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lp-mappings

A1,A2 - finite nonempty alphabets

A+
1 - free semigroup on A1

α : A+
1 → A+

2 is an lp-mapping if

|α(w)| = |w |

for every w ∈ A+
1 .
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A domain extension

The lp-mapping α : A+
1 → A+

2 induces a mapping

A∗1 × A1 × A∗1 → A2

u a v

α ↓

. . . b . . .

α : A+ → A′+ is uniquely determined by
α( , , ) : A∗ × A× A∗ → A′ and vice-versa.
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Right automata

A right A-automaton is a triple AR = (IR ,QR ,SR) where

I QR is a set

I IR ∈ QR

I SR is an A-semigroup acting on QR on the right,so

(qRsR)s ′R = qR(sRs ′R).

The action of SR on QR induces an obvious right action of A∗ on
QR .
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Left automata

A left A-automaton is a triple AL = (SL,QL, IL) where

I QL is a set

I IL ∈ QL

I SL is an A-semigroup acting on QL on the left,so

sL(s
′
LqL) = (sLs

′
L)qL.

The action of SL on QL induces an obvious left action of A∗ on QL.
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Bimachines

An A1,A2-bimachine is a structure of the form

B = ((IR ,QR ,SR), f , (SL,QL, IL)),

where

I (IR ,QR ,SR) is a right A-automaton;

I (SL,QL, IL) is a left A-automaton;

I f : QR × A× QL → A′ a full map (the output function).

We say that B is finite if both state sets and semigroups are finite.
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From bimachines to lp-mappings

We associate an lp-mapping

αB : A+
1 → A2

+

to the A1,A2-bimachine

B = ((IR ,QR ,SR), f , (SL,QL, IL))

by
αB(u, a, v) = f (IRu, a, vIL) (u, v ∈ A∗, a ∈ A).

Thus

αB(w) =

|w |∏
i=1

f (IRw ′
i ,wi ,w

′′
i IL).
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From lp-mappings to bimachines

Let α : A+
1 → A2

+ be an lp-mapping.

Proposition. There exists an A1,A2-bimachine Bα such that:

(i) αBα = α.

(ii) If B′ is a trim A,A′-bimachine such that αB′ = α, then there
exists a (surjective) morphism ϕ : B′ → Bα.

(iii) Up to isomorphism, Bα is the unique trim A,A′-bimachine
satisfying (ii).

We can view Bα as the minimum bimachine of α.
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The block product

Let
B(i) = ((I

(i)
R ,Q

(i)
R ,S

(i)
R ), f (i), (S

(i)
L ,Q

(i)
L , I

(i)
L ))

be an Ai ,Ai+1-bimachine for i = 1, 2. We shall define an
A1,A3-bimachine

B(2)�B(1) = B(21) = ((I
(21)
R ,Q

(21)
R ,S

(21)
R ), f (21), (S

(21)
L ,Q

(21)
L , I

(21)
L ))

called the block product of B(2) and B(1).

The block product is appropriate do deal with composition:

αB(2)�B(1) = αB(2)αB(1) .
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The semigroups

We define

S
(21)
R =

 S
(1)
L 0

Q
(1)
R S

(2)
R

Q
(1)
L

S
(1)
R

 .

S
(21)
R is a semigroup for the product

(
s
(1)
L 0

g s
(1)
R

)(
s ′

(1)
L 0

g ′ s ′
(1)
R

)
=

 s
(1)
L s ′

(1)
L 0

gs ′
(1)
L + s

(1)
R g ′ s

(1)
R s ′

(1)
R

 .

Then we consider the canonical subsemigroup generated by A1 to

get S
(21)
R .
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The states

Let

Q
(21)
R = Q

(2)
R

Q
(1)
L × Q

(1)
R .

It will be often convenient to represent the elements of Q
(21)
R as

1× 2 matrices.

Let
I
(21)
R = (γ

(21)
0 , I

(1)
R ),

where γ
(21)
0 ∈ Q

(2)
R

Q
(1)
L

is defined by γ
(21)
0 (q

(1)
L ) = I

(2)
R .

The action is given by the natural interpretation of matrix
multiplication.
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The output function

The output function f (21) : Q
(21)
R × A1 × Q

(21)
L → A3 is defined by

f (21)(
(

γ q
(1)
R

)
, a,

(
q

(1)
L
δ

)
)

= f (2)(γ(aq
(1)
L ), f (1)(q

(1)
R , a, q

(1)
L ), (q

(1)
R a)δ).

This completes the definition of the bimachine B(2)�B(1).

If B(2) and B(1) are both finite, so is B(2)�B(1).
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Half associativity

Write

B(3(21)) = B(3)�(B(2)�B(1)), B((32)1) = (B(3)�B(2))�B(1).

Lemma. S
(3(21))
R

∼= S
((32)1)
R and S

(3(21))
L

∼= S
((32)1)
L .

Theorem. (B(3)�B(2))�B(1) is a quotient of B(3)�(B(2)�B(1)).
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Iteration of the block product

We shall choose bracketing from left to right, that is, priority is
assumed to hold from left to right:

B[n,1] = ((. . . (B(n)�B(n−1))�B(n−2))� . . .)�B(1).

The state sets can be naturally written as direct products:

Q
[n,1]
R = Q

(n)
R

Q
(1)
L ×Q

(2)
L ×...×Q

(n−1)
L × Q

(n−1)
R

Q
(1)
L ×Q

(2)
L ×...×Q

(n−2)
L

× . . .× Q
(2)
R

Q
(1)
L × Q

(1)
R .
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A sequential action

Theorem. The right action of A+
1 on Q

[n,1]
R is sequential.

This means that if

u(γn, . . . , γ1) = (γ′n, . . . , γ
′
1),

then γ′j depends on γj , . . . , γ1 and u only.

This leads naturally to a tree representation of the action and
allows the definition of profinite limits.
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Our model (informal)

We are interested in deterministic Turing machines that halt for all
inputs, particularly those that can solve NP-complete problems. In
comparison with the most standard models, our model presents
three particular features:

I the “tape” is potentially infinite in both directions and has a
distinguished cell named the origin;

I the origin contains the symbol # until the very last move of
the computation, and # appears in no other cell;

I the machine always halts in one of a very restricted set of
configurations: B∗Y +B∗ (yes) or B∗N+B∗ (no).
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Word formalism

We replace the classical model of “tape” and “control head” by a
formalism based on words. Let

A′ = A ∪ {aq | a ∈ A, q ∈ Q}

be the extended tape alphabet.

The exponent q on a symbol acnowledges the present scanning of
the corresponding cell by the control head, under state q.

q

↓
. . . B B c c b a # c B . . .

BBccbqa#cB
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The one-move mapping

ID - instantaneous descriptions (factors of a tape word)

The Turing machine T induces a mapping β : ID → ID as follows:
Let w ∈ ID. In the absence of states, let β(w) = w .

Suppose now that w = uaqv with a ∈ A and q ∈ Q.

I if δ(q, a) = b ∈ {Y ,N}, let β(w) = ubv ;

I if δ(q, a) = (p, b,R) and c is the first letter of v = cv ′, let
β(w) = ubcpv ′;

I if δ(q, a) = (p, b,R) and v = 1, let β(w) = ubBp;

I if δ(q, a) = (p, b, L) and c is the last letter of u = u′c , let
β(w) = u′cpbv ;

I if δ(q, a) = (p, b,R) and u = 1, let β(w) = Bpbv .
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The one-move lp-mapping

β0 : ID → ID is defined by

β0(w) =


β(w) if |β(w)| = |w |

w ′ if |β(w)| = |w |+ 1 and β(w) = w ′Bp;

w ′ if |β(w)| = |w |+ 1 and β(w) = Bpw ′.

Alternatively, we can say that β0(w) is obtained from β(BwB) by
removing the first and the last letter.

We can deduce β(w) from β0(BwB) and, more generally, βn(w)
from β0(B

nwBn).
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The one-move bimachine

The A′,A′-bimachine

BT = ((IR ,QR ,SR), f , (SL,QL, IL))

is defined as follows:

I QR = A′ ∪ {IR}, QL = A′ ∪ {IL};
I SR = A′ is a right zero semigroup (ab = b);

I SL = A′ is a left zero semigroup (ab = a);

I the action QR × SR → QR is defined by qRa = a;

I the action SL × QL → QL is defined by aqL = a
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I SL = A′ is a left zero semigroup (ab = a);

I the action QR × SR → QR is defined by qRa = a;

I the action SL × QL → QL is defined by aqL = a
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Turing machines and bimachines

The one-move bimachine

For the output function: given qR ∈ QR , a ∈ A′ and qL ∈ QL, let

f (qR , a, qL) = β0(qR , a, qL)

(replacing IR or IL by B if necessary).

If qRaqL ∈ ID, then qRaqL

will encode the situation of three consecutive tape cells at a
certain moment. Then f (qR , a, qL) describes the situation of the
middle cell after one move of T .

Proposition. Let T be a TM with one-move lp-mapping β0. Then
αBT (w) = β0(w) for every w ∈ ID.
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Turing machines and bimachines

The projective limit

We assume now that B(1) = B(2) = B(3) = . . . are countably many
copies of the one-move lp-mapping of a TM.

Lemma. {(I [n,1]
R ,Q

[n,1]
R ,S

[n,1]
R ) | n ≥ 1} with the natural

morphisms constitute a projective system of right A′,A′-automata.

(Iω
R ,Qω

R ,Sω
R ) is its projective limit.

There are dual results for the left automata. We write

Bω = ((Iω
R ,Qω

R ,Sω
R ), f ω, (Sω

L ,Qω
L , Iω

L )).
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Turing machines and bimachines

The differential equation

Given u, v ∈ A′+ and a ∈ A′, we define

f ω(Iω
R u, a, vIω

L ) = lim
n→∞

f [n,1](I
[n,1]
R Bnu, a, vBnI

[n,1]
L ).

Bω satisfies the following property (the differential equation):

Theorem. Bω ∼= Bω�B.

Thus Bω is a self-similar bimachine.
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Turing machines and bimachines

The project

The profinite bimachine Bω encodes the full computational power
of T , with appropriate equivalents of time and space functions.

Its self-similarity opens new perspectives to the study of
complexity, allowing the use of recursion at an algebraic level (see
Grigorchuk et al. on self-similar groups).

We hope that this entirely new approach to Turing machine
computation may eventually lead to new results in complexity
theory, possibly a proof for P 6= NP.

A workshop devoted to this approach was held in June at the
University of Berkeley.
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