
Trace languages and the variety DA

Manfred Kufleitner
University of Stuttgart

September 30, 2006

Introduction

I Mazurkiewicz (1977): A trace is partially ordered set of
symbol occurrences

I based on works of Keller (1973)

I Model for concurrency

I Generalization of words

I A lot of research (combinatorics, logics, generalizations, . . .).
Overview in The Book of Traces (Diekert/Rosenberg 1995)

word trace

a c d b c a

a

c

b

d

a

c

Introduction

I Mazurkiewicz (1977): A trace is partially ordered set of
symbol occurrences

I based on works of Keller (1973)

I Model for concurrency

I Generalization of words

I A lot of research (combinatorics, logics, generalizations, . . .).
Overview in The Book of Traces (Diekert/Rosenberg 1995)

word trace

a c d b c a

a

c

b

d

a

c

Introduction

I Mazurkiewicz (1977): A trace is partially ordered set of
symbol occurrences

I based on works of Keller (1973)

I Model for concurrency

I Generalization of words

I A lot of research (combinatorics, logics, generalizations, . . .).
Overview in The Book of Traces (Diekert/Rosenberg 1995)

word trace

a c d b c a

a

c

b

d

a

c

Introduction

I Mazurkiewicz (1977): A trace is partially ordered set of
symbol occurrences

I based on works of Keller (1973)

I Model for concurrency

I Generalization of words

I A lot of research (combinatorics, logics, generalizations, . . .).
Overview in The Book of Traces (Diekert/Rosenberg 1995)

word trace

a c d b c a

a

c

b

d

a

c

Introduction

I Mazurkiewicz (1977): A trace is partially ordered set of
symbol occurrences

I based on works of Keller (1973)

I Model for concurrency

I Generalization of words

I A lot of research (combinatorics, logics, generalizations, . . .).
Overview in The Book of Traces (Diekert/Rosenberg 1995)

word trace

a c d b c a

a

c

b

d

a

c

Introduction

I Mazurkiewicz (1977): A trace is partially ordered set of
symbol occurrences

I based on works of Keller (1973)

I Model for concurrency

I Generalization of words

I A lot of research (combinatorics, logics, generalizations, . . .).
Overview in The Book of Traces (Diekert/Rosenberg 1995)

word trace

a c d b c a

a

c

b

d

a

c

Introduction

I Mazurkiewicz (1977): A trace is partially ordered set of
symbol occurrences

I based on works of Keller (1973)

I Model for concurrency

I Generalization of words

I A lot of research (combinatorics, logics, generalizations, . . .).
Overview in The Book of Traces (Diekert/Rosenberg 1995)

word trace

a c d b c a

a

c

b

d

a

c

Regular trace languages

I Recognizability by finite monoid

I Rational expressions with connected star (Ochmański 1985)

I Asynchronous cellular automata (Zielonka 1987)

I Monadic second-order logic (Thomas 1990)

Regular trace languages

I Recognizability by finite monoid

I Rational expressions with connected star (Ochmański 1985)

I Asynchronous cellular automata (Zielonka 1987)

I Monadic second-order logic (Thomas 1990)

Regular trace languages

I Recognizability by finite monoid

I Rational expressions with connected star (Ochmański 1985)

I Asynchronous cellular automata (Zielonka 1987)

I Monadic second-order logic (Thomas 1990)

Regular trace languages

I Recognizability by finite monoid

I Rational expressions with connected star (Ochmański 1985)

I Asynchronous cellular automata (Zielonka 1987)

I Monadic second-order logic (Thomas 1990)

Regular trace languages

I Recognizability by finite monoid

I Rational expressions with connected star (Ochmański 1985)

I Asynchronous cellular automata (Zielonka 1987)

I Monadic second-order logic (Thomas 1990)

Star-free trace languages

I Recognizability by finite aperiodic monoid

I Star-free expressions (Guaiana/Restivo/Salemi 1992)

I First-order logic (Thomas 1990)

I Linear temporal logics (Ebinger 1994,
Thiagarajan/Walukiewicz 1997, Diekert/Gastin 2005)

Star-free trace languages

I Recognizability by finite aperiodic monoid

I Star-free expressions (Guaiana/Restivo/Salemi 1992)

I First-order logic (Thomas 1990)

I Linear temporal logics (Ebinger 1994,
Thiagarajan/Walukiewicz 1997, Diekert/Gastin 2005)

Star-free trace languages

I Recognizability by finite aperiodic monoid

I Star-free expressions (Guaiana/Restivo/Salemi 1992)

I First-order logic (Thomas 1990)

I Linear temporal logics (Ebinger 1994,
Thiagarajan/Walukiewicz 1997, Diekert/Gastin 2005)

Star-free trace languages

I Recognizability by finite aperiodic monoid

I Star-free expressions (Guaiana/Restivo/Salemi 1992)

I First-order logic (Thomas 1990)

I Linear temporal logics (Ebinger 1994,
Thiagarajan/Walukiewicz 1997, Diekert/Gastin 2005)

Star-free trace languages

I Recognizability by finite aperiodic monoid

I Star-free expressions (Guaiana/Restivo/Salemi 1992)

I First-order logic (Thomas 1990)

I Linear temporal logics (Ebinger 1994,
Thiagarajan/Walukiewicz 1997, Diekert/Gastin 2005)

Characterizations of DA over words

I Recognizability by finite monoid in DA

I Unambiguous polynomials (Schützenberger 1976)

I Polynomial and complement of a polynomial (Pin/Weil 1997)

I ∆2 = Σ2 ∩ Π2 first-order logic (Pin/Weil 1997)

I First-order logic with 2 variables (Thérien/Wilke 1998)

I Unary temporal logic (Etessami/Vardi/Wilke 1997)

Characterizations of DA over words

I Recognizability by finite monoid in DA

I Unambiguous polynomials (Schützenberger 1976)

I Polynomial and complement of a polynomial (Pin/Weil 1997)

I ∆2 = Σ2 ∩ Π2 first-order logic (Pin/Weil 1997)

I First-order logic with 2 variables (Thérien/Wilke 1998)

I Unary temporal logic (Etessami/Vardi/Wilke 1997)

Characterizations of DA over words

I Recognizability by finite monoid in DA

I Unambiguous polynomials (Schützenberger 1976)

I Polynomial and complement of a polynomial (Pin/Weil 1997)

I ∆2 = Σ2 ∩ Π2 first-order logic (Pin/Weil 1997)

I First-order logic with 2 variables (Thérien/Wilke 1998)

I Unary temporal logic (Etessami/Vardi/Wilke 1997)

Characterizations of DA over words

I Recognizability by finite monoid in DA

I Unambiguous polynomials (Schützenberger 1976)

I Polynomial and complement of a polynomial (Pin/Weil 1997)

I ∆2 = Σ2 ∩ Π2 first-order logic (Pin/Weil 1997)

I First-order logic with 2 variables (Thérien/Wilke 1998)

I Unary temporal logic (Etessami/Vardi/Wilke 1997)

Characterizations of DA over words

I Recognizability by finite monoid in DA

I Unambiguous polynomials (Schützenberger 1976)

I Polynomial and complement of a polynomial (Pin/Weil 1997)

I ∆2 = Σ2 ∩ Π2 first-order logic (Pin/Weil 1997)

I First-order logic with 2 variables (Thérien/Wilke 1998)

I Unary temporal logic (Etessami/Vardi/Wilke 1997)

Characterizations of DA over words

I Recognizability by finite monoid in DA

I Unambiguous polynomials (Schützenberger 1976)

I Polynomial and complement of a polynomial (Pin/Weil 1997)

I ∆2 = Σ2 ∩ Π2 first-order logic (Pin/Weil 1997)

I First-order logic with 2 variables (Thérien/Wilke 1998)

I Unary temporal logic (Etessami/Vardi/Wilke 1997)

Characterizations of DA over words

I Recognizability by finite monoid in DA

I Unambiguous polynomials (Schützenberger 1976)

I Polynomial and complement of a polynomial (Pin/Weil 1997)

I ∆2 = Σ2 ∩ Π2 first-order logic (Pin/Weil 1997)

I First-order logic with 2 variables (Thérien/Wilke 1998)

I Unary temporal logic (Etessami/Vardi/Wilke 1997)

Traces: Algebraic point of view

I Σ finite alphabet

I I ⊆ Σ2 symmetric and irreflexive independence relation

I Congruence ∼I on Σ∗ with

w ∼I v ⇔ w can be transformed into v

by commuting independent letters

I Example: with (a, b) ∈ I we have bbacab ∼I abbcba

I M(Σ, I) = Σ∗/ ∼I trace monoid

I Elements of M(Σ, I) are called (Mazurkiewicz) traces

I Traces have a graphical interpretation

Traces: Algebraic point of view

I Σ finite alphabet

I I ⊆ Σ2 symmetric and irreflexive independence relation

I Congruence ∼I on Σ∗ with

w ∼I v ⇔ w can be transformed into v

by commuting independent letters

I Example: with (a, b) ∈ I we have bbacab ∼I abbcba

I M(Σ, I) = Σ∗/ ∼I trace monoid

I Elements of M(Σ, I) are called (Mazurkiewicz) traces

I Traces have a graphical interpretation

Traces: Algebraic point of view

I Σ finite alphabet

I I ⊆ Σ2 symmetric and irreflexive independence relation

I Congruence ∼I on Σ∗ with

w ∼I v ⇔ w can be transformed into v

by commuting independent letters

I Example: with (a, b) ∈ I we have bbacab ∼I abbcba

I M(Σ, I) = Σ∗/ ∼I trace monoid

I Elements of M(Σ, I) are called (Mazurkiewicz) traces

I Traces have a graphical interpretation

Traces: Algebraic point of view

I Σ finite alphabet

I I ⊆ Σ2 symmetric and irreflexive independence relation

I Congruence ∼I on Σ∗ with

w ∼I v ⇔ w can be transformed into v

by commuting independent letters

I Example: with (a, b) ∈ I we have bbacab ∼I abbcba

I M(Σ, I) = Σ∗/ ∼I trace monoid

I Elements of M(Σ, I) are called (Mazurkiewicz) traces

I Traces have a graphical interpretation

Traces: Algebraic point of view

I Σ finite alphabet

I I ⊆ Σ2 symmetric and irreflexive independence relation

I Congruence ∼I on Σ∗ with

w ∼I v ⇔ w can be transformed into v

by commuting independent letters

I Example: with (a, b) ∈ I we have bbacab ∼I abbcba

I M(Σ, I) = Σ∗/ ∼I trace monoid

I Elements of M(Σ, I) are called (Mazurkiewicz) traces

I Traces have a graphical interpretation

Traces: Algebraic point of view

I Σ finite alphabet

I I ⊆ Σ2 symmetric and irreflexive independence relation

I Congruence ∼I on Σ∗ with

w ∼I v ⇔ w can be transformed into v

by commuting independent letters

I Example: with (a, b) ∈ I we have bbacab ∼I abbcba

I M(Σ, I) = Σ∗/ ∼I trace monoid

I Elements of M(Σ, I) are called (Mazurkiewicz) traces

I Traces have a graphical interpretation

Traces: Algebraic point of view

I Σ finite alphabet

I I ⊆ Σ2 symmetric and irreflexive independence relation

I Congruence ∼I on Σ∗ with

w ∼I v ⇔ w can be transformed into v

by commuting independent letters

I Example: with (a, b) ∈ I we have bbacab ∼I abbcba

I M(Σ, I) = Σ∗/ ∼I trace monoid

I Elements of M(Σ, I) are called (Mazurkiewicz) traces

I Traces have a graphical interpretation

Traces: Algebraic point of view

I Σ finite alphabet

I I ⊆ Σ2 symmetric and irreflexive independence relation

I Congruence ∼I on Σ∗ with

w ∼I v ⇔ w can be transformed into v

by commuting independent letters

I Example: with (a, b) ∈ I we have bbacab ∼I abbcba

I M(Σ, I) = Σ∗/ ∼I trace monoid

I Elements of M(Σ, I) are called (Mazurkiewicz) traces

I Traces have a graphical interpretation

Example

Let D = a—b—c—d and t = acdbca. Then acdbca ∼I cabadc .

partial order: dependence graph: Hasse diagram:

a

c

b

d

a

c

a

c

b

d

a

c

a

c

b

d

a

c

In t, the node labeled with d is parallel to all a’s and b’s.

Example

Let D = a—b—c—d and t = acdbca.

Then acdbca ∼I cabadc .

partial order: dependence graph: Hasse diagram:

a

c

b

d

a

c

a

c

b

d

a

c

a

c

b

d

a

c

In t, the node labeled with d is parallel to all a’s and b’s.

Example

Let D = a—b—c—d and t = acdbca. Then acdbca ∼I cabadc .

partial order: dependence graph: Hasse diagram:

a

c

b

d

a

c

a

c

b

d

a

c

a

c

b

d

a

c

In t, the node labeled with d is parallel to all a’s and b’s.

Example

Let D = a—b—c—d and t = acdbca. Then acdbca ∼I cabadc .

partial order:

dependence graph: Hasse diagram:

a

c

b

d

a

c

a

c

b

d

a

c

a

c

b

d

a

c

In t, the node labeled with d is parallel to all a’s and b’s.

Example

Let D = a—b—c—d and t = acdbca. Then acdbca ∼I cabadc .

partial order: dependence graph:

Hasse diagram:

a

c

b

d

a

c

a

c

b

d

a

c

a

c

b

d

a

c

In t, the node labeled with d is parallel to all a’s and b’s.

Example

Let D = a—b—c—d and t = acdbca. Then acdbca ∼I cabadc .

partial order: dependence graph: Hasse diagram:

a

c

b

d

a

c

a

c

b

d

a

c

a

c

b

d

a

c

In t, the node labeled with d is parallel to all a’s and b’s.

Example

Let D = a—b—c—d and t = acdbca. Then acdbca ∼I cabadc .

partial order: dependence graph: Hasse diagram:

a

c

b

d

a

c

a

c

b

d

a

c

a

c

b

d

a

c

In t, the node labeled with d is parallel to all a’s and b’s.

Why are things more complicated for traces?

For each node x of a trace we can define three disjoint regions:

x
past

parallel

future

I Combinatorically: more involved due to concurrency.

I Algebraically: more involved due to lack of univeral property.

I M recognizes L ⊆ M(Σ, I) ⇒ M(L) divides M. (but not ⇐)

Why are things more complicated for traces?

For each node x of a trace we can define three disjoint regions:

x
past

parallel

future

I Combinatorically: more involved due to concurrency.

I Algebraically: more involved due to lack of univeral property.

I M recognizes L ⊆ M(Σ, I) ⇒ M(L) divides M. (but not ⇐)

Why are things more complicated for traces?

For each node x of a trace we can define three disjoint regions:

x
past

parallel

future

I Combinatorically: more involved due to concurrency.

I Algebraically: more involved due to lack of univeral property.

I M recognizes L ⊆ M(Σ, I) ⇒ M(L) divides M. (but not ⇐)

Why are things more complicated for traces?

For each node x of a trace we can define three disjoint regions:

x
past

parallel

future

I Combinatorically: more involved due to concurrency.

I Algebraically: more involved due to lack of univeral property.

I M recognizes L ⊆ M(Σ, I) ⇒ M(L) divides M. (but not ⇐)

Temporal logic (syntax)

In this context, a temporal formula is a term of the form

ϕ ::= a | ¬ϕ | (ϕ1 ∨ϕ2) | (ϕ1 ∧ϕ2) |
XFϕ | YPϕ | PARϕ | Mϕ

where a ∈ Σ.

Temporal logic (semantics)

A trace t = (V , label, <) at position x ∈ V models a temporal
formula:

t, x |= a ⇔ label(x) = a

t, x |= XFϕ ⇔ ∃y in the future of x : t, y |= ϕ

t, x |= YPϕ ⇔ ∃y in the past of x : t, y |= ϕ

t, x |= PARϕ ⇔ ∃y parallel to x : t, y |= ϕ

t, x |= Mϕ ⇔ ∃y somewhere : t, y |= ϕ

Temporal logic (semantics)

A trace t = (V , label, <) at position x ∈ V models a temporal
formula:

t, x |= a ⇔ label(x) = a

t, x |= XFϕ ⇔ ∃y in the future of x : t, y |= ϕ

t, x |= YPϕ ⇔ ∃y in the past of x : t, y |= ϕ

t, x |= PARϕ ⇔ ∃y parallel to x : t, y |= ϕ

t, x |= Mϕ ⇔ ∃y somewhere : t, y |= ϕ

Temporal logic (semantics)

A trace t = (V , label, <) at position x ∈ V models a temporal
formula:

t, x |= a ⇔ label(x) = a

t, x |= XFϕ ⇔ ∃y in the future of x : t, y |= ϕ

t, x |= YPϕ ⇔ ∃y in the past of x : t, y |= ϕ

t, x |= PARϕ ⇔ ∃y parallel to x : t, y |= ϕ

t, x |= Mϕ ⇔ ∃y somewhere : t, y |= ϕ

Temporal logic (semantics)

A trace t = (V , label, <) at position x ∈ V models a temporal
formula:

t, x |= a ⇔ label(x) = a

t, x |= XFϕ ⇔ ∃y in the future of x : t, y |= ϕ

t, x |= YPϕ ⇔ ∃y in the past of x : t, y |= ϕ

t, x |= PARϕ ⇔ ∃y parallel to x : t, y |= ϕ

t, x |= Mϕ ⇔ ∃y somewhere : t, y |= ϕ

Temporal logic (semantics)

A trace t = (V , label, <) at position x ∈ V models a temporal
formula:

t, x |= a ⇔ label(x) = a

t, x |= XFϕ ⇔ ∃y in the future of x : t, y |= ϕ

t, x |= YPϕ ⇔ ∃y in the past of x : t, y |= ϕ

t, x |= PARϕ ⇔ ∃y parallel to x : t, y |= ϕ

t, x |= Mϕ ⇔ ∃y somewhere : t, y |= ϕ

Temporal logic (semantics)

A trace t = (V , label, <) at position x ∈ V models a temporal
formula:

t, x |= a ⇔ label(x) = a

t, x |= XFϕ ⇔ ∃y in the future of x : t, y |= ϕ

t, x |= YPϕ ⇔ ∃y in the past of x : t, y |= ϕ

t, x |= PARϕ ⇔ ∃y parallel to x : t, y |= ϕ

t, x |= Mϕ ⇔ ∃y somewhere : t, y |= ϕ

Characterizations of DA

Theorem
Let L ⊆ M(Σ, I). Then the following are equivalent:

(i) The syntactic monoid of L is in DA.

(ii) L ∈ PolA and L ∈ PolA.

(iii) L ∈ UPolA.

(iv) L is expressible in TL[XF,YP].

(v) L is expressible in TL[XF,YP,M].

A = {A∗ ⊆ M(Σ, I) | A ⊆ Σ}

Since membership is decidable for the variety DA, the above
characterizations are decidable.

Characterizations of DA

Theorem
Let L ⊆ M(Σ, I). Then the following are equivalent:

(i) The syntactic monoid of L is in DA.

(ii) L ∈ PolA and L ∈ PolA.

(iii) L ∈ UPolA.

(iv) L is expressible in TL[XF,YP].

(v) L is expressible in TL[XF,YP,M].

A = {A∗ ⊆ M(Σ, I) | A ⊆ Σ}

Since membership is decidable for the variety DA, the above
characterizations are decidable.

Characterizations of DA

Theorem
Let L ⊆ M(Σ, I). Then the following are equivalent:

(i) The syntactic monoid of L is in DA.

(ii) L ∈ PolA and L ∈ PolA.

(iii) L ∈ UPolA.

(iv) L is expressible in TL[XF,YP].

(v) L is expressible in TL[XF,YP,M].

A = {A∗ ⊆ M(Σ, I) | A ⊆ Σ}

Since membership is decidable for the variety DA, the above
characterizations are decidable.

Characterizations of DA

Theorem
Let L ⊆ M(Σ, I). Then the following are equivalent:

(i) The syntactic monoid of L is in DA.

(ii) L ∈ PolA and L ∈ PolA.

(iii) L ∈ UPolA.

(iv) L is expressible in TL[XF,YP].

(v) L is expressible in TL[XF,YP,M].

A = {A∗ ⊆ M(Σ, I) | A ⊆ Σ}

Since membership is decidable for the variety DA, the above
characterizations are decidable.

Characterizations of DA

Theorem
Let L ⊆ M(Σ, I). Then the following are equivalent:

(i) The syntactic monoid of L is in DA.

(ii) L ∈ PolA and L ∈ PolA.

(iii) L ∈ UPolA.

(iv) L is expressible in TL[XF,YP].

(v) L is expressible in TL[XF,YP,M].

A = {A∗ ⊆ M(Σ, I) | A ⊆ Σ}

Since membership is decidable for the variety DA, the above
characterizations are decidable.

Characterizations of DA

Theorem
Let L ⊆ M(Σ, I). Then the following are equivalent:

(i) The syntactic monoid of L is in DA.

(ii) L ∈ PolA and L ∈ PolA.

(iii) L ∈ UPolA.

(iv) L is expressible in TL[XF,YP].

(v) L is expressible in TL[XF,YP,M].

A = {A∗ ⊆ M(Σ, I) | A ⊆ Σ}

Since membership is decidable for the variety DA, the above
characterizations are decidable.

Characterizations of DA

Theorem
Let L ⊆ M(Σ, I). Then the following are equivalent:

(i) The syntactic monoid of L is in DA.

(ii) L ∈ PolA and L ∈ PolA.

(iii) L ∈ UPolA.

(iv) L is expressible in TL[XF,YP].

(v) L is expressible in TL[XF,YP,M].

A = {A∗ ⊆ M(Σ, I) | A ⊆ Σ}

Since membership is decidable for the variety DA, the above
characterizations are decidable.

First-order logic with two variables

Theorem
Let L ⊆ M(Σ, I). Then the following are equivalent:

(i) L is expressible in FO2[E].

(ii) L is expressible in TL[XF,YP,M].

Theorem
Let L ⊆ M(Σ, I). Then the following are equivalent:

(i) L is expressible in FO2[<].

(ii) L is expressible in TL[XF,YP,PAR].

Theorem
The following are equivalent:

(i) The dependence relation D is transitive.

(ii) FO2[E] and FO2[<] describe the same class of languages.

First-order logic with two variables

Theorem
Let L ⊆ M(Σ, I). Then the following are equivalent:

(i) L is expressible in FO2[E].

(ii) L is expressible in TL[XF,YP,M].

Theorem
Let L ⊆ M(Σ, I). Then the following are equivalent:

(i) L is expressible in FO2[<].

(ii) L is expressible in TL[XF,YP,PAR].

Theorem
The following are equivalent:

(i) The dependence relation D is transitive.

(ii) FO2[E] and FO2[<] describe the same class of languages.

First-order logic with two variables

Theorem
Let L ⊆ M(Σ, I). Then the following are equivalent:

(i) L is expressible in FO2[E].

(ii) L is expressible in TL[XF,YP,M].

Theorem
Let L ⊆ M(Σ, I). Then the following are equivalent:

(i) L is expressible in FO2[<].

(ii) L is expressible in TL[XF,YP,PAR].

Theorem
The following are equivalent:

(i) The dependence relation D is transitive.

(ii) FO2[E] and FO2[<] describe the same class of languages.

First-order logic with two variables

Theorem
Let L ⊆ M(Σ, I). Then the following are equivalent:

(i) L is expressible in FO2[E].

(ii) L is expressible in TL[XF,YP,M].

Theorem
Let L ⊆ M(Σ, I). Then the following are equivalent:

(i) L is expressible in FO2[<].

(ii) L is expressible in TL[XF,YP,PAR].

Theorem
The following are equivalent:

(i) The dependence relation D is transitive.

(ii) FO2[E] and FO2[<] describe the same class of languages.

First-order logic with two variables

Theorem
Let L ⊆ M(Σ, I). Then the following are equivalent:

(i) L is expressible in FO2[E].

(ii) L is expressible in TL[XF,YP,M].

Theorem
Let L ⊆ M(Σ, I). Then the following are equivalent:

(i) L is expressible in FO2[<].

(ii) L is expressible in TL[XF,YP,PAR].

Theorem
The following are equivalent:

(i) The dependence relation D is transitive.

(ii) FO2[E] and FO2[<] describe the same class of languages.

First-order logic with two variables

Theorem
Let L ⊆ M(Σ, I). Then the following are equivalent:

(i) L is expressible in FO2[E].

(ii) L is expressible in TL[XF,YP,M].

Theorem
Let L ⊆ M(Σ, I). Then the following are equivalent:

(i) L is expressible in FO2[<].

(ii) L is expressible in TL[XF,YP,PAR].

Theorem
The following are equivalent:

(i) The dependence relation D is transitive.

(ii) FO2[E] and FO2[<] describe the same class of languages.

First-order logic with two variables

Theorem
Let L ⊆ M(Σ, I). Then the following are equivalent:

(i) L is expressible in FO2[E].

(ii) L is expressible in TL[XF,YP,M].

Theorem
Let L ⊆ M(Σ, I). Then the following are equivalent:

(i) L is expressible in FO2[<].

(ii) L is expressible in TL[XF,YP,PAR].

Theorem
The following are equivalent:

(i) The dependence relation D is transitive.

(ii) FO2[E] and FO2[<] describe the same class of languages.

First-order logic with two variables

Theorem
Let L ⊆ M(Σ, I). Then the following are equivalent:

(i) L is expressible in FO2[E].

(ii) L is expressible in TL[XF,YP,M].

Theorem
Let L ⊆ M(Σ, I). Then the following are equivalent:

(i) L is expressible in FO2[<].

(ii) L is expressible in TL[XF,YP,PAR].

Theorem
The following are equivalent:

(i) The dependence relation D is transitive.

(ii) FO2[E] and FO2[<] describe the same class of languages.

First-order logic with two variables

Theorem
Let L ⊆ M(Σ, I). Then the following are equivalent:

(i) L is expressible in FO2[E].

(ii) L is expressible in TL[XF,YP,M].

Theorem
Let L ⊆ M(Σ, I). Then the following are equivalent:

(i) L is expressible in FO2[<].

(ii) L is expressible in TL[XF,YP,PAR].

Theorem
The following are equivalent:

(i) The dependence relation D is transitive.

(ii) FO2[E] and FO2[<] describe the same class of languages.

First-order logic with one quantifier alternation

Theorem
Let L ⊆ M(Σ, I). Then the following are equivalent:

(i) L is expressible in ∆2[E].

(ii) L is expressible in TL[XF,YP].

Theorem
The following are equivalent:

(i) The dependence relation D is transitive.

(ii) ∆2[E] and ∆2[<] describe the same class of languages.

First-order logic with one quantifier alternation

Theorem
Let L ⊆ M(Σ, I). Then the following are equivalent:

(i) L is expressible in ∆2[E].

(ii) L is expressible in TL[XF,YP].

Theorem
The following are equivalent:

(i) The dependence relation D is transitive.

(ii) ∆2[E] and ∆2[<] describe the same class of languages.

First-order logic with one quantifier alternation

Theorem
Let L ⊆ M(Σ, I). Then the following are equivalent:

(i) L is expressible in ∆2[E].

(ii) L is expressible in TL[XF,YP].

Theorem
The following are equivalent:

(i) The dependence relation D is transitive.

(ii) ∆2[E] and ∆2[<] describe the same class of languages.

First-order logic with one quantifier alternation

Theorem
Let L ⊆ M(Σ, I). Then the following are equivalent:

(i) L is expressible in ∆2[E].

(ii) L is expressible in TL[XF,YP].

Theorem
The following are equivalent:

(i) The dependence relation D is transitive.

(ii) ∆2[E] and ∆2[<] describe the same class of languages.

First-order logic with one quantifier alternation

Theorem
Let L ⊆ M(Σ, I). Then the following are equivalent:

(i) L is expressible in ∆2[E].

(ii) L is expressible in TL[XF,YP].

Theorem
The following are equivalent:

(i) The dependence relation D is transitive.

(ii) ∆2[E] and ∆2[<] describe the same class of languages.

First-order logic with one quantifier alternation

Theorem
Let L ⊆ M(Σ, I). Then the following are equivalent:

(i) L is expressible in ∆2[E].

(ii) L is expressible in TL[XF,YP].

Theorem
The following are equivalent:

(i) The dependence relation D is transitive.

(ii) ∆2[E] and ∆2[<] describe the same class of languages.

The Big Picture

DA =̂ TL[XF,YP]
= TL[XF,YP,M]
= FO2[E]
= ∆2[E]

∆2[<]

∆3[<]

...A =̂ FO3[<]
= FO[<]
= FO[E]
= TL[X,U]

TL[XF,YP,PAR]
= FO2[<]

The Big Picture

DA =̂ TL[XF,YP]
= TL[XF,YP,M]
= FO2[E]
= ∆2[E]

∆2[<]

∆3[<]

...

A =̂ FO3[<]
= FO[<]
= FO[E]
= TL[X,U]

TL[XF,YP,PAR]
= FO2[<]

The Big Picture

DA =̂ TL[XF,YP]
= TL[XF,YP,M]
= FO2[E]
= ∆2[E]

∆2[<]

∆3[<]

...

A =̂ FO3[<]
= FO[<]
= FO[E]
= TL[X,U]

TL[XF,YP,PAR]
= FO2[<]

The Big Picture

DA =̂ TL[XF,YP]
= TL[XF,YP,M]
= FO2[E]
= ∆2[E]

∆2[<]

∆3[<]

...

A =̂ FO3[<]
= FO[<]
= FO[E]
= TL[X,U]

TL[XF,YP,PAR]
= FO2[<]

The Big Picture

DA =̂ TL[XF,YP]
= TL[XF,YP,M]
= FO2[E]
= ∆2[E]

∆2[<]

∆3[<]

...

A =̂ FO3[<]
= FO[<]
= FO[E]
= TL[X,U]

TL[XF,YP,PAR]
= FO2[<]

The Big Picture

DA =̂ TL[XF,YP]
= TL[XF,YP,M]
= FO2[E]
= ∆2[E]

∆2[<]

∆3[<]

...A =̂ FO3[<]
= FO[<]
= FO[E]
= TL[X,U]

TL[XF,YP,PAR]
= FO2[<]

FO2[<] over traces is not a (full) variety

I Σ∗abΣ∗ ∪ Σ∗baΣ∗ ⊆ M(Σ, I) is expressible in FO2[<] if
(a, b) ∈ I .

∃x∃y : ¬(x < y ∨ y < x ∨ y = x)︸ ︷︷ ︸
x‖y

∧ a(x) ∧ b(y)

I Σ∗abΣ∗ ∪ Σ∗baΣ∗ ⊆ Σ∗ is NOT expressible in FO2[<] over
words.

FO2[<] over traces is not a (full) variety

I Σ∗abΣ∗ ∪ Σ∗baΣ∗ ⊆ M(Σ, I) is expressible in FO2[<] if
(a, b) ∈ I .

∃x∃y : ¬(x < y ∨ y < x ∨ y = x)︸ ︷︷ ︸
x‖y

∧ a(x) ∧ b(y)

I Σ∗abΣ∗ ∪ Σ∗baΣ∗ ⊆ Σ∗ is NOT expressible in FO2[<] over
words.

FO2[<] over traces is not a (full) variety

I Σ∗abΣ∗ ∪ Σ∗baΣ∗ ⊆ M(Σ, I) is expressible in FO2[<] if
(a, b) ∈ I .

∃x∃y : ¬(x < y ∨ y < x ∨ y = x)︸ ︷︷ ︸
x‖y

∧ a(x) ∧ b(y)

I Σ∗abΣ∗ ∪ Σ∗baΣ∗ ⊆ Σ∗ is NOT expressible in FO2[<] over
words.

FO2[<] over traces is not a (full) variety

I Σ∗abΣ∗ ∪ Σ∗baΣ∗ ⊆ M(Σ, I) is expressible in FO2[<] if
(a, b) ∈ I .

∃x∃y : ¬(x < y ∨ y < x ∨ y = x)︸ ︷︷ ︸
x‖y

∧ a(x) ∧ b(y)

I Σ∗abΣ∗ ∪ Σ∗baΣ∗ ⊆ Σ∗ is NOT expressible in FO2[<] over
words.

Complexity of the satisfiability problem

Theorem (Diekert,Horsch,K.)

The following problem is NP-complete:

Input: ϕ ∈ TL[XF,YP,M] and (Σ, I).
Question: Does there exist t ∈ M(Σ, I) such that t |= ϕ?

Theorem (Diekert,Horsch,K.)

The following problem is PSPACE-complete:

Input: ϕ ∈ TL[XF,YP,PAR] and (Σ, I).
Question: Does there exist t ∈ M(Σ, I) such that t |= ϕ?

Complexity of the satisfiability problem

Theorem (Diekert,Horsch,K.)

The following problem is NP-complete:

Input: ϕ ∈ TL[XF,YP,M] and (Σ, I).
Question: Does there exist t ∈ M(Σ, I) such that t |= ϕ?

Theorem (Diekert,Horsch,K.)

The following problem is PSPACE-complete:

Input: ϕ ∈ TL[XF,YP,PAR] and (Σ, I).
Question: Does there exist t ∈ M(Σ, I) such that t |= ϕ?

Complexity of the satisfiability problem

Theorem (Diekert,Horsch,K.)

The following problem is NP-complete:

Input: ϕ ∈ TL[XF,YP,M] and (Σ, I).
Question: Does there exist t ∈ M(Σ, I) such that t |= ϕ?

Theorem (Diekert,Horsch,K.)

The following problem is PSPACE-complete:

Input: ϕ ∈ TL[XF,YP,PAR] and (Σ, I).
Question: Does there exist t ∈ M(Σ, I) such that t |= ϕ?

Proof idea for PSPACE-hardness of SAT for TL[F, PAR]

I Use a reduction from satisfiability of TL[X,F] over {a, a}∗.
I Let â be a shorthand for either a or a and consider the

following trace monoid.

â

b

cd

e
I =

I w = a1a2 · · · an maps to t = a1(bcde)a2(bcde) · · · an(bcde).

a1 c e

b d a2 c e

b d a3 c e

b d

· · ·

· · ·

Proof idea for PSPACE-hardness of SAT for TL[F, PAR]

I Use a reduction from satisfiability of TL[X,F] over {a, a}∗.

I Let â be a shorthand for either a or a and consider the
following trace monoid.

â

b

cd

e
I =

I w = a1a2 · · · an maps to t = a1(bcde)a2(bcde) · · · an(bcde).

a1 c e

b d a2 c e

b d a3 c e

b d

· · ·

· · ·

Proof idea for PSPACE-hardness of SAT for TL[F, PAR]

I Use a reduction from satisfiability of TL[X,F] over {a, a}∗.
I Let â be a shorthand for either a or a and consider the

following trace monoid.

â

b

cd

e
I =

I w = a1a2 · · · an maps to t = a1(bcde)a2(bcde) · · · an(bcde).

a1 c e

b d a2 c e

b d a3 c e

b d

· · ·

· · ·

Proof idea for PSPACE-hardness of SAT for TL[F, PAR]

I Use a reduction from satisfiability of TL[X,F] over {a, a}∗.
I Let â be a shorthand for either a or a and consider the

following trace monoid.

â

b

cd

e
I =

I w = a1a2 · · · an maps to t = a1(bcde)a2(bcde) · · · an(bcde).

a1 c e

b d a2 c e

b d a3 c e

b d

· · ·

· · ·

Proof idea for PSPACE-hardness of SAT for TL[F, PAR]

I Use a reduction from satisfiability of TL[X,F] over {a, a}∗.
I Let â be a shorthand for either a or a and consider the

following trace monoid.

â

b

cd

e
I =

I w = a1a2 · · · an maps to t = a1(bcde)a2(bcde) · · · an(bcde).

a1 c e

b d a2 c e

b d a3 c e

b d

· · ·

· · ·

Outlook and open problems

I Is expressibility in FO2[<] decidable?

I Is expressibility in ∆2[<] decidable?

I How difficult is the satisfiability problem for FO2[E] and
FO2[<]?

I What is the largest class C such that FO2[<] is a C-variety?

Outlook and open problems

I Is expressibility in FO2[<] decidable?

I Is expressibility in ∆2[<] decidable?

I How difficult is the satisfiability problem for FO2[E] and
FO2[<]?

I What is the largest class C such that FO2[<] is a C-variety?

Outlook and open problems

I Is expressibility in FO2[<] decidable?

I Is expressibility in ∆2[<] decidable?

I How difficult is the satisfiability problem for FO2[E] and
FO2[<]?

I What is the largest class C such that FO2[<] is a C-variety?

Outlook and open problems

I Is expressibility in FO2[<] decidable?

I Is expressibility in ∆2[<] decidable?

I How difficult is the satisfiability problem for FO2[E] and
FO2[<]?

I What is the largest class C such that FO2[<] is a C-variety?

Outlook and open problems

I Is expressibility in FO2[<] decidable?

I Is expressibility in ∆2[<] decidable?

I How difficult is the satisfiability problem for FO2[E] and
FO2[<]?

I What is the largest class C such that FO2[<] is a C-variety?

Thank you!

	Introduction
	Mazurkiewicz traces
	Temporal Logic

