Products of tree automata with an application to temporal logic

Zoltán Ésik

Joint work with Szabolcs Iván

Plan

- We associate a branching temporal logic $FTL(\mathcal{L})$ with each class \mathcal{L} of (regular) tree languages.
- Provide an algebraic characterization of the expressive power of the logics $FTL(\mathcal{L})$ under some natural assumptions.
- We establish a formal connection between temporal logics and algebra.
- Applications: Szabolcs Iván

Ranked Alphabets and Trees

Definition A rank type R is a finite set of natural numbers *containing* 0. A ranked alphabet Σ of rank type R is a disjoint union of finite *nonempty* sets Σ_n , $n \in R$.

We fix a rank type R and only consider ranked alphabets of rank type R.

Notation When Σ is a ranked alphabet, the set of all ground Σ -terms or closed Σ -terms is denoted T_{Σ} . It is well-known that T_{Σ} is the carrier of the initial Σ -algebra.

We will keep calling terms as trees.

Tree Automata

Suppose that Σ is a ranked alphabet.

A Σ -tree automaton is a finite Σ -algebra that has no nontrivial subalgebra.

When \mathbb{A} is a Σ -algebra each $t \in T_{\Sigma}$ evaluates to an element $t_{\mathbb{A}} \in A$. We say that a language $L \subseteq T_{\Sigma}$ is recognizable by a Σ -tree automaton \mathbb{A} if there is a set $F \subseteq A$ with

$$L = \{t \in T_{\Sigma} : t_{\mathbb{A}} \in F\}.$$

A tree language $L \subseteq T_{\Sigma}$ is called regular if it is recognizable by a tree automaton.

Formulas

Our logic contains formulas over each ranked set Σ .

- For each letter $\sigma \in \Sigma$, p_{σ} is a formula.
- If φ and ψ are formulas, then $\neg \varphi$, $\varphi \lor \psi$, $\varphi \land \psi$, ... are formulas.
- If Δ is a ranked set, $(\varphi_{\delta})_{\delta \in \Delta}$ is a family of formulas, $K \subseteq T_{\Delta}$ is a pattern language, then

$$K(\delta \mapsto \varphi_{\delta})_{\delta \in \Delta}$$

is a formula.

 \mathcal{L} a class of regular languages – FTL(\mathcal{L}) K a class of finite tree automata – FTL(K)

Semantics 1

Suppose that φ is a formula over Σ and $t \in T_{\Sigma}$. Then $t \models \varphi$ if

1. $\varphi = p_{\sigma}$ and the root of t is labeled σ , or

2. $\varphi = \neg \psi$ and $t \models \psi$ does not hold, or $\varphi = \psi \lor \psi'$ and $t \models \psi$ or $t \models \psi'$ holds, or, ..., or

3. $\varphi = K(\delta \mapsto \varphi_{\delta})_{\delta \in \Delta}$ and the characteristic tree $\hat{t} \in T_{\Delta}$ determined by t and $(\varphi_{\delta})_{\delta \in \Delta}$ is in K.

Semantics 2

 \hat{t} differs from t only in the labeling of the vertices.

Suppose that v is a vertex labeled in t by a letter $\sigma \in \Sigma_n$. Then the label of v in \hat{t} is the first letter $\delta \in \Delta_n$ such that the subtree $t|_v$ of t rooted at v satisfies φ_{δ} , $t|_v \models \varphi_{\delta}$, if there is such a letter. Otherwise the label is the last letter in Δ_n .

We assume a fixed lexicographic order on each ranked alphabet. (But the ordering is not important ...) The Characteristic Tree

 $s \models \varphi_{\delta}$

Example

 $\Delta_n = \{\uparrow_n, \downarrow_n\}, \ n \in R.$

$$L_{\mathsf{EF}^*} = \{ s \in T_{\Delta} : \exists v \exists n \ s(v) = \uparrow_n \}$$
$$L_{\mathsf{EG}^*} = \{ s \in T_{\Delta} : \exists p \forall v \in p \exists n \ s(v) = \uparrow_n \}$$

Then for any $t \in T_{\Sigma}$, $t \models L_{\mathsf{EF}^*}(\uparrow_n \mapsto \varphi, \downarrow_n \mapsto \neg \varphi)_{n \in R}$ iff for some vertex $v, t|_v \models \varphi$: **EF modality**.

And $t \models L_{\mathsf{EG}^*}(\uparrow_n \mapsto \varphi, \downarrow_n \mapsto \neg \varphi)_{n \in R}$ iff there is a path p such that for each vertex $v \in p$, $t|_v \models \varphi$: EG modality.

Earlier Result

Theorem Suppose that ${\mathcal L}$ is a class of regular tree languages with:

- 1. Each quotient of any language in \mathcal{L} is definable in $FTL(\mathcal{L})$.
- 2. The "next modalities are expressible in $FTL(\mathcal{L})$ ".

Then a language $L \subseteq T_{\Sigma}$ is definable in $FTL(\mathcal{L})$ iff it is regular and its minimal automaton is in the least pseudovariety closed under the cascade product which contains the 2-state reset automaton \mathbb{D}_0 and the minimal automata of the languages in \mathcal{L} .

This Talk

Theorem Suppose that \mathcal{L} is a class of regular tree languages such that each quotient of any language in \mathcal{L} is definable in $FTL(\mathcal{L})$. Then a language $L \subseteq T_{\Sigma}$ is definable in $FTL(\mathcal{L})$ iff it is regular and its minimal automaton is in the least pseudovariety closed under the Moore product containing the 2-state reset automaton \mathbb{D}_0 and the minimal automata of the languages in \mathcal{L} .

Corollary Suppose that K is a class of finite tree automata. Then a language $L \subseteq T_{\Sigma}$ is definable in FTL(K) iff it is regular and its minimal automaton is in the least pseudovariety closed under the Moore product containing \mathbb{D}_0 and K.

Cascade Product (Ricci)

Let \mathbb{A} be a Σ -tree automaton, \mathbb{B} a Δ -tree automaton, and α a family of functions $\alpha_n : A^n \times \Sigma_n \to \Delta_n$, $n \in R$. The cascade product $\mathbb{A} \times_{\alpha} \mathbb{B}$ determined by α is the least subalgebra of the Σ -algebra with carrier $A \times B$ and operations

$$\sigma((a_1, b_1), \dots, (a_n, b_n)) = (\sigma(a_1, \dots, a_n), \delta(b_1, \dots, b_n)),$$

where $\delta = \alpha_n(a_1, \dots, a_n, \sigma)$, for all $((a_1, b_1), \dots, (a_n, b_n)) \in A \times B$,
 $\sigma \in \Sigma_n, n \in R$.

The direct product is clearly a special case of the cascade product.

The cascade product is closely related to the wreath product of function clones (VanderWerf).

Moore Product

Let \mathbb{A} be a Σ -tree automaton, \mathbb{B} a Δ -tree automaton. We call a cascade product $\mathbb{A} \times_{\alpha} \mathbb{B}$ a Moore product if there exists a family of functions $\beta_n : A \times \Sigma_n \to \Delta_n$, $n \in R$ such that

$$\alpha_n(a_1,\ldots,a_n,\sigma) = \beta_n(\sigma(a_1,\ldots,a_n),\sigma)$$

for all $a_1, \ldots, a_n \in A$ and $\sigma \in \Sigma_n$, $n \in R$.

CTL

 $CTL = FTL(\{\mathbb{E}_U\})$ where

 \mathbb{E}_U is defined on the set $\{0,1\}$ by

$$\uparrow_n (b_1, \dots, b_n) = 1 \mu_n(b_1, \dots, b_n) = b_1 \vee \dots \vee b_n \downarrow_n (b_1, \dots, b_n) = 0,$$

for all $b_1, \ldots, b_n \in \{0, 1\}$, $n \in R$.

Theorem A tree language is definable in CTL iff its minimal tree automaton is in the least pseudovariety containing \mathbb{E}_U which is closed under the cascade product.

$CTL(EF^*)$

$$CTL(EF^*) = FTL(\{\mathbb{E}_{EF^*}\})$$
 where

 $\mathbb{E}_{\mathsf{EF}^*}$ is defined on the set $\{0,1\}$ by

$$\uparrow_n (b_1, \dots, b_n) = 1 \downarrow_n (b_1, \dots, b_n) = b_1 \lor \dots \lor b_n$$

for all $b_1, \ldots, b_n \in \{0, 1\}, n \in R$.

Theorem A tree language is definable in CTL(EF^{*}) iff its minimal tree automaton is in the least pseudovariety containing $\mathbb{E}_{\mathsf{EF}^*}$ and \mathbb{D}_0 which is closed under the Moore product.

Wreath Product of Clones

Suppose that (A, S) and (B, T) are function clones. We define a clone on the set $A \times B$, denoted $(A \times B, S w T)$. The *n*-ary functions in S w T are the functions (s, f), where $s : A^n \to A$ in Sand f maps A^n into the set of *n*-ary functions in T, defined by

 $(s, f)((a_1, b_1), \dots, (a_n, b_n)) = (s(a_1, \dots, a_n), f^{(a_1, \dots, a_n)}(b_1, \dots, b_n)),$ for all $(a_i, b_i) \in A \times B, i \in [n].$

Then (s, f) = (s', f') iff s = s' and f = f'. Moreover, the functions (s, f) form a clone: they are closed under composition and contain the projections.