C-varieties and first-order logic with modular predicates

Laura Chaubard Joint work with J.E. Pin and H. Straubing

LIAFA, Paris 7 and CNRS

Szeged, October 2006

æ

伺 ト イヨト イヨト

Part I

Varieties and C-Varieties

Laura Chaubard Joint work with J.E. Pin and H. Straubing C-varieties and first-order logic with modular predicates

Eilenberg's varieties theory aims at classifying rational languages according to the properties of their (ordered) **syntactic monoid**.

 \mathcal{C} -varieties \longrightarrow syntactic morphism

Eilenberg's varieties theory aims at classifying rational languages according to the properties of their (ordered) **syntactic monoid**.

$\mathcal{C}\text{-varieties} \longrightarrow \text{syntactic morphism}$

• Boolean combinations of languages of the form

 $a_0^+a_1^+\cdots a_n^+$, avec $a_0,\ldots a_n$ in A

• A language L is stutter-invariant iff, for all letter a,

$a\sim_L a^2$

Problem: Given the syntactic monoid of a language, one cannot distinguish elements that are congruence classes of **letters**.

Boolean combinations of languages of the form

$$a_0^+a_1^+\cdots a_n^+$$
, avec $a_0,\ldots a_n$ in A

• A language L is stutter-invariant iff, for all letter a,

 $a \sim_L a^2$

Problem: Given the syntactic monoid of a language, one cannot distinguish elements that are congruence classes of **letters**.

Boolean combinations of languages of the form

 $a_0^+a_1^+\cdots a_n^+$, avec $a_0,\ldots a_n$ in A

• A language L is stutter-invariant iff, for all letter a,

 $a \sim_L a^2$

Problem: Given the syntactic monoid of a language, one cannot distinguish elements that are congruence classes of **letters**.

Let $\mathcal C$ be a class of morphisms of the form $f: A^* \to B^*$, closed under composition.

A C-variety of languages is a class of rational languages

closed under Boolean operations,

- closed under residuals,
- So for any morphism $f: A^* → B^*$ that belongs to the class C, and $L ⊆ B^*$,

$$L \in \mathcal{V} \Rightarrow f^{-1}(L) \in \mathcal{V}$$

We consider certain classes of morphisms of the form

 $f: A^* \to B^*$

closed under composition, and containing all length-preserving morphisms.

- *Ip* is the class of all **length-preserving** morphisms, i.e morphisms φ : A* → B* such that φ(A) ⊆ B
- *ne* is the class of all **non-erasing** morphisms, i.e $\varphi(A) \subseteq B^+$,
- *Im* is the class of all **length-multiplying** morphisms, i.e there exists an integer k > 0, such that $\varphi(A) \subseteq B^k$,
- all is the class of all morphisms,

Let C be one of the classes of morphisms defined before. A **positive** C-variety of languages is a class of rational languages

- closed under finite union and intersection,
- closed under residuals,
- \bigcirc closed under inverse of morphisms from C.

Stutter-invariant languages form an *lp*-variety of languages.

② Languages of generalized star-height ≤ n form an *lp*-variety of languages.

• = • < =</p>

- Stutter-invariant languages form an *lp*-variety of languages.
- ② Languages of generalized star-height ≤ n form an *lp*-variety of languages.

• All finite unions of languages of the form

$A^*a_1A^*\cdots a_kA^*$

with $k \ge 0$ and a_1, \ldots, a_k letters from A, form a positive *all*-variety of languages denoted J^+ .

 Boolean combination of languages of J⁺ form an *all*-variety of languages denoted J. • All finite unions of languages of the form

 $A^*a_1A^*\cdots a_kA^*$

with $k \ge 0$ and a_1, \ldots, a_k letters from A, form a positive *all*-variety of languages denoted J^+ .

 Boolean combination of languages of J⁺ form an *all*-variety of languages denoted J.

- A stamp is a onto morphism from a finitely-generated free monoid onto a finite monoid φ : A^{*} → M.
- The syntactic stamp of a rational language L ⊆ A* is the natural morphism

 $\varphi: A^* \to M(L)$

 The ordered syntactic stamp of a rational language L ⊆ A* is the natural morphism

 $\varphi: A^* \to (M(L), \leqslant_L)$

伺い イラト イラト

- A stamp is a onto morphism from a finitely-generated free monoid onto a finite monoid φ : A^{*} → M.
- The syntactic stamp of a rational language L ⊆ A* is the natural morphism

 $\varphi: A^* \to M(L)$

 The ordered syntactic stamp of a rational language L ⊆ A* is the natural morphism

$$\varphi: A^* \to (M(L), \leq_L)$$

 Consider the class of languages whose syntactic stamp is of the form

$$\varphi: A^* \to G$$

where G is a cyclic group and $\varphi(a) = \varphi(b)$ for all letters a and b.

This class forms a *Im*-variety of languages denoted **MOD**.

• MOD is the Boolean algebra generated by languages of the form

 $(A^n)^*A^i$, for $0 \leq i < n$

 Consider the class of languages whose syntactic stamp is of the form

$$arphi: \mathcal{A}^*
ightarrow \mathcal{G}$$

where G is a cyclic group and $\varphi(a) = \varphi(b)$ for all letters a and b.

This class forms a *Im*-variety of languages denoted **MOD**.

• MOD is the Boolean algebra generated by languages of the form

$$(A^n)^*A^i$$
, for $0 \leq i < n$

• Let $\varphi : A^* \to M$ be a (ordered) stamp. The set $\varphi(A)$ is an element of the monoid $\mathcal{P}(M)$ of subsets of M. Therefore, it has a unique idempotent power s such that

 $\varphi(A)^s = \varphi(A)^{2s}$

- The set φ(A)^s ∪ {1} is a submonoid of M called the (ordered) stable submonoid of the stamp φ.
- s is the stability index of φ .

Part II

Logic on words

Laura Chaubard Joint work with J.E. Pin and H. Straubing C-varieties and first-order logic with modular predicates

< E

We consider the first-order logic on words with

- classical predicates on letters positions $(a)_{a \in A}$,
- the usual order on positions <.

 $\exists x \exists y \ (x < y) \land \mathbf{a} x \land \mathbf{b} y$

Interpretation on a word *u*:

There exist two integers x < y such that, u contains an a in position x and a b in position y.

The set of all words satisfying this formula on a finite alphabet A is the language

 $A^*aA^*bA^*$

Logic with modular predicates: FO[< + MOD]

To the logic defined before, we add two new symbols: the modular predicates

• A unary numerical predicate,

MOD_r^d

interpreted as the set of integers that are congruent to r modulo d.

• A constant symbol *m* interpreted as the last position in a word.

An example: The formula

 $\exists x \mod_2^3 x \wedge \mathbf{b} x \wedge \operatorname{\mathsf{mod}}_1^2 m$

defines the language $(A^3)^*AbA^* \cap (A^2)^*A$.

Logic with modular predicates: FO[< + MOD]

To the logic defined before, we add two new symbols: the modular predicates

• A unary numerical predicate,

MOD_r^d

interpreted as the set of integers that are congruent to r modulo d.

• A constant symbol *m* interpreted as the last position in a word.

An example: The formula

 $\exists x \mod_2^3 x \wedge \mathbf{b} x \wedge \mod_1^2 m$

defines the language $(A^3)^*AbA^* \cap (A^2)^*A$.

Theorem (McNaughton-Papert 71, Schützenberger 65)

A language is definable in FO[<] iff its syntactic semigroup is aperiodic.

Theorem (Barrington, Compton, Straubing, Thérien 92)

A language is definable in FO[< + MOD] iff the stable subsemigroup of its syntactic stamp is aperiodic.

• Σ_1 denotes the set of existential formulas:

$$\exists x_1 \cdots \exists x_n \varphi(x_1, \cdots x_n)$$

where φ is quantifier-free.

• $\mathcal{B}\Sigma_1$ denotes the set of Boolean combinations of Σ_1 -formulas.

Given a class of languages \mathcal{L} , the polynomial closure $\mathsf{Pol}(\mathcal{L})$ of \mathcal{L} is the class of finite unions of languages of the form

 $L_0a_1L_1a_2\cdots a_kL_k$

with $L_0, \ldots, L_k \in \mathcal{L}$ and a_1, \ldots, a_k letters.

Proposition

A language is definable in $\Sigma_1[<+MOD]$ if and only if it belongs to $Pol(\mathcal{M}od)$.

Theorem

A language belongs to Pol(Mod) if and only if the stable ordered monoid of its ordered syntactic stamp satisfies the identity $x \leq 1$.

Corollary

The class $\Sigma_1[<+MOD]$ is decidable.

Theorem (Thomas 82, Perrin-Pin 86)

A language is definable in $\Sigma_1[<]$ iff its ordered syntactic monoid satisfies the identity $x \leq 1$.

- 4 回 ト - 4 回 ト

Theorem

A language belongs to Pol(Mod) if and only if the stable ordered monoid of its ordered syntactic stamp satisfies the identity $x \leq 1$.

Corollary

The class $\Sigma_1[< + MOD]$ is decidable.

Theorem (Thomas 82, Perrin-Pin 86)

A language is definable in $\Sigma_1[<]$ iff its ordered syntactic monoid satisfies the identity $x \leq 1$.

・ 同 ト ・ 三 ト ・ 三

Part III

Wreath Product

Laura Chaubard Joint work with J.E. Pin and H. Straubing C-varieties and first-order logic with modular predicates

$M,N \to M \circ N$

• Crucial operation on monoids that "codes" for composition of sequential functions.

• Essential tool to decompose semigroups:

Theorem (Krohne-Rhodes 64)

Any finite semigroup divides an alternating wreath product of finite groups and aperiodic semigroups.

$M,N \to M \circ N$

- Crucial operation on monoids that "codes" for composition of sequential functions.
- Essential tool to decompose semigroups:

Theorem (Krohne-Rhodes 64)

Any finite semigroup divides an alternating wreath product of finite groups and aperiodic semigroups.

$\mathbf{V},\mathbf{W}\rightarrow\mathbf{V}\ast\mathbf{W}$

- Tool: Given a description of languages belonging to V and W, the wreath product principle provides a description of languages in V * W.
- Problem: If V, W are both decidable varieties, is V * W decidable? Answer: NO!

It's a very technical operation!

Let \mathbf{V}, \mathbf{W} be two C-varieties of stamps. A (\mathbf{V}, \mathbf{W}) -product is a stamp $\varphi : A^* \to M$ such that:

- (1) M is a submonoid of a wreath product $N \circ K$.
- (2) Let $\pi: \mathbb{N} \circ \mathbb{K} \to \mathbb{K}$ be the canonical projection. then the stamp $\pi \circ \varphi: \mathbb{A}^* \to \pi(\mathbb{M})$ is in \mathbb{W} .
- (3) Given a in A, one can write $\varphi(a) = (f_a, \pi \circ \varphi(a))$ where f_a is in N^K . now, define the stamp

$$\Phi: (K \times A)^* \to \operatorname{Im}(\Phi) \subseteq N$$

by
$$\Phi(k,a) = f_a(k)$$
.

Then Φ is required to be in **V**.

 $\bm{V}\ast\bm{W}$ is the class of all stamps that $\mathcal C\text{-divide}$ a $(\bm{V},\bm{W})\text{-product}.$

Wreath product on C-varieties

• Here, the wreath product will remain a "black box":

 $\textbf{V},\textbf{W}\rightarrow\textbf{V}\ast\textbf{W}$

- Nevertheless, the wreath product principle extends to *C*-varieties (Esik-Ito 03, Chaubard-Pin-Straubing 05).
- This new version of the wreath product principle yields

 $\mathsf{Pol}(\mathcal{M}od) = \mathbf{J}^+ * \mathbf{MOD}$

Whence

 $\Sigma_1[<+$ MOD $] = \mathbf{J}^+ * \mathbf{MOD}$

Wreath product on C-varieties

• Here, the wreath product will remain a "black box":

 $V, W \rightarrow V * W$

• Nevertheless, the wreath product principle extends to *C*-varieties (Esik-Ito 03, Chaubard-Pin-Straubing 05).

• This new version of the wreath product principle yields

 $Pol(Mod) = \mathbf{J}^+ * \mathbf{MOD}$

Whence

 $\Sigma_1[<+MOD] = \mathbf{J}^+ * \mathbf{MOD}$

Wreath product on C-varieties

• Here, the wreath product will remain a "black box":

 $V, W \rightarrow V * W$

- Nevertheless, the wreath product principle extends to \mathcal{C} -varieties (Esik-Ito 03, Chaubard-Pin-Straubing 05) .
- This new version of the wreath product principle yields

 $Pol(Mod) = J^+ * MOD$

Whence

 $\boldsymbol{\Sigma}_1[<+\text{mod}] = \boldsymbol{J}^+ * \boldsymbol{\mathsf{MOD}}$

Part IV

Deciding $\mathcal{B}\Sigma_1[<+MOD]$

Laura Chaubard Joint work with J.E. Pin and H. Straubing C-varieties and first-order logic with modular predicates

< ∃ >

A language is definable in $\mathcal{B}\Sigma_1[<]$ iff its syntactic monoid is in **J**.

Boolean combinations of languages in Pol(Mod).

The extended wreath product principle provides the following algebraic characterisation:

Theorem

A language is a Boolean combination of languages in Pol(Mod) iff its syntactic stamp belongs to the lm-variety J * MOD.

decidability???

A language is definable in $\mathcal{B}\Sigma_1[<]$ iff its syntactic monoid is in **J**.

Boolean combinations of languages in Pol(Mod).

The extended wreath product principle provides the following algebraic characterisation:

Theorem

A language is a Boolean combination of languages in Pol(Mod) iff its syntactic stamp belongs to the lm-variety J * MOD.

decidability???

A language is definable in $\mathcal{B}\Sigma_1[<]$ iff its syntactic monoid is in **J**.

Boolean combinations of languages in Pol(Mod).

The extended wreath product principle provides the following algebraic characterisation:

Theorem

A language is a Boolean combination of languages in Pol(Mod) iff its syntactic stamp belongs to the Im-variety J * MOD.

decidability???

A > < > > < >

A language is definable in $\mathcal{B}\Sigma_1[<]$ iff its syntactic monoid is in **J**.

Boolean combinations of languages in Pol(Mod).

The extended wreath product principle provides the following algebraic characterisation:

Theorem

A language is a Boolean combination of languages in Pol(Mod) iff its syntactic stamp belongs to the Im-variety J * MOD.

decidability???

Derived category

Given an integer n, let π_n : A^{*} → ℤ/nℤ be the stamp defined by

$$\pi_n(u) = |u| \mod n$$

 let φ : A^{*} → M be a stamp. We consider the relational morphism

$$\varphi_n = \pi_n \circ \varphi^{-1}$$

Derived category of φ_n

Consider the graph $C_n(\varphi)$ whose vertices are elements of $\mathbb{Z}/n\mathbb{Z}$ and whose edges are the triplets

$$(i, m, j)$$
 such that $j - i \in \varphi_n(m)$

"*m* has an inverse image by φ whose length is congruent to j - i modulo *n*."

The graph $C_n(\varphi)$ satisfies Knast's equation if for all pattern in $C_n(\varphi)$ of the form

we have

 $(m_1m_2)^{\omega}(m_3m_4)^{\omega} = (m_1m_2)^{\omega}m_1m_4(m_3m_4)^{\omega}$

A 35 A 4

Theorem (Chaubard-Pin-Straubing 06)

A stamp φ belongs to $\mathbf{J} * \mathbf{MOD}$ if and only if there exists a positive integer n such that $C_n(\varphi)$ satisfies Knast's equation.

This result is adapted (in two different ways!) from the derived category theorem on monoids.

Theorem

let φ be a stamp with stability index s. Then φ belongs to J * MOD if and only if $C_s(\varphi)$ satisfies Knast's equation.

Corollary

The class $\mathcal{B}\Sigma_1[<+MOD]$ is decidable.

Laura Chaubard Joint work with J.E. Pin and H. Straubing C-varieties and first-order logic with modular predicates

伺 ト く ヨ ト く ヨ ト

- We have proved decidability of both classes but we have no idea of their complexity!
- For Σ₁, we have *lm*-identities, but they do not translate easily into an algorithm.
- For $\mathcal{B}\Sigma_1$, we don't even have identities!
- Open and relevant question: If **V** is decidable, is **V** * **MOD** decidable?