
An Interval Partitioning Approach for
Continuous Constrained Optimization

Chandra Sekhar Pedamallu1, Linet Özdamar2, and Tibor Csendes3

1 Nanyang Technological University, School of Mechanical and Aerospace
Engineering, Singapore chandra@inf.u-szeged.hu

2 Izmir Ekonomi Universitesi, Izmir, Turkey linetozdamar@lycos.com
3 University of Szeged, Institute of Informatics, Szeged, Hungary
csendes@inf.u-szeged.hu

Summary. Constrained Optimization Problems (COP’s) are encountered in many
scientific fields concerned with industrial applications such as kinematics, chemical
process optimization, molecular design, etc. When non-linear relationships among
variables are defined by problem constraints resulting in non-convex feasible sets,
the problem of identifying feasible solutions may become very hard. Consequently,
finding the location of the global optimum in the COP is more difficult as compared
to bound-constrained global optimization problems.

This chapter proposes a new interval partitioning method for solving the COP.
The proposed approach involves a new subdivision direction selection method as well
as an adaptive search tree framework where nodes (boxes defining different variable
domains) are explored using a restricted hybrid depth-first and best-first branching
strategy. This hybrid approach is also used for activating local search in boxes with
the aim of identifying different feasible stationary points. The proposed search tree
management approach improves the convergence speed of the interval partitioning
method that is also supported by the new parallel subdivision direction selection rule
(used in selecting the variables to be partitioned in a given box). This rule targets
directly the uncertainty degrees of constraints (with respect to feasibility) and the
uncertainty degree of the objective function (with respect to optimality). Reducing
these uncertainties as such results in the early and reliable detection of infeasible
and sub-optimal boxes, thereby diminishing the number of boxes to be assessed.
Consequently, chances of identifying local stationary points during the early stages
of the search increase.

The effectiveness of the proposed interval partitioning algorithm is illustrated on
several practical application problems and compared with professional commercial
local and global solvers. Empirical results show that the presented new approach is
as good as available COP solvers.

Key words: continuous constrained optimization, interval partitioning ap-
proach, practical applications.

2 Chandra Sekhar Pedamallu, Linet Özdamar, and Tibor Csendes

1 Introduction

Many important real world problems can be expressed in terms of a set of
nonlinear constraints that restrict the domain over which a given performance
criterion is optimized, that is, as a Constrained Optimization Problem (COP).
In the general COP with a non-convex objective function, discovering the lo-
cation of the global optimum is NP-hard. Locating feasible solutions in a
non-convex feasible space is also NP-hard. Solution approaches using deriv-
atives developed for solving the COP might often be trapped in infeasible
and/or sub-optimal sub-spaces if the combined topology of the constraints
is too rugged. The same problem exists in the discovery of global optima in
non-convex bound-constrained global optimization problems. The COP has
augmented complexity as compared to bound-constrained problems due to
the restrictions imposed by highly non-linear relationships among variables.

Existing global optimization algorithms can be categorized into determin-
istic and stochastic methods. Extensive surveys on global optimization exist
in the literature ([TZ89], and recently by [PR02]). Although we cannot cover
the COP literature in detail within the scope of this chapter, we can cite deter-
ministic approaches including Lipschitzian methods [HJL92, Pin97]; branch
and bound methods (e.g., [AS00]); cutting plane methods [TTT85]; outer
approximation [HTD92]; primal-dual method [BEG94, FV93]; alpha-Branch
and Bound approach [AMF95], reformulation techniques [SP99]; interior point
methods [MNWLG01, FGW02] and interval methods [CR97, Han92, Kea96c].

Interval Partitioning methods (IP) are Branch and Bound techniques
(B&B) that use inclusion functions, therefore, we elaborate more on B&B
among deterministic methods. B&B are partitioning algorithms that are com-
plete and reliable in the sense that they explore the whole feasible domain and
discard sub-spaces in the feasible domain only if they are guaranteed to ex-
clude feasible solutions and/or local stationary points better than the ones
already found. B&B are exhaustive algorithms that typically rely on generat-
ing lower and upper bounds for boxes in the search tree, where tighter bounds
may result in early pruning of nodes. For expediting B&B, feasibility and op-
timality based variable range reduction techniques [RS95, RS96], convexifica-
tion [TS02, TS04], outer approximation [BHR92] and constraint programming
techniques in pre- and post-processing phases of branching have been devel-
oped [RS96]. The latter resulted in an advanced methodology and software
called Branch and Reduce algorithm (BARON, [Sah96, Sah03]).

Here, we propose an interval partitioning approach that recursively sub-
divides the continuous domain over which the COP is defined. This IP con-
ducts reliable assessment of sub-domains while searching for the globally op-
timal solution. Theoretically, IP has no difficulties in dealing with the COP,
however, interval research on the COP is relatively scarce when compared
with bound constrained optimization. Robinson [Rob73] uses interval arith-
metic only to obtain bounds for the solution of the COP, but does not at-
tempt to find the global optimum. Hansen and Sengupta [HS80] first use IP

An interval partitioning approach for continuous constrained optimization 3

to solve the inequality COP. A detailed discussion on interval techniques for
the general COP with both inequality and equality constraints is provided in
[RR88] and [Han92], and some numerical results using these techniques have
been published later [Wol94, Kea96a]. An alternative approach is presented
in [ZB03] for providing ranges on functions.

Conn et al.[CGT94] transform inequality constraints into a combination
of equality constraints and bound constraints and combine the latter with a
procedure for handling bound constraints with reduced gradients. Computa-
tional examination of feasibility verification and the issue of obtaining rigorous
upper bounds are discussed in [Kea94] where the interval Newton method is
used for this purpose. In [HW93], interval Newton methods are applied to
the Fritz John equations that are used to reduce the size of sub-spaces in
the search domain without bisection or other tessellation. Experiments that
compare methods of handling bound constraints and methods for normaliz-
ing Lagrange multipliers are conducted in [Kea96b]. Dallwig et al. [DNS97]
propose software (so called GLOPT) for solving bound constrained optimiza-
tion and the COP. GLOPT uses a Branch and Bound technique to split the
problem recursively into subproblems that are either eliminated or reduced in
size. The authors also propose a new reduction technique for boxes and novel
techniques for generating feasible points. Kearfott presented GlobSol (e.g. in
[Kea03]), which is an IP software that is capable of solving bound constrained
optimization problems and the COP.

A new IP is developed by Markót [Mar03] for solving COP problems with
inequalities where new adaptive multi-section rules and a box selection cri-
terion are presented [MFCC05]. Kearfott [Kea04] provides a discussion and
empirical comparisons of linear relaxations and alternate techniques in val-
idated deterministic global optimization. Empirical results show that linear
relaxations are of significant value in validated global optimization. Finally,
in order to eliminate the subregion of the search spaces, Kearfott [Kea05]
proposes a simplified and improved technique for validation of feasible points
in boxes, based on orthogonal decomposition of the normal space to the con-
straints. In the COP with inequalities, a point, rather than a region, can be
used, and for the COP with both equalities and inequalities, the region lies in
a smaller-dimensional subspace, giving rise to sharper upper bounds.

In this chapter, we propose a new adaptive tree search method that we
used in IP to enhance its convergence speed. This approach is generic and
it can also be used in non-interval B&B approaches. We also develop a new
subdivision direction selection rule for IP. This rule aims at reducing the un-
certainty degree in the feasibility of constraints over a given sub-domain as
well as the uncertainty in the box’s potential for containing the global opti-
mum. We show, on a test bed of practical applications, that the resulting IP
is a viable method in solving the general COP with equalities and inequal-
ities. The results obtained are compared with commercial softwares such as
BARON, Minos and other solvers interfaced with GAMS (www.gams.com).

4 Chandra Sekhar Pedamallu, Linet Özdamar, and Tibor Csendes

2 Interval Partitioning Algorithm for the COP

2.1 Problem Definition

A COP is defined by an objective function, f(x1, . . . , xn) to be maximized
over a set of variables, V = {x1, . . . , xn}, with finite continuous domains:
Xi = [X,X] for xi, i = 1, . . . , n, that are restricted by a set of constraints,
C = {c1, . . . , cr}.

Constraints in C are linear or nonlinear equations or inequalities that are
represented as follows:

gi(x1, . . . , xn) ≤ 0 i = 1, . . . , k,

hi(x1, . . . , xn) = 0 i = k + 1, . . . , r.

An optimal solution of a COP is an element x∗ of the search space X (X =
X1 × · · · ×Xn) that meets all the constraints, and whose objective function
value, f(x∗) ≥ f(x) for all feasible elements x ∈ X.

COP problems are difficult to solve because the only way parts of the
search space can be discarded is by proving that they do not contain an op-
timal solution. It is hard to tackle general nonlinear COP with computer
algebra systems, and in general, traditional numeric algorithms cannot guar-
antee global optimality and completeness in the sense that the solution found
may be only a local optimum. It is also possible that the approximate search
might result with an infeasible result despite the fact that a global optimum
exists. Here, we propose an Interval Partitioning Algorithm (IP) to identify
x∗ in a reliable manner.

2.2 Basics of Interval Arithmetic and Terminology

Denote the real numbers by x, y, . . ., the set of compact intervals by I :=
{[a, b] | a ≤ b, a, b ∈ R}, and the set of n-dimensional intervals (also called
simply intervals or boxes) by In. Capital letters will be used for intervals.
Every interval X ∈ I is denoted by [X, X], where its bounds are defined by
X = inf X and X = sup X. For every a ∈ R, the interval point [a, a] is also
denoted by a. The width of an interval X is the real number w(X) = X - X.
Given two intervals X and Y, X is said to be tighter than Y if w(X) < w(Y).

Given (X1, . . . , Xn) ∈ I, the corresponding box X is the Cartesian product
of intervals, X = X1× . . .× Xn, where X ∈ In. A subset of X, Y ⊆ X, is a
sub-box of X. The notion of width is defined as follows: w(X1 × . . .×Xn) =
max1≤i≤n w(Xi), and w(Xi) = Xi −Xi.

Interval arithmetic operations are set theoretic extensions of the corre-
sponding real operations. Given X, Y∈ I, and an operation ω ∈ {+,−, ·,÷},
we have: XωY = {xωy | x ∈ X, y ∈ Y }.

Due to properties of monotonicity, these operations can be implemented by
real computations over the bounds of intervals. Given two intervals X = [a, b]
and Y = [c, d]

An interval partitioning approach for continuous constrained optimization 5

[a, b] + [c, d] = [a + c, b + d]
[a, b]− [c, d] = [a− d, b− c]
[a, b] · [c, d] = [min{ac, ad, bc, bd}, max{ac, ad, bc, bd}]

[a, b] / [c, d] = [a, b] · [1/d, 1/c] if 0 /∈ [c, d].

The associative law and the commutative law are preserved over it. However,
the distributive law does not hold. In general, only a weaker law is verified,
called subdistributivity.

Interval arithmetic is particularly appropriate to represent outer approxi-
mations of real quantities. The range of a real function f over an interval X
is denoted by f(X), and it can be computed by interval extensions.

Definition 1. (Interval extension): An interval extension of a real function
f : Df ⊂ Rn → R is a function F : In → I such that ∀X ∈ In, X ∈ Df ⇒
f(X) = {f(x) | x ∈ X} ⊆ F (X).

Interval extensions are also called interval forms or inclusion functions.
This definition implies the existence of infinitely many interval extensions of
a given real function. In a proper implementation of interval extension based
inclusion functions the outward rounding must be made to be able to provide
a mathematical strength reliability.

The most common extension is known as the natural extension. It means
that procedure when we substitute each occurrence of variables, operations
and functions by their interval equivalents [RR88]. Natural extensions are in-
clusion monotonic (this property follows from the monotonicity of operations).
Hence, given a real function f, whose natural extension is denoted by F, and
two intervals X and Y such that X ⊆ Y , the following holds: F (X) ⊆ F (Y).
We denote the lower and upper bounds of the function interval range over a
given box Y as F (Y) and F (Y), respectively.

Here, it is assumed that for the studied COP, the natural interval exten-
sions of f , g and h over X are defined in the real domain. Furthermore, F
(and similarly, G and H) are α-convergent over X, that is, for all Y ⊆ X,
w(F (Y))− w(f(Y)) ≤ cw(Y)α, where c and α are positive constants.

An interval constraint is built from an interval function and a relation sym-
bol, which is extended to intervals. A constraint being defined by its expression
(atomic formula and relation symbols), its variables, and their domains, we
will consider that an interval constraint has interval variables (variables that
take interval values), and that each associated domain is an interval.

The main guarantee of interval constraints is that if its solution set is
empty, it has no solution over a given box Y , then it follows that the solution
set of the COP is also empty and the box Y can be reliably discarded. In
a similar manner, if the upper bound of the objective function range, F (Y),
over a given box Y is less than or equal to the objective function value of
a known feasible solution, (the Current Lower Bound, CLB) then Y can be
reliably discarded since it cannot contain a better solution than the CLB.

6 Chandra Sekhar Pedamallu, Linet Özdamar, and Tibor Csendes

Below we formally provide the conditions where a given box Y can be
discarded reliably based on the ranges of interval constraints and the objective
function.

In a partitioning algorithm, each box Y is assessed for its optimality and
feasibility status by calculating the ranges for F , G, and H over the domain
of Y .

Definition 2. (Cut-off test based on optimality:) If F (Y) < CLB, then box
Y is called a sub-optimal box.

Definition 3. (Cut-off test based on feasibility:) If Gi(Y) > 0, or 0 /∈ Hi(Y)
for any i, then box Y is called an infeasible box.

Definition 4. If F (Y) ≤ CLB, and F (Y) > CLB, then Y is called an in-
determinate box with regard to optimality. Such a box holds the potential of
containing x∗ if it is not an infeasible box.

Definition 5. If (Gi(Y) < 0, and Gi(Y) > 0), or (0 ∈ Hi(Y) 6= 0) for
some i, and other constraints are consistent over Y , then Y is called an
indeterminate box with regard to feasibility and it holds the potential of con-
taining x∗ if it is not a sub-optimal box.

Definition 6. The degree of uncertainty of an indeterminate box with respect
to optimality is defined as: PFY = F (Y)− CLB.

Definition 7. The degree of uncertainty, PGi
Y (PHi

Y) of an indeterminate
inequality (equality) constraint with regard to feasibility is as: PGi

Y = Gi(Y),
and PHi

Y = Hi(Y) + |Hi(Y)|.
Definition 8. The total feasibility uncertainty degree of a box, INFY , is the
sum of uncertainty degrees of equalities and inequalities that are indeterminate
over Y .

The proposed subdivision direction selection rule (Interval Inference Rule,
IIR) targets an immediate reduction in INFY and PFY and chooses those
specific variables to bisect a given parent box. The IP described in the fol-
lowing section uses the feasibility and optimality cut-off tests in discarding
boxes and applies the new rule IIR in partitioning boxes.

2.3 Interval Partitioning Algorithm

Under reasonable assumptions, IP is a reliable convergent algorithm that sub-
divides indeterminate boxes to reduce INFY and PFY by nested partitioning.
In terms of subdivision direction selection, convergence depends on whether
the direction selection rule is balanced [CR97]. The contraction and the α-
convergence properties enable this. The reduction in the uncertainty levels of

An interval partitioning approach for continuous constrained optimization 7

boxes finally lead to their elimination due to sub-optimality or infeasibility
while helping IP in ranking remaining boxes in a better fashion.

A box that becomes feasible after nested partitioning still can have uncer-
tainty with regard to optimality unless it is proven that it is sub-optimal. The
convergence rate of IP might be very slow if we require nested partitioning to
reduce a box to a point interval that is to the global optimum. Hence, since a
box with a high PFY holds the promise of containing the global optimum, we
propose to use a local search procedure that can identify stationary points in
such boxes.

Usually, IP continues to subdivide available indeterminate and feasible
boxes until either they are all deleted or interval sizes of all variables in ex-
isting boxes are less than a given tolerance. Termination can also be forced
by limiting the number of function evaluations and/or CPU time. In the fol-
lowing, we describe our proposed IP that has a flexible stage-wise tree man-
agement feature. Our IP terminates if the CLB does not improve at the end
of a tree stage as compared with the previous stage. This stage-wise tree also
enables us to apply the best-first box selection rule within a restricted sub-
tree (economizing memory usage) as well as to invoke local search in a set of
boxes.

The tree management system in the proposed IP maintains a stage-wise
branching scheme that is conceptually similar to the iterative deepening ap-
proach [Kor85]. The iterative deepening approach explores all nodes generated
at a given tree level (stage) before it starts assessing the nodes at the next
stage. Exploration of boxes at the same stage can be done in any order, the
sweep may start from best-first box or the one on the most right or most
left of that stage. On the other hand, in the proposed adaptive tree manage-
ment system, a node (parent box) at the current stage is permitted to grow
a sub-tree forming partial succeeding tree levels and to explore nodes in this
sub-tree before exhausting the nodes at the current stage.

If a feasible solution (and CLB) is not identified yet, boxes in the sub-
tree are ranked according to descending INFY , otherwise they are ranked
in descending order of F (Y). A box is selected among the children of the
same parent according to either box selection criterion, and the child box is
partitioned again continuing to build the same sub-tree. This sub-tree grows
until the Total Area Deleted (TAD) by discarding boxes fails to improve in
two consecutive partitioning iterations in this sub-tree. Such failure triggers
a call to local search where all boxes not previously subjected to local search
are processed by the procedure Feasible Sequential Quadratic Programming
(FSQP, [ZT96, LZT97]), after which they are placed back in the list of pend-
ing boxes and exploration is resumed among the nodes at the current stage.
Feasible and improving solutions found by FSQP are stored (that is, if a fea-
sible solution with a better objective function value is found, CLB is updated
and the solution is stored).

The above adaptive tree management scheme is achieved by maintaining
two lists of boxes, Bs and Bs+1 that are the lists of boxes to be explored

8 Chandra Sekhar Pedamallu, Linet Özdamar, and Tibor Csendes

at the current stage s and the next stage s + 1, respectively. Initially, the
set of indeterminate or feasible boxes in the pending list Bs consists only of
X and Bs+1 is empty. As child boxes are added to a selected parent box,
they are ordered according to the current ranking criterion. Boxes in the
sub-tree stemming from the selected parent at the current stage are explored
and partitioned until there is no improvement in TAD in two consecutive
partitioning iterations.

At that point, partitioning of the selected parent box is stopped and all
boxes that have not been processed by local search are sent to the FSQP mod-
ule and processed to identify feasible and improving point solutions if FSQP
is successful in doing so. From that moment onwards, child boxes generated
from any other selected parent in Bs are stored in Bs+1 irrespective of further
calls to FSQP in the current stage. When all boxes in Bs have been assessed
(discarded or partitioned), the search moves to the next stage, s+1, starting
to explore the boxes stored in Bs+1.

In this manner, a lesser number of boxes (those in the current stage) are
maintained in primary memory and the search is allowed to go down to deeper
levels within the same stage, increasing the chances to discard boxes. On the
other hand, by enabling the search to also explore boxes horizontally across
at the current stage, it might be possible to find feasible improving solutions
faster by not partitioning parent boxes that are not so promising (because we
are able to observe a larger number of boxes).

The tree continues to grow in this manner taking up the list of boxes of
the next stage after the current stage’s list of boxes is exhausted. The algo-
rithm stops either when there are no boxes remaining in Bs and Bs+1 or when
there is no improvement in CLB as compared with the previous stage. The
proposed IP algorithm is described below.

IP with adaptive tree management

Step 0. Set tree stage, s = 1. Set future stage, r = 1. Set non-improvement
counter for TAD: nc = 0. Set Bs, the list of pending boxes at stage s
equal to X, Bs = {X}, and Bs+1 = ∅.

Step 1. If Bs = ∅ and CLB has not improved as compared to the stage s−1,
or, both Bs = ∅ and Bs+1 = ∅, then STOP.

Else, if Bs = ∅ and Bs+1 6= ∅, then set s ← s+1, set r ← s, and continue.
Pick the first box Y in Bs and continue.

1.1 If Y is infeasible or suboptimal, discard Y , and go to Step 1.

1.2 If Y is sufficiently small, evaluate m, its mid-point, and if it is a feasi-
ble improving solution, update CLB, reset nc ← 0, and store m. Remove
Y from Bs and go to Step 1.

Step 2. Select variable(s) to partition (use the subdivision direction selection
rule IIR). Set v = number of variables to partition.

An interval partitioning approach for continuous constrained optimization 9

X

1 2 3 4

5 6 7 8 17 18 19 20

9 10 11 12

13 14 15 16

21 22 23 24

25 26 27 28

1
st

Call FSQP:

3, 5, 6, 8, 9, 11,

12, 13, 14, 15, 16

2
nd

 Call FSQP:

17, 18, 19, 21, 22,

24, 25, 26, 27, 28

Explanation: 3, 5, 6, 8, 9, 11, 12, 13, 14, 15, and 16 are in

Stage 1’s list and should be explored before moving to Stage

2. All their children are placed in Stage 2’s list after the first

FSQP call in Stage 1. There might be more than one FSQP

calls in Stage 1; this does not affect the placement of children

nc=1

nc=2

nc=3

nc=1

nc=2

nc=3

Stage 2 Stage 1

Fig. 1. Implementation of the adaptive iterative deepening procedure.

Step 3. Partition Y into 2v non-overlapping child boxes. Check TAD, if it
improves, then reset nc ← 0, else set nc ← nc + 1.

Step 4. Remove Y from Bs, add 2v boxes to Br.

4.1. If nc > 2, apply FSQP to all (previously unprocessed by FSQP) boxes
in Bs and Bs+1, reset nc ← 0. If FSQP is called for the first time in stage
s, then set r ← s + 1. Go to Step 1.

4.2. Else, go to Step 1. The adaptive tree management system in IP is
illustrated in Figure 1 on a small tree where node labels indicate the order
of nodes visited.

The adaptive tree management system in IP is illustrated in Figure 1 on
a small tree where node labels indicate the order of nodes visited.

2.4 A New Subdivision Direction Selection Rule for IP

The order in which variable domains are partitioned has an impact on the
convergence rate of IP . In general, variable selection is made according to

10 Chandra Sekhar Pedamallu, Linet Özdamar, and Tibor Csendes

widest variable domain rule or largest function rate of change in the box.
Here, we develop a new numerical subdivision direction selection rule, Interval
Inference Rule (IIR), to improve IP ’s convergence rate by partitioning in
parallel, those variable domains that reduce PFY and INFY in immediate
child boxes. Hence, new boxes are formed with an appropriate partitioning
sequence resulting in diminished uncertainty caused by the overestimation in
the indeterminate objective function range and constraint ranges.

Before IIR is applied, the objective f and each constraint g and h are
interpreted as binary trees that represent recursive sub-expressions hierarchi-
cally. Such binary trees enable interval propagation over all sub-expressions of
the constraints and the objective function [BMV94]. Interval propagation and
function trees are used by [Kea91] in improving interval Newton approach by
decomposition and variable expansion, by [SP99] in automated problem re-
formulation, by [Sah03] and by [TS04] where feasibility based range reduction
is achieved by tightening variable bounds.

After interval propagation is carried out over the sub-expressions in a bi-
nary tree, IIR traverses this tree to label its nodes so as to identify the pair
of variables (source variables) that are most influential on the constraint’s or
the objective’s uncertainty degree. The presented interval subdivision direc-
tion selection rule is an alternative of earlier rules as those published in [CR97],
[RC95], and [CGC00]. This pair of variables are identified for each constraint
and the objective function, and placed in the pool of variables whose domains
will be possibly partitioned in the next iteration. We make sure that the pool
at least contains the source variables for the objective function and therefore,
the number of variables to be bisected in parallel is at least two. The total pool
resulting from the traversal of f , g and h is screened and its size is reduced
by allocating weights to variables and re-assessing them.

2.4.1 Interval Partitioning Algorithm

Before the labeling process IIR Tree can be applied on a constraint expres-
sion, it has to be parsed and intervals have to be propagated through all
sub-expression levels. This is achieved by calling an Interval Library at each
(molecular) sub-expression level of the binary tree from bottom to top starting
from atomic levels (variables or constants).

A binary tree representing a constraint is built as follows. Leaves of the
binary tree are atomic elements, i.e., they are either variables or constants. All
other nodes represent binary expressions of the form (Left Θ Right). A binary
operator “Θ” is an arithmetic operator (·, +, -, ÷) having two branches
(“Left”, “Right”) that are themselves recursive binary sub-trees. However,
mathematical functions such as ln, exp, sin, etc. are unary operators. In such
cases, the argument of the function is always placed in the “Left” branch. For
instance, the binary tree for the expression 1− (10x1 + 6x1x2− 6x3x4) = 0 is
illustrated in Figure 2.

An interval partitioning approach for continuous constrained optimization 11

[-60, 120]

[-10, 20]

[-260, 340]

[-2, 4]

[-20, 40]

[-20, 40]

[-120, 240]

[-240, 300]

x110

* -

+

-

1

* *

*6

x2x1

*6

x4x3

[-339, 261]

[-2, 4] [0, 10] [-2, 1] [-10, 0]

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Fig. 2. Interval propagation for the expression 1− (10x1 + 6x1x2 − 6x3x4) = 0.

Variable intervals in the box are x1 = [−2.0, 4.0], x2 = [0.0, 10.0],
x3 = [−2.0, 1.0], and x4 = [−10.0, 0.0]. In Figure 2, dotted arrows linking
arguments with operator nodes show how intervals are propagated starting
from the bottom leaves (variables). Once a level of the tree is completed and
the corresponding sub-expression intervals are calculated according to basic
interval operations, they are linked by next level operators. This procedure
goes on until the topmost “root” node representing the whole constraint is
reached resulting in the constraint range of [-339, 261].

We now describe the IIR Tree labeling procedure. Suppose a binary tree is
constructed for a constraint and its source variables have to be identified over
a given box Y . The labeling procedure called IIR Tree accomplishes this by
tree traversal. We take the expression depicted in Figure 2 as an indeterminate
equality constraint. In Figure 3, the path constructed by IIR Tree on this
example is illustrated graphically. Straight lines in the figure indicate the
propagation tree, dashed arrows indicate binary decisions, and arrows with
curvature indicate the path constructed by IIR Tree.

12 Chandra Sekhar Pedamallu, Linet Özdamar, and Tibor Csendes

[-260, 340]

[-2, 4]

[-20, 40]

[-60, 120]

[-240, 300]

[-339, 261]

[-2, 4] [0, 10] [-2, 1] [-10, 0]

[-10, 20]

*

x110

* -

+

-

1

*

*6

x2x1

*

x4x3

6

Fig. 3. Implementation of IIR Tree over the binary tree for 1 − (10x1 + 6x1x2 −
6x3x4) = 0.

For illustrating how IIR Tree works on a given constraint or objective
function over domain Y , we introduce the following notation.

Qk: a parent sub-expression at tree level k (k = 0 is root node),

Lk+1 and Rk+1: immediate Left and Right sub-expressions of Qk at level k+1,

[Qk, Q
k
]: interval bounds of the parent sub-expression Qk,

[Lk+1, L
k+1

] and [Rk+1, R
k+1

]: interval bounds of immediate left and right
sub-expressions,

Lk: labeled bound at level k.

IIR starts by labeling Q
0

when the constraint is an inequality. Hence,
the target is Gi(Y) for inequalities so as to reduce PG i

Y , and in equalities
the target is the max{Q0, Q

0}. That is, max{|Hi(Y)| ,Hi(Y)} is targeted

An interval partitioning approach for continuous constrained optimization 13

to reduce PHi
Y . If the expression concerns the objective function f , then

IIR Tree labels F (Y) at the root node in order to minimize PFY .
Here, we have an equality (in Figure 2) and hence, IIR labels Q0. That

is, we label the bound that gives max {|-339|, |261|}, which is -339, as Λ0 at
the root node. Next, we determine the pair of interval bounds {L1−R

1} that
results in -339. Hence, L1ΘR

1
= Q0. We then compare the absolute values of

individual bounds in this pair and take their maximum as the label at level
k + 1. That is, Λ1 = max{|L1|, |R1|} = R

1
= 340.

The procedure is applied recursively from top to bottom; each time search-
ing for the bound pair resulting in the labeled bound Λk+1 till a leaf (a vari-
able) is hit. Once this forward tree traversal is over, all leaves in the tree
corresponding to the selected variable are set to ”Closed” status. The proce-
dure then backtracks to the next higher level of the tree to identify the other
leaf in the couple of variables that produce the labeled bound. All steps of
the labeling procedure carried out in the example are provided below in detail.

Level 0: [Q0, Q
0
] = [−339, 261]. Λ0 = Q0.

aΘb = L1 − R
1
= {1-340} = -339. Λ1 = max{|L1|, |R1|} = max{|1|,

|340|} = 340 = R
1
.

Level 1: [Q1, Q
1
] = [−260, 340]

aΘb = {−20 + (−240) or 40 + 300} = 340 ⇒ aΘb = L
2

+ R̄2.
Λ2 = max{|L2|, |R2|} = max{|40|, |300|} = 300 ⇒ R

2
.

Level 2: [Q2, Q
2
] = [−240, 300]

aΘb = {(−120) − 120 or 240 − (−60)} = 300 ⇒ aΘb = L
3 − R3.

Λ3 = max{|L3|, |R3|} = max{|240|, | − 60|} = 240 ⇒ L
3
.

Level 3: [Q3, Q
3
] = [−120, 240]

aΘb = {6 ∗ (−20) or 6 ∗ 40} = 240 ⇒ aΘb = L
4 ∗ R

4
. Λ4 = max{|L4|,

|R4|} = max{|6|, |40|} = 40 ⇒ R
4
.

Level 4: [Q5, Q
5
] = [−20, 40]

aΘb = {−2 ∗ 0 or −2 ∗ 10 or 4 ∗ 0 or 4 ∗ 10} = 40 ⇒ aΘb = L
5 ∗ R

5
.

Λ5 = max{|L5|, |R5|} = max{|4|, |10|} = 10 ⇒ R
5
.

14 Chandra Sekhar Pedamallu, Linet Özdamar, and Tibor Csendes

The bound R
5

leads to leaf x2. The leaf pertaining to x2 is “Closed” from
here onwards, and the procedure backtracks to Level 4. Then, the labeling
procedure leads to the second source variable, x1.

Note that the uncertainty degree of the parent box is 600 whereas when
it is sub-divided into four sibling boxes by bisecting the two source variables,
the uncertainty degrees of sibling boxes become 300, 330, 420, and 390. If the
parent box were sub-divided using the largest width variable rule (x2 and x4),
then the sibling uncertainty degrees would have been 510, 600, 330, and 420.

2.4.2 Restricting Parallelism in Multi-variable Partitioning

When the number of constraints is large, there might be a large set of variables
resulting from the local application of IIR Tree to the objective function and
each constraint. Here, we develop a priority allocation scheme to narrow down
the set of variables (selected by IIR) to be partitioned in parallel. In this
approach, all variable pairs identified by IIR Tree are merged into a single
set Z. Then, a weight wj is assigned to each variable xj ∈ Z and the average
w̄ is calculated. The final set of variables to be partitioned is composed of the
two source variables of f and all other source variables xj ∈ Z with wj > w
pertaining to the constraints.

Then wj is defined as a function of several criteria: PGi
Y (or PHi

Y) of
constraint gi for which xj is identified as a source variable, the number of times
xj exists in gi, total number of multiplicative terms in which xj is involved
within gi. Furthermore, the existence of xj in a trigonometric and/or even
power sub-expression in gi is included in wj by inserting corresponding flag
variables. When a variable xj is a source variable to more than one constraint,
the weight calculated for each such constraint is added to result in a total wj

defined as

wj =
∑

i∈ICj

[PF i
Y /PHmax +PGi

Y /PGmax +eji/ej,max +aji/aj,max +tji +pji]/5

where

IC j : set of indeterminate constraints (over Y) where xj is a source
variable,

TIC : total set of indeterminate constraints,
PH max: max

i∈T IC

{PHi
Y },

PGmax: max
i∈T IC

{PGi
Y },

eji: number of times xj exists in constraint i ∈IC j ,
ej,max: max

i∈ICj
{eji},

aji: number of multiplicative terms xj is involved in constraint i∈IC j ,
aj,max: max

i∈ICj
{aji},

An interval partitioning approach for continuous constrained optimization 15

tji: binary parameter indicating that xj exists in a trigonometric
expression in constraint i ∈ ICj ,

pji: binary parameter indicating that xj exists in an even power or
abs expression in constraint i ∈ ICj .

3 Solving COP Applications with IP

3.1 Selected Applications

The following applications have been selected to test the performance of the
proposed IP.

1. Planar Truss Design [HWY03]

Consider the planar truss with parallel chords shown in Figure 4 under the
action of a uniformly distributed factored load of p = 25 kN/m, including the
dead weight of approximately 1 kN/m. The truss is constructed from bars of
square hollowed cross-section made of steel 37. For chord members, limiting
tensile stresses are 190 MPa, for other truss members 165 MPa.

The members are divided into four groups according to the indices shown
in Figure 4. The objective of this problem is to minimize the volume of the
truss, subject to stress and deflection constraints. Substituting material prop-
erty parameters and the maximum allowable deflection that is 3.77 cm, the
optimization model can be simplified. However, the original model is a dis-
crete constrained optimization problem [HWY03], which is converted into a
continuous optimization problem described below.

Maximize f = −(600 ∗A1 + 2910.4 ∗A2 + 750 ∗A3 + 1747.9 ∗A4) (cm3),

subject to:

A1 ≥ 30.0 cm2,

A2 ≥ 24.0 cm2,

A3 ≥ 14.4 cm2,

A4 ≥ 11.2 cm2, and

313920/A1 + 497245/A2 + 22500/A3 + 67326/A4 ≤ 25200 (kN-cm).

The first four inequalities are the stress constraints, while the last one is
the deflection constraint.

16 Chandra Sekhar Pedamallu, Linet Özdamar, and Tibor Csendes

A

B

C

D

E

F

G

H

J

K

h

P=25kN/m

1 12 2

2 2
2

2

2 2

3 3

4 4

4 4

4

4a=12m

A

B

C

D

E

F

G

H

J

K

h

P=25kN/m

1 12 2

2 2
2

2

2 2

3 3

4 4

4 4

4

4a=12m

Fig. 4. Optimal design of a planar truss with parallel chords.

The search space is: A1 = [30, 1000], A2 = [24, 1000], A3 = [14.4, 1000],
A4 = [11.2, 1000].

Here Ai is the area in cm2 with indices i = 1, 2, 3, 4. The objective function
is a simple linear function, but the deflection constraint turns the feasible
domain into a non-convex one.

Hsu et. al [HWY03] report an optimal design point for the original discrete
model as A = (55, 37.5, 15, 15), and the minimum volume of the truss for this
solution is 179,608.5. However, for a continuous model, we find a minimum
volume of the truss as 176,645.373 using the IP and other solvers used in the
comparison.

2. Pressure Vessel Design [HWY03]

Figure 5 shows a cylindrical pressure vessel capped at both ends by hemi-
spherical heads. This compressed air tank has a working pressure of 3,000 psi
and a minimum volume of 750 feet3. The design variables are the thickness of
the shell and head, and the inner radius and length of the cylindrical section.
These variables are denoted by x1, x2, x3 and x4, respectively. The objective
function to be minimized is the total cost, including the material and form-
ing costs expressed in the first two terms, and the welding cost in the last

An interval partitioning approach for continuous constrained optimization 17

Fig. 5. Pressure vessel design.

two terms. The first constraint restricts the minimum shell thickness and the
second one, the spherical head thickness. The 3rd and 4th constraints repre-
sent minimum volume required and the maximum shell length of the tank,
respectively. However, the last constraint is redundant due to the given search
domain. The original model for this application is again a discrete constrained
optimization problem. The continuous model is provided below.

Maximize f = −(0.6224x1x3x4 + 1.7781x1x
2
3 + 3.1661x2

1x4 + 19.84x2
1x3)

subject to:

−x1 + 0.0193x3 ≤ 0,

−x2 + 0.00954x3 ≤ 0,

(−πx2
3x4 − 4πx3

3/3)/1296000 + 1 ≤ 0, and

x4 − 240 ≤ 0.

The search space is: x1 = [1.125, 2], x2 = [0.625, 2], x3 = [40, 60],
x4 = [40, 120]. Hsu et. al [HWY03] list the reported optimal costs obtained
by different formulations as given in Table 1. The least cost reported by IIR
for designing a pressure vessel subjected to the given constraints is 7198.006.
Other solvers report the same objective function value.

18 Chandra Sekhar Pedamallu, Linet Özdamar, and Tibor Csendes

Table 1. List of the reported optimal costs obtained by different formulations

Problem Formulation Reported optimal solution Reference

Continuous -7198.01 [HWY03]
Discrete -7442.02 [HWY03]
Discrete -8129.14 [San88]
Mixed discrete -7198.04 [KK94]

3. Simplified Alkylation Process [BLW80, Pri]

This model describes a simplified alkylation process. The nonlinearities
are bounded in a narrow range and introduce no additional computational
burden.

The design variables for the simplified alkylation process are olefins feed,
isobutane recycle, acid feed, alkylate yield, isobutane makeup, acid strength,
octane number, iC4 olefin ratio, acid dilution factor, F4 performance number,
alkyate error, octane error, acid strength error, and F4 performance number
error. The objective function maximizes profit per day. The constraints repre-
sent alkylate volumetric shrinkage equation, acid material balance, isobutane
component balance, alkylate definition, octane number definition, acid dilu-
tion factor definition, and F4 performance number definition. The model is
provided below.

Maximize f = 5.04x3x4 + 0.35x13 + 3.36x14 − 6.3x1x2

subject to:

x1 − 0.81967213114754101x3 − 0.81967213114754101x14 = 0,

−3x2 + x8x12 = −1.33,

22.2x8 + x7x11 = 35.82 (acid material balance),

−0.325x5 − 0.01098x6 + 0.00038x2
6 + x2x10 = 0.57425,

0.98x4 − x5(x4 + 0.01x1x7) = 0,

x1x9 − x3(0.13167x6 − 0.0067x2
6 + 1.12) = 0,

10x13 + x14 − x3x6 = 0 (isobutane component balance).

The search space is: x1 = [1, 5], x2 = [0.9, 0.95], x3 = [0, 2], x4 = [0, 1.2],
x5 = [0.85, 0.93], x6 = [3, 12], x7 = [1.2, 4], x8 = [1.45, 1.62], x9 = [0.99, 1.0̇1̇],
x10 = [0.99, 1.0̇1̇], x11 = [0.9, 1.112], x12 = [0.99, 1.0̇1̇], x13 = [0, 1.6],

An interval partitioning approach for continuous constrained optimization 19

x14 = [0, 2]. The optimal solution for alkylation process is 1.765.

4. Stratified Sample Design [Pri]

The problem is to find a sampling plan that minimizes the related cost
and yields variances of the population limited by an upper bound.

Maximize f = −(x1 + x2 + x3 + x4)

subject to

0.16/x1 + 0.36/x2 + 0.64/x3 + 0.64/x4 − 0.010085 ≤ 0,

4/x1 + 2.25/x2 + 1/x3 + 0.25/x1 − 0.0401 ≤ 0.

The search space is x1 = [100, 400000], x2 = [100, 300000], x3 = [100,
200000], and x4 = [100, 100000]. The optimum value for this problem is -
725.479.

5. Robot [Pri, BFG87]

This model is designed for the analytical trajectory optimization of a robot
with seven degrees of freedom.

Maximize f = −((x1 − x8)2 + (x2 − x9)2 + (x3 − x10)2 + (x4 − x11)2+
(x5 − x12)2 + (x6 − x13)2 + (x7 − x14)2)

subject to

cosx1 + cosx2 + cos x3 + cos x4 + cos x5 + cos x6 + 0.5 ∗ cos x7 = 4,

sin x1 + sin x2 + sin x3 + sin x4 + sin x5 + sin x6 + 0.5 ∗ sin x7 = 4.

The search space is xi = [−10, 10], i = 1, 2, 3, 4, . . . , 14. The optimal solu-
tion for this problem is 0.0.

4 Numerical Results

The numerical results are provided in Table 2. We compare IP results
with five different solvers that are linked to the commercial software GAMS
(www.gams.com) and FSQP [ZT96, LZT97], the code was provided by AEM
[Aem]. The solvers used in this comparison are BARON [Sah03], Conopt
[Dru96], LGO [Pin97], Minos [MS87], and Snopt [GMS97].

For each application we report the absolute deviation from the global
optimum obtained at the end of the run and the CPU time necessary for each

20 Chandra Sekhar Pedamallu, Linet Özdamar, and Tibor Csendes

run in new Standard Time Units (STU, [SNSVN02] 105 times as defined in
[TZ89]). All runs were executed on a PC with 256 MB RAM, 2.4 GHz P4
Intel CPU, on Windows platform. The IP code was developed with Visual
C++ 6.0 interfaced with the PROFIL interval arithmetic library [Knu94] and
FSQP. One new STU is equivalent to 229.819 seconds on our machine. GAMS
solvers were run until each solver terminates on its own without restricting
the CPU time used or the number of iterations made. FSQP was run with a
maximum number of iterations allowed, that is 100 in this case. However, in
these applications FSQP never reached this iteration limit. IP was run until
no improvement in the CLB was obtained as compared with the previous
stage of the search tree. However, if a feasible solution has not been found
yet, the stopping criterion became the least feasibility degree of uncertainty,
INFY .

In Table 2, we report additional information for IP . For each application,
we report the number of tree stages where IP stops, the number of times
FSQP is invoked, the average number of variables partitioned in parallel for a
parent box (the maximum and minimum numbers are also indicated in paren-
thesis), and the number of function calls invoked outside FSQP. We provide
two summaries of results obtained excluding and including the robot applica-
tion. The reason for it is that BARON is not enabled to solve trigonometric
models.

When we analyze the results, we observe that Snopt identifies the optimum
solution for four of the applications excluding the robot problem. However, its
performance is inferior for the robot problem as compared to IP and FSQP.
For the robot application, FSQP identifies the global optimum solution in the
initial box itself (stage zero in IP). That is why IP stops at the first stage.
The performance of the local optimizers, Minos and Conopt, is significantly
inferior in this problem. In the pressure vessel and planar truss applications,
all GAMS solvers, IP and FSQP identify the global optimum with short CPU
times (IP and BARON take longer CPU time). For the Alkyl problem, Minos
is stuck at a local stationary point while BARON and IP take longer CPU
times. In the Sample application, LGO does not converge and FSQP ends up
with a very inferior solution. On the other hand, IP runs for 6 tree stages and
results in an absolute deviation that is comparable with those of BARON,
Conopt and Minos.

When the final summary of the results is analyzed, we observe that IP ’s
performance is as good as BARON’s (which is a complete and reliable solver)
in identifying the global optimum and regarding CPU time. The use of FSQP
in IP (rather than the Generalized Reduced Gradient local search procedure
available in BARON) becomes an advantage for IP in the solution of the
robot problem. Furthermore, IP does not have any restrictions in dealing with
trigonometric functions. The impact of interval partitioning on performance is
particularly observed in the Sample application where FSQP fails to converge.
For these applications, the number of tree stages that IP has to run for is quite
small (two) except for the Sample problem. The average number of variables

An interval partitioning approach for continuous constrained optimization 21

Table 2. Comparison of results obtained. The problem names (global optimum val-
ues) are Pressure Vessel (-7198.006), Planar Truss (-176645.373), Alkyl (1.765), and
Sample (-725.479), respectively. For the IIR method the number of stages, FSQP
calls, and the average number of variables in parallel (maximal/minimal), and the
number of function calls were (2, 18, 3.04/4.2, 402), (2, 27, 3/4.2, 257), (2, 631,
4.04/5.3, 8798), and (6, 917, 3.56/4.3, 12000), respectively. The summary of the av-
erage results for the first 4 problems is: for the number of stages is 3.000, the number
of FSQP calls is 398.250, and the average number of function calls is 5364.25. For
the 5., robot optimization the global optimum was zero, and the efficiency measures
(1, 1, 2.25/3.2, 62). The final summary provides the following average figures: the
number of stages is 2.600, the number of FSQP calls is 318.800, and the average
number of function calls is 4303.800.

Probl. Dim. Performance IIR FSQP Baron Conopt LGO Minos Snopt

Deviation 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 4 CPU(STU) 0.000 0.000 0.001 0.000 0.000 0.000 0.000

Deviation 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 4 CPU(STU) 0.001 0.000 0.001 0.000 0.000 0.000 0.000

Deviation 0.000 0.000 0.000 0.000 0.000 1.765 0.000
3 14 CPU(STU) 0.263 0.000 0.292 0.000 0.003 0.000 0.000

Deviation 1.200 26706.5 1.158 1.201 ∞ 1.168 0.000
4 4 CPU(STU) 0.056 0.000 0.000 0.000 0.002 0.000 0.000

Summary Avg. deviation 0.300 6676.625 0.290 0.300 0.000 0.733 0.000
Std. dev. for it 0.600 13353.25 0.579 0.601 0.000 0.881 0.000
Avg. CPU time 0.080 0.000 0.073 0.000 0.001 0.000 0.000
best solutions 3 3 3 3 3 2 4
unsolved probl. 0 0 0 0 1 0 0

Deviation 0.000 0.000 NA 27.1 5.463 343.022 13.391
5 14 CPU(STU) 0.000 0.000 0.000 0.046 0.001 0.000

Final summ. Avg. deviation 0.240 5341.300 0.290 5.659 1.366 69.191 2.678
Std. dev. for it 0.537 11943.510 0.579 11.994 2.732 153.078 5.989
Avg. CPU time 0.064 0.000 0.073 0.000 0.010 0.000 0.000
best solutions 4 4 3 3 3 2 4
unsolved probl. 0 0 1 0 1 0 0

22 Chandra Sekhar Pedamallu, Linet Özdamar, and Tibor Csendes

partitioned in parallel in IP varies between 2 and 4. The dynamic parallelism
imposed by the weighting method seems to be effective as it is observed that
different scales of parallelism are adopted for different applications.

5 Conclusion

A new interval partitioning approach (IP) is proposed for solving constrained
optimization applications. This approach has two supportive features: a flex-
ible tree search management strategy and a new variable selection rule for
partitioning parent boxes. Furthermore, the proposed IP method is inter-
faced with the local search FSQP that is invoked when no improvement is
detected regarding the area of disposed boxes. FSQP is capable of identifying
feasible stationary points quickly within the restricted areas of boxes.

The tree management strategy proposed here can also be used in non-
interval partitioning algorithms such as BARON and LGO. It is effective in
the sense that it allows going deeper into selected promising parent boxes while
providing a larger perspective on how promising a parent box is by comparing
it to all other boxes available in the box list of the current stage. The proposed
variable selection rule is able to make an inference related to the pair of vari-
ables that have most impact on the uncertainty of a box’s potential to contain
feasible and optimal solutions. By partitioning the selected maximum impact
variables these uncertainties are reduced in the immediate sibling boxes after
the parent is partitioned. The latter results in earlier disposal of boxes due to
their sub-optimality and infeasibility.

This whole framework enhances the convergence speed of the interval par-
titioning algorithm in the solution of COP problems. In the numerical results
it is demonstrated that the proposed IP can compete with available commer-
cial solvers on several COP applications. The methodology developed here
is generic and can be applied to other areas of global optimization such as
the continuous Constraint Satisfaction Problem (CSP) and box-constrained
global optimization.

Acknowledgement. The present work has been partially supported by the grants
OTKA T 048377, and T 046822. We wish to thank Professor Andre Tits (Electrical
Engineering and the Institute for Systems Research, University of Maryland, USA)
for providing the source code of CFSQP.

References

[Aem] www.aemdesign.com/FSQPmanyobj.htm
[AH83] Alefeld, G. and Herzberger, J.: Introduction to Interval Computations. Aca-

demic Press Inc. New York, USA(1983)

An interval partitioning approach for continuous constrained optimization 23

[AMF95] Androulakis, I.P., Maranas, C. D., and Floudas, C.A.: AlphaBB: A Global
Optimization Method for General Constrained Nonconvex Problems. Journal
of Global Optimization, 7, 337–363 (1995)

[AS00] Al-Khayyal,F.A., and Sherali, H. D.: On Finitely Terminating Branch-and-
Bound Algorithms for Some Global Optimization Problems. SIAM Journal on
Optimization, 10, 1049–1057 (2000)

[BEG94] Ben-Tal, A., Eiger, G., and Gershovitz, V.: Global Optimization by Re-
ducing the Duality Gap. Mathematical Programming, 63, 193–212 (1994)

[BFG87] Benhabib, B., Fenton, R.G., and Goldberg, A. A.: Analytical trajectory
optimization of seven degrees of freedom redundant robot. Transactions of the
Canadian Society for Mechanical Engineering, 11, 197–200 (1987)

[BHR92] Burkard, R.E., Hamacher, H., and Rote, G.: Sandwich approximation of
univariate convex functions with an application to separable convex program-
ming. Naval Research Logistics, 38, 911–924 (1992)

[BLW80] Berna, T., Locke, M., and Westerberg, A. W.: A New Approach to Op-
timization of Chemical Processes. American Institute of Chemical Engineers
Journal, 26, 37–43 (1980)

[BMV94] Benhamou, F., McAllester, D. and Van Hentenryck, P.: CLP(Intervals)
Revisited. Proc. of ILPS’94, International Logic Programming Symposium,
pp. 124-138, (1994)

[CGC00] Casado, L.G., I. Garćıa, and T. Csendes: A new multisection technique in
interval methods for global optimization. Computing, 65, 263-269, (2000)

[CGT94] Conn, A. R., Gould, N., and Toint, Ph. L.: A Note on Exploiting Structure
when using Slack Variables. Mathematical Programming, 67, 89–99 (1994)

[CR97] Csendes, T. and Ratz, D.: Subdivision direction selection in interval methods
for global optimization, SIAM J. on Numerical Analysis 34, 922-938 (1997)

[DNS97] Dallwig, S., Neumaier, A., and Schichl, H.: GLOPT - A Program for Con-
strained Global Optimization. In: Bomze, I. M., Csendes, T., Horst, R., and
Pardalos, P. M.,(eds) Developments in Global Optimization. pp. 19-36, Kluwer,
Dordrecht (1997)

[Dru96] Drud, A. S.: CONOPT: A System for Large Scale Nonlinear Optimization.
Reference Manual for CONOPT Subroutine Library, ARKI Consulting and
Development A/S, Bagsvaerd, Denmark (1996)

[FGW02] Forsgren, A., Gill, P. E., and Wright M. H.: Interior methods for nonlinear
optimization. SIAM Review., 44, 525–597 (2002)

[FV93] Floudas, C.A., and Visweswaran, V.: Primal-relaxed dual global optimiza-
tion approach. J. Opt. Th. Appl., 78, 187–225 (1993)

[GMS97] Gill, P. E., Murray, W., and Saunders, M. A.: SNOPT: An SQP algorithm
for large-scale constrained optimization. Numerical Analysis Report 97-2, De-
partment of Mathematics, University of California, San Diego, La Jolla, CA
(1997)

[Han92] Hansen, E.R.: Global Optimization Using Interval Analysis. Marcel Dekker,
New York (1992)

[HJL92] Hansen, P., Jaumard, B., and Lu, S.: Global Optimization of Univariate
Lipschitz Functions: I. Survey and Properties. Mathematical Programming,
55, 251–272 (1992)

[HS80] Hansen, E., and Sengupta, S.: Global constrained optimization using interval
analysis. In: Nickel, K. L., (eds) Interval Mathematics, Academic Press, New
York (1980)

24 Chandra Sekhar Pedamallu, Linet Özdamar, and Tibor Csendes

[HTD92] Horst, R., Thoai, N.V., and De Vries, J.: A New Simplicial Cover Tech-
nique in Constrained Global Optimization. J. Global Opt., 2, 1–19 (1992)

[HW93] Hansen, E., and Walster, G. W.: Bounds for Lagrange Multipliers and Op-
timal Points. Comput. Math. Appl., 25, 59 (1993)

[HWY03] Hsu, Y-L., Wang, S-G., and Yu, C-C.: A sequential approximation method
using neural networks for engineering design optimization problems. Engineer-
ing Optimization, 35, 489–511 (2003)

[Kea91] Kearfott R.B.: Decompostion of arithmetic expressions to improve the be-
haviour of interval iteration for nonlinear systems. Computing, 47, 169–191
(1991)

[Kea94] Kearfott R.B.: On Verifying Feasibility in Equality Constrained Optimiza-
tion Problems. preprint (1994)

[Kea96a] Kearfott, R. B.: A Review of Techniques in the Verified Solution of Con-
strained Global Optimization Problems. In: Kearfott, R. B. and Kreinovich, V.
(eds) Applications of Interval Computations, Kluwer, Dordrecht, Netherlands,
pp. 23–60 (1996a)

[Kea96b] Kearfott, R. B.: Test Results for an Interval Branch and Bound Algo-
rithm for Equality-Constrained Optimization. In: Floudas, C., and Pardalos,
P., (eds.) State of the Art in Global Optimization: Computational Methods
and Applications, Kluwer, Dordrecht, Netherlands, pp. 181–200 (1996b)

[Kea96c] Kearfott, R. B.: Rigorous global search: continuous problems. Kluwer, Dor-
drecht, (1996)

[Kea03] Kearfott, R. B.: An overview of the GlobSol Package for Verified Global
Optimization. talk given for the Department of Computing and Software, Mc-
Master University, Ontario, Canada (2003)

[Kea04] Kearfott, R. B.: Empirical Comparisons of Linear Relaxations and Alter-
nate Techniques in Validated Deterministic Global Optimization. Optimization
Methods and Software, accepted, (2004)

[Kea05] Kearfott, R. B.: Improved and Simplified Validation of Feasible Points:
Inequality and Equality Constrained Problems. Mathematical Programming,
submitted,(2005)

[KK94] Kannan, B. k., and Kramer, S. N.: An augmented Lagrange multiplier based
method for mixed integer discrete continuous optimization and its applications
to mechanical design. Journal of Mechanical Design, 116, 405–411 (1994)

[Knu94] Knuppel, O.: PROFIL/BIAS - A Fast Interval Library. Computing, 53,
277–287 (1994)

[Kor85] Korf, R.E.: Depth-first iterative deepening: An optimal admissible tree
search. Artificial Intelligence, 27, 97–109 (1985)

[LZT97] Lawrence, C. T., Zhou, J. L., and Tits, A. L.: User’s Guide for CFSQP
version 2.5: A Code for Solving (Large Scale) Constrained Nonlinear (min-
imax) Optimization Problems, Generating Iterates Satisfying All Inequality
Constraints. Institute for Systems Research, University of Maryland, College
Park, MD (1997)

[Mar03] Markót, M. C.: Reliable Global Optimization Methods for Constrained
Problems and Their Application for Solving Circle Packing Problems. PhD
dissertation, University of Szeged, Hungary (2003)

[MFCC05] Markót, M. C., Fernandez, J., Casado, L.G., and Csendes, T.: New inter-
val methods for constrained global optimization. Mathematical Programming,
accepted, (2005)

An interval partitioning approach for continuous constrained optimization 25

[MNWLG01] Morales, J. L., Nocedal, J., Waltz, R., Liu, G., and Goux, J.P.: Assess-
ing the Potential of Interior Methods for Nonlinear Optimization. Optimization
Technology Center, Northwestern University, USA (2001)

[Moo66] Moore, R. E.: Interval anlaysis. Prentice-Hall, Englewood Cliffs, New Jer-
sey (1966)

[MS87] Murtagh, B. A., and Saunders, M. A.: MINOS 5.0 User’s Guide. Report SOL
83-20, Department of Operations Research, Stanford University, USA (1987)

[Pin97] Pintér, J. D.: LGO- A program system for continuous and Lipschitz global
optimization. In: Bomze, I. M., Csendes, T., Horst, R., and Pardalos, P. M.
(eds) Developments in Global Optimization, pp. 183-197, Kluwer Academic
Publishers, Boston/Dordrecht/London, (1997)

[PR02] Pardalos, P. M., and Romeijn, H. E.: Handbook of Global Optimiza-
tion Volume 2. Nonconvex Optimization and Its Applications, Springer,
Boston/Dordrecht/London (2002)

[Pri] PrincetonLib.: Princeton Library of Nonlinear Programming Models.
http://www.gamsworld.org/performance/princetonlib/princetonlib.htm.

[Rob73] Robinson, S. M.: Computable error bounds for nonlinear programming.
Mathematical Programming, 5, 235–242 (1973)

[RR88] Ratschek, H., and Rokne, J.: New computer Methods for Global Optimiza-
tion. Ellis Horwood, Chichester (1988)

[RC95] Ratz, D., Csendes, T.: On the selection of Subdivision Directions in Interval
Branch-and-Bound Methods for Global Optimization. J. Global Optimization,
7, 183–207 (1995)

[RS95] Ryoo, H. S. and Sahinidis, N. V.: Global optimization of nonconvex NLPs
and MINLPs with applications in process design. Computers and Chemical
Engineering, 19, 551–566 (1995)

[RS96] Ryoo, H. S., and Sahinidis, N. V.: A branch-and-reduce approach to global
optimization. Journal of Global Optimization, 8, 107–139 (1996)

[Sah96] Sahinidis, N. V.: BARON: A general purpose global optimization software
package. Journal of Global Optimization, 8, 201–205 (1996)

[Sah03] Sahinidis, N. V.: Global Optimization and Constraint Satisfaction: The
Branch-and-Reduce Approach. In: Bliek, C., Jermann, C., and Neumaier,
A.,(eds.) COCOS 2002, LNCS, 2861, 1–16 (2003)

[San88] Sandgren, E.: Nonlinear integer and discrete programming in mechanical
design. Proceeding of the ASME Design Technology Conference, Kissimmee,
FL, 95–105 (1988)

[SNSVN02] Scherbina, O., Neumaier, A., Sam-Haroud, D., Vu, X.-H., and Nguyen,
T.-V.: Benchmarking Global Optimization and Constraint Satisfaction Codes.
Global Optimization and Constraint Satisfaction: First International Work-
shop on Global Constraint Optimization and Constraint Satisfaction, COCOS
2002, Valbonne-Sophia Antipolis, France (2002)

[SP99] Smith, E. M. B., and Pantelides, C. C.: A Symbolic reformulation/spatial
branch and bound algorithm for the global optimization of nonconvex
MINLP’s. Computers and Chemical Eng., 23, 457–478 (1999)

[TS02] Tawarmalani, M., and Sahinidis, N. V.: Convex extensions and envelopes
of lower semi-continuous functions. Mathematical Programming, 93, 247–263
(2002)

[TS04] Tawarmalani, M., and Sahinidis, N. V.: Global optimization of mixed-integer
nonlinear programs: A theoretical and computational study. Mathematical
Programming, 99, 563–591 (2004)

26 Chandra Sekhar Pedamallu, Linet Özdamar, and Tibor Csendes

[TZ89] Törn, A., and Žilinskas, A.: Global Optimization. (Lecture Notes in Com-
puter Science No. 350, G. Goos and J. Hartmanis, Eds.) Springer, Berlin (1989)

[TTT85] Tuy, H., Thieu, T.V., and Thai. N.Q.: A Conical Algorithm for Globally
Minimizing a Concave Function over a Closed Convex Set. Mathematics of
Operations Research, 10, 498 (1985)

[Wol94] Wolfe, M. A.: An Interval Algorithm for Constrained Global Optimization.
J. Comput. Appl. Math., 50, 605–612 (1994)

[ZT96] Zhou, J. L., and Tits, A. L.: An SQP Algorithm for Finely Discretized Con-
tinuous Minimax Problems and Other Minimax Problems with Many Objective
Functions. SIAM J. on Optimization, 6, 461–487 (1996)

[ZB03] Zilinskas J., and Bogle, I.D.L.: Evaluation ranges of functions using balanced
random interval arithmetic. Informatica, 14, 403-416 (2003)

