
Expressive power of pebble automata

or

Unary positive transitive closure logic on trees

Szeged
October 2006

Thomas Schwentick

Joint work with

Mikołaj Bojańczyk, Mathias Samuelides, Luc Segoufin

How do string automata generalize to trees?

Parallel Tree Automata

a

e

c

a

e a

e

a

e c

c

Sequential Tree Automata

a

e

c

a

e a

e

a

e c

c

Unary TC-logic on trees Thomas Schwentick Slide 1

How do string automata generalize to trees?

Parallel Tree Automata

a

e

c

a

e a

e

a

e c

c

Sequential Tree Automata

a

e

c

a

e a

e

a

e c

c

e a e c

Unary TC-logic on trees Thomas Schwentick Slide 1

How do string automata generalize to trees?

Parallel Tree Automata

a

e

c

a

e a

e

a

e c

c

Sequential Tree Automata

a

e

c

a

e a

e

a

e c

ca a c

Unary TC-logic on trees Thomas Schwentick Slide 1

How do string automata generalize to trees?

Parallel Tree Automata

a

e

c

a

e a

e

a

e c

c

Sequential Tree Automata

a

e

c

a

e a

e

a

e c

c

c e

Unary TC-logic on trees Thomas Schwentick Slide 1

How do string automata generalize to trees?

Parallel Tree Automata

a

e

c

a

e a

e

a

e c

c

Sequential Tree Automata

a

e

c

a

e a

e

a

e c

c

e

Unary TC-logic on trees Thomas Schwentick Slide 1

How do string automata generalize to trees?

Parallel Tree Automata

a

e

c

a

e a

e

a

e c

c

Sequential Tree Automata

a

e

c

a

e a

e

a

e c

c

a

Unary TC-logic on trees Thomas Schwentick Slide 1

How do string automata generalize to trees?

Parallel Tree Automata

a

e

c

a

e a

e

a

e c

c

Sequential Tree Automata

a

e

c

a

e a

e

a

e c

c

a

Unary TC-logic on trees Thomas Schwentick Slide 1

How do string automata generalize to trees?

Parallel Tree Automata

a

e

c

a

e a

e

a

e c

c

Sequential Tree Automata

a

e

c

a

e a

e

a

e c

c

e

Unary TC-logic on trees Thomas Schwentick Slide 1

How do string automata generalize to trees?

Parallel Tree Automata

a

e

c

a

e a

e

a

e c

c

Sequential Tree Automata

a

e

c

a

e a

e

a

e c

c

e

Unary TC-logic on trees Thomas Schwentick Slide 1

How do string automata generalize to trees?

Parallel Tree Automata

a

e

c

a

e a

e

a

e c

c

Sequential Tree Automata

a

e

c

a

e a

e

a

e c

ca

Unary TC-logic on trees Thomas Schwentick Slide 1

How do string automata generalize to trees?

Parallel Tree Automata

a

e

c

a

e a

e

a

e c

c

Sequential Tree Automata

a

e

c

a

e a

e

a

e c

c

c

Unary TC-logic on trees Thomas Schwentick Slide 1

How do string automata generalize to trees?

Parallel Tree Automata

a

e

c

a

e a

e

a

e c

c

Sequential Tree Automata

a

e

c

a

e a

e

a

e c

ca

Unary TC-logic on trees Thomas Schwentick Slide 1

How do string automata generalize to trees?

Parallel Tree Automata

a

e

c

a

e a

e

a

e c

c

Sequential Tree Automata

a

e

c

a

e a

e

a

e c

c

e

Unary TC-logic on trees Thomas Schwentick Slide 1

How do string automata generalize to trees?

Parallel Tree Automata

a

e

c

a

e a

e

a

e c

c

Sequential Tree Automata

a

e

c

a

e a

e

a

e c

cc

Unary TC-logic on trees Thomas Schwentick Slide 1

How do string automata generalize to trees?

Parallel Tree Automata

a

e

c

a

e a

e

a

e c

c

Sequential Tree Automata

a

e

c

a

e a

e

a

e c

c

e

Unary TC-logic on trees Thomas Schwentick Slide 1

How do string automata generalize to trees?

Parallel Tree Automata

a

e

c

a

e a

e

a

e c

c

Sequential Tree Automata

a

e

c

a

e a

e

a

e c

c

e

Unary TC-logic on trees Thomas Schwentick Slide 1

How do string automata generalize to trees?

Parallel Tree Automata

a

e

c

a

e a

e

a

e c

c

Sequential Tree Automata

a

e

c

a

e a

e

a

e c

c

a

Unary TC-logic on trees Thomas Schwentick Slide 1

Can sequential automata do anything useful?
Fact

• Tree-walk automata can evaluate tree-shaped

Boolean circuits

• 5 states

Example

∧

∨

∧

0 1

∨

1 0

∧

∨

0 1

∧

1 1

Idea

∧

0

q0

∧

1

∨

1

q1

∨

0

Unary TC-logic on trees Thomas Schwentick Slide 2

Can sequential automata do anything useful?
Fact

• Tree-walk automata can evaluate tree-shaped

Boolean circuits

• 5 states

Example

∧

∨

∧

0 1

∨

1 0

∧

∨

0 1

∧

1 1

∧ q↓

Idea

∧

0

q0

∧

1

∨

1

q1

∨

0

Unary TC-logic on trees Thomas Schwentick Slide 2

Can sequential automata do anything useful?
Fact

• Tree-walk automata can evaluate tree-shaped

Boolean circuits

• 5 states

Example

∧

∨

∧

0 1

∨

1 0

∧

∨

0 1

∧

1 1

∨

q↓

Idea

∧

0

q0

∧

1

∨

1

q1

∨

0

Unary TC-logic on trees Thomas Schwentick Slide 2

Can sequential automata do anything useful?
Fact

• Tree-walk automata can evaluate tree-shaped

Boolean circuits

• 5 states

Example

∧

∨

∧

0 1

∨

1 0

∧

∨

0 1

∧

1 1

∧

q↓

Idea

∧

0

q0

∧

1

∨

1

q1

∨

0

Unary TC-logic on trees Thomas Schwentick Slide 2

Can sequential automata do anything useful?
Fact

• Tree-walk automata can evaluate tree-shaped

Boolean circuits

• 5 states

Example

∧

∨

∧

0 1

∨

1 0

∧

∨

0 1

∧

1 10

q↓

Idea

∧

0

q0

∧

1

∨

1

q1

∨

0

Unary TC-logic on trees Thomas Schwentick Slide 2

Can sequential automata do anything useful?
Fact

• Tree-walk automata can evaluate tree-shaped

Boolean circuits

• 5 states

Example

∧

∨

∧

0 1

∨

1 0

∧

∨

0 1

∧

1 1

∧

q0
↗

Idea

∧

0

q0

∧

1

∨

1

q1

∨

0

Unary TC-logic on trees Thomas Schwentick Slide 2

Can sequential automata do anything useful?
Fact

• Tree-walk automata can evaluate tree-shaped

Boolean circuits

• 5 states

Example

∧

∨

∧

0 1

∨

1 0

∧

∨

0 1

∧

1 1

∨

q0
↗

Idea

∧

0

q0

∧

1

∨

1

q1

∨

0

Unary TC-logic on trees Thomas Schwentick Slide 2

Can sequential automata do anything useful?
Fact

• Tree-walk automata can evaluate tree-shaped

Boolean circuits

• 5 states

Example

∧

∨

∧

0 1

∨

1 0

∧

∨

0 1

∧

1 1

∨

q↓

Idea

∧

0

q0

∧

1

∨

1

q1

∨

0

Unary TC-logic on trees Thomas Schwentick Slide 2

Can sequential automata do anything useful?
Fact

• Tree-walk automata can evaluate tree-shaped

Boolean circuits

• 5 states

Example

∧

∨

∧

0 1

∨

1 0

∧

∨

0 1

∧

1 11

q↓

Idea

∧

0

q0

∧

1

∨

1

q1

∨

0

Unary TC-logic on trees Thomas Schwentick Slide 2

Can sequential automata do anything useful?
Fact

• Tree-walk automata can evaluate tree-shaped

Boolean circuits

• 5 states

Example

∧

∨

∧

0 1

∨

1 0

∧

∨

0 1

∧

1 1

∨

q1
↗

Idea

∧

0

q0

∧

1

∨

1

q1

∨

0

Unary TC-logic on trees Thomas Schwentick Slide 2

Can sequential automata do anything useful?
Fact

• Tree-walk automata can evaluate tree-shaped

Boolean circuits

• 5 states

Example

∧

∨

∧

0 1

∨

1 0

∧

∨

0 1

∧

1 1

∨

q1
↖

Idea

∧

0

q0

∧

1

∨

1

q1

∨

0

Unary TC-logic on trees Thomas Schwentick Slide 2

Can sequential automata do anything useful?
Fact

• Tree-walk automata can evaluate tree-shaped

Boolean circuits

• 5 states

Example

∧

∨

∧

0 1

∨

1 0

∧

∨

0 1

∧

1 1

∧
q1

↗

Idea

∧

0

q0

∧

1

∨

1

q1

∨

0

Unary TC-logic on trees Thomas Schwentick Slide 2

Can sequential automata do anything useful?
Fact

• Tree-walk automata can evaluate tree-shaped

Boolean circuits

• 5 states

Example

∧

∨

∧

0 1

∨

1 0

∧

∨

0 1

∧

1 1

∧

q↓

Idea

∧

0

q0

∧

1

∨

1

q1

∨

0

Unary TC-logic on trees Thomas Schwentick Slide 2

Can sequential automata do anything useful?
Fact

• Tree-walk automata can evaluate tree-shaped

Boolean circuits

• 5 states

Example

∧

∨

∧

0 1

∨

1 0

∧

∨

0 1

∧

1 1

∨

q↓

Idea

∧

0

q0

∧

1

∨

1

q1

∨

0

Unary TC-logic on trees Thomas Schwentick Slide 2

Can sequential automata do anything useful?
Fact

• Tree-walk automata can evaluate tree-shaped

Boolean circuits

• 5 states

Example

∧

∨

∧

0 1

∨

1 0

∧

∨

0 1

∧

1 10

q↓

Idea

∧

0

q0

∧

1

∨

1

q1

∨

0

Unary TC-logic on trees Thomas Schwentick Slide 2

Can sequential automata do anything useful?
Fact

• Tree-walk automata can evaluate tree-shaped

Boolean circuits

• 5 states

Example

∧

∨

∧

0 1

∨

1 0

∧

∨

0 1

∧

1 1

∨

q0
↗

Idea

∧

0

q0

∧

1

∨

1

q1

∨

0

Unary TC-logic on trees Thomas Schwentick Slide 2

Can sequential automata do anything useful?
Fact

• Tree-walk automata can evaluate tree-shaped

Boolean circuits

• 5 states

Example

∧

∨

∧

0 1

∨

1 0

∧

∨

0 1

∧

1 11

q↓

Idea

∧

0

q0

∧

1

∨

1

q1

∨

0

Unary TC-logic on trees Thomas Schwentick Slide 2

Can sequential automata do anything useful?
Fact

• Tree-walk automata can evaluate tree-shaped

Boolean circuits

• 5 states

Example

∧

∨

∧

0 1

∨

1 0

∧

∨

0 1

∧

1 1

∨

q1
↖

Idea

∧

0

q0

∧

1

∨

1

q1

∨

0

Unary TC-logic on trees Thomas Schwentick Slide 2

Can sequential automata do anything useful?
Fact

• Tree-walk automata can evaluate tree-shaped

Boolean circuits

• 5 states

Example

∧

∨

∧

0 1

∨

1 0

∧

∨

0 1

∧

1 1

∧

q1
↗

Idea

∧

0

q0

∧

1

∨

1

q1

∨

0

Unary TC-logic on trees Thomas Schwentick Slide 2

Can sequential automata do anything useful?
Fact

• Tree-walk automata can evaluate tree-shaped

Boolean circuits

• 5 states

Example

∧

∨

∧

0 1

∨

1 0

∧

∨

0 1

∧

1 1

∧

q↓

Idea

∧

0

q0

∧

1

∨

1

q1

∨

0

Unary TC-logic on trees Thomas Schwentick Slide 2

Can sequential automata do anything useful?
Fact

• Tree-walk automata can evaluate tree-shaped

Boolean circuits

• 5 states

Example

∧

∨

∧

0 1

∨

1 0

∧

∨

0 1

∧

1 11

q↓

Idea

∧

0

q0

∧

1

∨

1

q1

∨

0

Unary TC-logic on trees Thomas Schwentick Slide 2

Can sequential automata do anything useful?
Fact

• Tree-walk automata can evaluate tree-shaped

Boolean circuits

• 5 states

Example

∧

∨

∧

0 1

∨

1 0

∧

∨

0 1

∧

1 1

∧

q1
↗

Idea

∧

0

q0

∧

1

∨

1

q1

∨

0

Unary TC-logic on trees Thomas Schwentick Slide 2

Can sequential automata do anything useful?
Fact

• Tree-walk automata can evaluate tree-shaped

Boolean circuits

• 5 states

Example

∧

∨

∧

0 1

∨

1 0

∧

∨

0 1

∧

1 11

q↓

Idea

∧

0

q0

∧

1

∨

1

q1

∨

0

Unary TC-logic on trees Thomas Schwentick Slide 2

Can sequential automata do anything useful?
Fact

• Tree-walk automata can evaluate tree-shaped

Boolean circuits

• 5 states

Example

∧

∨

∧

0 1

∨

1 0

∧

∨

0 1

∧

1 1

∧

q1
↖

Idea

∧

0

q0

∧

1

∨

1

q1

∨

0

Unary TC-logic on trees Thomas Schwentick Slide 2

Can sequential automata do anything useful?
Fact

• Tree-walk automata can evaluate tree-shaped

Boolean circuits

• 5 states

Example

∧

∨

∧

0 1

∨

1 0

∧

∨

0 1

∧

1 1

∧

q1
↖

Idea

∧

0

q0

∧

1

∨

1

q1

∨

0

Unary TC-logic on trees Thomas Schwentick Slide 2

Can sequential automata do anything useful?
Fact

• Tree-walk automata can evaluate tree-shaped

Boolean circuits

• 5 states

Example

∧

∨

∧

0 1

∨

1 0

∧

∨

0 1

∧

1 1

∧
q1

↖

Idea

∧

0

q0

∧

1

∨

1

q1

∨

0

Unary TC-logic on trees Thomas Schwentick Slide 2

What is the expressive power of sequential tree automata?
• Parallel tree automata ≡

Regular Tree Languages

• Sequential automata are clearly weaker

Unary TC-logic on trees Thomas Schwentick Slide 3

What is the expressive power of sequential tree automata?
• Parallel tree automata ≡

Regular Tree Languages

• Sequential automata are clearly weaker

• Clearly?

Unary TC-logic on trees Thomas Schwentick Slide 3

What is the expressive power of sequential tree automata?
• Parallel tree automata ≡

Regular Tree Languages

• Sequential automata are clearly weaker

• Clearly?

• Whether TWA can recognize all regular tree
languages had been open for quite some
years

Unary TC-logic on trees Thomas Schwentick Slide 3

What is the expressive power of sequential tree automata?
• Parallel tree automata ≡

Regular Tree Languages

• Sequential automata are clearly weaker

• Clearly?

• Whether TWA can recognize all regular tree
languages had been open for quite some
years

Theorem [Bojanczyk, Colcombet 05]

• Deterministic TWAs are weaker than

nondeterministic TWAs

• Nondeterminstic TWAs do not capture all

regular tree languages

Unary TC-logic on trees Thomas Schwentick Slide 3

What is the expressive power of sequential tree automata?
• Parallel tree automata ≡

Regular Tree Languages

• Sequential automata are clearly weaker

• Clearly?

• Whether TWA can recognize all regular tree
languages had been open for quite some
years

Theorem [Bojanczyk, Colcombet 05]

• Deterministic TWAs are weaker than

nondeterministic TWAs

• Nondeterminstic TWAs do not capture all

regular tree languages

• Engelfriet suggested an extension of TWAs:

What happens if we add...

Unary TC-logic on trees Thomas Schwentick Slide 3

What is the expressive power of sequential tree automata?
• Parallel tree automata ≡

Regular Tree Languages

• Sequential automata are clearly weaker

• Clearly?

• Whether TWA can recognize all regular tree
languages had been open for quite some
years

Theorem [Bojanczyk, Colcombet 05]

• Deterministic TWAs are weaker than

nondeterministic TWAs

• Nondeterminstic TWAs do not capture all

regular tree languages

• Engelfriet suggested an extension of TWAs:

What happens if we add...

Unary TC-logic on trees Thomas Schwentick Slide 3

Contents

� Introduction and Overview of Results

Pebble Automata and Logic

The Behavior of Pebble Automata

On Strong Pebbles

Hierarchy Theorems

Conclusion

Unary TC-logic on trees Thomas Schwentick Slide 4

Pebble automata

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

Definition

Pebble automata :

• states Q

• pebbles n, . . . , 1

• Possible moves: D = {↑, ↘, ↙,stay,drop,lift}

• Depending on

– state,

– minimum pebble number,

– set of pebbles at current node,

– label,

– type of node:

{root,leftchild,rightchild} × {leaf,innernode}

Notation: sDPAn : languages accepted by:

strong Deterministic pebble automata with n pebbles

Unary TC-logic on trees Thomas Schwentick Slide 5

Pebble automata

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

b

Definition

Pebble automata :

• states Q

• pebbles n, . . . , 1

• Possible moves: D = {↑, ↘, ↙,stay,drop,lift}

• Depending on

– state,

– minimum pebble number,

– set of pebbles at current node,

– label,

– type of node:

{root,leftchild,rightchild} × {leaf,innernode}

Notation: sDPAn : languages accepted by:

strong Deterministic pebble automata with n pebbles

Unary TC-logic on trees Thomas Schwentick Slide 5

Pebble automata

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

a

Definition

Pebble automata :

• states Q

• pebbles n, . . . , 1

• Possible moves: D = {↑, ↘, ↙,stay,drop,lift}

• Depending on

– state,

– minimum pebble number,

– set of pebbles at current node,

– label,

– type of node:

{root,leftchild,rightchild} × {leaf,innernode}

Notation: sDPAn : languages accepted by:

strong Deterministic pebble automata with n pebbles

Unary TC-logic on trees Thomas Schwentick Slide 5

Pebble automata

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

a 3a

Definition

Pebble automata :

• states Q

• pebbles n, . . . , 1

• Possible moves: D = {↑, ↘, ↙,stay,drop,lift}

• Depending on

– state,

– minimum pebble number,

– set of pebbles at current node,

– label,

– type of node:

{root,leftchild,rightchild} × {leaf,innernode}

Notation: sDPAn : languages accepted by:

strong Deterministic pebble automata with n pebbles

Unary TC-logic on trees Thomas Schwentick Slide 5

Pebble automata

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

a 3

c

Definition

Pebble automata :

• states Q

• pebbles n, . . . , 1

• Possible moves: D = {↑, ↘, ↙,stay,drop,lift}

• Depending on

– state,

– minimum pebble number,

– set of pebbles at current node,

– label,

– type of node:

{root,leftchild,rightchild} × {leaf,innernode}

Notation: sDPAn : languages accepted by:

strong Deterministic pebble automata with n pebbles

Unary TC-logic on trees Thomas Schwentick Slide 5

Pebble automata

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

a 3

b

Definition

Pebble automata :

• states Q

• pebbles n, . . . , 1

• Possible moves: D = {↑, ↘, ↙,stay,drop,lift}

• Depending on

– state,

– minimum pebble number,

– set of pebbles at current node,

– label,

– type of node:

{root,leftchild,rightchild} × {leaf,innernode}

Notation: sDPAn : languages accepted by:

strong Deterministic pebble automata with n pebbles

Unary TC-logic on trees Thomas Schwentick Slide 5

Pebble automata

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

a 3

b2 b

Definition

Pebble automata :

• states Q

• pebbles n, . . . , 1

• Possible moves: D = {↑, ↘, ↙,stay,drop,lift}

• Depending on

– state,

– minimum pebble number,

– set of pebbles at current node,

– label,

– type of node:

{root,leftchild,rightchild} × {leaf,innernode}

Notation: sDPAn : languages accepted by:

strong Deterministic pebble automata with n pebbles

Unary TC-logic on trees Thomas Schwentick Slide 5

Pebble automata

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

a 3

b2

c

Definition

Pebble automata :

• states Q

• pebbles n, . . . , 1

• Possible moves: D = {↑, ↘, ↙,stay,drop,lift}

• Depending on

– state,

– minimum pebble number,

– set of pebbles at current node,

– label,

– type of node:

{root,leftchild,rightchild} × {leaf,innernode}

Notation: sDPAn : languages accepted by:

strong Deterministic pebble automata with n pebbles

Unary TC-logic on trees Thomas Schwentick Slide 5

Pebble automata

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

a 3

b2 b

Definition

Pebble automata :

• states Q

• pebbles n, . . . , 1

• Possible moves: D = {↑, ↘, ↙,stay,drop,lift}

• Depending on

– state,

– minimum pebble number,

– set of pebbles at current node,

– label,

– type of node:

{root,leftchild,rightchild} × {leaf,innernode}

Notation: sDPAn : languages accepted by:

strong Deterministic pebble automata with n pebbles

Unary TC-logic on trees Thomas Schwentick Slide 5

Pebble automata

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

a 3

b2

d

Definition

Pebble automata :

• states Q

• pebbles n, . . . , 1

• Possible moves: D = {↑, ↘, ↙,stay,drop,lift}

• Depending on

– state,

– minimum pebble number,

– set of pebbles at current node,

– label,

– type of node:

{root,leftchild,rightchild} × {leaf,innernode}

Notation: sDPAn : languages accepted by:

strong Deterministic pebble automata with n pebbles

Unary TC-logic on trees Thomas Schwentick Slide 5

Pebble automata

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

a 3

b2 b

Definition

Pebble automata :

• states Q

• pebbles n, . . . , 1

• Possible moves: D = {↑, ↘, ↙,stay,drop,lift}

• Depending on

– state,

– minimum pebble number,

– set of pebbles at current node,

– label,

– type of node:

{root,leftchild,rightchild} × {leaf,innernode}

Notation: sDPAn : languages accepted by:

strong Deterministic pebble automata with n pebbles

Unary TC-logic on trees Thomas Schwentick Slide 5

Pebble automata

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

a 3

b

Definition

Pebble automata :

• states Q

• pebbles n, . . . , 1

• Possible moves: D = {↑, ↘, ↙,stay,drop,lift}

• Depending on

– state,

– minimum pebble number,

– set of pebbles at current node,

– label,

– type of node:

{root,leftchild,rightchild} × {leaf,innernode}

Notation: sDPAn : languages accepted by:

strong Deterministic pebble automata with n pebbles

Unary TC-logic on trees Thomas Schwentick Slide 5

Pebble automata

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

a 3

c

Definition

Pebble automata :

• states Q

• pebbles n, . . . , 1

• Possible moves: D = {↑, ↘, ↙,stay,drop,lift}

• Depending on

– state,

– minimum pebble number,

– set of pebbles at current node,

– label,

– type of node:

{root,leftchild,rightchild} × {leaf,innernode}

Notation: sDPAn : languages accepted by:

strong Deterministic pebble automata with n pebbles

Unary TC-logic on trees Thomas Schwentick Slide 5

Pebble automata

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

a 3a

Definition

Pebble automata :

• states Q

• pebbles n, . . . , 1

• Possible moves: D = {↑, ↘, ↙,stay,drop,lift}

• Depending on

– state,

– minimum pebble number,

– set of pebbles at current node,

– label,

– type of node:

{root,leftchild,rightchild} × {leaf,innernode}

Notation: sDPAn : languages accepted by:

strong Deterministic pebble automata with n pebbles

Unary TC-logic on trees Thomas Schwentick Slide 5

Pebble automata

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

a 3

d

Definition

Pebble automata :

• states Q

• pebbles n, . . . , 1

• Possible moves: D = {↑, ↘, ↙,stay,drop,lift}

• Depending on

– state,

– minimum pebble number,

– set of pebbles at current node,

– label,

– type of node:

{root,leftchild,rightchild} × {leaf,innernode}

Notation: sDPAn : languages accepted by:

strong Deterministic pebble automata with n pebbles

Unary TC-logic on trees Thomas Schwentick Slide 5

Pebble automata

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

a 3

e

Definition

Pebble automata :

• states Q

• pebbles n, . . . , 1

• Possible moves: D = {↑, ↘, ↙,stay,drop,lift}

• Depending on

– state,

– minimum pebble number,

– set of pebbles at current node,

– label,

– type of node:

{root,leftchild,rightchild} × {leaf,innernode}

Notation: sDPAn : languages accepted by:

strong Deterministic pebble automata with n pebbles

Unary TC-logic on trees Thomas Schwentick Slide 5

Pebble automata

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

a 3

e 2e

Definition

Pebble automata :

• states Q

• pebbles n, . . . , 1

• Possible moves: D = {↑, ↘, ↙,stay,drop,lift}

• Depending on

– state,

– minimum pebble number,

– set of pebbles at current node,

– label,

– type of node:

{root,leftchild,rightchild} × {leaf,innernode}

Notation: sDPAn : languages accepted by:

strong Deterministic pebble automata with n pebbles

Unary TC-logic on trees Thomas Schwentick Slide 5

Pebble automata

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

a 3

e 2

f

Definition

Pebble automata :

• states Q

• pebbles n, . . . , 1

• Possible moves: D = {↑, ↘, ↙,stay,drop,lift}

• Depending on

– state,

– minimum pebble number,

– set of pebbles at current node,

– label,

– type of node:

{root,leftchild,rightchild} × {leaf,innernode}

Notation: sDPAn : languages accepted by:

strong Deterministic pebble automata with n pebbles

Unary TC-logic on trees Thomas Schwentick Slide 5

Pebble automata

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

a 3

e 2e

Definition

Pebble automata :

• states Q

• pebbles n, . . . , 1

• Possible moves: D = {↑, ↘, ↙,stay,drop,lift}

• Depending on

– state,

– minimum pebble number,

– set of pebbles at current node,

– label,

– type of node:

{root,leftchild,rightchild} × {leaf,innernode}

Notation: sDPAn : languages accepted by:

strong Deterministic pebble automata with n pebbles

Unary TC-logic on trees Thomas Schwentick Slide 5

Pebble automata

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

a 3

e 2

c

Definition

Pebble automata :

• states Q

• pebbles n, . . . , 1

• Possible moves: D = {↑, ↘, ↙,stay,drop,lift}

• Depending on

– state,

– minimum pebble number,

– set of pebbles at current node,

– label,

– type of node:

{root,leftchild,rightchild} × {leaf,innernode}

Notation: sDPAn : languages accepted by:

strong Deterministic pebble automata with n pebbles

Unary TC-logic on trees Thomas Schwentick Slide 5

Pebble automata

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

a 3

e 2

g

Definition

Pebble automata :

• states Q

• pebbles n, . . . , 1

• Possible moves: D = {↑, ↘, ↙,stay,drop,lift}

• Depending on

– state,

– minimum pebble number,

– set of pebbles at current node,

– label,

– type of node:

{root,leftchild,rightchild} × {leaf,innernode}

Notation: sDPAn : languages accepted by:

strong Deterministic pebble automata with n pebbles

Unary TC-logic on trees Thomas Schwentick Slide 5

Pebble automata

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

a 3

e 2

c

Definition

Pebble automata :

• states Q

• pebbles n, . . . , 1

• Possible moves: D = {↑, ↘, ↙,stay,drop,lift}

• Depending on

– state,

– minimum pebble number,

– set of pebbles at current node,

– label,

– type of node:

{root,leftchild,rightchild} × {leaf,innernode}

Notation: sDPAn : languages accepted by:

strong Deterministic pebble automata with n pebbles

Unary TC-logic on trees Thomas Schwentick Slide 5

Pebble automata

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

a 3

e 2e

Definition

Pebble automata :

• states Q

• pebbles n, . . . , 1

• Possible moves: D = {↑, ↘, ↙,stay,drop,lift}

• Depending on

– state,

– minimum pebble number,

– set of pebbles at current node,

– label,

– type of node:

{root,leftchild,rightchild} × {leaf,innernode}

Notation: sDPAn : languages accepted by:

strong Deterministic pebble automata with n pebbles

Unary TC-logic on trees Thomas Schwentick Slide 5

Pebble automata

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

a 3

e

Definition

Pebble automata :

• states Q

• pebbles n, . . . , 1

• Possible moves: D = {↑, ↘, ↙,stay,drop,lift}

• Depending on

– state,

– minimum pebble number,

– set of pebbles at current node,

– label,

– type of node:

{root,leftchild,rightchild} × {leaf,innernode}

Notation: sDPAn : languages accepted by:

strong Deterministic pebble automata with n pebbles

Unary TC-logic on trees Thomas Schwentick Slide 5

Pebble automata

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

a 3

d

Definition

Pebble automata :

• states Q

• pebbles n, . . . , 1

• Possible moves: D = {↑, ↘, ↙,stay,drop,lift}

• Depending on

– state,

– minimum pebble number,

– set of pebbles at current node,

– label,

– type of node:

{root,leftchild,rightchild} × {leaf,innernode}

Notation: sDPAn : languages accepted by:

strong Deterministic pebble automata with n pebbles

Unary TC-logic on trees Thomas Schwentick Slide 5

Pebble automata

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

a 3a

Definition

Pebble automata :

• states Q

• pebbles n, . . . , 1

• Possible moves: D = {↑, ↘, ↙,stay,drop,lift}

• Depending on

– state,

– minimum pebble number,

– set of pebbles at current node,

– label,

– type of node:

{root,leftchild,rightchild} × {leaf,innernode}

Notation: sDPAn : languages accepted by:

strong Deterministic pebble automata with n pebbles

Unary TC-logic on trees Thomas Schwentick Slide 5

Pebble automata

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

a

Definition

Pebble automata :

• states Q

• pebbles n, . . . , 1

• Possible moves: D = {↑, ↘, ↙,stay,drop,lift}

• Depending on

– state,

– minimum pebble number,

– set of pebbles at current node,

– label,

– type of node:

{root,leftchild,rightchild} × {leaf,innernode}

Notation: sDPAn : languages accepted by:

strong Deterministic pebble automata with n pebbles

Unary TC-logic on trees Thomas Schwentick Slide 5

Pebble automata

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

b

Definition

Pebble automata :

• states Q

• pebbles n, . . . , 1

• Possible moves: D = {↑, ↘, ↙,stay,drop,lift}

• Depending on

– state,

– minimum pebble number,

– set of pebbles at current node,

– label,

– type of node:

{root,leftchild,rightchild} × {leaf,innernode}

Notation: sDPAn : languages accepted by:

strong Deterministic pebble automata with n pebbles

Unary TC-logic on trees Thomas Schwentick Slide 5

Pebble automata

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

Definition

Pebble automata :

• states Q

• pebbles n, . . . , 1

• Possible moves: D = {↑, ↘, ↙,stay,drop,lift}

• Depending on

– state,

– minimum pebble number,

– set of pebbles at current node,

– label,

– type of node:

{root,leftchild,rightchild} × {leaf,innernode}

Notation: sDPAn : languages accepted by:

strong Deterministic pebble automata with n pebbles

Unary TC-logic on trees Thomas Schwentick Slide 5

Some results...

... on pebble automata

• PA (REG

• For each n ≥ 0,

– PAn (PAn+1 and DPAn (DPAn+1

– TWA 6⊆ DPAn

– sPAn = PAn and sDPAn = DPAn

– sDPAn is closed under complement

... and a corollary on logics

FO+posTC1 (MSO on binary trees

Unary TC-logic on trees Thomas Schwentick Slide 6

Proof summary
Theorem

FO+posTC1 (MSO on binary trees

Outline

1. FO + posTC1 = sPA [Engelfriet, Hoogeboom 06]

2. Formalize behavior of a pebble automaton on a tree (→ type)

3. Strong pebbles do not give extra power: sPAn = PAn

4. For each n, define Ln and show that Ln ∈ DPAn − PAn−1

(a) Towards a contradiction, fix A for Ln

(b) Show that oracle automata do not accept L1

Fix s ∈ L1, t 6∈ L1 that can not be distinguished by oracle

automaton of size ≤ m

(c) Define s1, . . . , sn ∈ Ln, t1, . . . , tn 6∈ Ln

(d) Show: i-type of si and ti are identical

(otherwise: there is oracle automaton of size ≤ m distinguishing s

from t)

5. Construct L ∈ REG − PA from L1, L2, L3, . . .
Unary TC-logic on trees Thomas Schwentick Slide 7

Contents

Introduction and Overview of Results

� Pebble Automata and Logic

The Behavior of Pebble Automata

On Strong Pebbles

Hierarchy Theorems

Conclusion

Unary TC-logic on trees Thomas Schwentick Slide 8

Pebble automata and logic
Theorem [Engelfriet, Hoogeboom 06]

• FO + DTC1 = sDPA

• FO + posTC1 = sPA
(They prove a stronger result for multihead-automata)

Proof idea

“Logic ⇒ automaton” requires a liberal pebble lifting policy:

• To check TCx,y[ϕ(x, y, ~z)](u, v):

– Pebbles n, . . . , k on ~z do not move

– Pebble k − 1 on v, pebble k − 2 on u

– Guess u1 by placing pebble k − 3 on it

– Check ϕ(u, u1, ~z) recursively

– Go back to u1, lift pebbles k − 2, k − 3

– Put pebble k − 2 on u1

– Continue with u2...

→ strong pebbles : the minimum pebble can be lifted even

if the head is somewhere else

Unary TC-logic on trees Thomas Schwentick Slide 9

Contents

Introduction and Overview of Results

Pebble Automata and Logic

� The Behavior of Pebble Automata

On Strong Pebbles

Hierarchy Theorems

Conclusion

Unary TC-logic on trees Thomas Schwentick Slide 10

Tree loops...
We fix some PA A

Basic question

What is the behavior of A on a subtree tv?

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

b6 c 5

v

Unary TC-logic on trees Thomas Schwentick Slide 11

Tree loops...
We fix some PA A

Basic question

What is the behavior of A on a subtree tv?

Some definitions

• i-configuration : (v, p, vi+1, . . . , vn)

• tree i-loop : subcomputation from

(v, p, vi+1, . . . , vn) to

(v, q, vi+1, . . . , vn), where for all

intermediate j-configurations:

– j ≤ i, and

– j = i ⇒ head below v

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

b6 c 5

v d

Unary TC-logic on trees Thomas Schwentick Slide 11

Tree loops...
We fix some PA A

Basic question

What is the behavior of A on a subtree tv?

Some definitions

• i-configuration : (v, p, vi+1, . . . , vn)

• tree i-loop : subcomputation from

(v, p, vi+1, . . . , vn) to

(v, q, vi+1, . . . , vn), where for all

intermediate j-configurations:

– j ≤ i, and

– j = i ⇒ head below v

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

b6 c 5

v

c

Unary TC-logic on trees Thomas Schwentick Slide 11

Tree loops...
We fix some PA A

Basic question

What is the behavior of A on a subtree tv?

Some definitions

• i-configuration : (v, p, vi+1, . . . , vn)

• tree i-loop : subcomputation from

(v, p, vi+1, . . . , vn) to

(v, q, vi+1, . . . , vn), where for all

intermediate j-configurations:

– j ≤ i, and

– j = i ⇒ head below v

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

b6 c 5

v

f

Unary TC-logic on trees Thomas Schwentick Slide 11

Tree loops...
We fix some PA A

Basic question

What is the behavior of A on a subtree tv?

Some definitions

• i-configuration : (v, p, vi+1, . . . , vn)

• tree i-loop : subcomputation from

(v, p, vi+1, . . . , vn) to

(v, q, vi+1, . . . , vn), where for all

intermediate j-configurations:

– j ≤ i, and

– j = i ⇒ head below v

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

b6 c 5

v

f4 f

Unary TC-logic on trees Thomas Schwentick Slide 11

Tree loops...
We fix some PA A

Basic question

What is the behavior of A on a subtree tv?

Some definitions

• i-configuration : (v, p, vi+1, . . . , vn)

• tree i-loop : subcomputation from

(v, p, vi+1, . . . , vn) to

(v, q, vi+1, . . . , vn), where for all

intermediate j-configurations:

– j ≤ i, and

– j = i ⇒ head below v

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

b6 c 5

v

f4

c

Unary TC-logic on trees Thomas Schwentick Slide 11

Tree loops...
We fix some PA A

Basic question

What is the behavior of A on a subtree tv?

Some definitions

• i-configuration : (v, p, vi+1, . . . , vn)

• tree i-loop : subcomputation from

(v, p, vi+1, . . . , vn) to

(v, q, vi+1, . . . , vn), where for all

intermediate j-configurations:

– j ≤ i, and

– j = i ⇒ head below v

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

b6 c 5

v

f4

d

Unary TC-logic on trees Thomas Schwentick Slide 11

Tree loops...
We fix some PA A

Basic question

What is the behavior of A on a subtree tv?

Some definitions

• i-configuration : (v, p, vi+1, . . . , vn)

• tree i-loop : subcomputation from

(v, p, vi+1, . . . , vn) to

(v, q, vi+1, . . . , vn), where for all

intermediate j-configurations:

– j ≤ i, and

– j = i ⇒ head below v

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

b6 c 5

v

f4

a

Unary TC-logic on trees Thomas Schwentick Slide 11

Tree loops...
We fix some PA A

Basic question

What is the behavior of A on a subtree tv?

Some definitions

• i-configuration : (v, p, vi+1, . . . , vn)

• tree i-loop : subcomputation from

(v, p, vi+1, . . . , vn) to

(v, q, vi+1, . . . , vn), where for all

intermediate j-configurations:

– j ≤ i, and

– j = i ⇒ head below v

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

b6 c 5

v

f4

c

Unary TC-logic on trees Thomas Schwentick Slide 11

Tree loops...
We fix some PA A

Basic question

What is the behavior of A on a subtree tv?

Some definitions

• i-configuration : (v, p, vi+1, . . . , vn)

• tree i-loop : subcomputation from

(v, p, vi+1, . . . , vn) to

(v, q, vi+1, . . . , vn), where for all

intermediate j-configurations:

– j ≤ i, and

– j = i ⇒ head below v

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

b6 c 5

v

f4

c3 c

Unary TC-logic on trees Thomas Schwentick Slide 11

Tree loops...
We fix some PA A

Basic question

What is the behavior of A on a subtree tv?

Some definitions

• i-configuration : (v, p, vi+1, . . . , vn)

• tree i-loop : subcomputation from

(v, p, vi+1, . . . , vn) to

(v, q, vi+1, . . . , vn), where for all

intermediate j-configurations:

– j ≤ i, and

– j = i ⇒ head below v

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

b6 c 5

v

f4

c3

a

Unary TC-logic on trees Thomas Schwentick Slide 11

Tree loops...
We fix some PA A

Basic question

What is the behavior of A on a subtree tv?

Some definitions

• i-configuration : (v, p, vi+1, . . . , vn)

• tree i-loop : subcomputation from

(v, p, vi+1, . . . , vn) to

(v, q, vi+1, . . . , vn), where for all

intermediate j-configurations:

– j ≤ i, and

– j = i ⇒ head below v

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

b6 c 5

v

f4

c3 d

Unary TC-logic on trees Thomas Schwentick Slide 11

Tree loops...
We fix some PA A

Basic question

What is the behavior of A on a subtree tv?

Some definitions

• i-configuration : (v, p, vi+1, . . . , vn)

• tree i-loop : subcomputation from

(v, p, vi+1, . . . , vn) to

(v, q, vi+1, . . . , vn), where for all

intermediate j-configurations:

– j ≤ i, and

– j = i ⇒ head below v

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

b6 c 5

v

f4

c3

c

Unary TC-logic on trees Thomas Schwentick Slide 11

Tree loops...
We fix some PA A

Basic question

What is the behavior of A on a subtree tv?

Some definitions

• i-configuration : (v, p, vi+1, . . . , vn)

• tree i-loop : subcomputation from

(v, p, vi+1, . . . , vn) to

(v, q, vi+1, . . . , vn), where for all

intermediate j-configurations:

– j ≤ i, and

– j = i ⇒ head below v

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

b6 c 5

v

f4

c3

c

Unary TC-logic on trees Thomas Schwentick Slide 11

Tree loops...
We fix some PA A

Basic question

What is the behavior of A on a subtree tv?

Some definitions

• i-configuration : (v, p, vi+1, . . . , vn)

• tree i-loop : subcomputation from

(v, p, vi+1, . . . , vn) to

(v, q, vi+1, . . . , vn), where for all

intermediate j-configurations:

– j ≤ i, and

– j = i ⇒ head below v

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

b6 c 5

v

f4

c3

c 2c

Unary TC-logic on trees Thomas Schwentick Slide 11

Tree loops...
We fix some PA A

Basic question

What is the behavior of A on a subtree tv?

Some definitions

• i-configuration : (v, p, vi+1, . . . , vn)

• tree i-loop : subcomputation from

(v, p, vi+1, . . . , vn) to

(v, q, vi+1, . . . , vn), where for all

intermediate j-configurations:

– j ≤ i, and

– j = i ⇒ head below v

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

b6 c 5

v

f4

c3

c 2

c

Unary TC-logic on trees Thomas Schwentick Slide 11

Tree loops...
We fix some PA A

Basic question

What is the behavior of A on a subtree tv?

Some definitions

• i-configuration : (v, p, vi+1, . . . , vn)

• tree i-loop : subcomputation from

(v, p, vi+1, . . . , vn) to

(v, q, vi+1, . . . , vn), where for all

intermediate j-configurations:

– j ≤ i, and

– j = i ⇒ head below v

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

b6 c 5

v

f4

c3

c 2f

Unary TC-logic on trees Thomas Schwentick Slide 11

Tree loops...
We fix some PA A

Basic question

What is the behavior of A on a subtree tv?

Some definitions

• i-configuration : (v, p, vi+1, . . . , vn)

• tree i-loop : subcomputation from

(v, p, vi+1, . . . , vn) to

(v, q, vi+1, . . . , vn), where for all

intermediate j-configurations:

– j ≤ i, and

– j = i ⇒ head below v

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

b6 c 5

v

f4

c3

c 2

c

Unary TC-logic on trees Thomas Schwentick Slide 11

Tree loops...
We fix some PA A

Basic question

What is the behavior of A on a subtree tv?

Some definitions

• i-configuration : (v, p, vi+1, . . . , vn)

• tree i-loop : subcomputation from

(v, p, vi+1, . . . , vn) to

(v, q, vi+1, . . . , vn), where for all

intermediate j-configurations:

– j ≤ i, and

– j = i ⇒ head below v

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

b6 c 5

v

f4

c3

c 2c

Unary TC-logic on trees Thomas Schwentick Slide 11

Tree loops...
We fix some PA A

Basic question

What is the behavior of A on a subtree tv?

Some definitions

• i-configuration : (v, p, vi+1, . . . , vn)

• tree i-loop : subcomputation from

(v, p, vi+1, . . . , vn) to

(v, q, vi+1, . . . , vn), where for all

intermediate j-configurations:

– j ≤ i, and

– j = i ⇒ head below v

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

b6 c 5

v

f4

c3

c

Unary TC-logic on trees Thomas Schwentick Slide 11

Tree loops...
We fix some PA A

Basic question

What is the behavior of A on a subtree tv?

Some definitions

• i-configuration : (v, p, vi+1, . . . , vn)

• tree i-loop : subcomputation from

(v, p, vi+1, . . . , vn) to

(v, q, vi+1, . . . , vn), where for all

intermediate j-configurations:

– j ≤ i, and

– j = i ⇒ head below v

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

b6 c 5

v

f4

c3

c

Unary TC-logic on trees Thomas Schwentick Slide 11

Tree loops...
We fix some PA A

Basic question

What is the behavior of A on a subtree tv?

Some definitions

• i-configuration : (v, p, vi+1, . . . , vn)

• tree i-loop : subcomputation from

(v, p, vi+1, . . . , vn) to

(v, q, vi+1, . . . , vn), where for all

intermediate j-configurations:

– j ≤ i, and

– j = i ⇒ head below v

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

b6 c 5

v

f4

c3 d

Unary TC-logic on trees Thomas Schwentick Slide 11

Tree loops...
We fix some PA A

Basic question

What is the behavior of A on a subtree tv?

Some definitions

• i-configuration : (v, p, vi+1, . . . , vn)

• tree i-loop : subcomputation from

(v, p, vi+1, . . . , vn) to

(v, q, vi+1, . . . , vn), where for all

intermediate j-configurations:

– j ≤ i, and

– j = i ⇒ head below v

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

b6 c 5

v

f4

c3

a

Unary TC-logic on trees Thomas Schwentick Slide 11

Tree loops...
We fix some PA A

Basic question

What is the behavior of A on a subtree tv?

Some definitions

• i-configuration : (v, p, vi+1, . . . , vn)

• tree i-loop : subcomputation from

(v, p, vi+1, . . . , vn) to

(v, q, vi+1, . . . , vn), where for all

intermediate j-configurations:

– j ≤ i, and

– j = i ⇒ head below v

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

b6 c 5

v

f4

c3 c

Unary TC-logic on trees Thomas Schwentick Slide 11

Tree loops...
We fix some PA A

Basic question

What is the behavior of A on a subtree tv?

Some definitions

• i-configuration : (v, p, vi+1, . . . , vn)

• tree i-loop : subcomputation from

(v, p, vi+1, . . . , vn) to

(v, q, vi+1, . . . , vn), where for all

intermediate j-configurations:

– j ≤ i, and

– j = i ⇒ head below v

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

b6 c 5

v

f4

c

Unary TC-logic on trees Thomas Schwentick Slide 11

Tree loops...
We fix some PA A

Basic question

What is the behavior of A on a subtree tv?

Some definitions

• i-configuration : (v, p, vi+1, . . . , vn)

• tree i-loop : subcomputation from

(v, p, vi+1, . . . , vn) to

(v, q, vi+1, . . . , vn), where for all

intermediate j-configurations:

– j ≤ i, and

– j = i ⇒ head below v

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

b6 c 5

v

f4

a

Unary TC-logic on trees Thomas Schwentick Slide 11

Tree loops...
We fix some PA A

Basic question

What is the behavior of A on a subtree tv?

Some definitions

• i-configuration : (v, p, vi+1, . . . , vn)

• tree i-loop : subcomputation from

(v, p, vi+1, . . . , vn) to

(v, q, vi+1, . . . , vn), where for all

intermediate j-configurations:

– j ≤ i, and

– j = i ⇒ head below v

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

b6 c 5

v

f4

d

Unary TC-logic on trees Thomas Schwentick Slide 11

Tree loops...
We fix some PA A

Basic question

What is the behavior of A on a subtree tv?

Some definitions

• i-configuration : (v, p, vi+1, . . . , vn)

• tree i-loop : subcomputation from

(v, p, vi+1, . . . , vn) to

(v, q, vi+1, . . . , vn), where for all

intermediate j-configurations:

– j ≤ i, and

– j = i ⇒ head below v

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

b6 c 5

v

f4

c

Unary TC-logic on trees Thomas Schwentick Slide 11

Tree loops...
We fix some PA A

Basic question

What is the behavior of A on a subtree tv?

Some definitions

• i-configuration : (v, p, vi+1, . . . , vn)

• tree i-loop : subcomputation from

(v, p, vi+1, . . . , vn) to

(v, q, vi+1, . . . , vn), where for all

intermediate j-configurations:

– j ≤ i, and

– j = i ⇒ head below v

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

b6 c 5

v

f4 f

Unary TC-logic on trees Thomas Schwentick Slide 11

Tree loops...
We fix some PA A

Basic question

What is the behavior of A on a subtree tv?

Some definitions

• i-configuration : (v, p, vi+1, . . . , vn)

• tree i-loop : subcomputation from

(v, p, vi+1, . . . , vn) to

(v, q, vi+1, . . . , vn), where for all

intermediate j-configurations:

– j ≤ i, and

– j = i ⇒ head below v

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

b6 c 5

v

f

Unary TC-logic on trees Thomas Schwentick Slide 11

Tree loops...
We fix some PA A

Basic question

What is the behavior of A on a subtree tv?

Some definitions

• i-configuration : (v, p, vi+1, . . . , vn)

• tree i-loop : subcomputation from

(v, p, vi+1, . . . , vn) to

(v, q, vi+1, . . . , vn), where for all

intermediate j-configurations:

– j ≤ i, and

– j = i ⇒ head below v

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

b6 c 5

v

c

Unary TC-logic on trees Thomas Schwentick Slide 11

Tree loops...
We fix some PA A

Basic question

What is the behavior of A on a subtree tv?

Some definitions

• i-configuration : (v, p, vi+1, . . . , vn)

• tree i-loop : subcomputation from

(v, p, vi+1, . . . , vn) to

(v, q, vi+1, . . . , vn), where for all

intermediate j-configurations:

– j ≤ i, and

– j = i ⇒ head below v

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

b6 c 5

v d

Unary TC-logic on trees Thomas Schwentick Slide 11

Tree loops...
We fix some PA A

Basic question

What is the behavior of A on a subtree tv?

Some definitions

• i-configuration : (v, p, vi+1, . . . , vn)

• tree i-loop : subcomputation from

(v, p, vi+1, . . . , vn) to

(v, q, vi+1, . . . , vn), where for all

intermediate j-configurations:

– j ≤ i, and

– j = i ⇒ head below v

Observations

• During an i-loop the head can leave tv

• Subcomputations on the context Cv might

depend on tv and on further pebbles in tv

→ What do we need to know of tv to simulate A?

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

b6 c 5

v d

Unary TC-logic on trees Thomas Schwentick Slide 11

... and types
Definition

• 0-type of tv : all pairs (p, q) such that there is a

tree 0-loop ...

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

b6 c 5

v d

Unary TC-logic on trees Thomas Schwentick Slide 12

... and types
Definition

• 0-type of tv : all pairs (p, q) such that there is a

tree 0-loop ...

• 1-type of tv : for each 0-type B0 of a context Cv

all pairs (p, q) such that there is a tree 1-loop ...

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

b6 c 5

v d

Unary TC-logic on trees Thomas Schwentick Slide 12

... and types
Definition

• 0-type of tv : all pairs (p, q) such that there is a

tree 0-loop ...

• 1-type of tv : for each 0-type B0 of a context Cv

all pairs (p, q) such that there is a tree 1-loop ...

• 2-type of tv : for each 0-type B0 and 1-type B1

of a context Cv all pairs (p, q) such that there is a

tree 2-loop ...

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

b6 c 5

v d

Unary TC-logic on trees Thomas Schwentick Slide 12

... and types
Definition

• 0-type of tv : all pairs (p, q) such that there is a

tree 0-loop ...

• 1-type of tv : for each 0-type B0 of a context Cv

all pairs (p, q) such that there is a tree 1-loop ...

• 2-type of tv : for each 0-type B0 and 1-type B1

of a context Cv all pairs (p, q) such that there is a

tree 2-loop ...

• i-type of tv : for each 0-type B0,..., (i − 1)-type

Bi−1 of a context Cv all pairs (p, q) such that

there is a tree i-loop ...

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

b6 c 5

v d

Unary TC-logic on trees Thomas Schwentick Slide 12

... and types
Definition

• 0-type of tv : all pairs (p, q) such that there is a

tree 0-loop ...

• 1-type of tv : for each 0-type B0 of a context Cv

all pairs (p, q) such that there is a tree 1-loop ...

• 2-type of tv : for each 0-type B0 and 1-type B1

of a context Cv all pairs (p, q) such that there is a

tree 2-loop ...

• i-type of tv : for each 0-type B0,..., (i − 1)-type

Bi−1 of a context Cv all pairs (p, q) such that

there is a tree i-loop ...

Lemma

• There are only finitely many i-types

• i-types are compositional

• i-types can be “computed” by an i-pebble PA

b

a

c

b

c d

b

d

a e

f c

b g

c

b c

b6 c 5

v d

Unary TC-logic on trees Thomas Schwentick Slide 12

Contents

Introduction and Overview of Results

Pebble Automata and Logic

The Behavior of Pebble Automata

� On Strong Pebbles

Hierarchy Theorems

Conclusion

Unary TC-logic on trees Thomas Schwentick Slide 13

Strong pebbles aren’t that strong
Theorem 1

For each n ≥ 0:

(a) sPAn = PAn

(b) sDPAn = DPAn

Proof idea

• Intermediate model: k-weak-PA

– pebbles k, . . . , n are strong

– pebbles 1, . . . , k − 1 are weak

• Induction on k.

– Each k-weak n-pebble automaton A

has an equivalent (k + 1)-weak

automaton A′

→ we basically have to show how to simulate

a strong pebble k by a weak pebble k

(where strong pebbles k + 1, . . . , n are

fixed)

Unary TC-logic on trees Thomas Schwentick Slide 14

Strong pebbles aren’t that strong
Theorem 1

For each n ≥ 0:

(a) sPAn = PAn

(b) sDPAn = DPAn

Proof idea

• Intermediate model: k-weak-PA

– pebbles k, . . . , n are strong

– pebbles 1, . . . , k − 1 are weak

• Induction on k.

– Each k-weak n-pebble automaton A

has an equivalent (k + 1)-weak

automaton A′

→ we basically have to show how to simulate

a strong pebble k by a weak pebble k

(where strong pebbles k + 1, . . . , n are

fixed)

Proof idea (cont.)

• Assume A drops strong pebble k at v and

lifts it when its head is at w (say: below v)

• Let u1 = v, u2, . . . , vm = w path

from v to w

• Idea: A′ moves pebble k towards w

– When k-configuration

at ui is reached, peb-

ble k is moved to it

– The head never moves

above pebble k

– Behavior of Cui
is

maintained inductively

• The deterministic case requires more care
Unary TC-logic on trees Thomas Schwentick Slide 14

Contents

Introduction and Overview of Results

Pebble Automata and Logic

The Behavior of Pebble Automata

On Strong Pebbles

� Hierarchy Theorems

Conclusion

Unary TC-logic on trees Thomas Schwentick Slide 15

Hierarchy theorems

Goal of this part:

Theorem 2

PA (REG

We first show:

Theorem 3

For each n ≥ 0, PAn (PAn+1

We build on

Theorem [Bojańczyk, Colcombet 05]

TWA (REG

Unary TC-logic on trees Thomas Schwentick Slide 16

A look at “ TWA (REG”

• Quasi-blank trees :

Alphabet {a, b}, a appears only in leaves

Unary TC-logic on trees Thomas Schwentick Slide 17

A look at “ TWA (REG”

• Quasi-blank trees :

Alphabet {a, b}, a appears only in leaves

• Branching structure :

t

a a a

→

b(t)

Unary TC-logic on trees Thomas Schwentick Slide 17

A look at “ TWA (REG”

• Quasi-blank trees :

Alphabet {a, b}, a appears only in leaves

• Branching structure :

t

a a a

→

b(t)

• Lbranch : all trees t, where in b(t) all

root-to-leaf paths have even length

Unary TC-logic on trees Thomas Schwentick Slide 17

A look at “ TWA (REG”

• Quasi-blank trees :

Alphabet {a, b}, a appears only in leaves

• Branching structure :

t

a a a

→

b(t)

• Lbranch : all trees t, where in b(t) all

root-to-leaf paths have even length

Theorem [Bojańczyk, Colcombet 05]

Lbranch ∈ REG − TWA

Unary TC-logic on trees Thomas Schwentick Slide 17

A look at “ TWA (REG”

• Quasi-blank trees :

Alphabet {a, b}, a appears only in leaves

• Branching structure :

t

a a a

→

b(t)

• Lbranch : all trees t, where in b(t) all

root-to-leaf paths have even length

Theorem [Bojańczyk, Colcombet 05]

Lbranch ∈ REG − TWA

• Even more: for each A there are
s ∈ Lbranch and t 6∈ Lbranch such that each
root-to-root loop of A on s also exists on t

Unary TC-logic on trees Thomas Schwentick Slide 17

A look at “ TWA (REG”

• Quasi-blank trees :

Alphabet {a, b}, a appears only in leaves

• Branching structure :

t

a a a

→

b(t)

• Lbranch : all trees t, where in b(t) all

root-to-leaf paths have even length

Theorem [Bojańczyk, Colcombet 05]

Lbranch ∈ REG − TWA

• Even more: for each A there are
s ∈ Lbranch and t 6∈ Lbranch such that each
root-to-root loop of A on s also exists on t

• We need a stronger statement: the
root-to-root behavior of A on s and t should
be exactly the same

• Leven : Number of 0∗1-nodes v in b(t)
whose subtree only has even length branches
is even

Unary TC-logic on trees Thomas Schwentick Slide 17

A look at “ TWA (REG”

• Quasi-blank trees :

Alphabet {a, b}, a appears only in leaves

• Branching structure :

t

a a a

→

b(t)

• Lbranch : all trees t, where in b(t) all

root-to-leaf paths have even length

Theorem [Bojańczyk, Colcombet 05]

Lbranch ∈ REG − TWA

• Even more: for each A there are
s ∈ Lbranch and t 6∈ Lbranch such that each
root-to-root loop of A on s also exists on t

• We need a stronger statement: the
root-to-root behavior of A on s and t should
be exactly the same

• Leven : Number of 0∗1-nodes v in b(t)
whose subtree only has even length branches
is even

Proposition

For each A there are s ∈ Leven and t 6∈ Leven

such that A has the same root-to-root behavior

on s and t

Unary TC-logic on trees Thomas Schwentick Slide 17

A language separating PAn from PAn−1

• n-leveled tree :

– Alphabet {a, b, c}

– All root-to-leaf paths are in
(cb∗)n(a + b)

a a a a

c

cccc

cccccccccc

cccccccccccccccccc

level 4

level 3

level 2

level 1

level 0

Unary TC-logic on trees Thomas Schwentick Slide 18

A language separating PAn from PAn−1

• n-leveled tree :

– Alphabet {a, b, c}

– All root-to-leaf paths are in
(cb∗)n(a + b)

a a a a

c

cccc

cccccccccc

cccccccccccccccccc

level 4

level 3

level 2

level 1

level 0

• L-folding :

c c cn − 1

∈ L 6∈ L ∈ L

⇒
a b a

• Ln : all n-leveled trees whose Ln−1-folding

is in Leven

Unary TC-logic on trees Thomas Schwentick Slide 18

A language separating PAn from PAn−1

• n-leveled tree :

– Alphabet {a, b, c}

– All root-to-leaf paths are in
(cb∗)n(a + b)

a a a a

c

cccc

cccccccccc

cccccccccccccccccc

level 4

level 3

level 2

level 1

level 0

• L-folding :

c c cn − 1

∈ L 6∈ L ∈ L

⇒
a b a

• Ln : all n-leveled trees whose Ln−1-folding

is in Leven

Main Lemma

• Ln ∈ DPAn

• Ln 6∈ PAn−1

Unary TC-logic on trees Thomas Schwentick Slide 18

Proof of Main Lemma
Main Lemma

• Ln ∈ DPAn

• Ln 6∈ PAn−1

Proof

• Towards a contradiction, assume

L(A) = Ln, for some (n − 1)-pebble

automaton A

• We inductively construct

– s1, . . . , sn ∈ Ln

– t1, . . . , tn 6∈ Ln

such that si and ti have equivalent i-type

wrt A

• At level i − 1, both si, ti have only

subtrees si−1, ti−1

Unary TC-logic on trees Thomas Schwentick Slide 19

Proof of Main Lemma
Main Lemma

• Ln ∈ DPAn

• Ln 6∈ PAn−1

Proof

• Towards a contradiction, assume

L(A) = Ln, for some (n − 1)-pebble

automaton A

• We inductively construct

– s1, . . . , sn ∈ Ln

– t1, . . . , tn 6∈ Ln

such that si and ti have equivalent i-type

wrt A

• At level i − 1, both si, ti have only

subtrees si−1, ti−1

Proof (cont.)

Intuition:

• If pebble i is not in the tree, A acts like a

TWA

• If pebble i is placed above level i − 1, A

can not distinguish si−1-subtrees from

ti−1-subtrees

• Subcomputations taking pebble i below level

i − 1 do not learn more than the type of the

subtree

Unary TC-logic on trees Thomas Schwentick Slide 19

Proof of Main Lemma
Main Lemma

• Ln ∈ DPAn

• Ln 6∈ PAn−1

Proof

• Towards a contradiction, assume

L(A) = Ln, for some (n − 1)-pebble

automaton A

• We inductively construct

– s1, . . . , sn ∈ Ln

– t1, . . . , tn 6∈ Ln

such that si and ti have equivalent i-type

wrt A

• At level i − 1, both si, ti have only

subtrees si−1, ti−1

Proof (cont.)

Intuition:

• If pebble i is not in the tree, A acts like a

TWA

• If pebble i is placed above level i − 1, A

can not distinguish si−1-subtrees from

ti−1-subtrees

• Subcomputations taking pebble i below level

i − 1 do not learn more than the type of the

subtree

• Not very precise

→ Formalization through “oracle automata”

Unary TC-logic on trees Thomas Schwentick Slide 19

Oracle automata

• Oracle automaton :

– basis: tree-walking automaton

– no pebbles!

– works on folding

– structure oracle :

∗ MSO-formulas ϕ1(x), . . . , ϕl(x)
which do not test labels

∗ transition at node v depends on
(ϕ1(v), . . . , ϕl(v))

Proposition

For each m there are s ∈ L1 and t 6∈ L1

such that each oracle automaton of size ≤ m

has the same root-to-root loops on s and t

Proof idea for proposition

Slight extension of TWA-proof

Unary TC-logic on trees Thomas Schwentick Slide 20

Oracle automata

• Oracle automaton :

– basis: tree-walking automaton

– no pebbles!

– works on folding

– structure oracle :

∗ MSO-formulas ϕ1(x), . . . , ϕl(x)
which do not test labels

∗ transition at node v depends on
(ϕ1(v), . . . , ϕl(v))

Proposition

For each m there are s ∈ L1 and t 6∈ L1

such that each oracle automaton of size ≤ m

has the same root-to-root loops on s and t

Proof idea for proposition

Slight extension of TWA-proof

Proof of Main Lemma (cont.)

• i = 0: follows from Proposition

(even TWA-case sufficient)

• i − 1 → i:

– Choose m large enough wrt A, i

– Pick s ∈ L1 ,t 6∈ L1 such that no

oracle automaton of size ≤ m can

distinguish s from t

– si+1 := s, where each a-leaf is

replaced by si and each b-leaf by ti

– (ti+1 accordingly)

Unary TC-logic on trees Thomas Schwentick Slide 20

Oracle automata

• Oracle automaton :

– basis: tree-walking automaton

– no pebbles!

– works on folding

– structure oracle :

∗ MSO-formulas ϕ1(x), . . . , ϕl(x)
which do not test labels

∗ transition at node v depends on
(ϕ1(v), . . . , ϕl(v))

Proposition

For each m there are s ∈ L1 and t 6∈ L1

such that each oracle automaton of size ≤ m

has the same root-to-root loops on s and t

Proof idea for proposition

Slight extension of TWA-proof

Proof of Main Lemma (cont.)

• i = 0: follows from Proposition

(even TWA-case sufficient)

• i − 1 → i:

– Choose m large enough wrt A, i

– Pick s ∈ L1 ,t 6∈ L1 such that no

oracle automaton of size ≤ m can

distinguish s from t

– si+1 := s, where each a-leaf is

replaced by si and each b-leaf by ti

– (ti+1 accordingly)

– Assumption: i-type of A distinguishes

si+1 from ti+1

Unary TC-logic on trees Thomas Schwentick Slide 20

Oracle automata

• Oracle automaton :

– basis: tree-walking automaton

– no pebbles!

– works on folding

– structure oracle :

∗ MSO-formulas ϕ1(x), . . . , ϕl(x)
which do not test labels

∗ transition at node v depends on
(ϕ1(v), . . . , ϕl(v))

Proposition

For each m there are s ∈ L1 and t 6∈ L1

such that each oracle automaton of size ≤ m

has the same root-to-root loops on s and t

Proof idea for proposition

Slight extension of TWA-proof

Proof of Main Lemma (cont.)

• i = 0: follows from Proposition

(even TWA-case sufficient)

• i − 1 → i:

– Choose m large enough wrt A, i

– Pick s ∈ L1 ,t 6∈ L1 such that no

oracle automaton of size ≤ m can

distinguish s from t

– si+1 := s, where each a-leaf is

replaced by si and each b-leaf by ti

– (ti+1 accordingly)

– Assumption: i-type of A distinguishes

si+1 from ti+1

⇒ there is an oracle automaton O of size

≤ m which distinguishes s from t

⇒ contradiction

Unary TC-logic on trees Thomas Schwentick Slide 20

Finale
Proof of Main Lemma (cont.)

Simulation of A by O:

• 3 cases:

– all pebbles lifted, A’s head above level i:

O just does the same as A

– all pebbles lifted, A’s head moves below level

i:

→ O reads a iff subtree is si

→ transition corresponding to i-loops of A

on si and ti

– A drops pebble i (above level i):

subcomputation can be simulated by

(i − 1)-pebble automaton A′ which does

not read labels

→ behavior of A′ can be described by formulas

ϕ1(x), . . . , ϕl(x)

Unary TC-logic on trees Thomas Schwentick Slide 21

Finale
Proof of Main Lemma (cont.)

Simulation of A by O:

• 3 cases:

– all pebbles lifted, A’s head above level i:

O just does the same as A

– all pebbles lifted, A’s head moves below level

i:

→ O reads a iff subtree is si

→ transition corresponding to i-loops of A

on si and ti

– A drops pebble i (above level i):

subcomputation can be simulated by

(i − 1)-pebble automaton A′ which does

not read labels

→ behavior of A′ can be described by formulas

ϕ1(x), . . . , ϕl(x)

Conclude PA (REG
⋃

n

Ln 6∈ PA but also

⋃

n

Ln 6∈ REG

Unary TC-logic on trees Thomas Schwentick Slide 21

Finale
Proof of Main Lemma (cont.)

Simulation of A by O:

• 3 cases:

– all pebbles lifted, A’s head above level i:

O just does the same as A

– all pebbles lifted, A’s head moves below level

i:

→ O reads a iff subtree is si

→ transition corresponding to i-loops of A

on si and ti

– A drops pebble i (above level i):

subcomputation can be simulated by

(i − 1)-pebble automaton A′ which does

not read labels

→ behavior of A′ can be described by formulas

ϕ1(x), . . . , ϕl(x)

Conclude PA (REG
⋃

n

Ln 6∈ PA but also

⋃

n

Ln 6∈ REG

→ Choose L as the ”closure of Leven

under partial folding”

⇒ L ∈ REG − PA and all

sn ∈ L, tn 6∈ L

Unary TC-logic on trees Thomas Schwentick Slide 21

Further results and conclusion
Theorem

• For each n ≥ 0,

– DPAn (DPAn+1

– TWA 6⊆ DPAn

– sDPAn = DPAn

– sDPAn is closed under complement

Open problems

• FO + DTC (FO + posTC?

• FO + posTC (FO + TC?

• FO + TC (REG?

Unary TC-logic on trees Thomas Schwentick Slide 22

