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word trace

a——p——a

a—C—d—pb—cCc—a / \

c——d——cC
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Star-free trace languages

» Recognizability by finite aperiodic monoid
> Star-free expressions (Guaiana/Restivo/Salemi 1992)
» First-order logic (Thomas 1990)

» Linear temporal logics (Ebinger 1994,
Thiagarajan/Walukiewicz 1997, Diekert/Gastin 2005)
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Recognizability by finite monoid in DA

Unambiguous polynomials (Schiitzenberger 1976)

Polynomial and complement of a polynomial (Pin/Weil 1997)
Ay = ¥, N Ty first-order logic (Pin/Weil 1997)

First-order logic with 2 variables (Thérien/Wilke 1998)

Unary temporal logic (Etessami/Vardi/Wilke 1997)
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v

> finite alphabet
| C ¥2 symmetric and irreflexive independence relation

v

v

Congruence ~; on X* with

w ~; v < w can be transformed into v

by commuting independent letters

Example: with (a, b) € | we have bbacab ~; abbcba
M(X, /) = X*/ ~; trace monoid
Elements of M(X, /) are called (Mazurkiewicz) traces

Traces have a graphical interpretation
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Example

Let D = a—b—c—d and t = acdbca. Then acdbca ~; cabadc.

partial order: dependence graph: Hasse diagram:
SN
a——hp——3a a——p——a a——op——a
CcC——d—¢ cC——d—¢ cC——d—¢c¢

N N

In t, the node labeled with d is parallel to all a's and b's.
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Why are things more complicated for traces?

For each node x of a trace we can define three disjoint regions:

parallel

past future

» Combinatorically: more involved due to concurrency.
» Algebraically: more involved due to lack of univeral property.
» M recognizes L C M(X,/) = M(L) divides M. (but not <)



Temporal logic (syntax)

In this context, a temporal formula is a term of the form

e m=al | (p1Ve2) | (P1Ae2) |
XFo | YPy | PARp | My

where a € .
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Temporal logic (semantics)

A trace t = (V,label, <) at position x € V models a temporal

formula:

t,x = a

t,x = XFop
t,x = YPyp
t,x = PARp
t,x = Mg

S R

label(x) = a
Jy in the future of x: t,y =
Jy in the past of x: t,y ¢

Jy parallel to x: t,y ¢
Jy somewhere: t,y = ¢
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Characterizations of DA

Theorem
Let L C M(X, /). Then the following are equivalent:

(i) The syntactic monoid of L is in DA.
(i) L € PolA and L € PolA.
(iii) L € UPolA.

(iv) L is expressible in TL[XF,YP].

(v) L is expressible in TL[XF,YP, M].

A={A*CM(Z,/)|AC T}

Since membership is decidable for the variety DA, the above
characterizations are decidable.
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Theorem

Let L C M(X, /). Then the following are equivalent:
(i) L is expressible in A3[E].
(ii) L is expressible in TL[XF, YP].

Theorem
The following are equivalent:

(i) The dependence relation D is transitive.

(i) Az[E] and Ax[<] describe the same class of languages.
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FO?[<] over traces is not a (full) variety

> T*abY* U Y*ba¥* C M(X, /) is expressible in FO?[<] if
(a,b) € 1.

IxJy: a(x<yVy<xVy=x)Aa(x)A b(y)

-~

x|ly

> T*abY* U X*baX* C Y* is NOT expressible in FO?[<] over
words.
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Complexity of the satisfiability problem

Theorem (Diekert,Horsch,K.)
The following problem is NP-complete:
Input: ¢ € TLIXF,YP,M] and (X, /).
Question: Does there exist t € M(X, ) such that t |= ¢?
Theorem (Diekert,Horsch,K.)
The following problem is PSPACE-complete:

Input: ¢ € TL[XF,YP,PAR] and (X, /).
Question: Does there exist t € M(X, ) such that t = ¢?
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Proof idea for PSPACE-hardness of SAT for TL[F, PAR]

» Use a reduction from satisfiability of TL[X, F] over {a,a}*.

» Let 3 be a shorthand for either a or 3 and consider the
following trace monoid.

N
| = \ /
d—c¢

> w = ajay---a, maps to t = aj(bcde)ax(bcde) - - - ap(bcde).

aq—Cc—e—php—d—3a3 —c— €

b—d—3a2 —Cc—e——>ph—d
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Outlook and open problems

> |s expressibility in FO2[<] decidable?

> s expressibility in Ap[<] decidable?

» How difficult is the satisfiability problem for FO?[E] and
FO?[<]?

» What is the largest class C such that FO?[<] is a C-variety?



Thank you!
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