Decidability of some classes of rational relations

Olivier Carton,

Christian Choffrut, Serge Grigorieff

LIAFA, CNRS Université Paris 7

Szeged 2006

Olivier Carton (LIAFA)

Decidability of rational relations

Automata

- Deterministic automata
- Synchronous automata
- Asynchronous automata

B Hierarchy

- 4 The non commutative case
- 5 The commutative case

Run on the input $(cabca, bba, aabcbc) \in A_1^* \times A_2^* \times A_3^*$

- unique control (non deterministic)
- read-only heads
- No backwards move of the heads
- stop on the end-markers

Run on the input $(cabca, bba, aabcbc) \in A_1^* \times A_2^* \times A_3^*$

- unique control (non deterministic)
- read-only heads
- No backwards move of the heads
- stop on the end-markers

Run on the input $(cabca, bba, aabcbc) \in A_1^* \times A_2^* \times A_3^*$

- unique control (non deterministic)
- read-only heads
- No backwards move of the heads
- stop on the end-markers

Run on the input $(cabca, bba, aabcbc) \in A_1^* \times A_2^* \times A_3^*$

- unique control (non deterministic)
- read-only heads
- No backwards move of the heads
- stop on the end-markers

Run on the input $(cabca, bba, aabcbc) \in A_1^* \times A_2^* \times A_3^*$

- unique control (non deterministic)
- read-only heads
- No backwards move of the heads
- stop on the end-markers

Run on the input $(cabca, bba, aabcbc) \in A_1^* \times A_2^* \times A_3^*$

- unique control (non deterministic)
- read-only heads
- No backwards move of the heads
- stop on the end-markers

Run on the input $(cabca, bba, aabcbc) \in A_1^* \times A_2^* \times A_3^*$

- unique control (non deterministic)
- read-only heads
- No backwards move of the heads
- stop on the end-markers

Run on the input $(cabca, bba, aabcbc) \in A_1^* \times A_2^* \times A_3^*$

- unique control (non deterministic)
- read-only heads
- No backwards move of the heads
- stop on the end-markers

- unique control (non deterministic)
- read-only heads
- No backwards move of the heads
- stop on the end-markers

- unique control (non deterministic)
- read-only heads
- No backwards move of the heads
- stop on the end-markers

Run on the input $(cabca, bba, aabcbc) \in A_1^* \times A_2^* \times A_3^*$

- unique control (non deterministic)
- read-only heads
- No backwards move of the heads
- stop on the end-markers

Run on the input $(cabca, bba, aabcbc) \in A_1^* \times A_2^* \times A_3^*$

- unique control (non deterministic)
- read-only heads
- No backwards move of the heads
- stop on the end-markers

- unique control (non deterministic)
- read-only heads
- No backwards move of the heads
- stop on the end-markers

- unique control (non deterministic)
- read-only heads
- No backwards move of the heads
- stop on the end-markers

- unique control (non deterministic)
- read-only heads
- No backwards move of the heads
- stop on the end-markers

Deterministic n-tapes automata

- deterministic control
- end-markers (as automata)

Examples

- $\{(a^n, b^n) \mid n \ge 0\}$ et $\{(a^n, b^{2n}) \mid n \ge 0\}$ are deterministic
- $\{(a^n,b^n)\mid n\geq 0\}\cup\{(a^n,b^{2n})\mid n\geq 0\}$ is not deterministic

The set of relations accepted by deterministic automata is denoted DRat(M).

Olivier Carton (LIAFA)

- Synchronous moves of the heads
- padding of the shorter words

Examples

- $\{(a^n, b^n) \mid n \ge 0\}$ et $\{(u, v) \mid u \text{ prefix of } v\}$ are synchronous
- $\{(a^n, b^{2n}) \mid n \ge 0\}$ is not synchronous
- $((a, ab) + (b, b))^*$ is not synchronous

The set of relations accepted by synchronous automata is denoted $\operatorname{Sync}(M)$.

Olivier Carton (LIAFA)

- Synchronous moves of the heads
- padding of the shorter words

Examples

- $\{(a^n, b^n) \mid n \ge 0\}$ et $\{(u, v) \mid u \text{ prefix of } v\}$ are synchronous
- $\{(a^n, b^{2n}) \mid n \ge 0\}$ is not synchronous
- $((a, ab) + (b, b))^*$ is not synchronous

The set of relations accepted by synchronous automata is denoted $\operatorname{Sync}(M)$.

Olivier Carton (LIAFA)

- Synchronous moves of the heads
- padding of the shorter words

Examples

- $\{(a^n, b^n) \mid n \ge 0\}$ et $\{(u, v) \mid u \text{ prefix of } v\}$ are synchronous
- $\{(a^n, b^{2n}) \mid n \ge 0\}$ is not synchronous
- $((a, ab) + (b, b))^*$ is not synchronous

The set of relations accepted by synchronous automata is denoted $\operatorname{Sync}(M)$.

Olivier Carton (LIAFA)

- Synchronous moves of the heads
- padding of the shorter words

Examples

- $\{(a^n, b^n) \mid n \ge 0\}$ et $\{(u, v) \mid u \text{ prefix of } v\}$ are synchronous
- $\{(a^n, b^{2n}) \mid n \ge 0\}$ is not synchronous
- $((a, ab) + (b, b))^*$ is not synchronous

The set of relations accepted by synchronous automata is denoted $\operatorname{Sync}(M)$.

Olivier Carton (LIAFA)

- Synchronous moves of the heads
- padding of the shorter words

Examples

- $\{(a^n, b^n) \mid n \ge 0\}$ et $\{(u, v) \mid u \text{ prefix of } v\}$ are synchronous
- $\{(a^n, b^{2n}) \mid n \ge 0\}$ is not synchronous
- $((a, ab) + (b, b))^*$ is not synchronous

The set of relations accepted by synchronous automata is denoted $\operatorname{Sync}(M)$.

Olivier Carton (LIAFA)

- Synchronous moves of the heads
- padding of the shorter words

Examples

- $\{(a^n, b^n) \mid n \ge 0\}$ et $\{(u, v) \mid u \text{ prefix of } v\}$ are synchronous
- $\{(a^n, b^{2n}) \mid n \ge 0\}$ is not synchronous
- $((a, ab) + (b, b))^*$ is not synchronous

The set of relations accepted by synchronous automata is denoted $\operatorname{Sync}(M)$.

Olivier Carton (LIAFA)

- Synchronous moves of the heads
- padding of the shorter words

Examples

- $\{(a^n, b^n) \mid n \ge 0\}$ et $\{(u, v) \mid u \text{ prefix of } v\}$ are synchronous
- $\{(a^n, b^{2n}) \mid n \ge 0\}$ is not synchronous
- $((a, ab) + (b, b))^*$ is not synchronous

The set of relations accepted by synchronous automata is denoted $\operatorname{Sync}(M)$.

Olivier Carton (LIAFA)

• sequential moves of the heads

- $R = (aA^* \times A^*a) \cup (bA^* \times A^*b)$ is recognizable
- $R = \bigcup_{i=1}^{n} K_i \times L_i$ is recognizable if the sets K_i and L_i are rational.
- $\bullet\,$ the diagonal $\{(u,u)\mid u\in A^*\}$ is not recognizable

• sequential moves of the heads

- $R = (aA^* \times A^*a) \cup (bA^* \times A^*b)$ is recognizable
- $R = \bigcup_{i=1}^{n} K_i \times L_i$ is recognizable if the sets K_i and L_i are rational.
- $\bullet\,$ the diagonal $\{(u,u)\mid u\in A^*\}$ is not recognizable

• sequential moves of the heads

- $R = (aA^* \times A^*a) \cup (bA^* \times A^*b)$ is recognizable
- $R = \bigcup_{i=1}^{n} K_i \times L_i$ is recognizable if the sets K_i and L_i are rational.
- $\bullet\,$ the diagonal $\{(u,u)\mid u\in A^*\}$ is not recognizable

• sequential moves of the heads

- $R = (aA^* \times A^*a) \cup (bA^* \times A^*b)$ is recognizable
- $R = \bigcup_{i=1}^{n} K_i \times L_i$ is recognizable if the sets K_i and L_i are rational.
- $\bullet\,$ the diagonal $\{(u,u)\mid u\in A^*\}$ is not recognizable

• sequential moves of the heads

- $R = (aA^* \times A^*a) \cup (bA^* \times A^*b)$ is recognizable
- $R = \bigcup_{i=1}^{n} K_i \times L_i$ is recognizable if the sets K_i and L_i are rational.
- $\bullet\,$ the diagonal $\{(u,u)\mid u\in A^*\}$ is not recognizable

- $R = (aA^* \times A^*a) \cup (bA^* \times A^*b)$ is recognizable
- $R = \bigcup_{i=1}^{n} K_i \times L_i$ is recognizable if the sets K_i and L_i are rational.
- $\bullet\,$ the diagonal $\{(u,u)\mid u\in A^*\}$ is not recognizable

• sequential moves of the heads

- $R = (aA^* \times A^*a) \cup (bA^* \times A^*b)$ is recognizable
- $R = \bigcup_{i=1}^{n} K_i \times L_i$ is recognizable if the sets K_i and L_i are rational.
- $\bullet\,$ the diagonal $\{(u,u)\mid u\in A^*\}$ is not recognizable

- $R = (aA^* \times A^*a) \cup (bA^* \times A^*b)$ is recognizable
- $R = \bigcup_{i=1}^{n} K_i \times L_i$ is recognizable if the sets K_i and L_i are rational.
- $\bullet\,$ the diagonal $\{(u,u)\mid u\in A^*\}$ is not recognizable

• sequential moves of the heads

- $R = (aA^* \times A^*a) \cup (bA^* \times A^*b)$ is recognizable
- $R = \bigcup_{i=1}^{n} K_i \times L_i$ is recognizable if the sets K_i and L_i are rational.
- $\bullet\,$ the diagonal $\{(u,u)\mid u\in A^*\}$ is not recognizable

• sequential moves of the heads

- $R = (aA^* \times A^*a) \cup (bA^* \times A^*b)$ is recognizable
- $R = \bigcup_{i=1}^{n} K_i \times L_i$ is recognizable if the sets K_i and L_i are rational.
- $\bullet\,$ the diagonal $\{(u,u)\mid u\in A^*\}$ is not recognizable

• sequential moves of the heads

- $R = (aA^* \times A^*a) \cup (bA^* \times A^*b)$ is recognizable
- $R = \bigcup_{i=1}^{n} K_i \times L_i$ is recognizable if the sets K_i and L_i are rational.
- $\bullet\,$ the diagonal $\{(u,u)\mid u\in A^*\}$ is not recognizable

• sequential moves of the heads

- $R = (aA^* \times A^*a) \cup (bA^* \times A^*b)$ is recognizable
- $R = \bigcup_{i=1}^{n} K_i \times L_i$ is recognizable if the sets K_i and L_i are rational.
- $\bullet\,$ the diagonal $\{(u,u)\mid u\in A^*\}$ is not recognizable

- $R = (aA^* \times A^*a) \cup (bA^* \times A^*b)$ is recognizable
- $R = \bigcup_{i=1}^{n} K_i \times L_i$ is recognizable if the sets K_i and L_i are rational.
- $\bullet\,$ the diagonal $\{(u,u)\mid u\in A^*\}$ is not recognizable

- $R = (aA^* \times A^*a) \cup (bA^* \times A^*b)$ is recognizable
- $R = \bigcup_{i=1}^{n} K_i \times L_i$ is recognizable if the sets K_i and L_i are rational.
- $\bullet\,$ the diagonal $\{(u,u)\mid u\in A^*\}$ is not recognizable

- $R = (aA^* \times A^*a) \cup (bA^* \times A^*b)$ is recognizable
- $R = \bigcup_{i=1}^{n} K_i \times L_i$ is recognizable if the sets K_i and L_i are rational.
- $\bullet\,$ the diagonal $\{(u,u)\mid u\in A^*\}$ is not recognizable

• one control state for each tape : $Q = Q_1 \times \cdots \times Q_n$

The set of relations accepted by asynchronous automata is denoted $\operatorname{Rec}(M)$.

Szeged 2006

$$M = A_1^* \times \dots \times A_n^*$$

$$\begin{array}{cccc} \operatorname{Rec}(M) & \subset & \operatorname{Sync}(M) & \subset & \operatorname{DRat}(M) & \subset & \operatorname{Rat}(M) \\ \mathcal{F}_0 & & \mathcal{F}_1 & & \mathcal{F}_2 & & \mathcal{F}_3 \end{array}$$

INCLUSION-I-IN-J Input: $R \in \mathcal{F}_j$ Output: $R \in \mathcal{F}_i$?

ъ

To avoid trivial cases, it is assumed that

- $n \ge 2$
- $|A_i| \ge 1$ for each $1 \le i \le n$.

There are two distinct main cases.

- $|A_1| = \cdots = |A_n| = 1$: all alphabets are of size 1. The monoid $M = A_1^* \times \cdots \times A_n^*$ is commutative : $M \approx \mathbb{N}^n$.
- $|A_1| \ge 2$: *M* is not commutative
 - $|A_2| = \cdots = |A_n| = 1$: exactly one the alphabets is of size greater or equal to 2.
 - $|A_2| \ge 2$: at least two of the alphabets are of size greater or equal to 2.

	$\operatorname{Rat}(M)$	$\mathrm{DRat}(M)$	$\operatorname{Sync}(M)$
$\mathrm{DRat}(M)$	undecidable Fischer, Rosenberg 1967 Lisovik 1979		
$\operatorname{Sync}(M)$	undecidable <mark>idem</mark>	open	
$\operatorname{Rec}(M)$	undecidable <mark>idem</mark>	decidable Carton, Choffrut Grigorieff 2006	decidable en $2^{0(n)}$ Carton, Choffrut Grigorieff 2006

Correspondence relation \leftrightarrow language.

$$R \subseteq A^* \times B^* \mapsto L_R \in A^* \# B^*$$

where

$$L_R = \{ \tilde{u} \# v \in A^* \# B^* \mid (u, v) \in R \}$$

- R is a rational relation iff L_R is a linear language with a unique final production $X \to \#$.
- If R is a deterministic rational, then L_R is a deterministic pushdown language.
- R is a recognizable relation iff L_R is a rational language.

Theorem (Stearns 1967)

If can be decided whether a language given by a deterministic pushdown automaton is rational.

- Very nice proof (majoration of the stack height)
- complexity of the procedure: 3 exponentials
- The complexity has been lowered to 2 exponentials by Valiant in 1976 (optimal, see Meyer et Fischer 1971)
- Therefore, it can be decided if a binary deterministic relation is recognizable.

Known results (commutative case)

Olivier Carton (LIAFA)

	$\operatorname{Rat}(M)$
$\mathrm{DRat}(M)$	decidable Carton, Choffrut Grigorieff 2006
$\operatorname{Sync}(M)$	decidable <mark>idem</mark>
$\operatorname{Rec}(M)$	decidable Ginsburg, Spanier 67

Decidability of rational relations

ъ

Let R be given by the formula $\theta(x;b)$

$$R = \{x \in \mathbb{N}^k \mid \theta(x; b)\}$$

One constructs the formula $\Psi_{\theta}(b)$

$$\begin{split} \Psi_{\theta}(b) &= \exists \mu \; \exists \pi \; \left(\forall x \geq 0 \quad \theta(x+\mu;b) \iff \theta(x+\mu+\pi;b) \land \\ \forall u < \mu \; \forall v < \pi \; \bigwedge_{\substack{\varnothing \neq I \subseteq \{1,\dots,k\}}} \\ (\operatorname{Null}(\mu-u) = I \implies \Psi_{\theta'_I}(b,\mu,u)) \\ (\operatorname{Null}(\pi-v) = I \implies \Psi_{\theta'_I}(b,\mu+\pi,\mu+v))) \end{split}$$

which is satisfiable iff R is deterministic.