repeated the run of the checking routine for H5 with

the same parameter setting and region that was successful for H7. The
result for the H5 case was that the conditions (1) and (2) were fulfilled,
and the necessary number of function evaluations and the depths of
the stack were 261 and 12 for (1), and 137 and 8 for (2), respectively.
However, for the condition (3) we have obtained the small interval, the
upper right corner of the starting interval

[0.46000000000, 0.75500000000] × [0.01000000000, 0.28000000000] :

[0.75499999993131505782, 0.75500000000000000445]

[0.27999999993713575729, 0.28000000000000002665]

not complying with condition (3) after having spent 64 function evalu-
ations and at the stack level of 65. The latter figure means that it was
a depth first like search.

In other words we could find such a very small interval that has
points inside the examined region, and which does not fulfill the third

henon.tex; 2/08/2005; 9:47; p.13



14 Tibor Csendes, Barnabás M. Garay, and Balázs Bánhelyi

condition. Notice that the result small interval has coordinates the
digits of which indicate the limitation of machine representation (here
double precision). The width of the contradicting interval is less than
7.0 · 10−11.

This phenomenon remained also when we have decreased the set
stopping parameter ε from the default value of 10−10. Neither were
we able to find a chaotic region by changing those coordinates of the
candidate region that caused seemingly the contradiction. Actually it
was the experience that moved us to pose the chaotic region location
problem as a constrained global optimization problem, since the latter
seemed to be an easy, straightforward way to handle the highly non-
linear behaviour of the mapping together with the large dimensional
parameter space of the region coordinates.

Turning to the location of a chaotic region for the 5th iterate Hénon
mapping, we have used the constrained optimization model discussed
in detail in Subsection 2.2. To solve the related bound constrained
global optimization problem (involving the penalty functions), we have
applied GLOBAL, a clustering stochastic global optimization algorithm
(Csendes, 1988). It is capable to find the global optimizer points of
moderate dimensional global optimization problems, when the relative
size of the region of attraction of the global minimizer points is not
very small. This global optimization method was successfully applied
recently in the solution of difficult circle packing problems (Markót and
Csendes, 2005).

The optimization model allowed to change the following parameters
of the problem: first of all, the parameters of the mapping: A and B,
then the coordinates of the parallelograms: xa, xb, xc, xd; the tangent of
the lower left angle in the parallelograms; and finally also the descrip-
tion parameters of the sets of the conditions (1) – (3). In some cases we
have decreased the number of parameters to be optimized, when there
seemed to be a reasonable chance to obtain a positive result.

The location of a chaotic region for the 5th iterate Hénon mapping
could not be accomplished by a single run of the global optimization
algorithm. The typical runs of this experimental kind of work for 6
– 10 parameters required 104 – 105 function evaluations, and seconds
to minutes of CPU time. For more difficult problems the number of
function evaluations spent in the global phase (to find good starting
points for the local phase) were closely equal to the needs of the local
searches. For easier problems the cost of the global phase was larger.
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Figure 3. Illustration of the found chaotic H
5 transformation.

Finally a found parameter set ensuring chaos for the H5 system:

A = 1.7414857

B = 0.38127953

xa = 0.40090670

xb = 0.50113505

xc = 0.51875196

xd = 0.63916903

while all other parameters were set as in the original problem (e.g.
the common tangent was again 2). More solved chaotic region location
problems are reported with technical details in (Bánhelyi et al., 2005).

4. Summary

We have introduced a reliable, interval arithmetic based checking al-
gorithm for proving subset relations, and furthermore a constrained
global optimization model for the location of regions that have chaotic
properties for some particular Hénon mappings. We have proven that
the algorithm and the model are correct and capable to find chaotic
regions. We have checked chaos for an earlier investigated 7th iter-
ate Hénon mapping. A tolerance optimization algorithm provided a
positive width interval for those mapping parameters that ensure the
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conditions of chaos with the same region. We presented chaotic regions
obtained by the proposed optimization technique for the more difficult
fifth iterate of the Hénon mapping. One of the main advantage of the
presented approach is that without much understanding of the struc-
ture of the underlying mapping and with a modest overhead, one can
locate chaotic regions of dynamic systems. The tolerance optimization
method provided large sets of the parameters that allow chaos around
known chaotic regions.
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