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Two Tree Automata

Let 0 ∈ R be a rank type.
∆ is the ranked alphabet with ∆n = {∨n,>n} for each n ∈ R.
We study the following automata:
AEF∗ = ({0, 1},∆) with the usual Boolean interpretations;
AEF+ = ({0, 1, 2},∆) with

∨n
AEF+

(x1, . . . , xn) =

{

0 , if xi = 0 holds for all i ;
2 , otherwise;

>n
AEF+

(x1, . . . , xn) =

{

1 , if xi = 0 holds for all i ;
2 , otherwise.

Ésik, Iván Application for Moore varieties



Two Tree Automata

Let 0 ∈ R be a rank type.
∆ is the ranked alphabet with ∆n = {∨n,>n} for each n ∈ R.
We study the following automata:
AEF∗ = ({0, 1},∆) with the usual Boolean interpretations;
AEF+ = ({0, 1, 2},∆) with

∨n
AEF+

(x1, . . . , xn) =

{

0 , if xi = 0 holds for all i ;
2 , otherwise;

>n
AEF+

(x1, . . . , xn) =

{

1 , if xi = 0 holds for all i ;
2 , otherwise.

Ésik, Iván Application for Moore varieties



Two Tree Automata

Let 0 ∈ R be a rank type.
∆ is the ranked alphabet with ∆n = {∨n,>n} for each n ∈ R.
We study the following automata:
AEF∗ = ({0, 1},∆) with the usual Boolean interpretations;
AEF+ = ({0, 1, 2},∆) with

∨n
AEF+

(x1, . . . , xn) =

{

0 , if xi = 0 holds for all i ;
2 , otherwise;

>n
AEF+

(x1, . . . , xn) =

{

1 , if xi = 0 holds for all i ;
2 , otherwise.

Ésik, Iván Application for Moore varieties



Our Aims: Moore Varieties

We will characterize the Moore varieties 〈AEF∗ , D1〉M and
〈AEF+ , D1〉M .

In order to do this we characterize first 〈AEF∗〉M and
〈AEF+〉M .

We will show that the membership problem is decidable for
all of them in polynomial time.
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Connection to Temporal Logics

Let L be a regular tree language and � ∈ {+, ∗}. The following
are equivalent:

L is definable in the tree logic CTL(EF�).

The minimal recognizer AL of L is contained in the Moore
variety 〈AEF� , D1〉M .

Corollary: it is decidable for a regular tree language L whether it
is definable in these logics.

For the EF+ fragment it was already proven by
M. Bojańczyk and I. Walukiewicz, using different methods.
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Moore properties

Commutativity (Com):

σ(x1, . . . , xn) = σ(x
π(1), . . . , x

π(n)), π a permutation.

Idempotence:

σ(x1, . . . , xn−1, xi) = σ(x1, . . . , xn−1, xj ), 1 ≤ i , j < n.

Stutter invariance (Stu):

σ(x1, . . . , xn) = σ(x1, . . . , xn−1, σ(x1, . . . , xn)).
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Moore properties dealing with �

a �A b holds iff ζA(a) = b for some context ζ.

Monotonicity (Mon): � is a partial order
- In the classical case (string automata) these automata are

called extensive by J.–E. Pin; they are exactly the automata
having an R-trivial transition monoid. An extension of this
result is due to V. Piirainen.

Maximal dependency (MaxDep):

y � xi , z � xj ⇒ σ(x1, . . . , xn−1, y) = σ(x1, . . . , xn−1, z).
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Moore properties dealing with ∼

a ∼A b holds iff both a �A b and b �A a hold.

Component dependency (ComDep):

x1 ∼ y1, . . . , xn ∼ yn ⇒ σ(x1, . . . , xn) = σ(y1, . . . , yn).

Componentwise uniqueness (CwUnique):

x = ζ(y), y = ξ(x), Root(ζ) = Root(ξ) ⇒ x = y .
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Main Results I.

Theorem.

〈AEF+〉M = Mon ∩ Com ∩ MaxDep.

〈AEF∗〉M = 〈AEF+〉M ∩ Stu.

The membership problem is decidable for these varieties in
polynomial time.

Proof sketch. In both cases we use a decomposition method:
any tree automaton satisfying the properties stated above is a
homomorphic image of a Moore product with factors that are
either a nontrivial homomorphic image of the automaton, or the
AEF+ (AEF∗) automaton itself.
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Main Results II.

Theorem.

〈AEF+ , D1〉M = ComDep ∩ CwUnique ∩ Com ∩ MaxDep.

〈AEF∗ , D1〉M = 〈AEF+ , D1〉M ∩ Stu.

Corollary. The definability problem of a tree language in the
logics CTL(EF+) and CTL(EF∗) is decidable.

If the language L is given by AL, then we have a decision
procedure of polynomial time.

The proof is based on the key lemma that
Mon × 〈D1〉M = Mon ×M 〈D1〉M = ComDep ∩ CwUnique.

Ésik, Iván Application for Moore varieties



Main Results II.

Theorem.

〈AEF+ , D1〉M = ComDep ∩ CwUnique ∩ Com ∩ MaxDep.

〈AEF∗ , D1〉M = 〈AEF+ , D1〉M ∩ Stu.

Corollary. The definability problem of a tree language in the
logics CTL(EF+) and CTL(EF∗) is decidable.

If the language L is given by AL, then we have a decision
procedure of polynomial time.

The proof is based on the key lemma that
Mon × 〈D1〉M = Mon ×M 〈D1〉M = ComDep ∩ CwUnique.

Ésik, Iván Application for Moore varieties



Main Results II.

Theorem.

〈AEF+ , D1〉M = ComDep ∩ CwUnique ∩ Com ∩ MaxDep.

〈AEF∗ , D1〉M = 〈AEF+ , D1〉M ∩ Stu.

Corollary. The definability problem of a tree language in the
logics CTL(EF+) and CTL(EF∗) is decidable.

If the language L is given by AL, then we have a decision
procedure of polynomial time.

The proof is based on the key lemma that
Mon × 〈D1〉M = Mon ×M 〈D1〉M = ComDep ∩ CwUnique.

Ésik, Iván Application for Moore varieties



Main Results II.

Theorem.

〈AEF+ , D1〉M = ComDep ∩ CwUnique ∩ Com ∩ MaxDep.

〈AEF∗ , D1〉M = 〈AEF+ , D1〉M ∩ Stu.

Corollary. The definability problem of a tree language in the
logics CTL(EF+) and CTL(EF∗) is decidable.

If the language L is given by AL, then we have a decision
procedure of polynomial time.

The proof is based on the key lemma that
Mon × 〈D1〉M = Mon ×M 〈D1〉M = ComDep ∩ CwUnique.

Ésik, Iván Application for Moore varieties



Main Results II.

Theorem.

〈AEF+ , D1〉M = ComDep ∩ CwUnique ∩ Com ∩ MaxDep.

〈AEF∗ , D1〉M = 〈AEF+ , D1〉M ∩ Stu.

Corollary. The definability problem of a tree language in the
logics CTL(EF+) and CTL(EF∗) is decidable.

If the language L is given by AL, then we have a decision
procedure of polynomial time.

The proof is based on the key lemma that
Mon × 〈D1〉M = Mon ×M 〈D1〉M = ComDep ∩ CwUnique.

Ésik, Iván Application for Moore varieties



Main Results II.

Theorem.

〈AEF+ , D1〉M = ComDep ∩ CwUnique ∩ Com ∩ MaxDep.

〈AEF∗ , D1〉M = 〈AEF+ , D1〉M ∩ Stu.

Corollary. The definability problem of a tree language in the
logics CTL(EF+) and CTL(EF∗) is decidable.

If the language L is given by AL, then we have a decision
procedure of polynomial time.

The proof is based on the key lemma that
Mon × 〈D1〉M = Mon ×M 〈D1〉M = ComDep ∩ CwUnique.

Ésik, Iván Application for Moore varieties



The Unary Case

In the case of R = {0, 1} (so we have a string automaton) the
properties are simplier:

commutativity is trivial;

maximal dependence is also trivial;

component dependency implies componentwise
uniqueness.

From this it follows that a regular string language L is

definable in the logic LTL(F+) if and only if AL is
component dependent;

definable in the logic LTL(F∗) if and only if AL it is both
component dependent and stutter invariant.

This yields the same decision procedure as the
characterization of Th. Wilke (1999).
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Conclusions, open questions

We have given an alternative proof of that the definability
problem is decidable for the logic CTL(EF+).

We have shown that the same problem is also decidable
for the logic CTL(EF∗).

We have also shown that the EF∗-definable tree languages
are exactly the EF+-definable tree languages that are also
stutter invariant. This extends the similar result of
Th. Wilke concerning string languages.

The definability problem is known to be decidable for the
fragments CTL(EX) and CTL(EX + EF).

Question: Can we solve also the definability problem for other
fragments of CTL?
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