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Can sequential automata do anything useful?
Fact
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Pebble automata
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Definition

Pebble automata :

• states Q

• pebbles n, . . . , 1

• Possible moves: D = {↑, ↘, ↙,stay,drop,lift}

• Depending on

– state,

– minimum pebble number,

– set of pebbles at current node,

– label,

– type of node:

{root,leftchild,rightchild} × {leaf,innernode}

Notation: sDPAn : languages accepted by:

strong Deterministic pebble automata with n pebbles
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Some results...

... on pebble automata

• PA ( REG

• For each n ≥ 0,

– PAn ( PAn+1 and DPAn ( DPAn+1

– TWA 6⊆ DPAn

– sPAn = PAn and sDPAn = DPAn

– sDPAn is closed under complement

... and a corollary on logics

FO+posTC1 ( MSO on binary trees

Unary TC-logic on trees Thomas Schwentick Slide 6



Proof summary
Theorem

FO+posTC1 ( MSO on binary trees

Outline

1. FO + posTC1 = sPA [Engelfriet, Hoogeboom 06]

2. Formalize behavior of a pebble automaton on a tree (→ type)

3. Strong pebbles do not give extra power: sPAn = PAn

4. For each n, define Ln and show that Ln ∈ DPAn − PAn−1

(a) Towards a contradiction, fix A for Ln

(b) Show that oracle automata do not accept L1

Fix s ∈ L1, t 6∈ L1 that can not be distinguished by oracle

automaton of size ≤ m

(c) Define s1, . . . , sn ∈ Ln, t1, . . . , tn 6∈ Ln

(d) Show: i-type of si and ti are identical

(otherwise: there is oracle automaton of size ≤ m distinguishing s

from t)

5. Construct L ∈ REG − PA from L1, L2, L3, . . .
Unary TC-logic on trees Thomas Schwentick Slide 7
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Pebble automata and logic
Theorem [Engelfriet, Hoogeboom 06]

• FO + DTC1 = sDPA

• FO + posTC1 = sPA
(They prove a stronger result for multihead-automata)

Proof idea

“Logic ⇒ automaton” requires a liberal pebble lifting policy:

• To check TCx,y[ϕ(x, y, ~z)](u, v):

– Pebbles n, . . . , k on ~z do not move

– Pebble k − 1 on v, pebble k − 2 on u

– Guess u1 by placing pebble k − 3 on it

– Check ϕ(u, u1, ~z) recursively

– Go back to u1, lift pebbles k − 2, k − 3

– Put pebble k − 2 on u1

– Continue with u2...

→ strong pebbles : the minimum pebble can be lifted even

if the head is somewhere else

Unary TC-logic on trees Thomas Schwentick Slide 9



Contents

Introduction and Overview of Results

Pebble Automata and Logic

� The Behavior of Pebble Automata

On Strong Pebbles

Hierarchy Theorems

Conclusion

Unary TC-logic on trees Thomas Schwentick Slide 10



Tree loops...
We fix some PA A

Basic question

What is the behavior of A on a subtree tv?
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intermediate j-configurations:

– j ≤ i, and

– j = i ⇒ head below v
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(v, q, vi+1, . . . , vn), where for all

intermediate j-configurations:

– j ≤ i, and

– j = i ⇒ head below v

Observations

• During an i-loop the head can leave tv

• Subcomputations on the context Cv might

depend on tv and on further pebbles in tv

→ What do we need to know of tv to simulate A?
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... and types
Definition

• 0-type of tv : all pairs (p, q) such that there is a

tree 0-loop ...
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Lemma

• There are only finitely many i-types
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Strong pebbles aren’t that strong
Theorem 1

For each n ≥ 0:

(a) sPAn = PAn

(b) sDPAn = DPAn

Proof idea

• Intermediate model: k-weak-PA

– pebbles k, . . . , n are strong

– pebbles 1, . . . , k − 1 are weak

• Induction on k.

– Each k-weak n-pebble automaton A

has an equivalent (k + 1)-weak

automaton A′

→ we basically have to show how to simulate

a strong pebble k by a weak pebble k

(where strong pebbles k + 1, . . . , n are

fixed)
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Proof idea

• Intermediate model: k-weak-PA

– pebbles k, . . . , n are strong

– pebbles 1, . . . , k − 1 are weak

• Induction on k.

– Each k-weak n-pebble automaton A

has an equivalent (k + 1)-weak

automaton A′

→ we basically have to show how to simulate

a strong pebble k by a weak pebble k

(where strong pebbles k + 1, . . . , n are

fixed)

Proof idea (cont.)

• Assume A drops strong pebble k at v and

lifts it when its head is at w (say: below v)

• Let u1 = v, u2, . . . , vm = w path

from v to w

• Idea: A′ moves pebble k towards w

– When k-configuration

at ui is reached, peb-

ble k is moved to it

– The head never moves

above pebble k

– Behavior of Cui
is

maintained inductively

• The deterministic case requires more care
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Hierarchy theorems

Goal of this part:

Theorem 2

PA ( REG

We first show:

Theorem 3

For each n ≥ 0, PAn ( PAn+1

We build on

Theorem [Bojańczyk, Colcombet 05]

TWA ( REG
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A look at “ TWA ( REG”

• Quasi-blank trees :

Alphabet {a, b}, a appears only in leaves
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• Even more: for each A there are
s ∈ Lbranch and t 6∈ Lbranch such that each
root-to-root loop of A on s also exists on t

• We need a stronger statement: the
root-to-root behavior of A on s and t should
be exactly the same

• Leven : Number of 0∗1-nodes v in b(t)
whose subtree only has even length branches
is even

Proposition

For each A there are s ∈ Leven and t 6∈ Leven

such that A has the same root-to-root behavior

on s and t
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A language separating PAn from PAn−1

• n-leveled tree :

– Alphabet {a, b, c}

– All root-to-leaf paths are in
(cb∗)n(a + b)

a a a a

c

cccc

cccccccccc

cccccccccccccccccc

level 4

level 3

level 2

level 1

level 0
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• L-folding :

c c cn − 1

∈ L 6∈ L ∈ L

⇒
a b a

• Ln : all n-leveled trees whose Ln−1-folding

is in Leven

Main Lemma

• Ln ∈ DPAn

• Ln 6∈ PAn−1
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Proof of Main Lemma
Main Lemma

• Ln ∈ DPAn

• Ln 6∈ PAn−1

Proof

• Towards a contradiction, assume

L(A) = Ln, for some (n − 1)-pebble

automaton A

• We inductively construct

– s1, . . . , sn ∈ Ln

– t1, . . . , tn 6∈ Ln

such that si and ti have equivalent i-type

wrt A

• At level i − 1, both si, ti have only

subtrees si−1, ti−1
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Proof

• Towards a contradiction, assume

L(A) = Ln, for some (n − 1)-pebble

automaton A

• We inductively construct

– s1, . . . , sn ∈ Ln

– t1, . . . , tn 6∈ Ln

such that si and ti have equivalent i-type

wrt A

• At level i − 1, both si, ti have only

subtrees si−1, ti−1

Proof (cont.)

Intuition:

• If pebble i is not in the tree, A acts like a

TWA

• If pebble i is placed above level i − 1, A

can not distinguish si−1-subtrees from

ti−1-subtrees

• Subcomputations taking pebble i below level

i − 1 do not learn more than the type of the

subtree
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– t1, . . . , tn 6∈ Ln

such that si and ti have equivalent i-type

wrt A

• At level i − 1, both si, ti have only

subtrees si−1, ti−1

Proof (cont.)

Intuition:

• If pebble i is not in the tree, A acts like a

TWA

• If pebble i is placed above level i − 1, A

can not distinguish si−1-subtrees from

ti−1-subtrees

• Subcomputations taking pebble i below level

i − 1 do not learn more than the type of the

subtree

• Not very precise

→ Formalization through “oracle automata”
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Oracle automata

• Oracle automaton :

– basis: tree-walking automaton

– no pebbles!

– works on folding

– structure oracle :

∗ MSO-formulas ϕ1(x), . . . , ϕl(x)
which do not test labels

∗ transition at node v depends on
(ϕ1(v), . . . , ϕl(v))

Proposition

For each m there are s ∈ L1 and t 6∈ L1

such that each oracle automaton of size ≤ m

has the same root-to-root loops on s and t

Proof idea for proposition

Slight extension of TWA-proof
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such that each oracle automaton of size ≤ m

has the same root-to-root loops on s and t

Proof idea for proposition

Slight extension of TWA-proof

Proof of Main Lemma (cont.)

• i = 0: follows from Proposition

(even TWA-case sufficient)

• i − 1 → i:

– Choose m large enough wrt A, i

– Pick s ∈ L1 ,t 6∈ L1 such that no

oracle automaton of size ≤ m can

distinguish s from t

– si+1 := s, where each a-leaf is

replaced by si and each b-leaf by ti

– (ti+1 accordingly)
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Oracle automata

• Oracle automaton :

– basis: tree-walking automaton

– no pebbles!

– works on folding

– structure oracle :

∗ MSO-formulas ϕ1(x), . . . , ϕl(x)
which do not test labels

∗ transition at node v depends on
(ϕ1(v), . . . , ϕl(v))

Proposition

For each m there are s ∈ L1 and t 6∈ L1

such that each oracle automaton of size ≤ m

has the same root-to-root loops on s and t

Proof idea for proposition

Slight extension of TWA-proof

Proof of Main Lemma (cont.)

• i = 0: follows from Proposition

(even TWA-case sufficient)

• i − 1 → i:

– Choose m large enough wrt A, i

– Pick s ∈ L1 ,t 6∈ L1 such that no

oracle automaton of size ≤ m can

distinguish s from t

– si+1 := s, where each a-leaf is

replaced by si and each b-leaf by ti

– (ti+1 accordingly)

– Assumption: i-type of A distinguishes

si+1 from ti+1

⇒ there is an oracle automaton O of size

≤ m which distinguishes s from t

⇒ contradiction
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Finale
Proof of Main Lemma (cont.)

Simulation of A by O:

• 3 cases:

– all pebbles lifted, A’s head above level i:

O just does the same as A

– all pebbles lifted, A’s head moves below level

i:

→ O reads a iff subtree is si

→ transition corresponding to i-loops of A

on si and ti

– A drops pebble i (above level i):

subcomputation can be simulated by

(i − 1)-pebble automaton A′ which does

not read labels

→ behavior of A′ can be described by formulas

ϕ1(x), . . . , ϕl(x)
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Proof of Main Lemma (cont.)

Simulation of A by O:

• 3 cases:

– all pebbles lifted, A’s head above level i:

O just does the same as A
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→ transition corresponding to i-loops of A
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– A drops pebble i (above level i):

subcomputation can be simulated by

(i − 1)-pebble automaton A′ which does
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→ behavior of A′ can be described by formulas
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Conclude PA ( REG
⋃

n

Ln 6∈ PA but also

⋃

n

Ln 6∈ REG
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Finale
Proof of Main Lemma (cont.)

Simulation of A by O:

• 3 cases:

– all pebbles lifted, A’s head above level i:

O just does the same as A

– all pebbles lifted, A’s head moves below level

i:

→ O reads a iff subtree is si

→ transition corresponding to i-loops of A

on si and ti

– A drops pebble i (above level i):

subcomputation can be simulated by

(i − 1)-pebble automaton A′ which does

not read labels

→ behavior of A′ can be described by formulas

ϕ1(x), . . . , ϕl(x)

Conclude PA ( REG
⋃

n

Ln 6∈ PA but also

⋃

n

Ln 6∈ REG

→ Choose L as the ”closure of Leven

under partial folding”

⇒ L ∈ REG − PA and all

sn ∈ L, tn 6∈ L
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Further results and conclusion
Theorem

• For each n ≥ 0,

– DPAn ( DPAn+1

– TWA 6⊆ DPAn

– sDPAn = DPAn

– sDPAn is closed under complement

Open problems

• FO + DTC ( FO + posTC?

• FO + posTC ( FO + TC?

• FO + TC ( REG?
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