Trace languages and the variety **DA**

Manfred Kufleitner University of Stuttgart

September 30, 2006

 Mazurkiewicz (1977): A trace is partially ordered set of symbol occurrences

- Mazurkiewicz (1977): A trace is partially ordered set of symbol occurrences
- based on works of Keller (1973)

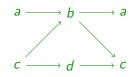
- Mazurkiewicz (1977): A trace is partially ordered set of symbol occurrences
- based on works of Keller (1973)
- Model for concurrency

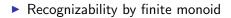
- Mazurkiewicz (1977): A trace is partially ordered set of symbol occurrences
- based on works of Keller (1973)
- Model for concurrency
- Generalization of words

- Mazurkiewicz (1977): A trace is partially ordered set of symbol occurrences
- based on works of Keller (1973)
- Model for concurrency
- Generalization of words
- ► A lot of research (combinatorics, logics, generalizations, ...). Overview in *The Book of Traces* (Diekert/Rosenberg 1995)

- Mazurkiewicz (1977): A trace is partially ordered set of symbol occurrences
- based on works of Keller (1973)
- Model for concurrency
- Generalization of words
- ► A lot of research (combinatorics, logics, generalizations, ...). Overview in *The Book of Traces* (Diekert/Rosenberg 1995)

word





- Recognizability by finite monoid
- Rational expressions with connected star (Ochmański 1985)

- Recognizability by finite monoid
- Rational expressions with connected star (Ochmański 1985)
- Asynchronous cellular automata (Zielonka 1987)

- Recognizability by finite monoid
- Rational expressions with connected star (Ochmański 1985)
- Asynchronous cellular automata (Zielonka 1987)
- Monadic second-order logic (Thomas 1990)

Recognizability by finite aperiodic monoid

- Recognizability by finite aperiodic monoid
- Star-free expressions (Guaiana/Restivo/Salemi 1992)

- Recognizability by finite aperiodic monoid
- Star-free expressions (Guaiana/Restivo/Salemi 1992)
- First-order logic (Thomas 1990)

- Recognizability by finite aperiodic monoid
- Star-free expressions (Guaiana/Restivo/Salemi 1992)
- First-order logic (Thomas 1990)
- Linear temporal logics (Ebinger 1994, Thiagarajan/Walukiewicz 1997, Diekert/Gastin 2005)

Recognizability by finite monoid in DA

- Recognizability by finite monoid in DA
- Unambiguous polynomials (Schützenberger 1976)

- Recognizability by finite monoid in DA
- Unambiguous polynomials (Schützenberger 1976)
- Polynomial and complement of a polynomial (Pin/Weil 1997)

- Recognizability by finite monoid in DA
- Unambiguous polynomials (Schützenberger 1976)
- Polynomial and complement of a polynomial (Pin/Weil 1997)
- $\Delta_2 = \Sigma_2 \cap \Pi_2$ first-order logic (Pin/Weil 1997)

- Recognizability by finite monoid in DA
- Unambiguous polynomials (Schützenberger 1976)
- Polynomial and complement of a polynomial (Pin/Weil 1997)
- $\Delta_2 = \Sigma_2 \cap \Pi_2$ first-order logic (Pin/Weil 1997)
- First-order logic with 2 variables (Thérien/Wilke 1998)

- Recognizability by finite monoid in DA
- Unambiguous polynomials (Schützenberger 1976)
- Polynomial and complement of a polynomial (Pin/Weil 1997)
- $\Delta_2 = \Sigma_2 \cap \Pi_2$ first-order logic (Pin/Weil 1997)
- First-order logic with 2 variables (Thérien/Wilke 1998)
- Unary temporal logic (Etessami/Vardi/Wilke 1997)

 $\triangleright \Sigma$ finite alphabet

- $\blacktriangleright \Sigma$ finite alphabet
- ► $I \subseteq \Sigma^2$ symmetric and irreflexive independence relation

- Σ finite alphabet
- ► $I \subseteq \Sigma^2$ symmetric and irreflexive independence relation
- Congruence \sim_I on Σ^* with

- Σ finite alphabet
- $I \subseteq \Sigma^2$ symmetric and irreflexive independence relation
- Congruence \sim_I on Σ^* with

 $w \sim_I v \iff w$ can be transformed into vby commuting independent letters

▶ Example: with $(a, b) \in I$ we have bbacab \sim_I abbcba

- Σ finite alphabet
- $I \subseteq \Sigma^2$ symmetric and irreflexive independence relation
- Congruence \sim_I on Σ^* with

- ▶ Example: with $(a, b) \in I$ we have bbacab \sim_I abbcba
- ▶ $\mathbb{M}(\Sigma, I) = \Sigma^* / \sim_I$ trace monoid

- Σ finite alphabet
- $I \subseteq \Sigma^2$ symmetric and irreflexive independence relation
- Congruence \sim_I on Σ^* with

- ▶ Example: with $(a, b) \in I$ we have bbacab \sim_I abbcba
- $\mathbb{M}(\Sigma, I) = \Sigma^* / \sim_I$ trace monoid
- Elements of $\mathbb{M}(\Sigma, I)$ are called (Mazurkiewicz) traces

- Σ finite alphabet
- $I \subseteq \Sigma^2$ symmetric and irreflexive independence relation
- Congruence \sim_I on Σ^* with

- ▶ Example: with $(a, b) \in I$ we have bbacab \sim_I abbcba
- $\blacktriangleright \ \mathbb{M}(\Sigma,I) = \Sigma^*/\sim_I \ \text{trace monoid}$
- Elements of $\mathbb{M}(\Sigma, I)$ are called (Mazurkiewicz) traces
- Traces have a graphical interpretation

Example

Example

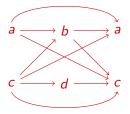
Let D = a - b - c - d and t = acdbca.

Example

Let D = a - b - c - d and t = acdbca. Then $acdbca \sim_l cabadc$.

Let D = a - b - c - d and t = acdbca. Then $acdbca \sim_l cabadc$.

partial order:



Let D = a - b - c - d and t = acdbca. Then $acdbca \sim_I cabadc$.

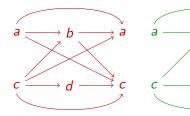
partial order: dependence graph:

Ь

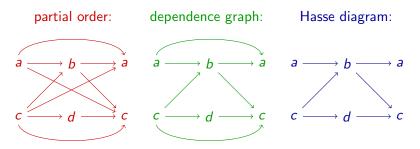
d

а

C



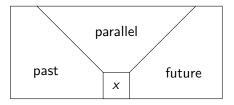
Let D = a - b - c - d and t = acdbca. Then $acdbca \sim_l cabadc$.



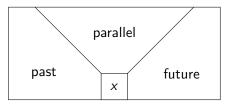
Let D = a - b - c - d and t = acdbca. Then $acdbca \sim_l cabadc$. partial order: dependence graph: Hasse diagram: b а а b а а → a а b d С С С

In t, the node labeled with d is parallel to all a's and b's.

For each node x of a trace we can define three disjoint regions:

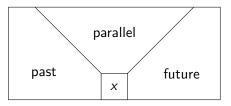


For each node x of a trace we can define three disjoint regions:



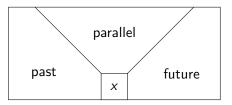
Combinatorically: more involved due to concurrency.

For each node x of a trace we can define three disjoint regions:



- Combinatorically: more involved due to concurrency.
- Algebraically: more involved due to lack of univeral property.

For each node x of a trace we can define three disjoint regions:



- Combinatorically: more involved due to concurrency.
- Algebraically: more involved due to lack of univeral property.
- *M* recognizes $L \subseteq \mathbb{M}(\Sigma, I) \Rightarrow M(L)$ divides *M*. (but not \Leftarrow)

Temporal logic (syntax)

In this context, a temporal formula is a term of the form

$$\varphi ::= a \mid \neg \varphi \mid (\varphi_1 \lor \varphi_2) \mid (\varphi_1 \land \varphi_2) \mid$$
$$XF\varphi \mid YP\varphi \mid PAR\varphi \mid M\varphi$$

where $a \in \Sigma$.

$$t, x \models a \qquad \Leftrightarrow \text{ label}(x) = a$$

$$\begin{array}{ll} t, x \models a & \Leftrightarrow & \operatorname{label}(x) = a \\ t, x \models \mathsf{XF}\varphi & \Leftrightarrow & \exists y \text{ in the future of } x \colon t, y \models \varphi \end{array}$$

$$\begin{array}{ll} t, x \models a & \Leftrightarrow \ \operatorname{label}(x) = a \\ t, x \models \mathsf{XF}\varphi & \Leftrightarrow \ \exists y \text{ in the future of } x \colon t, y \models \varphi \\ t, x \models \mathsf{YP}\varphi & \Leftrightarrow \ \exists y \text{ in the past of } x \colon t, y \models \varphi \end{array}$$

$$\begin{array}{ll} t, x \models a & \Leftrightarrow \ \operatorname{label}(x) = a \\ t, x \models \mathsf{XF}\varphi & \Leftrightarrow \ \exists y \text{ in the future of } x \colon t, y \models \varphi \\ t, x \models \mathsf{YP}\varphi & \Leftrightarrow \ \exists y \text{ in the past of } x \colon t, y \models \varphi \\ t, x \models \mathsf{PAR}\varphi & \Leftrightarrow \ \exists y \text{ parallel to } x \colon t, y \models \varphi \end{array}$$

Theorem Let $L \subseteq \mathbb{M}(\Sigma, I)$. Then the following are equivalent:

Theorem Let $L \subseteq \mathbb{M}(\Sigma, I)$. Then the following are equivalent: (i) The syntactic monoid of L is in **DA**.

Theorem Let $L \subseteq \mathbb{M}(\Sigma, I)$. Then the following are equivalent: (i) The syntactic monoid of L is in **DA**. (ii) $L \in \text{Pol}\mathcal{A}$ and $\overline{L} \in \text{Pol}\mathcal{A}$.

$$\mathcal{A} = \{A^* \subseteq \mathbb{M}(\Sigma, I) \mid A \subseteq \Sigma\}$$

Theorem Let $L \subseteq \mathbb{M}(\Sigma, I)$. Then the following are equivalent: (i) The syntactic monoid of L is in **DA**. (ii) $L \in \operatorname{Pol}\mathcal{A}$ and $\overline{L} \in \operatorname{Pol}\mathcal{A}$. (iii) $L \in \operatorname{UPol}\mathcal{A}$.

$$\mathcal{A} = \{A^* \subseteq \mathbb{M}(\Sigma, I) \mid A \subseteq \Sigma\}$$

Theorem

Let $L \subseteq \mathbb{M}(\Sigma, I)$. Then the following are equivalent:

(i) The syntactic monoid of L is in **DA**.

(ii)
$$L \in \operatorname{Pol}\mathcal{A}$$
 and $\overline{L} \in \operatorname{Pol}\mathcal{A}$.

(iii) $L \in \text{UPol}\mathcal{A}$.

(iv) L is expressible in TL[XF, YP].

$$\mathcal{A} = \{A^* \subseteq \mathbb{M}(\Sigma, I) \mid A \subseteq \Sigma\}$$

Theorem

Let $L \subseteq \mathbb{M}(\Sigma, I)$. Then the following are equivalent:

- (i) The syntactic monoid of L is in **DA**.
- (ii) $L \in \operatorname{Pol}\mathcal{A}$ and $\overline{L} \in \operatorname{Pol}\mathcal{A}$.
- (iii) $L \in \text{UPol}\mathcal{A}$.
- (iv) L is expressible in TL[XF, YP].
- (v) L is expressible in TL[XF, YP, M].

 $\mathcal{A} = \{A^* \subseteq \mathbb{M}(\Sigma, I) \mid A \subseteq \Sigma\}$

Theorem

Let $L \subseteq \mathbb{M}(\Sigma, I)$. Then the following are equivalent:

(i) The syntactic monoid of L is in **DA**.

(ii)
$$L \in \operatorname{Pol}\mathcal{A}$$
 and $\overline{L} \in \operatorname{Pol}\mathcal{A}$.

(iii) $L \in \text{UPol}\mathcal{A}$.

- (iv) L is expressible in TL[XF, YP].
- (v) L is expressible in TL[XF, YP, M].

 $\mathcal{A} = \{A^* \subseteq \mathbb{M}(\Sigma, I) \mid A \subseteq \Sigma\}$

Since membership is decidable for the variety **DA**, the above characterizations are decidable.

Theorem Let $L \subseteq \mathbb{M}(\Sigma, I)$. Then the following are equivalent:

Theorem Let $L \subseteq \mathbb{M}(\Sigma, I)$. Then the following are equivalent: (i) L is expressible in FO²[E].

Theorem Let $L \subseteq \mathbb{M}(\Sigma, I)$. Then the following are equivalent:

- (i) L is expressible in $FO^2[E]$.
- (ii) *L* is expressible in TL[XF, YP, M].

Theorem Let $L \subseteq \mathbb{M}(\Sigma, I)$. Then the following are equivalent: (i) L is expressible in $\mathrm{FO}^2[E]$. (ii) L is expressible in $\mathrm{TL}[\mathsf{XF}, \mathsf{YP}, \mathsf{M}]$.

Theorem Let $L \subseteq \mathbb{M}(\Sigma, I)$. Then the following are equivalent:

Theorem Let $L \subseteq \mathbb{M}(\Sigma, I)$. Then the following are equivalent: (i) L is expressible in $\mathrm{FO}^2[E]$. (ii) L is expressible in $\mathrm{TL}[\mathsf{XF}, \mathsf{YP}, \mathsf{M}]$.

Theorem Let $L \subseteq \mathbb{M}(\Sigma, I)$. Then the following are equivalent: (i) L is expressible in $\mathrm{FO}^2[<]$.

Theorem Let $L \subseteq \mathbb{M}(\Sigma, I)$. Then the following are equivalent: (i) L is expressible in $\mathrm{FO}^2[E]$.

(ii) L is expressible in TL[XF, YP, M].

Theorem

Let $L \subseteq \mathbb{M}(\Sigma, I)$. Then the following are equivalent:

- (i) L is expressible in $FO^2[<]$.
- (ii) L is expressible in TL[XF, YP, PAR].

Theorem Let $L \subseteq \mathbb{M}(\Sigma, I)$. Then the following are equivalent: (i) L is expressible in $\mathrm{FO}^2[E]$. (ii) L is expressible in $\mathrm{TL}[XF, YP, M]$.

Theorem

Let $L \subseteq \mathbb{M}(\Sigma, I)$. Then the following are equivalent:

- (i) L is expressible in $FO^2[<]$.
- (ii) L is expressible in TL[XF, YP, PAR].

Theorem

The following are equivalent:

Theorem Let $L \subseteq \mathbb{M}(\Sigma, I)$. Then the following are equivalent: (i) L is expressible in $\mathrm{FO}^2[E]$.

(ii) L is expressible in TL[XF, YP, M].

Theorem

Let $L \subseteq \mathbb{M}(\Sigma, I)$. Then the following are equivalent:

- (i) L is expressible in $\mathrm{FO}^2[<]$.
- (ii) L is expressible in TL[XF, YP, PAR].

Theorem

The following are equivalent:

(i) The dependence relation D is transitive.

Theorem Let $L \subseteq \mathbb{M}(\Sigma, I)$. Then the following are equivalent: (i) L is expressible in $\mathrm{FO}^2[E]$.

(ii) L is expressible in TL[XF, YP, M].

Theorem

Let $L \subseteq \mathbb{M}(\Sigma, I)$. Then the following are equivalent:

- (i) L is expressible in $FO^2[<]$.
- (ii) L is expressible in TL[XF, YP, PAR].

Theorem

The following are equivalent:

- (i) The dependence relation D is transitive.
- (ii) $FO^2[E]$ and $FO^2[<]$ describe the same class of languages.

Theorem Let $L \subseteq \mathbb{M}(\Sigma, I)$. Then the following are equivalent:

Theorem Let $L \subseteq \mathbb{M}(\Sigma, I)$. Then the following are equivalent: (i) L is expressible in $\Delta_2[E]$.

Theorem

Let $L \subseteq \mathbb{M}(\Sigma, I)$. Then the following are equivalent:

- (i) L is expressible in $\Delta_2[E]$.
- (ii) L is expressible in TL[XF, YP].

Theorem

Let $L \subseteq \mathbb{M}(\Sigma, I)$. Then the following are equivalent:

- (i) L is expressible in $\Delta_2[E]$.
- (ii) L is expressible in TL[XF, YP].

Theorem

The following are equivalent:

Theorem

Let $L \subseteq \mathbb{M}(\Sigma, I)$. Then the following are equivalent:

- (i) L is expressible in $\Delta_2[E]$.
- (ii) L is expressible in TL[XF, YP].

Theorem

The following are equivalent:

(i) The dependence relation D is transitive.

First-order logic with one quantifier alternation

Theorem

Let $L \subseteq \mathbb{M}(\Sigma, I)$. Then the following are equivalent:

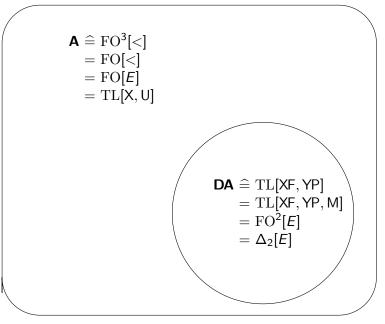
- (i) L is expressible in $\Delta_2[E]$.
- (ii) L is expressible in TL[XF, YP].

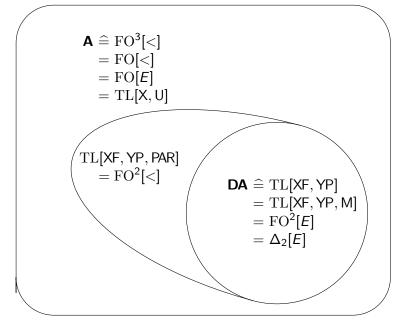
Theorem

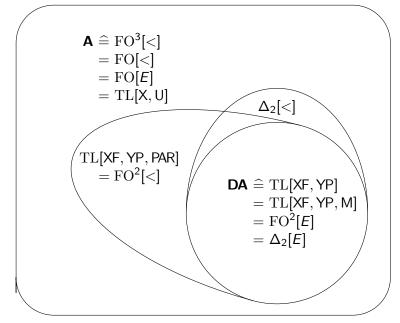
The following are equivalent:

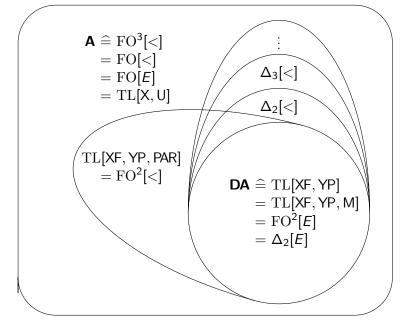
- (i) The dependence relation D is transitive.
- (ii) $\Delta_2[E]$ and $\Delta_2[<]$ describe the same class of languages.

 $\textbf{A} \,\widehat{=}\, \mathrm{FO}^3[<]$ $= \mathrm{FO}[<]$ $= \mathrm{FO}[E]$ = TL[X, U]









Σ*abΣ* ∪ Σ*baΣ* ⊆ M(Σ, I) is expressible in FO²[<] if (a, b) ∈ I.

Σ*abΣ* ∪ Σ*baΣ* ⊆ M(Σ, I) is expressible in FO²[<] if (a, b) ∈ I.

$$\exists x \exists y : \underbrace{\neg (x < y \lor y < x \lor y = x)}_{x \parallel y} \land a(x) \land b(y)$$

Σ*abΣ* ∪ Σ*baΣ* ⊆ M(Σ, I) is expressible in FO²[<] if (a, b) ∈ I.

$$\exists x \exists y : \underbrace{\neg(x < y \lor y < x \lor y = x)}_{x \parallel y} \land a(x) \land b(y)$$

Σ*abΣ* ∪ Σ*baΣ* ⊆ Σ* is NOT expressible in FO²[<] over words.</p>

Complexity of the satisfiability problem

Complexity of the satisfiability problem

Theorem (Diekert, Horsch, K.)

The following problem is NP-complete:

Input: $\varphi \in TL[XF, YP, M]$ and (Σ, I) . Question: Does there exist $t \in M(\Sigma, I)$ such that $t \models \varphi$? Complexity of the satisfiability problem

Theorem (Diekert, Horsch, K.)

The following problem is NP-complete:

Input: $\varphi \in TL[XF, YP, M]$ and (Σ, I) . Question: Does there exist $t \in M(\Sigma, I)$ such that $t \models \varphi$?

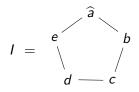
Theorem (Diekert, Horsch, K.)

The following problem is **PSPACE**-complete:

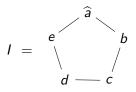
Input: $\varphi \in TL[XF, YP, PAR]$ and (Σ, I) . Question: Does there exist $t \in M(\Sigma, I)$ such that $t \models \varphi$?

• Use a reduction from satisfiability of TL[X, F] over $\{a, \overline{a}\}^*$.

- Use a reduction from satisfiability of TL[X, F] over $\{a, \overline{a}\}^*$.
- ► Let â be a shorthand for either a or a and consider the following trace monoid.

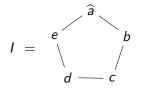


- Use a reduction from satisfiability of TL[X, F] over $\{a, \overline{a}\}^*$.
- ► Let â be a shorthand for either a or a and consider the following trace monoid.

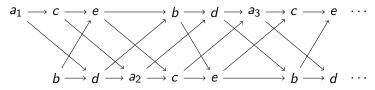


• $w = a_1 a_2 \cdots a_n$ maps to $t = a_1(bcde)a_2(bcde) \cdots a_n(bcde)$.

- Use a reduction from satisfiability of TL[X, F] over $\{a, \overline{a}\}^*$.
- ► Let â be a shorthand for either a or a and consider the following trace monoid.



• $w = a_1 a_2 \cdots a_n$ maps to $t = a_1(bcde)a_2(bcde) \cdots a_n(bcde)$.



▶ Is expressibility in FO²[<] decidable?

- ▶ Is expressibility in FO²[<] decidable?
- Is expressibility in $\Delta_2[<]$ decidable?

- ▶ Is expressibility in FO²[<] decidable?
- Is expressibility in $\Delta_2[<]$ decidable?
- ► How difficult is the satisfiability problem for FO²[E] and FO²[<]?</p>

- ▶ Is expressibility in FO²[<] decidable?
- Is expressibility in $\Delta_2[<]$ decidable?
- ► How difficult is the satisfiability problem for FO²[E] and FO²[<]?</p>
- ▶ What is the largest class C such that FO²[<] is a C-variety?

Thank you!