Trace languages and the variety DA

Manfred Kufleitner
University of Stuttgart

September 30, 2006

Introduction

Introduction

» Mazurkiewicz (1977): A trace is partially ordered set of
symbol occurrences

Introduction

» Mazurkiewicz (1977): A trace is partially ordered set of
symbol occurrences

» based on works of Keller (1973)

Introduction

» Mazurkiewicz (1977): A trace is partially ordered set of
symbol occurrences

» based on works of Keller (1973)

» Model for concurrency

Introduction

» Mazurkiewicz (1977): A trace is partially ordered set of
symbol occurrences

» based on works of Keller (1973)
» Model for concurrency

» Generalization of words

Introduction

» Mazurkiewicz (1977): A trace is partially ordered set of
symbol occurrences

» based on works of Keller (1973)
» Model for concurrency
» Generalization of words

> A lot of research (combinatorics, logics, generalizations, .. .).
Overview in The Book of Traces (Diekert/Rosenberg 1995)

Introduction

» Mazurkiewicz (1977): A trace is partially ordered set of
symbol occurrences

» based on works of Keller (1973)
» Model for concurrency
» Generalization of words

> A lot of research (combinatorics, logics, generalizations, .. .).
Overview in The Book of Traces (Diekert/Rosenberg 1995)

word trace

a——p——a

a—C—d—pb—cCc—a / \

c——d——cC

Regular trace languages

Regular trace languages

» Recognizability by finite monoid

Regular trace languages

» Recognizability by finite monoid
» Rational expressions with connected star (Ochmanski 1985)

Regular trace languages

» Recognizability by finite monoid
» Rational expressions with connected star (Ochmanski 1985)

» Asynchronous cellular automata (Zielonka 1987)

Regular trace languages

» Recognizability by finite monoid

» Rational expressions with connected star (Ochmanski 1985)
» Asynchronous cellular automata (Zielonka 1987)

» Monadic second-order logic (Thomas 1990)

Star-free trace languages

Star-free trace languages

» Recognizability by finite aperiodic monoid

Star-free trace languages

» Recognizability by finite aperiodic monoid

> Star-free expressions (Guaiana/Restivo/Salemi 1992)

Star-free trace languages

» Recognizability by finite aperiodic monoid
> Star-free expressions (Guaiana/Restivo/Salemi 1992)
» First-order logic (Thomas 1990)

Star-free trace languages

» Recognizability by finite aperiodic monoid
> Star-free expressions (Guaiana/Restivo/Salemi 1992)
» First-order logic (Thomas 1990)

» Linear temporal logics (Ebinger 1994,
Thiagarajan/Walukiewicz 1997, Diekert/Gastin 2005)

Characterizations of DA over words

Characterizations of DA over words

» Recognizability by finite monoid in DA

Characterizations of DA over words

» Recognizability by finite monoid in DA
» Unambiguous polynomials (Schiitzenberger 1976)

Characterizations of DA over words

» Recognizability by finite monoid in DA
» Unambiguous polynomials (Schiitzenberger 1976)
» Polynomial and complement of a polynomial (Pin/Weil 1997)

Characterizations of DA over words

» Recognizability by finite monoid in DA

» Unambiguous polynomials (Schiitzenberger 1976)

» Polynomial and complement of a polynomial (Pin/Weil 1997)
» Ay = X, NI first-order logic (Pin/Weil 1997)

Characterizations of DA over words

Recognizability by finite monoid in DA

Unambiguous polynomials (Schiitzenberger 1976)

Polynomial and complement of a polynomial (Pin/Weil 1997)
Ay = ¥, N Ty first-order logic (Pin/Weil 1997)

First-order logic with 2 variables (Thérien/Wilke 1998)

vV v v v .Y

Characterizations of DA over words

Recognizability by finite monoid in DA

Unambiguous polynomials (Schiitzenberger 1976)

Polynomial and complement of a polynomial (Pin/Weil 1997)
Ay = ¥, N Ty first-order logic (Pin/Weil 1997)

First-order logic with 2 variables (Thérien/Wilke 1998)

Unary temporal logic (Etessami/Vardi/Wilke 1997)

vV v v v v Yy

Traces: Algebraic point of view

Traces: Algebraic point of view

» 3 finite alphabet

Traces: Algebraic point of view

» 3 finite alphabet

» | C ¥? symmetric and irreflexive independence relation

Traces: Algebraic point of view

» > finite alphabet
» | C ¥? symmetric and irreflexive independence relation

» Congruence ~; on X* with

w ~; v < w can be transformed into v
by commuting independent letters

Traces: Algebraic point of view

v

> finite alphabet
| C ¥2 symmetric and irreflexive independence relation

v

v

Congruence ~; on X* with

w ~; v < w can be transformed into v

by commuting independent letters

v

Example: with (a, b) € | we have bbacab ~; abbcba

Traces: Algebraic point of view

v

> finite alphabet
| C ¥2 symmetric and irreflexive independence relation

v

v

Congruence ~; on X* with

w ~; v < w can be transformed into v

by commuting independent letters

Example: with (a, b) € | we have bbacab ~; abbcba
» M(X,/) =X*/ ~; trace monoid

v

Traces: Algebraic point of view

v

> finite alphabet
| C ¥2 symmetric and irreflexive independence relation

v

v

Congruence ~; on X* with

w ~; v < w can be transformed into v

by commuting independent letters

v

Example: with (a, b) € | we have bbacab ~; abbcba
» M(X,/) =X*/ ~; trace monoid

Elements of M(X, /) are called (Mazurkiewicz) traces

v

Traces: Algebraic point of view

v

> finite alphabet
| C ¥2 symmetric and irreflexive independence relation

v

v

Congruence ~; on X* with

w ~; v < w can be transformed into v

by commuting independent letters

Example: with (a, b) € | we have bbacab ~; abbcba
M(X, /) = X*/ ~; trace monoid
Elements of M(X, /) are called (Mazurkiewicz) traces

Traces have a graphical interpretation

Example

Example

Let D = a—b—c—d and t = acdbca.

Example

Let D = a—b—c—d and t = acdbca. Then acdbca ~; cabadc.

Example

Let D = a—b—c—d and t = acdbca. Then acdbca ~; cabadc.

partial order:

R

a——p——a

CcC——d——¢c¢

N

Example

Let D = a—b—c—d and t = acdbca. Then acdbca ~; cabadc.

partial order: dependence graph:
a——php——a a——php—— a
C——d—¢c¢ cC——d—¢

N N

Example

Let D = a—b—c—d and t = acdbca. Then acdbca ~; cabadc.

partial order: dependence graph: Hasse diagram:
N T
a——php——a a——php—— a a——p—— a
CcC——d—¢ cC——d—¢ cC——d—¢c¢

N N

Example

Let D = a—b—c—d and t = acdbca. Then acdbca ~; cabadc.

partial order: dependence graph: Hasse diagram:
SN
a——hp——3a a——p——a a——op——a
CcC——d—¢ cC——d—¢ cC——d—¢c¢

N N

In t, the node labeled with d is parallel to all a's and b's.

Why are things more complicated for traces?

For each node x of a trace we can define three disjoint regions:

parallel

past future

Why are things more complicated for traces?

For each node x of a trace we can define three disjoint regions:

parallel

past future

» Combinatorically: more involved due to concurrency.

Why are things more complicated for traces?

For each node x of a trace we can define three disjoint regions:

parallel

past future

» Combinatorically: more involved due to concurrency.

» Algebraically: more involved due to lack of univeral property.

Why are things more complicated for traces?

For each node x of a trace we can define three disjoint regions:

parallel

past future

» Combinatorically: more involved due to concurrency.
» Algebraically: more involved due to lack of univeral property.
» M recognizes L C M(X,/) = M(L) divides M. (but not <)

Temporal logic (syntax)

In this context, a temporal formula is a term of the form

e m=al | (p1Ve2) | (P1Ae2) |
XFo | YPy | PARp | My

where a € .

Temporal logic (semantics)

A trace t = (V,label, <) at position x € V models a temporal
formula:

Temporal logic (semantics)

A trace t = (V,label, <) at position x € V models a temporal
formula:

t,xk=a & label(x) = a

Temporal logic (semantics)

A trace t = (V,label, <) at position x € V models a temporal
formula:

t,xk=a & label(x) = a
t,x =XFy < 3y in the future of x: t,y ¢

Temporal logic (semantics)

A trace t = (V,label, <) at position x € V models a temporal
formula:

t,xk=a & label(x) = a
t,x =XFy < 3y in the future of x: t,y ¢
t,x EYPy << dyinthepastof x: t,y E¢p

Temporal logic (semantics)

A trace t = (V,label, <) at position x € V models a temporal

formula:
t,xk=a & label(x) = a
t,x =XFy < 3y in the future of x: t,y ¢
t,x EYPy << dyinthepastof x: t,y E¢p
t,x =PARp < 3Ty parallel to x: t,y = ¢

Temporal logic (semantics)

A trace t = (V,label, <) at position x € V models a temporal

formula:

t,x = a

t,x = XFop
t,x = YPyp
t,x = PARp
t,x = Mg

S R

label(x) = a
Jy in the future of x: t,y =
Jy in the past of x: t,y ¢

Jy parallel to x: t,y ¢
Jy somewhere: t,y = ¢

Characterizations of DA

Theorem
Let L C M(X, /). Then the following are equivalent:

Characterizations of DA

Theorem
Let L C M(X, /). Then the following are equivalent:

(i) The syntactic monoid of L is in DA.

Characterizations of DA

Theorem
Let L C M(X, /). Then the following are equivalent:

(i) The syntactic monoid of L is in DA.
(i) L € PolA and L € PolA.

A={A"CM(Z,)|AC T}

Characterizations of DA

Theorem
Let L C M(X, /). Then the following are equivalent:

(i) The syntactic monoid of L is in DA.
(i) L € PolA and L € PolA.
(iii) L € UPolA.

A={A"CM(Z,)|AC T}

Characterizations of DA

Theorem
Let L C M(X, /). Then the following are equivalent:

(i
(ii
(iii

(iv

The syntactic monoid of L is in DA.
L € PolA and L € PolA.

L € UPolA.

L is expressible in TL[XF, YP].

~— ~— — ~—

A={A*CM(Z,/)|AC T}

Characterizations of DA

Theorem
Let L C M(X, /). Then the following are equivalent:

(i) The syntactic monoid of L is in DA.
(i) L € PolA and L € PolA.

(iii) L € UPolA.

(iv) L is expressible in TL[XF,YP].

(v) L is expressible in TL[XF,YP, M].

A={A*CM(Z,/)|AC T}

Characterizations of DA

Theorem
Let L C M(X, /). Then the following are equivalent:

(i) The syntactic monoid of L is in DA.
(i) L € PolA and L € PolA.
(iii) L € UPolA.

(iv) L is expressible in TL[XF,YP].

(v) L is expressible in TL[XF,YP, M].

A={A*CM(Z,/)|AC T}

Since membership is decidable for the variety DA, the above
characterizations are decidable.

First-order logic with two variables

Theorem
Let L C M(X, /). Then the following are equivalent:

First-order logic with two variables

Theorem
Let L C M(X, /). Then the following are equivalent:

(i) L is expressible in FO?[E].

First-order logic with two variables

Theorem
Let L C M(X, /). Then the following are equivalent:

(i) L is expressible in FO?[E].
(ii) L is expressible in TL[XF,YP, M].

First-order logic with two variables

Theorem
Let L C M(X, /). Then the following are equivalent:

(i) L is expressible in FO?[E].
(ii) L is expressible in TL[XF,YP, M].

Theorem
Let L C M(X, /). Then the following are equivalent:

First-order logic with two variables

Theorem
Let L C M(X, /). Then the following are equivalent:

(i) L is expressible in FO?[E].
(ii) L is expressible in TL[XF,YP, M].

Theorem
Let L C M(X, /). Then the following are equivalent:

(i) L is expressible in FO?[<].

First-order logic with two variables

Theorem
Let L C M(X, /). Then the following are equivalent:

(i) L is expressible in FO?[E].
(ii) L is expressible in TL[XF,YP, M].

Theorem
Let L C M(X, /). Then the following are equivalent:

(i) L is expressible in FO*[<].
(ii) L is expressible in TL[XF, YP, PAR].

First-order logic with two variables

Theorem

Let L C M(X, /). Then the following are equivalent:
(i) L is expressible in FO?[E].
(ii) L is expressible in TL[XF,YP, M].

Theorem

Let L C M(X, /). Then the following are equivalent:
(i) L is expressible in FO*[<].
(ii) L is expressible in TL[XF, YP, PAR].

Theorem
The following are equivalent:

First-order logic with two variables

Theorem

Let L C M(X, /). Then the following are equivalent:
(i) L is expressible in FO?[E].
(ii) L is expressible in TL[XF,YP, M].

Theorem

Let L C M(X, /). Then the following are equivalent:
(i) L is expressible in FO*[<].
(ii) L is expressible in TL[XF, YP, PAR].

Theorem
The following are equivalent:

(i) The dependence relation D is transitive.

First-order logic with two variables

Theorem

Let L C M(X, /). Then the following are equivalent:
(i) L is expressible in FO?[E].
(ii) L is expressible in TL[XF,YP, M].

Theorem

Let L C M(X, /). Then the following are equivalent:
(i) L is expressible in FO*[<].
(ii) L is expressible in TL[XF, YP, PAR].

Theorem
The following are equivalent:

(i) The dependence relation D is transitive.

(i) FO?[E] and FO?[<] describe the same class of languages.

First-order logic with one quantifier alternation

Theorem
Let L C M(X, /). Then the following are equivalent:

First-order logic with one quantifier alternation

Theorem
Let L C M(X, /). Then the following are equivalent:

(i) L is expressible in A3[E].

First-order logic with one quantifier alternation

Theorem
Let L C M(X, /). Then the following are equivalent:

(i) L is expressible in A3[E].
(ii) L is expressible in TL[XF, YP].

First-order logic with one quantifier alternation

Theorem

Let L C M(X, /). Then the following are equivalent:
(i) L is expressible in A3[E].
(ii) L is expressible in TL[XF, YP].

Theorem
The following are equivalent:

First-order logic with one quantifier alternation

Theorem

Let L C M(X, /). Then the following are equivalent:
(i) L is expressible in A3[E].
(ii) L is expressible in TL[XF, YP].

Theorem
The following are equivalent:

(i) The dependence relation D is transitive.

First-order logic with one quantifier alternation

Theorem

Let L C M(X, /). Then the following are equivalent:
(i) L is expressible in A3[E].
(ii) L is expressible in TL[XF, YP].

Theorem
The following are equivalent:

(i) The dependence relation D is transitive.

(i) Az[E] and Ax[<] describe the same class of languages.

The Big Picture

The Big Picture

/ A = FO3[<]

= FO[<]
= FO[E]
= TL[X, U]

The Big Picture

/ A = FO3[<]

= FO[<]
= FO[E]
= TL[X, U]

DA = TL[XF, YP]
= TL[XF, YP, M]

= FO?[E]
= Ao[E]

The Big Picture

4 A = FO?[<] N

= FO[<]
— FO[E]
= TL[X, U]

TL[XF, YP, PAR]
= FO?[<]

DA = TL[XF, YP]

= TL[XF, YP, M|
= FO?[E]
= Do[E]

The Big Picture

/ A = FO3[<] \

= FO[<]
= FOIE]
= TL[X, U]

TL[XF, YP, PAR]
=FO’[<]

DA = TL[XF, YP]
= TL[XF,YP,M] |
= FO?[E]
= AolE]

The Big Picture

/ A = FO3[<]

= FO[<]
= FO[E]
= TL[X, U]

TL[XF, YP, PAR]
=FO?[<]

DA = TL[XF,YP]
= TL[XF, YP,M] |
= FO?[E]
= Ao[E]

FO?[<] over traces is not a (full) variety

FO?[<] over traces is not a (full) variety

> Y*abY* UT*baY* C M(X, /) is expressible in FO?[<] if
(a,b) € 1.

FO?[<] over traces is not a (full) variety

> Y*abY* UT*baY* C M(X, /) is expressible in FO?[<] if
(a,b) € 1.

IxJy: a(x<yVy<xVy=x)Aa(x)A b(y)

-~

x|ly

FO?[<] over traces is not a (full) variety

> T*abY* U Y*ba¥* C M(X, /) is expressible in FO?[<] if
(a,b) € 1.

IxJy: a(x<yVy<xVy=x)Aa(x)A b(y)

-~

x|ly

> T*abY* U X*baX* C Y* is NOT expressible in FO?[<] over
words.

Complexity of the satisfiability problem

Complexity of the satisfiability problem

Theorem (Diekert,Horsch,K.)
The following problem is NP-complete:

Input: ¢ € TL[XF,YP,M] and (%, /).
Question: Does there exist t € M(X,) such that t |= ¢?

Complexity of the satisfiability problem

Theorem (Diekert,Horsch,K.)
The following problem is NP-complete:
Input: ¢ € TLIXF,YP,M] and (X, /).
Question: Does there exist t € M(X,) such that t |= ¢?
Theorem (Diekert,Horsch,K.)
The following problem is PSPACE-complete:

Input: ¢ € TL[XF,YP,PAR] and (X, /).
Question: Does there exist t € M(X,) such that t = ¢?

Proof idea for PSPACE-hardness of SAT for TL[F, PAR]

Proof idea for PSPACE-hardness of SAT for TL[F, PAR]

» Use a reduction from satisfiability of TL[X, F] over {a,3}"*.

Proof idea for PSPACE-hardness of SAT for TL[F, PAR]

» Use a reduction from satisfiability of TL[X, F] over {a,3}"*.

» Let 3 be a shorthand for either a or 3 and consider the
following trace monoid.

. \b

I:\ /

d—c¢

Proof idea for PSPACE-hardness of SAT for TL[F, PAR]

» Use a reduction from satisfiability of TL[X, F] over {a,3}"*.

» Let 3 be a shorthand for either a or 3 and consider the
following trace monoid.

N
| = \ /
d—c¢

> w = ajay---a, maps to t = aj(bcde)az(bcde) - - - ap(bcde).

Proof idea for PSPACE-hardness of SAT for TL[F, PAR]

» Use a reduction from satisfiability of TL[X, F] over {a,a}*.

» Let 3 be a shorthand for either a or 3 and consider the
following trace monoid.

N
| = \ /
d—c¢

> w = ajay---a, maps to t = aj(bcde)ax(bcde) - - - ap(bcde).

aq—Cc—e—php—d—3a3 —c— €

b—d—3a2 —Cc—e——>ph—d

Outlook and open problems

Outlook and open problems

> |s expressibility in FO?[<] decidable?

Outlook and open problems

> |s expressibility in FO?[<] decidable?
> Is expressibility in Ax[<] decidable?

Outlook and open problems

> |s expressibility in FO2[<] decidable?
> s expressibility in Ap[<] decidable?

» How difficult is the satisfiability problem for FO?[E] and
FO?[<]?

Outlook and open problems

> |s expressibility in FO2[<] decidable?

> s expressibility in Ap[<] decidable?

» How difficult is the satisfiability problem for FO?[E] and
FO?[<]?

» What is the largest class C such that FO?[<] is a C-variety?

Thank you!

	Introduction
	Mazurkiewicz traces
	Temporal Logic

