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The main idea

Logic Languages

Algebra Decidability
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Part I

Varieties and C-Varieties
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Classify rational languages

Eilenberg’s varieties theory aims at classifying rational languages
according to the properties of their (ordered) syntactic monoid.

C-varieties −→ syntactic morphism
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Stutter-invariant languages

Boolean combinations of languages of the form

a
+
0 a

+
1 · · · a+

n
, avec a0, . . . an in A

A language L is stutter-invariant iff, for all letter a,

a ∼L a
2

Problem: Given the syntactic monoid of a language, one
cannot distinguish elements that are congruence classes of
letters.
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C-varieties of languages

Let C be a class of morphisms of the form f : A∗ → B∗, closed
under composition.
A C-variety of languages is a class of rational languages

1 closed under Boolean operations,

2 closed under residuals,

3 for any morphism f : A∗ → B∗ that belongs to the class C,
and L ⊆ B∗,

L ∈ V ⇒ f
−1(L) ∈ V
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The class C

We consider certain classes of morphisms of the form

f : A∗ → B∗

closed under composition, and containing all length-preserving
morphisms.

lp is the class of all length-preserving morphisms, i.e
morphisms ϕ : A∗ → B∗ such that ϕ(A) ⊆ B

ne is the class of all non-erasing morphisms, i.e ϕ(A) ⊆ B+,

lm is the class of all length-multiplying morphisms, i.e there
exists an integer k > 0, such that ϕ(A) ⊆ Bk ,

all is the class of all morphisms,
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Positive C-varieties of languages

Let C be one of the classes of morphisms defined before. A
positive C-variety of languages is a class of rational languages

1 closed under finite union and intersection,

2 closed under residuals,

3 closed under inverse of morphisms from C.
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Examples

1 Stutter-invariant languages form an lp-variety of languages.

2 Languages of generalized star-height 6 n form an lp-variety of
languages.
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Examples (2)

All finite unions of languages of the form

A∗a1A
∗ · · · akA

∗

with k > 0 and a1, . . . , ak letters from A, form a positive
all -variety of languages denoted J+.

Boolean combination of languages of J+ form an all -variety of
languages denoted J.
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A new syntactic invariant

A stamp is a onto morphism from a finitely-generated free
monoid onto a finite monoid ϕ : A∗ → M.

The syntactic stamp of a rational language L ⊆ A∗ is the

natural morphism

ϕ : A
∗ → M(L)

The ordered syntactic stamp of a rational language L ⊆ A∗

is the natural morphism

ϕ : A
∗ → (M(L), 6L)
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Example: the lm-variety MOD

Consider the class of languages whose syntactic stamp is of
the form

ϕ : A∗ → G

where G is a cyclic group and ϕ(a) = ϕ(b) for all letters a

and b.
This class forms a lm-variety of languages denoted MOD.

MOD is the Boolean algebra generated by languages of the
form

(An)∗Ai , for 0 6 i < n
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Stable submonoid

Let ϕ : A∗ → M be a (ordered) stamp. The set ϕ(A) is an
element of the monoid P(M) of subsets of M. Therefore, it
has a unique idempotent power s such that

ϕ(A)s = ϕ(A)2s

The set ϕ(A)s ∪ {1} is a submonoid of M called the (ordered)
stable submonoid of the stamp ϕ.

s is the stability index of ϕ.
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Part II

Logic on words
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Logic on words: FO[<]

We consider the first-order logic on words with

classical predicates on letters positions (a)a∈A,

the usual order on positions <.
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A formula in FO[<]

∃x∃y (x < y) ∧ ax ∧ by

Interpretation on a word u:

There exist two integers x < y such that, u contains an a in
position x and a b in position y .

The set of all words satisfying this formula on a finite alphabet A is
the language

A∗aA∗bA∗

Laura Chaubard Joint work with J.E. Pin and H. Straubing C-varieties and first-order logic with modular predicates



Logic with modular predicates: FO[< + MOD]

To the logic defined before, we add two new symbols: the modular
predicates

A unary numerical predicate,

MOD
d
r

interpreted as the set of integers that are congruent to r

modulo d .

A constant symbol m interpreted as the last position in a
word.

An example: The formula

∃x MOD
3
2x ∧ bx ∧ MOD

2
1m

defines the language (A3)∗AbA∗ ∩ (A2)∗A.
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First order

Theorem (McNaughton-Papert 71, Schützenberger 65)

A language is definable in FO[<] iff its syntactic semigroup is

aperiodic.

Theorem (Barrington, Compton, Straubing, Thérien 92)

A language is definable in FO[< + MOD] iff the stable

subsemigroup of its syntactic stamp is aperiodic.
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Fragments of first-order logic

Σ1 denotes the set of existential formulas:

∃x1 · · · ∃xnϕ(x1, · · · xn)

where ϕ is quantifier-free.

BΣ1 denotes the set of Boolean combinations of Σ1-formulas.
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Expressive power of Σ1[< + MOD]

Given a class of languages L, the polynomial closure Pol(L) of L is
the class of finite unions of langages of the form

L0a1L1a2 · · · akLk

with L0, . . . ,Lk ∈ L and a1, . . . , ak letters.

Proposition

A language is definable in Σ1[< + MOD] if and only if it belongs to

Pol(Mod).
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Decidability of Σ1[< + MOD]

Theorem

A language belongs to Pol(Mod) if and only if the stable ordered

monoid of its ordered syntactic stamp satisfies the identity x 6 1.

Corollary

The class Σ1[< + MOD] is decidable.

Theorem (Thomas 82, Perrin-Pin 86)

A language is definable in Σ1[<] iff its ordered syntactic monoid

satisfies the identity x 6 1.
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Part III

Wreath Product
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Wreath product on monoids

M,N → M ◦ N

Crucial operation on monoids that “codes“ for composition of
sequential functions.

Essential tool to decompose semigroups:

Theorem (Krohne-Rhodes 64)

Any finite semigroup divides an alternating wreath product of finite

groups and aperiodic semigroups.
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Wreath product on varieties

V,W → V ∗W

Tool: Given a description of languages belonging to V and W,
the wreath product principle provides a description of
languages in V ∗ W.

Problem: If V,W are both decidable varieties, is V ∗W

decidable?
Answer: NO!
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Wreath product on stamps

It’s a very technical operation!
Let V,W be two C-varieties of stamps. A (V,W)-product is a
stamp ϕ : A∗ → M such that:

(1) M is a submonoid of a wreath product N ◦ K .

(2) Let π : N ◦ K → K be the canonical projection. then the
stamp π ◦ ϕ : A∗ → π(M) is in W.

(3) Given a in A, one can write ϕ(a) = (fa, π ◦ ϕ(a)) where fa is
in NK . now, define the stamp

Φ : (K × A)∗ → Im(Φ) ⊆ N

by Φ(k, a) = fa(k).

Then Φ is required to be in V.

V ∗ W is the class of all stamps that C-divide a (V,W)-product.
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Wreath product on C-varieties

Here, the wreath product will remain a “black box“:

V,W → V ∗W

Nevertheless, the wreath product principle extends to
C-varieties (Esik-Ito 03, Chaubard-Pin-Straubing 05) .

This new version of the wreath product principle yields

Pol(Mod) = J+ ∗ MOD

Whence
Σ1[< + MOD] = J+ ∗MOD
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Part IV

Deciding BΣ1[< + MOD]
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Languages of BΣ1[< + MOD]

Theorem (Simon 72, Thomas 82)

A language is definable in BΣ1[<] iff its syntactic monoid is in J.

Boolean combinations of languages in Pol(Mod).

The extended wreath product principle provides the following
algebraic characterisation:

Theorem

A language is a Boolean combination of languages in Pol(Mod) iff

its syntactic stamp belongs to the lm-variety J ∗ MOD.

decidability???
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Derived category

Given an integer n, let πn : A∗ → Z/nZ be the stamp defined
by

πn(u) = |u| mod n

let ϕ : A∗ → M be a stamp. We consider the relational
morphism

ϕn = πn ◦ ϕ−1

A∗

M Z/nZ

ϕ πn

ϕn
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Derived category of ϕn

A∗

M Z/nZ

ϕ πn

ϕn

Consider the graph Cn(ϕ) whose vertices are elements of Z/nZ

and whose edges are the triplets

(i ,m, j) such that j − i ∈ ϕn(m)

”m has an inverse image by ϕ whose length is congruent to j − i

modulo n.”
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Knast’s equation

The graph Cn(ϕ) satisfies Knast’s equation if for all pattern in
Cn(ϕ) of the form

i j

m1

m3

m2

m4

we have

(m1m2)
ω(m3m4)

ω = (m1m2)
ωm1m4(m3m4)

ω
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Derived category theorem on stamps

Theorem (Chaubard-Pin-Straubing 06)

A stamp ϕ belongs to J ∗ MOD if and only if there exists a

positive integer n such that Cn(ϕ) satisfies Knast’s equation.

This result is adapted (in two different ways!) from the derived
category theorem on monoids.
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Decidability of BΣ1[< +MOD]

Theorem

let ϕ be a stamp with stability index s. Then ϕ belongs to

J ∗MOD if and only if Cs(ϕ) satisfies Knast’s equation.

Corollary

The class BΣ1[< + MOD] is decidable.
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Future work

We have proved decidability of both classes but we have no
idea of their complexity!

For Σ1, we have lm-identities, but they do not translate easily
into an algorithm.

For BΣ1, we don’t even have identities!

Open and relevant question: If V is decidable, is V ∗ MOD

decidable?
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