Expressive power of pebble automata

or

Unary positive transitive closure logic on trees

Szeged October 2006

Thomas Schwentick

Joint work with

Mikołaj Bojańczyk, Mathias Samuelides, Luc Segoufin

	-
• Parallel tree automata \equiv	
Regular Tree Languages	
 Sequential automata are clearly weaker 	

 Parallel tree automata ≡ Regular Tree Languages Sequential automata are clearly weaker Clearly? 		
 Sequential automata are clearly weaker Clearly? 	 Parallel tree automata ≡ Regular Tree Languages 	
• Clearly?	 Sequential automata are clearly weaker 	
	Clearly?	

Parallel tree automata ≡ Regular Tree Languages

- Sequential automata are clearly weaker
- Clearly?
- Whether TWA can recognize all regular tree languages had been open for quite some years

• Parallel tree automata \equiv
Regular Tree Languages
 Sequential automata are clearly weaker
• Clearly?
Whether TWA can recognize all regular tree
languages had been open for quite some
years
Theorem [Deienery/, Coleembet 05]
Theorem [Bojanczyk, Colcombel 05]
 Deterministic TWAs are weaker than
nondeterministic TWAs
 Nondeterministic TWAs do not capture all
regular tree languages

• Parallel tree automata \equiv
Regular Tree Languages
 Sequential automata are clearly weaker
Clearly?
 Whether TWA can recognize all regular tree
languages had been open for quite some
Vears
youro
Theorem [Bojanczyk, Colcombet 05]
 Deterministic TWAs are weaker than
nondeterministic TWAs
 Nondeterminstic TWAs do not capture all
regular tree languages
• Engelfriet suggested an extension of TWAs:
What happens if we add

Parallel tree automata ≡ Regular Tree Languages

- Sequential automata are clearly weaker
- Clearly?
- Whether TWA can recognize all regular tree languages had been open for quite some years

Theorem [Bojanczyk, Colcombet 05]

- Deterministic TWAs are weaker than nondeterministic TWAs
- Nondeterministic TWAs do not capture all regular tree languages
- Engelfriet suggested an extension of TWAs: What happens if we add...

D Introduction and Overview of Results

Pebble Automata and Logic

The Behavior of Pebble Automata

On Strong Pebbles

Hierarchy Theorems

Conclusion

- minimum pebble number,
- set of pebbles at current node,
- label,
- type of node:

 ${root, leftchild, rightchild} \times {leaf, innernode}$

Notation: $sDPA_n$: languages accepted by:

ebble automata :	
states Q	
pebbles $n,\ldots,1$	

Definition

- Possible moves: $D = \{\uparrow, \searrow, \swarrow, stay, drop, lift\}$
- Depending on
 - state,
 - minimum pebble number,
 - set of pebbles at current node,
 - label,
 - type of node:

 ${root, leftchild, rightchild} \times {leaf, innernode}$

Notation: $sDPA_n$: languages accepted by:

- state,
- minimum pebble number,
- set of pebbles at current node,
- label,
- type of node:

 ${root, leftchild, rightchild} \times {leaf, innernode}$

Notation: $sDPA_n$: languages accepted by:

Definition Pebble automata : • states Q • pebbles n,..., 1

- Possible moves: $D = \{\uparrow, \searrow, \swarrow, stay, drop, lift\}$
- Depending on
 - state,
 - minimum pebble number,
 - set of pebbles at current node,
 - label,
 - type of node:

 ${root, leftchild, rightchild} \times {leaf, innernode}$

Notation: $sDPA_n$: languages accepted by:

- Possible moves: $D = \{\uparrow, \searrow, \swarrow, stay, drop, lift\}$
- Depending on
 - state,
 - minimum pebble number,
 - set of pebbles at current node,
 - label,
 - type of node:

 ${root, leftchild, rightchild} \times {leaf, innernode}$

Notation: $sDPA_n$: languages accepted by:

- Depending on
 - state,
 - minimum pebble number,
 - set of pebbles at current node,
 - label,
 - type of node:

 ${root, leftchild, rightchild} \times {leaf, innernode}$

Notation: $sDPA_n$: languages accepted by:

 ${root, leftchild, rightchild} \times {leaf, innernode}$

Notation: $sDPA_n$: languages accepted by:

- set of pebbles at current node,
- label,
- type of node:

 ${root, leftchild, rightchild} \times {leaf, innernode}$

Notation: $sDPA_n$: languages accepted by:

 ${root, leftchild, rightchild} \times {leaf, innernode}$

Notation: $sDPA_n$: languages accepted by:

- set of pebbles at current node,
- label,
- type of node:

 ${root, leftchild, rightchild} \times {leaf, innernode}$

Notation: $sDPA_n$: languages accepted by:

 ${root, leftchild, rightchild} \times {leaf, innernode}$

Notation: $sDPA_n$: languages accepted by:

- Depending on
 - state,
 - minimum pebble number,
 - set of pebbles at current node,
 - label,
 - type of node:

 ${root, leftchild, rightchild} \times {leaf, innernode}$

Notation: $sDPA_n$: languages accepted by:

- Possible moves: $D = \{\uparrow, \searrow, \swarrow, stay, drop, lift\}$
- Depending on
 - state,
 - minimum pebble number,
 - set of pebbles at current node,
 - label,
 - type of node:

 ${root, leftchild, rightchild} \times {leaf, innernode}$

Notation: $sDPA_n$: languages accepted by:

Definition Pebble automata : • states Q • pebbles n,..., 1

- Possible moves: $D = \{\uparrow, \searrow, \swarrow, stay, drop, lift\}$
- Depending on
 - state,
 - minimum pebble number,
 - set of pebbles at current node,
 - label,
 - type of node:

 ${root, leftchild, rightchild} \times {leaf, innernode}$

Notation: $sDPA_n$: languages accepted by:

- state,
- minimum pebble number,
- set of pebbles at current node,
- label,
- type of node:

 ${root, leftchild, rightchild} \times {leaf, innernode}$

Notation: $sDPA_n$: languages accepted by:

- Depending on
 - state,
 - minimum pebble number,
 - set of pebbles at current node,
 - label,
 - type of node:

 ${root, leftchild, rightchild} \times {leaf, innernode}$

Notation: $sDPA_n$: languages accepted by:

 ${root, leftchild, rightchild} \times {leaf, innernode}$

Notation: $sDPA_n$: languages accepted by:

- type of node:

 ${root, leftchild, rightchild} \times {leaf, innernode}$

Notation: $sDPA_n$: languages accepted by:

 ${root, leftchild, rightchild} \times {leaf, innernode}$

Notation: $sDPA_n$: languages accepted by:

- label,
- type of node:

 ${root, leftchild, rightchild} \times {leaf, innernode}$

Notation: $sDPA_n$: languages accepted by:

 ${root, leftchild, rightchild} \times {leaf, innernode}$

Notation: $sDPA_n$: languages accepted by:

- label,
- type of node:

 ${root, leftchild, rightchild} \times {leaf, innernode}$

Notation: $sDPA_n$: languages accepted by:

 ${root, leftchild, rightchild} \times {leaf, innernode}$

Notation: $sDPA_n$: languages accepted by:

- Depending on
 - state,
 - minimum pebble number,
 - set of pebbles at current node,
 - label,
 - type of node:

 ${root, leftchild, rightchild} \times {leaf, innernode}$

Notation: $sDPA_n$: languages accepted by:

- state,
- minimum pebble number,
- set of pebbles at current node,
- label,
- type of node:

 ${root, leftchild, rightchild} \times {leaf, innernode}$

Notation: $sDPA_n$: languages accepted by:

Definition Pebble automata : • states Q • pebbles n,..., 1

- Possible moves: $D = \{\uparrow, \searrow, \swarrow, stay, drop, lift\}$
- Depending on
 - state,
 - minimum pebble number,
 - set of pebbles at current node,
 - label,
 - type of node:

 ${root, leftchild, rightchild} \times {leaf, innernode}$

Notation: $sDPA_n$: languages accepted by:

- state,
- minimum pebble number,
- set of pebbles at current node,
- label,
- type of node:

 ${root, leftchild, rightchild} \times {leaf, innernode}$

Notation: $sDPA_n$: languages accepted by:

ebble automata :	
states Q	
pebbles $n,\ldots,1$	

Definition

- Possible moves: $D = \{\uparrow, \searrow, \swarrow, stay, drop, lift\}$
- Depending on
 - state,
 - minimum pebble number,
 - set of pebbles at current node,
 - label,
 - type of node:

 ${root, leftchild, rightchild} \times {leaf, innernode}$

Notation: $sDPA_n$: languages accepted by:

- minimum pebble number,
- set of pebbles at current node,
- label,
- type of node:

 ${root, leftchild, rightchild} \times {leaf, innernode}$

Notation: $sDPA_n$: languages accepted by:

Some results...

... on pebble automata

- $\mathbf{PA} \subsetneq \mathbf{REG}$
- For each $n \ge 0$,
 - $\operatorname{PA}_n \subsetneq \operatorname{PA}_{n+1}$ and $\operatorname{DPA}_n \subsetneq \operatorname{DPA}_{n+1}$
 - TWA $\not\subseteq$ DPA $_n$
 - $sPA_n = PA_n$ and $sDPA_n = DPA_n$
 - sDPA_n is closed under complement

... and a corollary on logics

 $FO+posTC^1 \subsetneq MSO$ on binary trees

Proof summary

Introduction and Overview of Results

Pebble Automata and Logic

The Behavior of Pebble Automata

On Strong Pebbles

Hierarchy Theorems

Conclusion

Pebble automata and logic

Theorem [Engelfriet, Hoogeboom 06] • $FO + DTC^1 = sDPA$

• $FO + posTC^1 = sPA$

(They prove a stronger result for multihead-automata)

Proof idea

"Logic \Rightarrow automaton" requires a liberal pebble lifting policy:

- ullet To check TC $_{x,y}[arphi(x,y,ec{z})](u,v)$:
 - Pebbles n,\ldots,k on $ec{z}$ do not move
 - Pebble k-1 on v, pebble k-2 on u
 - Guess u_1 by placing pebble k-3 on it
 - Check $arphi(u,u_1,ec{z})$ recursively
 - Go back to u_1 , lift pebbles k-2,k-3
 - Put pebble k-2 on u_1
 - Continue with u_2 ...

Introduction and Overview of Results

Pebble Automata and Logic

▷ The Behavior of Pebble Automata

On Strong Pebbles

Hierarchy Theorems

Conclusion

(c)

b

(c)

b

(c)

b

(c)

b

(c)

b

(c)

b

b

(c)

b

b

(c)

b

(c)

b

(c)

b

(c)

b

(c)

b

(c)

b

a

• i-types can be "computed" by an i-pebble PA

Introduction and Overview of Results

Pebble Automata and Logic

The Behavior of Pebble Automata

▷ On Strong Pebbles

Hierarchy Theorems

Conclusion

Strong pebbles aren't that strong

Theorem 1		
For each $n \geq 0$:		
(a) $sPA_n = PA_n$		
(b) $sDPA_n = DPA_n$		
Proof idea		
Intermediate model: k-weak-PA		
– pebbles k,\ldots,n are strong		
– pebbles $1,\ldots,k-1$ are weak		
• Induction on k .		
– Each k -weak n -pebble automaton A		
has an equivalent $(k+1)$ -weak		
automaton A'		
\rightarrow we basically have to show how to simulate		
a strong pebble $m k$ by a weak pebble $m k$		
(where strong pebbles $k+1,\ldots,n$ are		
fixed)		

Strong pebbles aren't that strong

Theorem 1	Proof idea (cont.)		
For each $n \ge 0$:	• Assume A drops strong pebble k at v and		
(a) $sPA_n = PA_n$	lifts it when its head is at $oldsymbol{w}$ (say: below $oldsymbol{v}$)		
(b) $sDPA_n = DPA_n$	• Let $u_1=v,u_2,\ldots,v_m=w$ path		
Proof idea	from \boldsymbol{v} to \boldsymbol{w}		
Intermediate model: k-weak-PA	 Idea: A' moves pebble k towards w 		
- pebbles k_1, \ldots, n_n are strong	– When <i>k</i> -configuration		
pobbles $1, \dots, h$ are weak	at $oldsymbol{u_i}$ is reached, peb-	$u_1 = \vee$	
- pebbles $1, \ldots, \mathbf{k}$ - 1 are weak	ble $m k$ is moved to it		
• Induction on k .	– The head never moves		
– Each k -weak n -pebble automaton A	above pebble k	Nik G	
has an equivalent $(k+1)$ -weak	Debewier of C is		
automaton A'	- Benavior of U_{u_i} is	/U.i+1 /	
\rightarrow we basically have to show how to simulate	maintained inductively		
a strong pebble k by a weak pebble k			
(where strong pebbles $k+1,\ldots,n$ are		Um=W	
fixed)	• The deterministic case requires more care		

Unary TC-logic on trees

Introduction and Overview of Results

Pebble Automata and Logic

The Behavior of Pebble Automata

On Strong Pebbles

▷ Hierarchy Theorems

Conclusion

Hierarchy theorems

Unary TC-logic on trees

Quasi-blank trees : Alphabet {a, b}, a appears only in leaves
Branching structure :

- We need a stronger statement: the root-to-root behavior of A on s and t should be exactly the same
- L_{even} : Number of 0^*1 -nodes v in b(t)whose subtree only has even length branches is even

- Quasi-blank trees :
 Alphabet {a, b}, a appears only in leaves
- - root-to-leaf paths have even length

Theorem [Bojańczyk, Colcombet 05]

 $L_{ ext{branch}} \in ext{REG} - ext{TWA}$

• Even more: for each A there are $s \in L_{ ext{branch}}$ and $t \not\in L_{ ext{branch}}$ such that each root-to-root loop of A on s also exists on t

- We need a stronger statement: the root-to-root behavior of A on s and t should be exactly the same
- L_{even} : Number of 0^*1 -nodes v in b(t)whose subtree only has even length branches is even

Proposition

For each A there are $s \in L_{even}$ and $t \not\in L_{even}$ such that A has the same root-to-root behavior on s and t

A language separating PA_n from PA_{n-1}

n-leveled tree

- Alphabet $\{a, b, c\}$
- All root-to-leaf paths are in $(cb^*)^n(a+b)$ c - level 4 $cCc^{C} - level 3$ $cCc_{C}cC_{C}cC_{C} - level 2$ $cCc_{C}cC_{C}cC_{C}cC_{C} - level 1$ a - a - a - level 0

A language separating PA_n from PA_{n-1}

• n-leveled tree :

– Alphabet $\{a, b, c\}$

• L-folding: n-1 \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow{A} \xrightarrow{D} \xrightarrow{A} \xrightarrow{A} \xrightarrow{D} \xrightarrow{A} \xrightarrow{A} \xrightarrow{D} \xrightarrow{A} \xrightarrow

A language separating PA_n from PA_{n-1}

• n-leveled tree :

- Alphabet $\{a, b, c\}$
- All root-to-leaf paths are in $(cb^*)^n(a+b)$ c - level 4 $ccc^{-} level 3$ $ccc_{c}cc_{c}cc_{c}cc_{c} - level 2$ $ccc_{c}cc_{c}cc_{c}cc_{c}cc_{c} - level 1$ a - a - a - level 0

Proof of Main Lemma

Proof of Main Lemma

Proof of Main Lemma

Oracle automata

Oracle automaton

- basis: tree-walking automaton
- no pebbles!
- works on folding
- structure oracle :
 - * MSO-formulas $arphi_1(x),\ldots,arphi_l(x)$ which do not test labels
 - * transition at node v depends on $(arphi_1(v),\ldots,arphi_l(v))$

Proposition

For each m there are $s \in L_1$ and $t
ot\in L_1$

such that each oracle automaton of size $\leq m$

has the same root-to-root loops on $m{s}$ and $m{t}$

Proof idea for proposition

Slight extension of TWA-proof

Oracle automata

Oracle automaton

- basis: tree-walking automaton
- no pebbles!
- works on folding
- structure oracle
 - * MSO-formulas $\varphi_1(x), \ldots, \varphi_l(x)$ which do not test labels
 - * transition at node v depends on $(arphi_1(v),\ldots,arphi_l(v))$

Proposition

For each m there are $s \in L_1$ and $t
ot\in L_1$

such that each oracle automaton of size $\leq m$

has the same root-to-root loops on $m{s}$ and $m{t}$

Proof idea for proposition

Slight extension of TWA-proof

Proof of Main Lemma (cont.)

• i = 0: follows from Proposition

(even TWA-case sufficient)

- $i-1 \rightarrow i$:
 - Choose m large enough wrt A, i
 - Pick $s \in L_1$, $t \not\in L_1$ such that no oracle automaton of size $\leq m$ can distinguish s from t
 - $s_{i+1} := s$, where each a-leaf is replaced by s_i and each b-leaf by t_i
 - (t_{i+1} accordingly)

Unary TC-logic on trees

Oracle automata

Oracle automaton

- basis: tree-walking automaton
- no pebbles!
- works on folding
- structure oracle
 - * MSO-formulas $\varphi_1(x), \ldots, \varphi_l(x)$ which do not test labels
 - * transition at node v depends on $(arphi_1(v),\ldots,arphi_l(v))$

Proposition

For each m there are $s \in L_1$ and $t
ot\in L_1$

such that each oracle automaton of size $\leq m$

has the same root-to-root loops on $m{s}$ and $m{t}$

Proof idea for proposition

Slight extension of TWA-proof

Proof of Main Lemma (cont.)

• i = 0: follows from Proposition

(even TWA-case sufficient)

- $i-1 \rightarrow i$:
 - Choose m large enough wrt A, i
 - Pick $s \in L_1$, $t \not\in L_1$ such that no oracle automaton of size $\leq m$ can distinguish s from t
 - $s_{i+1} := s$, where each a-leaf is replaced by s_i and each b-leaf by t_i
 - (t_{i+1} accordingly)
 - Assumption: i-type of A distinguishes s_{i+1} from t_{i+1}
Oracle automata

Oracle automaton

- basis: tree-walking automaton
- no pebbles!
- works on folding
- structure oracle
 - * MSO-formulas $\varphi_1(x), \ldots, \varphi_l(x)$ which do not test labels
 - * transition at node v depends on $(arphi_1(v),\ldots,arphi_l(v))$

Proposition

For each m there are $s \in L_1$ and $t
ot\in L_1$

such that each oracle automaton of size $\leq m$

has the same root-to-root loops on $m{s}$ and $m{t}$

Proof idea for proposition

Slight extension of TWA-proof

Proof of Main Lemma (cont.)

• i = 0: follows from Proposition

(even TWA-case sufficient)

- $i-1 \rightarrow i$:
 - Choose m large enough wrt A, i
 - Pick $s \in L_1$, $t \not\in L_1$ such that no oracle automaton of size $\leq m$ can distinguish s from t
 - $s_{i+1} := s$, where each a-leaf is replaced by s_i and each b-leaf by t_i
 - (t_{i+1} accordingly)
 - Assumption: i-type of A distinguishes s_{i+1} from t_{i+1}
 - \Rightarrow there is an oracle automaton O of size $\leq m$ which distinguishes s from t
 - \Rightarrow contradiction

Finale

Proof of Main Lemma (cont.)		
Simulation of A by O :		
• 3 cases:		
– all pebbles lifted, $oldsymbol{A}$'s head above level $oldsymbol{i}$:		
$oldsymbol{O}$ just does the same as $oldsymbol{A}$		
– all pebbles lifted, $oldsymbol{A}$'s head moves below level		
<i>i</i> :		
$ ightarrow O$ reads a iff subtree is s_i		
ightarrow transition corresponding to i -loops of A		
on s_{i} and t_{i}		
– A drops pebble i (above level i):		
subcomputation can be simulated by		
$(i-1)$ -pebble automaton A^{\prime} which does		
not read labels		
ightarrow behavior of A' can be described by formulas		
$arphi_1(x),\ldots,arphi_l(x)$		

Finale

Proof of Main Lemma (cont.)	Conclude $\mathbf{PA} \subsetneq REG$
Simulation of A by O :	$igcup L_n ot\in \operatorname{PA}$ but also
 3 cases: – all pebbles lifted, <i>A</i>'s head above level <i>i</i>: 	$igcup_n^n L_n ot\in \operatorname{REG}^n$
$oldsymbol{O}$ just does the same as $oldsymbol{A}$	
– all pebbles lifted, $oldsymbol{A}$'s head moves below level	
<i>i</i> :	
$ ightarrow O$ reads a iff subtree is s_i	
ightarrow transition corresponding to i -loops of A	
on s_i and t_i	
- A drops pebble i (above level i):	
subcomputation can be simulated by	
$(i-1)$ -pebble automaton A^\prime which does	
not read labels	
$ ightarrow$ behavior of A' can be described by formulas $arphi_1(x),\ldots,arphi_l(x)$	

Finale

Proof of Main Lemma (cont.)	Conclude $\mathbf{PA} \subsetneq REG$
Simulation of A by O :	$igcup L_n ot\in \mathbf{PA}$ but also
 3 cases: – all pebbles lifted, <i>A</i>'s head above level <i>i</i>: <i>O</i> just does the same as <i>A</i> 	$igcup_n^n L_n ot\in \mathbf{REG}$ $ o$ Choose L as the "closure of L_{even}
- all pebbles lifted, A 's head moves below level i: $\rightarrow O$ reads a iff subtree is s_i	under partial folding" $\Rightarrow L \in \mathbf{REG} - \mathbf{PA} \text{ and all}$ $s_m \in L_k t_m \notin L_k$
$ ightarrow$ transition corresponding to i -loops of A on s_i and t_i	
- A drops pebble i (above level i): subcomputation can be simulated by (i - 1)-pebble automaton A' which does not read labels	
$ ightarrow$ behavior of A' can be described by formulas $arphi_1(x),\ldots,arphi_l(x)$	

Further results and conclusion

