
Regular XPath: Algebra, Logic and Automata

Balder ten Cate

Szeged, 1 October 2006

Balder ten Cate Regular XPath: Algebra, Logic and Automata (1/19)

The topic of this talk

This talk is about languages for describing binary relations
in trees.
Binary relations means that

Instead of sentences, we use formulas with two free
variables φ(x , y)
Our tree walking automata can start and finish their walk
anywhere in the tree, not neccessarily at the root.

The motivation comes from XML
Specifically, we are interested in the XML path language
Regular XPath.
We would like to characterize this language in terms of
logic and/or automata.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (2/19)

The topic of this talk

This talk is about languages for describing binary relations
in trees.
Binary relations means that

Instead of sentences, we use formulas with two free
variables φ(x , y)
Our tree walking automata can start and finish their walk
anywhere in the tree, not neccessarily at the root.

The motivation comes from XML
Specifically, we are interested in the XML path language
Regular XPath.
We would like to characterize this language in terms of
logic and/or automata.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (2/19)

The topic of this talk

This talk is about languages for describing binary relations
in trees.
Binary relations means that

Instead of sentences, we use formulas with two free
variables φ(x , y)
Our tree walking automata can start and finish their walk
anywhere in the tree, not neccessarily at the root.

The motivation comes from XML
Specifically, we are interested in the XML path language
Regular XPath.
We would like to characterize this language in terms of
logic and/or automata.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (2/19)

The topic of this talk

This talk is about languages for describing binary relations
in trees.
Binary relations means that

Instead of sentences, we use formulas with two free
variables φ(x , y)
Our tree walking automata can start and finish their walk
anywhere in the tree, not neccessarily at the root.

The motivation comes from XML
Specifically, we are interested in the XML path language
Regular XPath.
We would like to characterize this language in terms of
logic and/or automata.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (2/19)

The topic of this talk

This talk is about languages for describing binary relations
in trees.
Binary relations means that

Instead of sentences, we use formulas with two free
variables φ(x , y)
Our tree walking automata can start and finish their walk
anywhere in the tree, not neccessarily at the root.

The motivation comes from XML
Specifically, we are interested in the XML path language
Regular XPath.
We would like to characterize this language in terms of
logic and/or automata.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (2/19)

The topic of this talk

This talk is about languages for describing binary relations
in trees.
Binary relations means that

Instead of sentences, we use formulas with two free
variables φ(x , y)
Our tree walking automata can start and finish their walk
anywhere in the tree, not neccessarily at the root.

The motivation comes from XML
Specifically, we are interested in the XML path language
Regular XPath.
We would like to characterize this language in terms of
logic and/or automata.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (2/19)

The topic of this talk

This talk is about languages for describing binary relations
in trees.
Binary relations means that

Instead of sentences, we use formulas with two free
variables φ(x , y)
Our tree walking automata can start and finish their walk
anywhere in the tree, not neccessarily at the root.

The motivation comes from XML
Specifically, we are interested in the XML path language
Regular XPath.
We would like to characterize this language in terms of
logic and/or automata.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (2/19)

XML documents

XML documents are (for present purposes) are finite
unranked sibling-ordered node labelled trees.
So, an XML document is a tuple T = (N,R↓,R→,V) where

- N is the set of nodes,
- R↓ and R→ are the ‘child’ and ‘next sibling’ relations, and
- V : N → Σ.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (3/19)

XML documents

XML documents are (for present purposes) are finite
unranked sibling-ordered node labelled trees.
So, an XML document is a tuple T = (N,R↓,R→,V) where

- N is the set of nodes,
- R↓ and R→ are the ‘child’ and ‘next sibling’ relations, and
- V : N → Σ.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (3/19)

XML documents

XML documents are (for present purposes) are finite
unranked sibling-ordered node labelled trees.
So, an XML document is a tuple T = (N,R↓,R→,V) where

- N is the set of nodes,
- R↓ and R→ are the ‘child’ and ‘next sibling’ relations, and
- V : N → Σ.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (3/19)

XML documents

XML documents are (for present purposes) are finite
unranked sibling-ordered node labelled trees.
So, an XML document is a tuple T = (N,R↓,R→,V) where

- N is the set of nodes,
- R↓ and R→ are the ‘child’ and ‘next sibling’ relations, and
- V : N → Σ.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (3/19)

XML documents

XML documents are (for present purposes) are finite
unranked sibling-ordered node labelled trees.
So, an XML document is a tuple T = (N,R↓,R→,V) where

- N is the set of nodes,
- R↓ and R→ are the ‘child’ and ‘next sibling’ relations, and
- V : N → Σ.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (3/19)

Syntax of Regular XPath

Regular XPath has two types of expressions:

path expressions
α ::= ↑ | ↓ | ← | → | . | α/β | α ∪ β | α∗ | α[φ]

node expressions
φ ::= p | ¬φ | φ ∧ ψ | 〈α〉

Path expression define binary relations. When applied to a
given “context node”, they yield a set of nodes.
Node expressions define sets of nodes.

We use /α as shorthand for ↑∗ [¬〈 ↑ 〉]/α.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (4/19)

Syntax of Regular XPath

Regular XPath has two types of expressions:

path expressions
α ::= ↑ | ↓ | ← | → | . | α/β | α ∪ β | α∗ | α[φ]

node expressions
φ ::= p | ¬φ | φ ∧ ψ | 〈α〉

Path expression define binary relations. When applied to a
given “context node”, they yield a set of nodes.
Node expressions define sets of nodes.

We use /α as shorthand for ↑∗ [¬〈 ↑ 〉]/α.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (4/19)

Syntax of Regular XPath

Regular XPath has two types of expressions:

path expressions
α ::= ↑ | ↓ | ← | → | . | α/β | α ∪ β | α∗ | α[φ]

node expressions
φ ::= p | ¬φ | φ ∧ ψ | 〈α〉

Path expression define binary relations. When applied to a
given “context node”, they yield a set of nodes.
Node expressions define sets of nodes.

We use /α as shorthand for ↑∗ [¬〈 ↑ 〉]/α.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (4/19)

Syntax of Regular XPath

Regular XPath has two types of expressions:

path expressions
α ::= ↑ | ↓ | ← | → | . | α/β | α ∪ β | α∗ | α[φ]

node expressions
φ ::= p | ¬φ | φ ∧ ψ | 〈α〉

Path expression define binary relations. When applied to a
given “context node”, they yield a set of nodes.
Node expressions define sets of nodes.

We use /α as shorthand for ↑∗ [¬〈 ↑ 〉]/α.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (4/19)

Syntax of Regular XPath

Regular XPath has two types of expressions:

path expressions
α ::= ↑ | ↓ | ← | → | . | α/β | α ∪ β | α∗ | α[φ]

node expressions
φ ::= p | ¬φ | φ ∧ ψ | 〈α〉

Path expression define binary relations. When applied to a
given “context node”, they yield a set of nodes.
Node expressions define sets of nodes.

We use /α as shorthand for ↑∗ [¬〈 ↑ 〉]/α.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (4/19)

Semantics of Regular XPath

[[α]]M = Rα for α ∈ {↓, ↑,←,→}
[[.]]M = the identity relation on N
[[α/β]]M = composition of [[α]]M and [[β]]M

[[α ∪ β]]M = union of [[α]]M and [[β]]M

[[α∗]]M = reflexive transitive closure of [[α]]M

[[α[φ]]]M = {(n,m) ∈ [[α]]M | m ∈ [[φ]]M}

[[p]]M = V (p)
[[φ ∧ ψ]]M = [[φ]]M ∩ [[ψ]]M

[[¬φ]]M = N \ [[φ]]M

[[〈α〉]]M = domain of [[α]]M = {n | (n,m) ∈ [[α]]M}

Balder ten Cate Regular XPath: Algebra, Logic and Automata (5/19)

An example

“Go to the next book that has at least two authors.”

In Regular XPath:

(→ [¬twoauthorbook])∗/→ [twoauthorbook]

where twoauthorbook stands for
book ∧ 〈↓ [author]/→+ [author]〉.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (6/19)

An example

“Go to the next book that has at least two authors.”

In Regular XPath:

(→ [¬twoauthorbook])∗/→ [twoauthorbook]

where twoauthorbook stands for
book ∧ 〈↓ [author]/→+ [author]〉.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (6/19)

Another example

The following can be expressed in Regular XPath:

“Go to the root if it has an even number of
descendants, otherwise retrieve nothing”

To see this, note that

Let (α while φ) be shorthand for (.[φ]/α)∗

Let suc be shorthand for
↓[¬〈←〉] ∪ .[¬〈↓〉]/

(
↑ while ¬〈→〉

)
/→

(the successor in depth first left-to-right ordering).

Then /(suc/suc)∗[¬〈↓〉]/
(
↑ while ¬〈→〉

)
[¬〈↑〉]

expresses the intended query.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (7/19)

Another example

The following can be expressed in Regular XPath:

“Go to the root if it has an even number of
descendants, otherwise retrieve nothing”

To see this, note that

Let (α while φ) be shorthand for (.[φ]/α)∗

Let suc be shorthand for
↓[¬〈←〉] ∪ .[¬〈↓〉]/

(
↑ while ¬〈→〉

)
/→

(the successor in depth first left-to-right ordering).

Then /(suc/suc)∗[¬〈↓〉]/
(
↑ while ¬〈→〉

)
[¬〈↑〉]

expresses the intended query.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (7/19)

Another example

The following can be expressed in Regular XPath:

“Go to the root if it has an even number of
descendants, otherwise retrieve nothing”

To see this, note that

Let (α while φ) be shorthand for (.[φ]/α)∗

Let suc be shorthand for
↓[¬〈←〉] ∪ .[¬〈↓〉]/

(
↑ while ¬〈→〉

)
/→

(the successor in depth first left-to-right ordering).

Then /(suc/suc)∗[¬〈↓〉]/
(
↑ while ¬〈→〉

)
[¬〈↑〉]

expresses the intended query.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (7/19)

Another example

The following can be expressed in Regular XPath:

“Go to the root if it has an even number of
descendants, otherwise retrieve nothing”

To see this, note that

Let (α while φ) be shorthand for (.[φ]/α)∗

Let suc be shorthand for
↓[¬〈←〉] ∪ .[¬〈↓〉]/

(
↑ while ¬〈→〉

)
/→

(the successor in depth first left-to-right ordering).

Then /(suc/suc)∗[¬〈↓〉]/
(
↑ while ¬〈→〉

)
[¬〈↑〉]

expresses the intended query.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (7/19)

One more example

Can we express the following query in Regular XPath?

“Go to any node with an even number of descendants”

The previous trick does not work: during the depth-first
traversal we might accidentally leave the subtree.
Yes, it is possible: we can count

the (parity of the) number of nodes in the entire tree
the (parity of the) number of ancestors of a node n
the (parity of the) number of nodes before n in the df order
the (parity of the) number of nodes after n in the df order
(not counting the descendants)

With a loop operator things would be much easier:
[[loop(α)]] = {w | (w ,w) ∈ [[α]]}

Using loop we could express it as follows:

/ ↓∗ [loop
(
(suc/suc)∗[¬〈↓〉]/(↑ while ¬〈→〉)

)
]

Balder ten Cate Regular XPath: Algebra, Logic and Automata (8/19)

One more example

Can we express the following query in Regular XPath?

“Go to any node with an even number of descendants”

The previous trick does not work: during the depth-first
traversal we might accidentally leave the subtree.
Yes, it is possible: we can count

the (parity of the) number of nodes in the entire tree
the (parity of the) number of ancestors of a node n
the (parity of the) number of nodes before n in the df order
the (parity of the) number of nodes after n in the df order
(not counting the descendants)

With a loop operator things would be much easier:
[[loop(α)]] = {w | (w ,w) ∈ [[α]]}

Using loop we could express it as follows:

/ ↓∗ [loop
(
(suc/suc)∗[¬〈↓〉]/(↑ while ¬〈→〉)

)
]

Balder ten Cate Regular XPath: Algebra, Logic and Automata (8/19)

One more example

Can we express the following query in Regular XPath?

“Go to any node with an even number of descendants”

The previous trick does not work: during the depth-first
traversal we might accidentally leave the subtree.
Yes, it is possible: we can count

the (parity of the) number of nodes in the entire tree
the (parity of the) number of ancestors of a node n
the (parity of the) number of nodes before n in the df order
the (parity of the) number of nodes after n in the df order
(not counting the descendants)

With a loop operator things would be much easier:
[[loop(α)]] = {w | (w ,w) ∈ [[α]]}

Using loop we could express it as follows:

/ ↓∗ [loop
(
(suc/suc)∗[¬〈↓〉]/(↑ while ¬〈→〉)

)
]

Balder ten Cate Regular XPath: Algebra, Logic and Automata (8/19)

One more example

Can we express the following query in Regular XPath?

“Go to any node with an even number of descendants”

The previous trick does not work: during the depth-first
traversal we might accidentally leave the subtree.
Yes, it is possible: we can count

the (parity of the) number of nodes in the entire tree
the (parity of the) number of ancestors of a node n
the (parity of the) number of nodes before n in the df order
the (parity of the) number of nodes after n in the df order
(not counting the descendants)

With a loop operator things would be much easier:
[[loop(α)]] = {w | (w ,w) ∈ [[α]]}

Using loop we could express it as follows:

/ ↓∗ [loop
(
(suc/suc)∗[¬〈↓〉]/(↑ while ¬〈→〉)

)
]

Balder ten Cate Regular XPath: Algebra, Logic and Automata (8/19)

One more example

Can we express the following query in Regular XPath?

“Go to any node with an even number of descendants”

The previous trick does not work: during the depth-first
traversal we might accidentally leave the subtree.
Yes, it is possible: we can count

the (parity of the) number of nodes in the entire tree
the (parity of the) number of ancestors of a node n
the (parity of the) number of nodes before n in the df order
the (parity of the) number of nodes after n in the df order
(not counting the descendants)

With a loop operator things would be much easier:
[[loop(α)]] = {w | (w ,w) ∈ [[α]]}

Using loop we could express it as follows:

/ ↓∗ [loop
(
(suc/suc)∗[¬〈↓〉]/(↑ while ¬〈→〉)

)
]

Balder ten Cate Regular XPath: Algebra, Logic and Automata (8/19)

One more example

Can we express the following query in Regular XPath?

“Go to any node with an even number of descendants”

The previous trick does not work: during the depth-first
traversal we might accidentally leave the subtree.
Yes, it is possible: we can count

the (parity of the) number of nodes in the entire tree
the (parity of the) number of ancestors of a node n
the (parity of the) number of nodes before n in the df order
the (parity of the) number of nodes after n in the df order
(not counting the descendants)

With a loop operator things would be much easier:
[[loop(α)]] = {w | (w ,w) ∈ [[α]]}

Using loop we could express it as follows:

/ ↓∗ [loop
(
(suc/suc)∗[¬〈↓〉]/(↑ while ¬〈→〉)

)
]

Balder ten Cate Regular XPath: Algebra, Logic and Automata (8/19)

One more example

Can we express the following query in Regular XPath?

“Go to any node with an even number of descendants”

The previous trick does not work: during the depth-first
traversal we might accidentally leave the subtree.
Yes, it is possible: we can count

the (parity of the) number of nodes in the entire tree
the (parity of the) number of ancestors of a node n
the (parity of the) number of nodes before n in the df order
the (parity of the) number of nodes after n in the df order
(not counting the descendants)

With a loop operator things would be much easier:
[[loop(α)]] = {w | (w ,w) ∈ [[α]]}

Using loop we could express it as follows:

/ ↓∗ [loop
(
(suc/suc)∗[¬〈↓〉]/(↑ while ¬〈→〉)

)
]

Balder ten Cate Regular XPath: Algebra, Logic and Automata (8/19)

One more example

Can we express the following query in Regular XPath?

“Go to any node with an even number of descendants”

The previous trick does not work: during the depth-first
traversal we might accidentally leave the subtree.
Yes, it is possible: we can count

the (parity of the) number of nodes in the entire tree
the (parity of the) number of ancestors of a node n
the (parity of the) number of nodes before n in the df order
the (parity of the) number of nodes after n in the df order
(not counting the descendants)

With a loop operator things would be much easier:
[[loop(α)]] = {w | (w ,w) ∈ [[α]]}

Using loop we could express it as follows:

/ ↓∗ [loop
(
(suc/suc)∗[¬〈↓〉]/(↑ while ¬〈→〉)

)
]

Balder ten Cate Regular XPath: Algebra, Logic and Automata (8/19)

One more example

Can we express the following query in Regular XPath?

“Go to any node with an even number of descendants”

The previous trick does not work: during the depth-first
traversal we might accidentally leave the subtree.
Yes, it is possible: we can count

the (parity of the) number of nodes in the entire tree
the (parity of the) number of ancestors of a node n
the (parity of the) number of nodes before n in the df order
the (parity of the) number of nodes after n in the df order
(not counting the descendants)

With a loop operator things would be much easier:
[[loop(α)]] = {w | (w ,w) ∈ [[α]]}

Using loop we could express it as follows:

/ ↓∗ [loop
(
(suc/suc)∗[¬〈↓〉]/(↑ while ¬〈→〉)

)
]

Balder ten Cate Regular XPath: Algebra, Logic and Automata (8/19)

One more example

Can we express the following query in Regular XPath?

“Go to any node with an even number of descendants”

The previous trick does not work: during the depth-first
traversal we might accidentally leave the subtree.
Yes, it is possible: we can count

the (parity of the) number of nodes in the entire tree
the (parity of the) number of ancestors of a node n
the (parity of the) number of nodes before n in the df order
the (parity of the) number of nodes after n in the df order
(not counting the descendants)

With a loop operator things would be much easier:
[[loop(α)]] = {w | (w ,w) ∈ [[α]]}

Using loop we could express it as follows:

/ ↓∗ [loop
(
(suc/suc)∗[¬〈↓〉]/(↑ while ¬〈→〉)

)
]

Balder ten Cate Regular XPath: Algebra, Logic and Automata (8/19)

One more example

Can we express the following query in Regular XPath?

“Go to any node with an even number of descendants”

The previous trick does not work: during the depth-first
traversal we might accidentally leave the subtree.
Yes, it is possible: we can count

the (parity of the) number of nodes in the entire tree
the (parity of the) number of ancestors of a node n
the (parity of the) number of nodes before n in the df order
the (parity of the) number of nodes after n in the df order
(not counting the descendants)

With a loop operator things would be much easier:
[[loop(α)]] = {w | (w ,w) ∈ [[α]]}

Using loop we could express it as follows:

/ ↓∗ [loop
(
(suc/suc)∗[¬〈↓〉]/(↑ while ¬〈→〉)

)
]

Balder ten Cate Regular XPath: Algebra, Logic and Automata (8/19)

The main question

What is the expressive power of Regular XPath?

I.e., which binary relations are definable by path
expressions?

Balder ten Cate Regular XPath: Algebra, Logic and Automata (9/19)

The main question

What is the expressive power of Regular XPath?

I.e., which binary relations are definable by path
expressions?

Balder ten Cate Regular XPath: Algebra, Logic and Automata (9/19)

An educated guess

What we know:

FO (Regular XPath ⊆ FO + TC1

(The first inclusion follows from Marx PODS’04).

A natural conjecture:

Regular XPath ≡ FO + TC1

(after all, Regular XPath has a transitive closure operator!)

We managed to prove a result along these lines only by
extending the language with loop.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (10/19)

An educated guess

What we know:

FO (Regular XPath ⊆ FO + TC1

(The first inclusion follows from Marx PODS’04).

A natural conjecture:

Regular XPath ≡ FO + TC1

(after all, Regular XPath has a transitive closure operator!)

We managed to prove a result along these lines only by
extending the language with loop.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (10/19)

An educated guess

What we know:

FO (Regular XPath ⊆ FO + TC1

(The first inclusion follows from Marx PODS’04).

A natural conjecture:

Regular XPath ≡ FO + TC1

(after all, Regular XPath has a transitive closure operator!)

We managed to prove a result along these lines only by
extending the language with loop.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (10/19)

More about loop

loop provides a weak form of path intersection:
loop(α) is equivalent to the node expression 〈α ∩ .〉.

We denote the extension of Regular XPath with loop by
Regular XPath≈.

Adding loop does not affect the complexity:

Query evaluation can still be performed in PTime.
Query containment can still be solved in ExpTime.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (11/19)

More about loop

loop provides a weak form of path intersection:
loop(α) is equivalent to the node expression 〈α ∩ .〉.

We denote the extension of Regular XPath with loop by
Regular XPath≈.

Adding loop does not affect the complexity:

Query evaluation can still be performed in PTime.
Query containment can still be solved in ExpTime.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (11/19)

More about loop

loop provides a weak form of path intersection:
loop(α) is equivalent to the node expression 〈α ∩ .〉.

We denote the extension of Regular XPath with loop by
Regular XPath≈.

Adding loop does not affect the complexity:

Query evaluation can still be performed in PTime.
Query containment can still be solved in ExpTime.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (11/19)

More about loop

loop provides a weak form of path intersection:
loop(α) is equivalent to the node expression 〈α ∩ .〉.

We denote the extension of Regular XPath with loop by
Regular XPath≈.

Adding loop does not affect the complexity:

Query evaluation can still be performed in PTime.
Query containment can still be solved in ExpTime.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (11/19)

Main result

Let FO + TC1
np be the extension of first-order logic with

transitive closure over formulas with exactly two free
variables.

FO + TC1
np differs from FO + TC1: the latter has transitive

closure over formulas with two designated free variables
plus possibly other free variables.

Main result: Regular XPath≈ ≡ FO1
np

More precisely, Regular XPath≈ path expressions define the
same binary relations as FO + TC1

np formulas with two free
variables.

Corollary: Regular XPath≈ is closed under path
intersection and complementation.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (12/19)

Main result

Let FO + TC1
np be the extension of first-order logic with

transitive closure over formulas with exactly two free
variables.

FO + TC1
np differs from FO + TC1: the latter has transitive

closure over formulas with two designated free variables
plus possibly other free variables.

Main result: Regular XPath≈ ≡ FO1
np

More precisely, Regular XPath≈ path expressions define the
same binary relations as FO + TC1

np formulas with two free
variables.

Corollary: Regular XPath≈ is closed under path
intersection and complementation.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (12/19)

Main result

Let FO + TC1
np be the extension of first-order logic with

transitive closure over formulas with exactly two free
variables.

FO + TC1
np differs from FO + TC1: the latter has transitive

closure over formulas with two designated free variables
plus possibly other free variables.

Main result: Regular XPath≈ ≡ FO1
np

More precisely, Regular XPath≈ path expressions define the
same binary relations as FO + TC1

np formulas with two free
variables.

Corollary: Regular XPath≈ is closed under path
intersection and complementation.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (12/19)

Main result

Let FO + TC1
np be the extension of first-order logic with

transitive closure over formulas with exactly two free
variables.

FO + TC1
np differs from FO + TC1: the latter has transitive

closure over formulas with two designated free variables
plus possibly other free variables.

Main result: Regular XPath≈ ≡ FO1
np

More precisely, Regular XPath≈ path expressions define the
same binary relations as FO + TC1

np formulas with two free
variables.

Corollary: Regular XPath≈ is closed under path
intersection and complementation.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (12/19)

Main result

Let FO + TC1
np be the extension of first-order logic with

transitive closure over formulas with exactly two free
variables.

FO + TC1
np differs from FO + TC1: the latter has transitive

closure over formulas with two designated free variables
plus possibly other free variables.

Main result: Regular XPath≈ ≡ FO1
np

More precisely, Regular XPath≈ path expressions define the
same binary relations as FO + TC1

np formulas with two free
variables.

Corollary: Regular XPath≈ is closed under path
intersection and complementation.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (12/19)

Proof sketch

Difficult direction: FO + TC1
np ⊆ Regular XPath≈

Step 1. Restrict attention to binary branching trees. On
such trees→ can be written as .[〈→〉]/↑/↓[〈←〉],
and likewise for←. This helps reduce the number
of cases.

Step 2. A normal form: a path expression is separated if it
is a union of expressions of the form α/β, with α
walking upwards and β downwards in the tree.

Step 3. The translation itself from formulas
φ(x , y) ∈ FO + TC1

np to separated Regular XPath≈

path expressions.
To enable an inductive translation, we use
conjunctive tree queries over path expressions.

Crucial lemma: showing that the separated expressions are
closed under ∗.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (13/19)

Proof sketch

Difficult direction: FO + TC1
np ⊆ Regular XPath≈

Step 1. Restrict attention to binary branching trees. On
such trees→ can be written as .[〈→〉]/↑/↓[〈←〉],
and likewise for←. This helps reduce the number
of cases.

Step 2. A normal form: a path expression is separated if it
is a union of expressions of the form α/β, with α
walking upwards and β downwards in the tree.

Step 3. The translation itself from formulas
φ(x , y) ∈ FO + TC1

np to separated Regular XPath≈

path expressions.
To enable an inductive translation, we use
conjunctive tree queries over path expressions.

Crucial lemma: showing that the separated expressions are
closed under ∗.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (13/19)

Proof sketch

Difficult direction: FO + TC1
np ⊆ Regular XPath≈

Step 1. Restrict attention to binary branching trees. On
such trees→ can be written as .[〈→〉]/↑/↓[〈←〉],
and likewise for←. This helps reduce the number
of cases.

Step 2. A normal form: a path expression is separated if it
is a union of expressions of the form α/β, with α
walking upwards and β downwards in the tree.

Step 3. The translation itself from formulas
φ(x , y) ∈ FO + TC1

np to separated Regular XPath≈

path expressions.
To enable an inductive translation, we use
conjunctive tree queries over path expressions.

Crucial lemma: showing that the separated expressions are
closed under ∗.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (13/19)

Proof sketch

Difficult direction: FO + TC1
np ⊆ Regular XPath≈

Step 1. Restrict attention to binary branching trees. On
such trees→ can be written as .[〈→〉]/↑/↓[〈←〉],
and likewise for←. This helps reduce the number
of cases.

Step 2. A normal form: a path expression is separated if it
is a union of expressions of the form α/β, with α
walking upwards and β downwards in the tree.

Step 3. The translation itself from formulas
φ(x , y) ∈ FO + TC1

np to separated Regular XPath≈

path expressions.
To enable an inductive translation, we use
conjunctive tree queries over path expressions.

Crucial lemma: showing that the separated expressions are
closed under ∗.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (13/19)

Proof sketch

Difficult direction: FO + TC1
np ⊆ Regular XPath≈

Step 1. Restrict attention to binary branching trees. On
such trees→ can be written as .[〈→〉]/↑/↓[〈←〉],
and likewise for←. This helps reduce the number
of cases.

Step 2. A normal form: a path expression is separated if it
is a union of expressions of the form α/β, with α
walking upwards and β downwards in the tree.

Step 3. The translation itself from formulas
φ(x , y) ∈ FO + TC1

np to separated Regular XPath≈

path expressions.
To enable an inductive translation, we use
conjunctive tree queries over path expressions.

Crucial lemma: showing that the separated expressions are
closed under ∗.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (13/19)

Separated path expressions are closed under ∗

Separated normal form

A path expression is separated if it is of the form
⋃

i(αi/βi),
with each αi walking upwards and βi downwards in the tree
(but allowing arbitrary tests).

Example:
How to separate

(
↑[p]/↑[q]/↓[r]

)∗ ?

Answer:
↑[p]/

(
↑[p ∧ q ∧ 〈↓[r]〉]

)∗
/↑[q]/↓[r] ∪ .

The general case: use loop to cut all
detours short.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (14/19)

Separated path expressions are closed under ∗

Separated normal form

A path expression is separated if it is of the form
⋃

i(αi/βi),
with each αi walking upwards and βi downwards in the tree
(but allowing arbitrary tests).

Example:
How to separate

(
↑[p]/↑[q]/↓[r]

)∗ ?

Answer:
↑[p]/

(
↑[p ∧ q ∧ 〈↓[r]〉]

)∗
/↑[q]/↓[r] ∪ .

The general case: use loop to cut all
detours short.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (14/19)

Separated path expressions are closed under ∗

Separated normal form

A path expression is separated if it is of the form
⋃

i(αi/βi),
with each αi walking upwards and βi downwards in the tree
(but allowing arbitrary tests).

Example:
How to separate

(
↑[p]/↑[q]/↓[r]

)∗ ?

Answer:
↑[p]/

(
↑[p ∧ q ∧ 〈↓[r]〉]

)∗
/↑[q]/↓[r] ∪ .

The general case: use loop to cut all
detours short.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (14/19)

Separated path expressions are closed under ∗

Separated normal form

A path expression is separated if it is of the form
⋃

i(αi/βi),
with each αi walking upwards and βi downwards in the tree
(but allowing arbitrary tests).

Example:
How to separate

(
↑[p]/↑[q]/↓[r]

)∗ ?

Answer:
↑[p]/

(
↑[p ∧ q ∧ 〈↓[r]〉]

)∗
/↑[q]/↓[r] ∪ .

The general case: use loop to cut all
detours short.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (14/19)

Summary of results

) µRegular XPath ≡ MSO[↓,→]

⊆

((1) Regular XPath≈ ≡ FO + TC1
np[↓,→]

⊆(
∗-positive Regular XPath≈ ≡ FO + posTC1

np[↓,→]
(

Conditional XPath ≡ (2) FO[↓∗,→∗]

(

Core XPath ≡ (3) FO2[↓,→, ↓∗,→∗]

(1) Bojańczyk et al. (2006 ICALP)
(2) Marx (2004 PODS)
(3) Marx & De Rijke (2005 SIGMOD Record), only for absolute path expr’s

Balder ten Cate Regular XPath: Algebra, Logic and Automata (15/19)

Questions

Is Regular XPath strictly contained in Regular XPath≈?
(does loop really contribute to the expressive power of
Regular XPath≈?)

Is FO + (pos)TC1
np strictly contained in FO + (pos)TC1?

Is FO + TC1
np strictly contained in MSO?

Does Regular XPath or Regular XPath≈ admit an
automata theoretic characterization, and, if so, can we use
it to answer questions such as the above?

- Partial result: a characterization for the ∗-positive fragment.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (16/19)

Questions

Is Regular XPath strictly contained in Regular XPath≈?
(does loop really contribute to the expressive power of
Regular XPath≈?)

Is FO + (pos)TC1
np strictly contained in FO + (pos)TC1?

Is FO + TC1
np strictly contained in MSO?

Does Regular XPath or Regular XPath≈ admit an
automata theoretic characterization, and, if so, can we use
it to answer questions such as the above?

- Partial result: a characterization for the ∗-positive fragment.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (16/19)

Questions

Is Regular XPath strictly contained in Regular XPath≈?
(does loop really contribute to the expressive power of
Regular XPath≈?)

Is FO + (pos)TC1
np strictly contained in FO + (pos)TC1?

Is FO + TC1
np strictly contained in MSO?

Does Regular XPath or Regular XPath≈ admit an
automata theoretic characterization, and, if so, can we use
it to answer questions such as the above?

- Partial result: a characterization for the ∗-positive fragment.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (16/19)

Questions

Is Regular XPath strictly contained in Regular XPath≈?
(does loop really contribute to the expressive power of
Regular XPath≈?)

Is FO + (pos)TC1
np strictly contained in FO + (pos)TC1?

Is FO + TC1
np strictly contained in MSO?

Does Regular XPath or Regular XPath≈ admit an
automata theoretic characterization, and, if so, can we use
it to answer questions such as the above?

- Partial result: a characterization for the ∗-positive fragment.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (16/19)

Questions

Is Regular XPath strictly contained in Regular XPath≈?
(does loop really contribute to the expressive power of
Regular XPath≈?)

Is FO + (pos)TC1
np strictly contained in FO + (pos)TC1?

Is FO + TC1
np strictly contained in MSO?

Does Regular XPath or Regular XPath≈ admit an
automata theoretic characterization, and, if so, can we use
it to answer questions such as the above?

- Partial result: a characterization for the ∗-positive fragment.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (16/19)

Pebble tree walking automata

Let’s consider (non-deterministic) pebble tree walking
automata with the following types of pebbles:

weak pebbles can only be lifted when the automaton is
visiting the relevant node.
strong pebbles can be lifted from anywhere.
non-inspectable weak pebbles are weak pebbles that
cannot be inspected. Note: the automaton might not know
for sure whether lifting is a valid move! It may crash.
return pebbles can be lifted from anywhere, with the side
effect that the automaton moves to the relevant node.
Furthermore, these pebbles cannot be inspected.

We use these automata to accept paths: the automata
start somewhere in the tree and finish somewhere.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (17/19)

Pebble tree walking automata

Let’s consider (non-deterministic) pebble tree walking
automata with the following types of pebbles:

weak pebbles can only be lifted when the automaton is
visiting the relevant node.
strong pebbles can be lifted from anywhere.
non-inspectable weak pebbles are weak pebbles that
cannot be inspected. Note: the automaton might not know
for sure whether lifting is a valid move! It may crash.
return pebbles can be lifted from anywhere, with the side
effect that the automaton moves to the relevant node.
Furthermore, these pebbles cannot be inspected.

We use these automata to accept paths: the automata
start somewhere in the tree and finish somewhere.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (17/19)

Pebble tree walking automata

Let’s consider (non-deterministic) pebble tree walking
automata with the following types of pebbles:

weak pebbles can only be lifted when the automaton is
visiting the relevant node.
strong pebbles can be lifted from anywhere.
non-inspectable weak pebbles are weak pebbles that
cannot be inspected. Note: the automaton might not know
for sure whether lifting is a valid move! It may crash.
return pebbles can be lifted from anywhere, with the side
effect that the automaton moves to the relevant node.
Furthermore, these pebbles cannot be inspected.

We use these automata to accept paths: the automata
start somewhere in the tree and finish somewhere.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (17/19)

Pebble tree walking automata

Let’s consider (non-deterministic) pebble tree walking
automata with the following types of pebbles:

weak pebbles can only be lifted when the automaton is
visiting the relevant node.
strong pebbles can be lifted from anywhere.
non-inspectable weak pebbles are weak pebbles that
cannot be inspected. Note: the automaton might not know
for sure whether lifting is a valid move! It may crash.
return pebbles can be lifted from anywhere, with the side
effect that the automaton moves to the relevant node.
Furthermore, these pebbles cannot be inspected.

We use these automata to accept paths: the automata
start somewhere in the tree and finish somewhere.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (17/19)

Pebble tree walking automata

Let’s consider (non-deterministic) pebble tree walking
automata with the following types of pebbles:

weak pebbles can only be lifted when the automaton is
visiting the relevant node.
strong pebbles can be lifted from anywhere.
non-inspectable weak pebbles are weak pebbles that
cannot be inspected. Note: the automaton might not know
for sure whether lifting is a valid move! It may crash.
return pebbles can be lifted from anywhere, with the side
effect that the automaton moves to the relevant node.
Furthermore, these pebbles cannot be inspected.

We use these automata to accept paths: the automata
start somewhere in the tree and finish somewhere.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (17/19)

Pebble tree walking automata

Let’s consider (non-deterministic) pebble tree walking
automata with the following types of pebbles:

weak pebbles can only be lifted when the automaton is
visiting the relevant node.
strong pebbles can be lifted from anywhere.
non-inspectable weak pebbles are weak pebbles that
cannot be inspected. Note: the automaton might not know
for sure whether lifting is a valid move! It may crash.
return pebbles can be lifted from anywhere, with the side
effect that the automaton moves to the relevant node.
Furthermore, these pebbles cannot be inspected.

We use these automata to accept paths: the automata
start somewhere in the tree and finish somewhere.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (17/19)

Some partial results

Thm:
∗-positive Regular XPath≈ (hence also FO+posTC1

np) can
define the same binary relations as twa with
non-inspectable weak pebbles.

(extends a result of Goris and Marx ’05)

Thm (Engelfriet and Hoogeboom ’05): ∗-positive
FO+TC1 can define the same binary relations as twa with
strong pebbles.
Thm (Bojanczyk e.a. ’06): Weak pebbles suffice.

Call an Regular XPath expression positive if it uses only atomic
negation, of the from ¬〈↑〉, ¬〈↓〉, ¬〈←〉 and ¬〈→〉

Thm: Positive Regular XPath can define the same binary
relations as twa with return pebbles.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (18/19)

Some partial results

Thm:
∗-positive Regular XPath≈ (hence also FO+posTC1

np) can
define the same binary relations as twa with
non-inspectable weak pebbles.

(extends a result of Goris and Marx ’05)

Thm (Engelfriet and Hoogeboom ’05): ∗-positive
FO+TC1 can define the same binary relations as twa with
strong pebbles.
Thm (Bojanczyk e.a. ’06): Weak pebbles suffice.

Call an Regular XPath expression positive if it uses only atomic
negation, of the from ¬〈↑〉, ¬〈↓〉, ¬〈←〉 and ¬〈→〉

Thm: Positive Regular XPath can define the same binary
relations as twa with return pebbles.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (18/19)

Some partial results

Thm:
∗-positive Regular XPath≈ (hence also FO+posTC1

np) can
define the same binary relations as twa with
non-inspectable weak pebbles.

(extends a result of Goris and Marx ’05)

Thm (Engelfriet and Hoogeboom ’05): ∗-positive
FO+TC1 can define the same binary relations as twa with
strong pebbles.
Thm (Bojanczyk e.a. ’06): Weak pebbles suffice.

Call an Regular XPath expression positive if it uses only atomic
negation, of the from ¬〈↑〉, ¬〈↓〉, ¬〈←〉 and ¬〈→〉

Thm: Positive Regular XPath can define the same binary
relations as twa with return pebbles.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (18/19)

Some partial results

Thm:
∗-positive Regular XPath≈ (hence also FO+posTC1

np) can
define the same binary relations as twa with
non-inspectable weak pebbles.

(extends a result of Goris and Marx ’05)

Thm (Engelfriet and Hoogeboom ’05): ∗-positive
FO+TC1 can define the same binary relations as twa with
strong pebbles.
Thm (Bojanczyk e.a. ’06): Weak pebbles suffice.

Call an Regular XPath expression positive if it uses only atomic
negation, of the from ¬〈↑〉, ¬〈↓〉, ¬〈←〉 and ¬〈→〉

Thm: Positive Regular XPath can define the same binary
relations as twa with return pebbles.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (18/19)

Some partial results

Thm:
∗-positive Regular XPath≈ (hence also FO+posTC1

np) can
define the same binary relations as twa with
non-inspectable weak pebbles.

(extends a result of Goris and Marx ’05)

Thm (Engelfriet and Hoogeboom ’05): ∗-positive
FO+TC1 can define the same binary relations as twa with
strong pebbles.
Thm (Bojanczyk e.a. ’06): Weak pebbles suffice.

Call an Regular XPath expression positive if it uses only atomic
negation, of the from ¬〈↑〉, ¬〈↓〉, ¬〈←〉 and ¬〈→〉

Thm: Positive Regular XPath can define the same binary
relations as twa with return pebbles.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (18/19)

Some partial results

Thm:
∗-positive Regular XPath≈ (hence also FO+posTC1

np) can
define the same binary relations as twa with
non-inspectable weak pebbles.

(extends a result of Goris and Marx ’05)

Thm (Engelfriet and Hoogeboom ’05): ∗-positive
FO+TC1 can define the same binary relations as twa with
strong pebbles.
Thm (Bojanczyk e.a. ’06): Weak pebbles suffice.

Call an Regular XPath expression positive if it uses only atomic
negation, of the from ¬〈↑〉, ¬〈↓〉, ¬〈←〉 and ¬〈→〉

Thm: Positive Regular XPath can define the same binary
relations as twa with return pebbles.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (18/19)

That’s all.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (19/19)

