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Abstract The multistart clustering global optimization method called
GLOBAL has been introduced in the 1980s for bound constrained global
optimization problems with black-box type objective function. Since then
the technological environment has been changed much. The present paper
describes shortly the revisions and updates made on the involved algorithms
to utilize the novel technologies, and to improve its reliability. We discuss
in detail the results of the numerical comparison with the old version and
with C-GRASP, a continuous version of the GRASP method. According to
these findings, the new version of GLOBAL is both more reliable and more
efficient than the old one, and it compares favorably with C-GRASP too.

Key words Global optimization, direct methods, clustering, numerical
tests.

1 Introduction

Global optimization has a wide range of applications. It is used more and
more both in science and for the solution of real life problems. This phe-
nomenon is related to the stronger and stronger computational capacities
and to the complex, highly nonlinear nature of the investigated models.
For the first set of problems let us mention as examples some of our recent
publications in which global optimization was used to cope with hard math-
ematical problems arising in the field of qualitative analysis of dynamical
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systems [4,5,8,9] and discrete geometry, for optimal packing of circles in
the square [16,23]. The method to be discussed in the present paper has
also been applied for theoretical chemical problems [1], for the evaluation of
bounding methods [25], and for optimization in abstract spaces, on Stiefel
manifolds [2].

The real life or industrial applications are again too many to be covered
here. We just mention some from the fields of bioprocess analysis [3], climate
control [17], and integrated process design for wastewater treatment plants
[18].

The global optimization problem for the solution of which we analyze a
stochastic algorithm is

min f(x) (1)

reX, X={a; <wx;<b;, i1=1,2,...,n},

where f : R™ — R is a real valued function, X is the set of feasibility,
an n-dimensional interval with vectors of lower and upper bounds of a and
b, respectively. In general we assume that the objective function is twice
continuously differentiable, although it is not necessary for the global op-
timization framework procedure, and with a proper local search algorithm
also nondifferentiable problems can be solved.

On the other hand one of the local search algorithms applies numerical
derivatives calculated inside of it, so the user must not include subroutines
for the calculation of derivatives, only that for the objective function itself.
In this sense GLOBAL is a direct search method. According to our experi-
ence, it is a quite important feature, that allows a wide range of applications.
With advanced quasi-Newton type local search methods a similar good con-
vergence speed can be achieved as with local search methods applying first
and second order derivatives. Since our algorithm uses only objective func-
tion evaluations on places determined by the algorithm, the black-box type
objective function can also be defined by only a procedure, without having
an explicit expression for it. On the other hand — if necessary — sophisticated
automatic differentiation tools enable us to calculate the necessary deriva-
tives without much human interaction (for a successful application see e.g.
[24]).

We also have a random walk type robust local search method built in:
UNIRANDI [15] that can be used when the problem structure does not
allow us to utilize the locally quadratic behavior as it is the case for the
quasi-Newton technique.

Although the bound constrained problem definition (1) does not al-
low explicit nonlinear constraints, the use of penalty functions enables our
method to cope also with constrained problems. According to our expe-
riences, this approach can be successful in most of the cases encountered
(see e.g. the difficult one addressed in [9]). Still we are also working on the
extension of the algorithm to constrained problems [22].
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Algorithm 1 A concise description of the GLOBAL algorithm

Step 1: Draw N points with uniform distribution in X, and add them to the
current cumulative sample C'. Construct the transformed sample 7" by taking
the v percent of the points in C' with the lowest function value.

Step 2: Apply the clustering procedure to T' one by one. If all points of T' can be
assigned to an existing cluster, go to Step 4

Step 3: Apply the local search procedure to the points in T not yet clustered.
Repeat Step 3 until every point has been assigned to a cluster.

Step 4: If a new local minimizer has been found, go to Step 1.

Step 5: Determine the smallest local minimum value found, and stop.

2 The algorithm and the improvements made

The algorithm to be studied originates from the paper of Boender et al.
[6]. The method was later investigated theoretically in [20,21]. It is a mul-
tistart type stochastic method that collects iteratively information about
the regions of attractions [14] of the best local minimizer points. The main
algorithm steps are summarized in Algorithm 1.

The most important changes made on the original algorithm are:

— the single linkage clustering was selected after a respective testing,

— the clustering distance is not based on the Hessian (thus the latter should
not be computed),

— the gradient criterion for forming clusters has been found to be less
effective and thus left out,

— no steepest descent step is used to transform the original sample, and
finally

— the less informative confidence intervals are not calculated for the global
minimum value,

— a scaling of the original problem is applied to ensure better numerical
stability.

The interested reader can consult beyond the original articles also the
earlier description of GLOBAL in [7], where the numerical performance of
that algorithm variant was discussed as well. Among other computational
tests made on global optimization software, [19] evaluated GLOBAL as a
favorable one for black-box type problems.

The program is freely available for academic and nonprofit purposes at
www.inf .u-szeged.hu/~csendes/regist.php (after registration and lim-
ited for low to moderate dimensional problems). After further testing and
refinement, the present, Matlab based version will also be available there
soon.

The most important changes made on GLOBAL are:

— it is now coded in Matlab, utilizing the vectorization for better efficiency,
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— we use the Broyden-Fletcher-Goldfarb-Shanno (BFGS) local search al-
gorithm instead of the earlier Davidon-Fletcher-Powell (DFP) method
[11],

— better uniform and normal distribution random number generators are
applied,

— some improvements were made in the uniform distribution direction se-
lection procedure of the UNTRANDI local search method. The new code
provide better statistical characteristic while it needs less computation.
The present implementation of UNIRANDI works now without dimen-
sion related problems.

We have utilized the advantages of Matlab to obtain an efficient code.
The vectorization of Matlab, a special syntax, makes it easy to obtain such a
machine code that can feed the pipeline of the CPU in such a way that long
vector calculations can achieve a closely full use of the pipeline processors.
This is otherwise hard to be achieved by high level algorithmic languages.
The last mentioned improvement in the list above had enhanced the effi-
ciency of GLOBAL substantially in terms of CPU time used. Now we have
the capability to solve larger problems than before with similar reliability.

3 Numerical test results

Our numerical experiments were made on a PC with 3.0 GHz P4 processor
and 1 Gb memory. We used the standard time unit (1 000 evaluations of the
Shekel-5 function at 27 = (4.0, 4.0,4.0,4.0)T) to measure the computation
time comparably. GLOBAL has three parameters to set: the number of
sample points (abbreviated in the legends of the tables as sample size, values
between 20 and 100, 000), the number of best points selected (between 1 and
20), and the stopping criterion parameter for the local search (precision,
between 4 and 8 digits).

We have completed two numerical tests: the first aimed to show the
efficiency and reliability changes compared to the old version, based on the
published results in [7], and one to compare the new method to C-GRASP,
a greedy adaptive search technique [10] modified to solve continuous global
optimization problems published recently [12].

3.1 Comparison with the old GLOBAL version

We used the standard test functions applied for the old version. For each
problem we made 100 independent runs (earlier it was just 10), and we
recorded the average number of function evaluations and the average CPU
time necessary, measured in the standard time unit. The parameters of the
procedures were set so that the algorithm was able to find the global opti-
mum each time. In this sense the present algorithm was set to achieve about
one order of magnitude better reliability. Here we understand reliability as
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Table 1 The number of function evaluations for the old and new versions of
GLOBAL with the quasi-Newton local search routines on the standard test prob-
lems.

Problem l old | new

dim. [ aver. [ aver. min. max. median st. dev.
Shekel-5 4 990 | 1 090 540 2235 1067.5 352.52
Shekel-7 411767 | 1718 895 3160 1 655.0 449.16
Shekel-10 41239 | 2378 1145 4630 2317.5 697.19
Hartman 3 216 196 86 385 171.5 61.55
Hartman 6 | 1446 703 132 1647 702.5 263.32
Goldstein-Price 2 436 277 130 569 270.5 88.59
Branin 2 330 77 61 115 73.0 11.84
SHCB 2 233 107 58 224 103.5 35.67
Rosenbrock 2 410 125 52 334 109.0 62.27

Table 2 The number of function evaluations for the old and new versions of
GLOBAL with UNIRANDI as a local search method on the standard test prob-
lems.

Problem l old | new

dim. [ aver. [ aver. min. max. median st. dev.
Shekel-5 4 | 1083 | 1450 751 2718 1374.0 413.88
Shekel-7 411974 | 2527 1254 4834 2530.0 695.24
Shekel-10 412689 | 3429 1636 5795 3277.5 881.97
Hartman 3 697 | 1449 363 3933 1330.0 671.15
Hartman 6 | 2610 | 2614 274 9004 21325 1676.16
Goldstein-Price 2 386 446 126 1118 413.0 211.94
Branin 2 464 172 92 353 149.0 64.46
SHCB 2 267 176 95 328 175.0 66.85
Rosenbrock 211524 | 1081 277 2687 902.0 516.38

the ability of an algorithm to find a global minimizer point a given number
of times out of a preset number of independent runs. While in the case of the
old GLOBAL only 10 successful runs were required out of 10 independent
runs, now we tuned our algorithm to meet this criterion for 100 successful
runs out of 100, which means the new one is certainly much more reliable.
The good algorithm parameter values found (given in the tables) are telling
also on how the procedure can achieve reliability. The criterion to accept an
approximate solution as a successful estimate of the global minimizer was
the same as in [7]: if the relative distance between them was less than the
threshold value 1072,

Table 1 provides the average number of function evaluations for the old
and the new versions using the quasi-Newton type local search routines on
the standard test problems. In case of the new implementation also the min-
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Table 3 The average CPU times measured in standard time units for the old
and new versions of GLOBAL with the quasi-Newton and UNIRANDI local search
methods on the standard test problems. The algorithm parameters are the sample
size, the number of selected points, and the precision required from the local
search, respectively.

Problem l quasi-Newton ‘ UNIRANDI

‘ old | new ‘ old | new
‘ av. ‘ av. | parameters ‘ av. ‘ av. | parameters
Shekel-5 3.0 5.14 | 100 10 6 3.5 | 387 | 100 12 6
Shekel-7 4.9 7.89 | 200 15 6 6.0 | 6.64 | 300 15 6
Shekel-10 7.0 | 1046 | 250 15 6 88 1 9.14 | 400 15 6
Hartman-3 1.2 1.19 15 2 7 1.9 | 3.86 15 3 7
Hartman-6 4.2 3.39 10 3 6] 14.2 | 7.68 20 3 6
Goldstein-Price | 1.3 1.32 50 4 6 1.5 | 0.81 30 4 7
Branin 1.4 0.40 20 1 6 1.6 | 0.31 20 1 6
SHCB 1.2 0.61 20 2 6 1.3 | 0.33 20 2 6
Rosenbrock 1.0 0.83 2 1 7 1.5 | 1.93 2 1 7

imal, the maximal number of function evaluations are given together with
the median and the standard deviation. According to the results, for most
of the test functions the new algorithm was substantially better than the old
one. It is so mostly just due to the more sophisticated local search technique
used (BFGS instead of an old implementation of DFP). The reason for it
can be seen on Table 2: with basically the same local search procedure, the
improvement in the average number of function evaluations appeared for
only slightly less than half of the test functions. Yet even the figures for the
new method with UNIRANDI are nice since the reliability improved much.

The algorithm parameters (shown in Table 3) cannot be compared in
detail, since they were not collected and reported for the old method, still
they are close to each other (as far as it can be judged). The fitting pa-
rameter setting is straightforward for the sample size and the number of
selected points: the larger the sample size the more reliable the algorithm.
The smaller the selected / sample size ratio, the smaller local minima we can
find (i.e. the larger local minima will not be identified — the more efficient
the search). It was one of the important findings of the papers by Boender
et al. [6,20,21] that good reliability can be achieved efficiently while not
locating all the local minimizer points. The finding of a local minimizer
point with much worse function value than the global optimum does not
contribute much for the identification of a global minimizer. This is what
makes it possible to save computational efforts while keeping reliability in
the determination of global minimizer points.

The set precision of the local search method has a different role: in
general it should be close to the required relative precision of the estimated
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global minimum value. However, according to our experience, for both local
search methods it is worth to set the precision value higher to avoid cases
when a local minimum is not recognized since the results of local searches
could not be identified as the same — although the same region of attraction
was found. This phenomenon is reflected in Table 3 in the larger precision
values for those test problems for which the objective function values do
not change much close to the global minimizer point.

The average CPU times (measured in standard time units) necessary for
the solution of the test problems are comprised in Table 3. The figures follow
more or less the differences seen for the number of function evaluations in
the previous tables. The differences to the anticipated ratios are due to
overhead of startup and output in part independent of the problems, the
different programming environments, hardware and even because of the way
the standard time units were measured (now actually the time for the 106
evaluation of the Shekel-5 function was divided by 1000).

The conclusion of the first set of tests completed is that on standard
test problems the new implementation is at least as good or even better in
terms of efficiency as the old one was, while the reliability of the solution has
been increased substantially. Due to the better quasi-Newton local search
method, the new version is much better for smooth problems even in terms
of the necessary number of objective function evaluations.

3.2 Comparison with the C-GRASP method

As it was already mentioned, the C-GRASP method extends the greedy
randomized adaptive search procedure of Feo and Resende [10] from the
domain of discrete optimization to that of continuous global optimization
[12]. It does not make use of derivative information, thus it is a direct
search method. Regarding its control structure, it is a multistart local search
technique too, such as GLOBAL. Since its local search part does not utilize
the possible smoothness of the objective function, it is fair only to compare
it to GLOBAL with UNIRANDI.

The two computers used for the testing were of similar performance, but
our one was slightly slower and had much less memory (however the latter
fact has not affected the comparison results). In this way the direct CPU
times can only be used to compare with some care.

We applied our new implementation of GLOBAL to the same set of 14
global optimization test problems on which C-GRASP was run. The global
minimum value f* was known for all problems in the test set. Both methods
were run until the objective function value f was significantly close to global
optimum (i.e. till |f* — f| < 107%|f*| + 1076 became true). GLOBAL could
also be stopped when no new local minimizer point was found in the last
iteration cycle. The use of the known optimum value within an optimization
algorithm is not typical, still it is realistic in several cases, as explained in
[12], but also according to our experiments e.g. with circle packing problems
[16,23]. It is by no way necessary for GLOBAL.



8 Tibor Csendes et al.

Table 4 The number of function evaluations for C-GRASP and GLOBAL with
the UNIRANDI local search routine. The algorithm parameters were for all test
problems the same: the number of sample points was 400, the number of selected
points was 15, and the required number of precise digits for the local search was
8.

Problem | C-GRASP| GLOBAL with UNIRANDI

[ average[ average min. max. median st. dev.
Shekel-5 5 545 982 1489 897 2259 1470.0 298.56
Shekel-7 4 052 800 1684 860 2914 1625.0 338.05
Shekel-10 4 701 358 1815 1034 3623 17135 532.08
Hartman-3 20 743 3608 1767 5844 3 585.0 828.73
Hartman-6 79 685 16 933 6 240 29 665 16 739.5 5 040.56
Goldstein-Price 29 923 559 1 558 874.0 229.22
Branin 59 857 1023 621 1678 1032.5 211.07

Rosenbrock-2 1 158 350 6274 2894 10378 6 091.0 1 402.33
Rosenbrock-5 6 205 503| 374 685 168 601 628 507 360 241.0 89 941.28
Rosenbrock-10 |20 282 5291 908 469 806 288 2 418 556 2 043 155 477 478.51

Easom 89 630 1 604 532 2664 1610.5 416.63
Shubert 82 363 1 399 936 1859 14075 171.34
Zakharov-5 959 8227 4629 11 420 8 367.5 1702.57

Zakharov-10 3 607 653 47 288 34 549 53995 47 850.0 3 767.57

For each problem, 100 independent runs of GLOBAL were completed
with the same, fixed algorithm parameter set: the number of sample points
was 400, the number of selected points was 15, and the required number
of precise digits for the local search was 8. We recorded the percentage of
runs that found a significantly close solution, the time necessary for such
solutions and the number of function evaluations. The algorithm parameters
of GLOBAL were set again in such a way that it was able to find a global
minimizer point in each run. We listed the published results for C-GRASP
[12] in the tables.

Table 4 contains the numbers of objective function evaluations neces-
sary to solve the test problems in the above described sense. According to
it GLOBAL was (with the exception of the Goldstein-Price and Zaharov-
5 problems) always much more efficient than C-GRASP, sometimes even
by orders of magnitude. The reason for that may be due to the different
model in the background: while C-GRASP is prepared for any ugly behav-
ior, GLOBAL assumes inherently that at least one global minimizer points
has a non-negligible sized region of attraction. Still, both algorithms are
capable to solve black box problems, i.e. without additional information on
the problems beyond the objective function value (when GLOBAL is used
with UNIRANDI).

Note that for GLOBAL the algorithm parameters should be such that
all problems could be solved all times it was run. In contrast to that, it can
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Table 5 CPU time required by C-GRASP and GLOBAL with the UNIRANDI
local search routine in seconds.

Problem ‘ C-GRASP ‘ GLOBAL
dim. l l

Shekel-5 4 2.3316 0.1313
Shekel-7 4 2.3768 0.1461
Shekel-10 4 3.5172 0.1614
Hartman 3 0.0026 0.3208
Hartman 6 0.0140 1.7880
Goldstein-Price 2 0.0000 0.0516
Branin 2 0.0016 0.0580
Rosenbrock 2 0.0132 0.4117
Rosenbrock 5 1.7520 24.7559
Rosenbrock 10 11.4388 130.6813
Easom 2 0.0042 0.0916
Shubert 2 0.0078 0.0930
Zakharov 5 0.0000 0.5369
Zakharov 10 1.0346 3.1428

be surprising that some problems (e.g. Shekel-10) could be solved by the
new GLOBAL with less function evaluations than what is stated in Table 1.
This phenomenon is caused by the new stopping rule that can stop iteration
earlier. It can also be seen that the higher dimensional versions of some test
function could be solved by both techniques with correspondingly larger
computational efforts.

The less comparable CPU time values are summarized in Table 5. These
reflect on one hand the anticipated differences in the problem difficulty
according to the number of function evaluations. On the other hand the
CPU times for the Rosenbrock test functions are hard to explain: although
they are proportional to the number of function evaluations for GLOBAL,
the efficiency relation between the two methods found earlier cannot be
recognized here.

4 Conclusion and future work

Summarizing the results of the paper we can conclude that the new version
of GLOBAL utilizes the advantages offered by Matlab, and the algorithmic
improvements increased the size of the problems that can be solved reliably
with it. The reliability of the algorithm is now better while the efficiency is
improved too. The careful comparison both with the old version and with
C-GRASP is favorable for the new version of GLOBAL.
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A careful testing work is still ahead to clear the role of those fine de-
tails of the algorithm that can be still improved to achieve a higher level of
reliability and even more efficiency. In this direction the clustering dissimi-
larity measure, the gradient condition and the proper algorithm parameter
selection should be strengthened further. Note that better test results are
available for an improved C-GRASP version with other algorithm parame-
ters for a larger test problem set at [13]. A comparison with it on the wider
set of test problems belongs also to the future work to be done.
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