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Plan

• We associate a branching temporal logic FTL(L) with each

class L of (regular) tree languages.

• Provide an algebraic characterization of the expressive power

of the logics FTL(L) under some natural assumptions.

• We establish a formal connection between temporal logics

and algebra.

• Applications: Szabolcs Iván
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Ranked Alphabets and Trees

Definition A rank type R is a finite set of natural numbers con-

taining 0. A ranked alphabet Σ of rank type R is a disjoint union

of finite nonempty sets Σn, n ∈ R.

We fix a rank type R and only consider ranked alphabets of rank

type R.

Notation When Σ is a ranked alphabet, the set of all ground

Σ-terms or closed Σ-terms is denoted TΣ. It is well-known that

TΣ is the carrier of the initial Σ-algebra.

We will keep calling terms as trees.
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Tree Automata

Suppose that Σ is a ranked alphabet.

A Σ-tree automaton is a finite Σ-algebra that has no nontrivial

subalgebra.

When A is a Σ-algebra each t ∈ TΣ evaluates to an element

tA ∈ A. We say that a language L ⊆ TΣ is recognizable by a

Σ-tree automaton A if there is a set F ⊆ A with

L = {t ∈ TΣ : tA ∈ F}.

A tree language L ⊆ TΣ is called regular if it is recognizable by

a tree automaton.
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Formulas

Our logic contains formulas over each ranked set Σ.

• For each letter σ ∈ Σ, pσ is a formula.

• If ϕ and ψ are formulas, then ¬ϕ, ϕ∨ψ, ϕ∧ψ, ... are formulas.

• If ∆ is a ranked set, (ϕδ)δ∈∆ is a family of formulas, K ⊆ T∆

is a pattern language, then

K(δ 7→ ϕδ)δ∈∆

is a formula.

L a class of regular languages – FTL(L)

K a class of finite tree automata – FTL(K)
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Semantics 1

Suppose that ϕ is a formula over Σ and t ∈ TΣ. Then t |= ϕ if

1. ϕ = pσ and the root of t is labeled σ, or

2. ϕ = ¬ψ and t |= ψ does not hold, or ϕ = ψ ∨ ψ′ and t |= ψ or

t |= ψ′ holds, or, ..., or

3. ϕ = K(δ 7→ ϕδ)δ∈∆ and the characteristic tree t̂ ∈ T∆ deter-

mined by t and (ϕδ)δ∈∆ is in K.
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Semantics 2

t̂ differs from t only in the labeling of the vertices.

Suppose that v is a vertex labeled in t by a letter σ ∈ Σn. Then

the label of v in t̂ is the first letter δ ∈ ∆n such that the subtree

t|v of t rooted at v satisfies ϕδ, t|v |= ϕδ, if there is such a letter.

Otherwise the label is the last letter in ∆n.

We assume a fixed lexicographic order on each ranked alphabet.

(But the ordering is not important ...)
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The Characteristic Tree
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Example

∆n = {↑n, ↓n}, n ∈ R.

LEF∗ = {s ∈ T∆ : ∃v ∃n s(v) =↑n}

LEG∗ = {s ∈ T∆ : ∃p ∀v ∈ p ∃n s(v) =↑n}

Then for any t ∈ TΣ, t |= LEF∗(↑n 7→ ϕ, ↓n 7→ ¬ϕ)n∈R iff for some

vertex v, t|v |= ϕ: EF modality.

And t |= LEG∗(↑n 7→ ϕ, ↓n 7→ ¬ϕ)n∈R iff there is a path p such that

for each vertex v ∈ p, t|v |= ϕ: EG modality.
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Earlier Result

Theorem Suppose that L is a class of regular tree languages

with:

1. Each quotient of any language in L is definable in FTL(L).

2. The “next modalities are expressible in FTL(L)”.

Then a language L ⊆ TΣ is definable in FTL(L) iff it is regular

and its minimal automaton is in the least pseudovariety closed

under the cascade product which contains the 2-state reset au-

tomaton D0 and the minimal automata of the languages in L.
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This Talk

Theorem Suppose that L is a class of regular tree languages such

that each quotient of any language in L is definable in FTL(L).

Then a language L ⊆ TΣ is definable in FTL(L) iff it is regular

and its minimal automaton is in the least pseudovariety closed

under the Moore product containing the 2-state reset automaton

D0 and the minimal automata of the languages in L.

Corollary Suppose that K is a class of finite tree automata. Then

a language L ⊆ TΣ is definable in FTL(K) iff it is regular and

its minimal automaton is in the least pseudovariety closed under

the Moore product containing D0 and K.
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Cascade Product (Ricci)

Let A be a Σ-tree automaton, B a ∆-tree automaton, and α a

family of functions αn : An × Σn → ∆n, n ∈ R. The cascade

product A ×α B determined by α is the least subalgebra of the

Σ-algebra with carrier A×B and operations

σ((a1, b1), . . . , (an, bn)) = (σ(a1, . . . , an), δ(b1, . . . , bn)),

where δ = αn(a1, . . . , an, σ), for all ((a1, b1), . . . , (an, bn)) ∈ A×B,

σ ∈ Σn, n ∈ R.

The direct product is clearly a special case of the cascade prod-

uct.

The cascade product is closely related to the wreath product of

function clones (VanderWerf).
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Moore Product

Let A be a Σ-tree automaton, B a ∆-tree automaton. We call a

cascade product A ×α B a Moore product if there exists a family

of functions βn : A× Σn → ∆n, n ∈ R such that

αn(a1, . . . , an, σ) = βn(σ(a1, . . . , an), σ)

for all a1, . . . , an ∈ A and σ ∈ Σn, n ∈ R.

12



Products of tree automata and temporal logic

CTL

CTL = FTL({EU}) where

EU is defined on the set {0,1} by

↑n (b1, . . . , bn) = 1

µn(b1, . . . , bn) = b1 ∨ . . . ∨ bn

↓n (b1, . . . , bn) = 0,

for all b1, . . . , bn ∈ {0,1}, n ∈ R.

Theorem A tree language is definable in CTL iff its minimal tree

automaton is in the least pseudovariety containing EU which is

closed under the cascade product.
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CTL(EF∗)

CTL(EF∗) = FTL({EEF∗}) where

EEF∗ is defined on the set {0,1} by

↑n (b1, . . . , bn) = 1

↓n (b1, . . . , bn) = b1 ∨ . . . ∨ bn

for all b1, . . . , bn ∈ {0,1}, n ∈ R.

Theorem A tree language is definable in CTL(EF∗) iff its minimal

tree automaton is in the least pseudovariety containing EEF∗ and

D0 which is closed under the Moore product.
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Wreath Product of Clones

Suppose that (A,S) and (B, T ) are function clones. We define

a clone on the set A × B, denoted (A × B,S w T ). The n-ary

functions in S w T are the functions (s, f), where s : An → A in S

and f maps An into the set of n-ary functions in T , defined by

(s, f)((a1, b1), . . . , (an, bn)) = (s(a1, . . . , an), f
(a1,...,an)(b1, . . . , bn)),

for all (ai, bi) ∈ A×B, i ∈ [n].

Then (s, f) = (s′, f ′) iff s = s′ and f = f ′. Moreover, the func-

tions (s, f) form a clone: they are closed under composition and

contain the projections.
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