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A generalization of the algebraic theory for regular word
languages (syntactic monoid, Eilenberg variety theorems,
decomposition theorems, etc.) to unranked trees (no bound
on number of children a node may have).

In many ways simpler and more elegant than theory for binary
trees or trees of bounded rank.

Fundamental idea due to M. Bojanczyk and I. Walukiewicz.
(But don’t blame them for the errors and half-truths in this
talk!)
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Related work

Much related work on binary trees and languages of trees of
bounded rank—by almost everyone in the room except the
speaker!

Also recent work of Benedikt and Ségoufin on tree languages
definable in first-order logic with successor–their results on
unranked trees might fit into this framework.

This theory is very much in its infancy; the right formulation
may still be waiting to be discovered.
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Motivation

Deterministic bottom-up automaton on Σ-labeled trees labels
the tree nodes by states.

Root node labeled q iff q1q2 · · · qk ∈ Lq,σ. The languages Lq,σ

are regular. Determinism means Lq,σ ∩ Lq′,σ = ∅ when q 6= q′.
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There are two semigroups!

The languages Lq,σ are all recognized by a single finite monoid
(direct product of the syntactic monoids of these languages).
H = horizontal semigroup.

The maps σ : q1 · · · qk 7→ q generate a semigroup of
transformations on H. V = vertical semigroup.
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Tree Pre-algebra

A tree pre-algebra is a pair (H,V ) where H is a monoid, V is
a semigroup, and V acts on the right of H.

Always write the operation in H additively (and in our
examples H is always commutative), write identity of H as 0.
h · v or hv denotes the action of an element of V on an
element of H.

We generally require the action of V on H to be faithful: If
hv = hv ′ for all h ∈ H then v = v ′. Any action can be
collapsed to a faithful action.

A homomorphism of tree pre-algebras is a pair of
homomorphisms (α, β) : (H1,V1) → (H2,V2) satisfying

α(hv) = α(h)β(v)

for all h ∈ H1, v ∈ V1.
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Free Tree Pre-algebra (H(Σ, Γ), V (Σ))

Two sets of generators Γ = {γ1, . . . , γk}, Σ = {σ1, . . . , σr}.
V (Σ) = Σ+. Elements of H(Σ, Γ) are formal expressions like

((γ1 + γ2)σ1 + γ2σ2)σ1 + γ3σ1σ2,

forests with leaves labeled by Γ and interior nodes labeled by
Σ.

Usual universal property of free objects: Every pair of maps
Γ → H, Σ → V extends to homomorphism into (H,V ).

An Algebraic Theory for Regular Languages of Unranked Trees



Foundational Issues

Is H a semigroup of a monoid? Is V a semigroup or a monoid?

Is faithfulness necessary?

Forests or Trees?

Different labels for leaves and interior nodes?

Tree prealgebras or Tree algebras? (We’ll see these later.)
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How do we handle a single alphabet of labels?

If you make H a monoid, then its zero is the empty forest.
But then what is 0 · σ?

H should probably be a semigroup, but if you allow H to be a
monoid, then the forests in which every leaf is 0 provide a
good model for Σ-labeled trees and forests. We denote this
smaller prealgebra (H(Σ),V (Σ)).
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Monogenicity

A tree pre-algebra (H,V ) is monogenic if it is generated by
0 ∈ H and V .

A homomorphism from a monogenic tree prealgebra is
completely determined by its value on the vertical semigroup.

If (H,V ) is monogenic then every map from Σ to V extends
to a homomorphism from (H(Σ),V (Σ)) into (H,V ).
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Contexts

A context is a tree with a “hole” where one of its leaves
should be.

In (H(Σ),V (Σ)) one can extend the action of letters on
forests to the action of contexts on forests.

No “empty” contexts–every context v has at least one vertex
with a label in σ, and so hv is always a tree.

This leads to an extension (H(Σ), V̂ (Σ)) of the original
prealgebra.
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Tree Algebras

In general, we can extend any tree prealgebra (H,V ) to a
larger one (H, V̂ ) by closing under the operations

v 7→ g ∗ v , v 7→ v ∗ g , g ∈ H,

where

h(g ∗ v) = (h + g)v , h(v ∗ g) = (g + h)v .

A tree prealgebra closed under these operations is called a tree
algebra.

Every homomorphism (H1,V1) → (H2,V2) has a unique
extension to a homomorphism (H1, V̂1) → (H2, V̂2).

From now on we usually understand (H,V ) to denote a tree
algebra, so that V = V̂ .

An Algebraic Theory for Regular Languages of Unranked Trees



Language Recognition

A set of forests L ⊆ H(Σ) is recognized by a tree algebra
(H,V ) if and only if there is a homomorphism
(α, β) : (H(Σ),V (Σ)) → (H,V ) and X ⊆ H such that
L = α−1(X ).

A set L of trees in H(Σ) is recognized by (H,V ) if and only if

L =
⋃
σ∈Σ

Lσσ,

where each Lσ is recognized by (H,V ). We also say (α, β)
recognizes L.

Fact: L is a regular tree language iff it is recognized by a finite
tree algebra (H,V ).
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Syntactic Tree Algebra

L a set of trees in H(Σ). Define, for h, h′ ∈ H(Σ), h ∼L h′ if
and only if for all contexts v , hv ∈ L ⇔ h′v ∈ L.

It follows easily that hi ∼L h′i for i = 1, 2 implies
h1 + h2 ∼L h′1 + h′2, so that ∼L is a congruence on H(Σ).
Quotient denoted HL.

We also have h ∼L h′ implies hv ∼L h′v , so that V̂ (Σ) acts
on HL. Collapse to make this faithful, giving syntactic tree
algebra (HL,VL) of L, and syntactic morphism

(αL, βL) : (H(Σ), V̂ (Σ)) → (HL,VL).
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The Fundamental Theorem

Theorem

(α, β) : (H(Σ), V̂ (Σ)) → (H,V ) recognizes L if and only if
(αL, βL) factors through (α, β).
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An Example

Σ = {σ}. L is the set of trees in which every node has at most
one child, with the possible exception of the root.

Classes of ∼L: empty forest (0), forests consisting of a single
path (1), sums of two or more such paths (2), everything else
(∞.)

Observe x +∞ = ∞, 1 + 1 = 1 + 2 = 2. 0σ = 1σ = 1,
2σ = ∞σ = σ.

A tree hσ is in L if and only if αL(h) 6= ∞.
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Why did we not use a simpler definition of recognition for
tree languages?

Why not just say a set of L of trees is recognized by (H,V ) if
L = α−1(X ) for some X ⊆ H?

This fails to give canonical minimal algebra recognizing L: For
the above example, {0, 1, 2, δ,∞} with δ + δ = ∞ and
{0, 1, 2, ε,∞} with ε + ε = ε both recognize L in this stronger
sense, but do not have a common quotient that recognizes L.
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Varieties and the Eilenberg Correspondence

A variety of finite tree algebras is a family V of finite tree
algebras closed under direct products, quotients, and
subalgebras.

Note: For monogenic tree algebras, “subalgebra” and “direct
product” must be qualified.

Let TV (Σ) be the family of tree languages over Σ whose
syntactic tree algebras belong to V.

Theorem

V 7→ TV is one-to-one.
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Eilenberg Correspondence, continued

F assigns a family of Σ-labeled forest languages to each
alphabet Σ.

TF (Σ) consists of the languages
⋃

σ∈Σ Uσ, where the Uσ are
in F(Σ).

Theorem

TF = TV for some variety V if and only if (i) F(Σ) is closed under
boolean operations; (ii) If L ∈ TF (Σ) and v ∈ V̂ (Σ), then
Lv−1 = {h ∈ H(Σ) : hv ∈ L} ∈ F(Σ), (iii) if
(α, β) : (H(Γ), V̂ (Γ)) → (H(Σ), V̂ (Σ)) is a homomorphism, and
L ∈ F(Σ), then α−1(L) ∈ F(Γ).
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Why do we consider algebras rather than prealgebras?

(Example due to M. Bojanczyk) Suppose membership of a
tree in a regular language is determined by the set of labels of
its leaves.

This property can be characterized by the identites

0σv = 0σ + 0v , h1 + h2 = h2 + h1, h + h = h,

where any context can be substituted for v , but only a letter
can be substituted for σ.

It is not preserved under inverse images of morphisms between
free tree algebras, although it is preserved under inverse
images of morphisms between free tree prealgebras.

Different kinds of varieties—analogous to C-varieties for words.
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Logically-defined classes of languages form varieties!

In practice, it is usually easy to show that the class of tree
languages defined by some fragment of first-order or temporal
logic satisfies the closure properties given in the Eilenberg
theorem.

Consider, for example, FO[<], where x < y means node x is
an ancestor of node y .

Easy to see that if the forest languages Uσ are all first-order
definable, then so is the tree language

⋃
σ∈Σ Uσσ.

Closure properties follow from a simple application of
Ehrenfeucht games: For example, one shows that if
(α, β) : (H(Γ),V (Γ)) → (H(Σ),V (Σ)) is a homomorphism,
and two forests h1, h2 ∈ H(Γ) are indistinguishable in the
r -round game, then the same is true for α(h1), α(h2). This
implies closure under inverse images for homomorphisms.
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Logically-defined classes form varieties!

So, logically-defined classes of regular tree languages admit
characterizations in terms of tree algebras.

Moreover, every variety is defined by a sequence of identities,
or a set of pseudoidentities. and such identities, if found, can
lead to effective characterizations.
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Wreath Product

The wreath product, which is an operation on transformation
semigroups, extends naturally to this setting:

(H2,V2) ◦ (H1,V1) = (H2 × H1,V
H1
2 × V1),

where
(h2, h1)(f , v1) = (h2f (h1), h1v1).

One shows in the usual manner that the composition of two
elements of the form (f , v) has the same form. Thus the
wreath product is a tree prealgebra.

Easy to show that the wreath product of two tree algebras is a
tree algebra.
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A Sampling of Results-EX

Example: Consider the tree algebras that satisfy the identities:

g + h = h + g , g + g = g , gv1 · · · vk = hv1 · · · vk ,

for some k > 0.
One can prove that a tree algebra satisfies these identities if
and only if it embeds divides an iterated wreath product of
copies of

({0,∞}, {c0, c∞}),
where ca denotes the constant map to a.
This is analogous to an old result of Stiffler on wreath
products of transformation semigroups: A semigroup is
definite if and only if it divides a wreath product of copies of
({a, b}, {ca, cb}).
This readily implies that these are exactly the syntactic
algebras of tree languages definable in the temporal logic
TL[EX ]. (EXφ means there is a child satisfying φ.) (Compare
results of Bojanczyk and Walukiewicz on EX for binary trees.)
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A Sampling of Results-EF

Example: Consider the tree algebras that satisfy the identities:

g + h = h + g , g + g = g , (g + h)v = gv + (g + h)v .

One can prove that a tree algebra satisfies these identities if
and only if it embeds in an iterated wreath product of copies
of

({0,∞}, {1, 0}),
where 1 is the identity transformation, and 0 the constant
map to ∞.
This is analogous to an old result of Stiffler on wreath
products of transformation semigroups: A monoid is R-trivial
if and only if it divides a wreath product of copies of
({0, 1}, {0, 1}).
This readily implies that these are exactly the syntactic
algebras of tree languages definable in the temporal logic
TL[EF ]. (EFφ means there is a descendant satisfying φ.)
(Due to M. Bojanczyk).
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A Sampling of Results–Partially-ordered tree algebras and
Simon’s Theorem

L is defined by a boolean combination of Σ1-sentences if and
only if it is recognized by a tree algebra (H,V ) satisfying the
following conditions:

(i) H is commutative;

(ii) H admits a partial order ≤ that is compatible with
addition (hi ≤ h′i for i = 1, 2, implies h1 + h2 ≤ h′1 + h′2), and
with the action (h ≤ h′ implies hv ≤ h′v).

(iii) hv ≤ h for all h ∈ H, v ∈ V .

This does not immediately yield an effective criterion. A
necessary condition is that the syntactic algebra is horizontally
aperiodic and commutative and vertically J -trivial. Is this
condition sufficient?
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A Sampling of Results-First-order logic

(Bojanczyk and Walukiewicz) L is in FO[<] if and only if L is
recognized by an iterated wreath product of tree algebras
(H,V ), each having one of the following two types:

1.H aperiodic and commutative, hv = h′v for all h, h ∈ H,
v ∈ V .

2.H is idempotent and commutative, V is aperiodic, and
(h + h′)v = hv + h′v for all h, h′ ∈ H, v ∈ V .

This does not directly yield an effective criterion–an important
open problem.

Compare Benedikt and Ségoufin on first-order logic with
successor. Here we have a decidable criterion and we know the
class forms a variety of tree languages—can we derive/express
an effective criterion in more algebraic language?
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