Regular XPath: Algebra, Logic and Automata

Balder ten Cate

Szeged, 1 October 2006

Balder ten Cate Regular XPath: Algebra, Logic and Automata (1/19)

The topic of this talk

@ This talk is about languages for describing binary relations
in trees.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (2/119)

The topic of this talk

@ This talk is about languages for describing binary relations
in trees.

@ Binary relations means that

Balder ten Cate Regular XPath: Algebra, Logic and Automata (2/119)

The topic of this talk

@ This talk is about languages for describing binary relations
in trees.

@ Binary relations means that

o Instead of sentences, we use formulas with two free
variables ¢(x, y)

Balder ten Cate Regular XPath: Algebra, Logic and Automata (2/119)

The topic of this talk

@ This talk is about languages for describing binary relations
in trees.

@ Binary relations means that

o Instead of sentences, we use formulas with two free
variables ¢(x, y)

o Our tree walking automata can start and finish their walk
anywhere in the tree, not neccessarily at the root.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (2/119)

The topic of this talk

@ This talk is about languages for describing binary relations
in trees.

@ Binary relations means that

o Instead of sentences, we use formulas with two free
variables ¢(x, y)

o Our tree walking automata can start and finish their walk
anywhere in the tree, not neccessarily at the root.

@ The motivation comes from XML

Balder ten Cate Regular XPath: Algebra, Logic and Automata (2/119)

The topic of this talk

@ This talk is about languages for describing binary relations
in trees.

@ Binary relations means that

o Instead of sentences, we use formulas with two free
variables ¢(x, y)

o Our tree walking automata can start and finish their walk
anywhere in the tree, not neccessarily at the root.

@ The motivation comes from XML

@ Specifically, we are interested in the XML path language
Regular XPath.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (2/119)

The topic of this talk

@ This talk is about languages for describing binary relations
in trees.

@ Binary relations means that

o Instead of sentences, we use formulas with two free
variables ¢(x, y)

o Our tree walking automata can start and finish their walk
anywhere in the tree, not neccessarily at the root.

@ The motivation comes from XML

@ Specifically, we are interested in the XML path language
Regular XPath.

@ We would like to characterize this language in terms of
logic and/or automata.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (2/119)

XML documents

@ XML documents are (for present purposes) are finite
unranked sibling-ordered node labelled trees.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (3/19)

XML documents

@ XML documents are (for present purposes) are finite
unranked sibling-ordered node labelled trees.

@ So, an XML document is atuple T = (N, R}, R, V) where

Balder ten Cate Regular XPath: Algebra, Logic and Automata (3/19)

XML documents

@ XML documents are (for present purposes) are finite
unranked sibling-ordered node labelled trees.

@ So, an XML document is atuple T = (N, R}, R, V) where
- N is the set of nodes,

Balder ten Cate Regular XPath: Algebra, Logic and Automata (3/19)

XML documents

@ XML documents are (for present purposes) are finite
unranked sibling-ordered node labelled trees.

@ So, an XML document is atuple T = (N, R}, R, V) where

- Nis the set of nodes,
- Ry and R_, are the ‘child’ and ‘next sibling’ relations, and

Balder ten Cate Regular XPath: Algebra, Logic and Automata (3/19)

XML documents

@ XML documents are (for present purposes) are finite
unranked sibling-ordered node labelled trees.

@ So, an XML document is atuple T = (N, R}, R, V) where

- Nis the set of nodes,
- Ry and R_, are the ‘child’ and ‘next sibling’ relations, and
-V:N—> L

Balder ten Cate Regular XPath: Algebra, Logic and Automata (3/19)

Syntax of Regular XPath

@ Regular XPath has two types of expressions:

Balder ten Cate Regular XPath: Algebra, Logic and Automata (4/19)

Syntax of Regular XPath

@ Regular XPath has two types of expressions:
@ path expressions

ax=Tll[<|=].1a/f|aus]|a|ag]

Balder ten Cate Regular XPath: Algebra, Logic and Automata (4/19)

Syntax of Regular XPath

@ Regular XPath has two types of expressions:
@ path expressions
ax=T]l]<[=].[a/f|aup|a |alg
@ node expressions

¢ =p| b onY] (a)

Balder ten Cate Regular XPath: Algebra, Logic and Automata (4/19)

Syntax of Regular XPath

@ Regular XPath has two types of expressions:
@ path expressions

az=T[ll<[=].[a/8]aup]|a"]|ald]
@ node expressions

¢ =p| b onY] (a)

@ Path expression define binary relations. When applied to a
given “context node”, they yield a set of nodes.

Node expressions define sets of nodes.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (4/19)

Syntax of Regular XPath

@ Regular XPath has two types of expressions:
@ path expressions

az=T[ll<[=].[a/8]aup]|a"]|ald]
@ node expressions

¢ =p| b onY] (a)

@ Path expression define binary relations. When applied to a
given “context node”, they yield a set of nodes.

Node expressions define sets of nodes.

@ We use /a as shorthand for 7* [-(1)]/«.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (4/19)

Semantics of Regular XPath

[a]M =R, forae{l,1,«,—}
LV — the identity relation on N
[e/B]M = composition of [a]™ and [3]M
[U B]M = union of [a]™ and 3]V

[e*]M = reflexive transitive closure of [a]™
[elell" = {(n,m) € [o]" | m € [¢]"}
[e1Y = V(p)

[o A w1 =[] O[]
oY =N\ o]

[(a)] = domain of [o]” = {n | (n,m) € [o]"}

Balder ten Cate Regular XPath: Algebra, Logic and Automata (5/19)

An example

A

author @

“Go to the next book that has at least two authors.”
In Regular XPath:

Balder ten Cate Regular XPath: Algebra, Logic and Automata (6/19)

An example

A

author @

“Go to the next book that has at least two authors.”
In Regular XPath:

(— [~twoauthorbook])*/ — [twoauthorbook]

where twoauthorbook stands for
book A (| [author]/ —™ [author]).

Balder ten Cate Regular XPath: Algebra, Logic and Automata (6/19)

Another example

The following can be expressed in Regular XPath:

“Go to the root if it has an even number of
descendants, otherwise retrieve nothing”

To see this, note that

Balder ten Cate Regular XPath: Algebra, Logic and Automata (7119)

Another example

The following can be expressed in Regular XPath:

“Go to the root if it has an even number of
descendants, otherwise retrieve nothing”

To see this, note that
@ Let (o while ¢) be shorthand for (.[¢]/a)*

Balder ten Cate Regular XPath: Algebra, Logic and Automata (7119)

Another example

The following can be expressed in Regular XPath:
“Go to the root if it has an even number of
descendants, otherwise retrieve nothing”

To see this, note that
@ Let (o while ¢) be shorthand for (.[¢]/a)*

@ Let suc be shorthand for

A U HD)/(1 while ~(=))/—

(the successor in depth first left-to-right ordering).

Balder ten Cate Regular XPath: Algebra, Logic and Automata (7119)

Another example

The following can be expressed in Regular XPath:
“Go to the root if it has an even number of
descendants, otherwise retrieve nothing”

To see this, note that
@ Let (o while ¢) be shorthand for (.[¢]/a)*

@ Let suc be shorthand for

A U HD)/(1 while ~(=))/—

(the successor in depth first left-to-right ordering).

@ Then /(suc/suc)*[=(1)]/(T while —(=))[~(1)]
expresses the intended query.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (7119)

One more example

Balder ten Cate Regular XP: Igebra, Logic and Automata (8/19)

One more example

@ Can we express the following query in Regular XPath?

“Go to any node with an even number of descendants”

Balder ten Cate Regular XPath: Algebra, Logic and Automata (8/19)

One more example

@ Can we express the following query in Regular XPath?
“Go to any node with an even number of descendants”

@ The previous trick does not work: during the depth-first
traversal we might accidentally leave the subtree.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (8/19)

One more example

@ Can we express the following query in Regular XPath?
“Go to any node with an even number of descendants”

@ The previous trick does not work: during the depth-first
traversal we might accidentally leave the subtree.

@ Yes, it is possible:

Balder ten Cate Regular XPath: Algebra, Logic and Automata (8/19)

One more example

@ Can we express the following query in Regular XPath?
“Go to any node with an even number of descendants”

@ The previous trick does not work: during the depth-first
traversal we might accidentally leave the subtree.

@ Yes, it is possible: we can count
o the (parity of the) number of nodes in the entire tree

Balder ten Cate Regular XPath: Algebra, Logic and Automata (8/19)

One more example

@ Can we express the following query in Regular XPath?
“Go to any node with an even number of descendants”

@ The previous trick does not work: during the depth-first
traversal we might accidentally leave the subtree.
@ Yes, it is possible: we can count

o the (parity of the) number of nodes in the entire tree
o the (parity of the) number of ancestors of a node n

Balder ten Cate Regular XPath: Algebra, Logic and Automata (8/19)

One more example

@ Can we express the following query in Regular XPath?
“Go to any node with an even number of descendants”

@ The previous trick does not work: during the depth-first
traversal we might accidentally leave the subtree.
@ Yes, it is possible: we can count
o the (parity of the) number of nodes in the entire tree

o the (parity of the) number of ancestors of a node n
o the (parity of the) number of nodes before n in the df order

Balder ten Cate Regular XPath: Algebra, Logic and Automata (8/19)

One more example

@ Can we express the following query in Regular XPath?
“Go to any node with an even number of descendants”

@ The previous trick does not work: during the depth-first
traversal we might accidentally leave the subtree.

@ Yes, it is possible: we can count
o the (parity of the) number of nodes in the entire tree
o the (parity of the) number of ancestors of a node n
o the (parity of the) number of nodes before n in the df order
o the (parity of the) number of nodes after nin the df order

Balder ten Cate Regular XPath: Algebra, Logic and Automata (8/19)

One more example

@ Can we express the following query in Regular XPath?
“Go to any node with an even number of descendants”

@ The previous trick does not work: during the depth-first
traversal we might accidentally leave the subtree.

@ Yes, it is possible: we can count
o the (parity of the) number of nodes in the entire tree
o the (parity of the) number of ancestors of a node n
o the (parity of the) number of nodes before n in the df order
o the (parity of the) number of nodes after nin the df order
(not counting the descendants)

Balder ten Cate Regular XPath: Algebra, Logic and Automata (8/19)

One more example

@ Can we express the following query in Regular XPath?
“Go to any node with an even number of descendants”

@ The previous trick does not work: during the depth-first
traversal we might accidentally leave the subtree.
@ Yes, it is possible: we can count
o the (parity of the) number of nodes in the entire tree
o the (parity of the) number of ancestors of a node n
o the (parity of the) number of nodes before n in the df order
o the (parity of the) number of nodes after nin the df order
(not counting the descendants)

@ With a loop operator things would be much easier:
[loop(a)] = {w | (w,w) € [a]}

Balder ten Cate Regular XPath: Algebra, Logic and Automata (8/19)

One more example

@ Can we express the following query in Regular XPath?
“Go to any node with an even number of descendants”

@ The previous trick does not work: during the depth-first
traversal we might accidentally leave the subtree.
@ Yes, it is possible: we can count
o the (parity of the) number of nodes in the entire tree
o the (parity of the) number of ancestors of a node n
o the (parity of the) number of nodes before n in the df order
o the (parity of the) number of nodes after nin the df order
(not counting the descendants)

@ With a loop operator things would be much easier:
[loop(a)] = {w | (w,w) € [a]}
Using loop we could express it as follows:

/ 1* lloop((suc/suc) [={1]/(1 while ~(—)))]

Balder ten Cate Regular XPath: Algebra, Logic and Automata (8/19)

The main question

Balder ten Cate Regular XP: Igebra, Logic and Automata (CAL)]

The main question

@ What is the expressive power of Regular XPath?

l.e., which binary relations are definable by path
expressions?

Balder ten Cate Regular XPath: Algebra, Logic and Automata (CAE)]

An educated guess

@ What we know:
FO C Regular XPath C FO+ TC'

=

(The first inclusion follows from Marx PODS’04).

Balder ten Cate Regular XPath: Algebra, Logic and Automata (10/19)

An educated guess

@ What we know:
FO C Regular XPath C FO+ TC'

=

(The first inclusion follows from Marx PODS’04).

@ A natural conjecture:
Regular XPath = FO + TC'

(after all, Regular XPath has a transitive closure operator!)

Balder ten Cate Regular XPath: Algebra, Logic and Automata (10/19)

An educated guess

@ What we know:
FO C Regular XPath C FO+ TC'

=

(The first inclusion follows from Marx PODS’04).

@ A natural conjecture:
Regular XPath = FO + TC'

(after all, Regular XPath has a transitive closure operator!)

@ We managed to prove a result along these lines only by
extending the language with loop.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (10/19)

More about loop

Balder ten Cate Regular XP: Igebra, Logic and Automata (11/19)

More about loop

@ loop provides a weak form of path intersection:
loop(«) is equivalent to the node expression (a N .).

Balder ten Cate Regular XPath: Algebra, Logic and Automata (11/19)

More about loop

@ loop provides a weak form of path intersection:
loop(«) is equivalent to the node expression (a N .).

@ We denote the extension of Regular XPath with loop by
Regular XPath™.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (11/19)

More about loop

@ loop provides a weak form of path intersection:
loop(«) is equivalent to the node expression (a N .).

@ We denote the extension of Regular XPath with loop by
Regular XPath™.

@ Adding loop does not affect the complexity:

e Query evaluation can still be performed in PTime.
e Query containment can still be solved in ExpTime.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (11/19)

Main result

Balder ten Cate Regular XP: Igebra, Logic and Automata (12/19)

Main result

e Let FO + TC}, be the extension of first-order logic with
transitive closure over formulas with exactly two free
variables.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (12/19)

Main result

e Let FO + TC}, be the extension of first-order logic with
transitive closure over formulas with exactly two free

variables.

® FO + TC}, differs from FO + TC': the latter has transitive
closure over formulas with two designated free variables
plus possibly other free variables.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (12/19)

Main result

e Let FO + TC}, be the extension of first-order logic with
transitive closure over formulas with exactly two free
variables.

® FO + TC}, differs from FO + TC': the latter has transitive
closure over formulas with two designated free variables
plus possibly other free variables.

Main result: Regular XPath™ = FO},

More precisely, Regular XPath™ path expressions define the
same binary relations as FO + TC,‘w formulas with two free
variables.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (12/19)

Main result

e Let FO + TC}, be the extension of first-order logic with
transitive closure over formulas with exactly two free

variables.

® FO + TC}, differs from FO + TC': the latter has transitive
closure over formulas with two designated free variables
plus possibly other free variables.

Main result: Regular XPath™ = FO},

More precisely, Regular XPath™ path expressions define the
same binary relations as FO + TC,‘w formulas with two free
variables.

@ Corollary: Regular XPath™ is closed under path
intersection and complementation.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (12/19)

Proof sketch

Difficult direction: FO + TC,1,p C Regular XPath™

Balder ten Cate Regular XPath: Algebra, Logic and Automata (13/19)

Proof sketch

Difficult direction: FO + TC,1,p C Regular XPath™

Step 1. Restrict attention to binary branching trees. On
such trees — can be written as .[(—)]/1/[{(<)],
and likewise for «—. This helps reduce the number
of cases.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (13/19)

Proof sketch

Difficult direction: FO + TC,1,p C Regular XPath™

Step 1. Restrict attention to binary branching trees. On
such trees — can be written as .[(—)]/1/[{(<)],
and likewise for «—. This helps reduce the number
of cases.

Step 2. A normal form: a path expression is separated if it
is a union of expressions of the form «/3, with «
walking upwards and g downwards in the tree.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (13/19)

Proof sketch

Difficult direction: FO + TC,1,p C Regular XPath™

Step 1. Restrict attention to binary branching trees. On
such trees — can be written as .[(—)]/1/[{(<)],
and likewise for «—. This helps reduce the number
of cases.

Step 2. A normal form: a path expression is separated if it
is a union of expressions of the form «/3, with «
walking upwards and g downwards in the tree.

Step 3. The translation itself from formulas
¢(x,y) € FO+ TC}, to separated Regular XPath™
path expressions.
To enable an inductive translation, we use
conjunctive tree queries over path expressions.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (13/19)

Proof sketch

Difficult direction: FO + TC,1,p C Regular XPath™

Step 1. Restrict attention to binary branching trees. On
such trees — can be written as .[(—)]/1/[{(<)],
and likewise for «—. This helps reduce the number
of cases.

Step 2. A normal form: a path expression is separated if it
is a union of expressions of the form «/3, with «
walking upwards and g downwards in the tree.

Step 3. The translation itself from formulas
¢(x,y) € FO+ TC}, to separated Regular XPath™
path expressions.
To enable an inductive translation, we use
conjunctive tree queries over path expressions.

Crucial lemma: showing that the separated expressions are
closed under x.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (13/19)

Separated path expressions are closed under x

Separated normal form
A path expression is separated if it is of the form (J;(«;/5i),
with each «; walking upwards and g; downwards in the tree
(but allowing arbitrary tests).

Balder ten Cate Regular XPath: Algebra, Logic and Automata (14/19)

Separated path expressions are closed under x

Separated normal form

A path expression is separated if it is of the form (J;(«;/5i),
with each «; walking upwards and g; downwards in the tree
(but allowing arbitrary tests).

Example:
How to separate (1[p]/1[q]/1[r])" ?

Balder ten Cate Regular XPath: Algebra, Logic and Automata (14/19)

Separated path expressions are closed under x

Separated normal form

A path expression is separated if it is of the form (J;(«;/5i),
with each «; walking upwards and g; downwards in the tree
(but allowing arbitrary tests).

Example: !
How to separate (1[o]/1lal/1[r])" ? pag {.
Answer: . pq ;
o1/ (1o A a A (L)) /10al/1r U

pa4 %,

Balder ten Cate Regular XPath: Algebra, Logic and Automata (14/19)

Separated path expressions are closed under x

Separated normal form

A path expression is separated if it is of the form (J;(«;/5i),
with each «; walking upwards and g; downwards in the tree
(but allowing arbitrary tests).

q
Example:
How to separate (1[p]/1(al/LIr])" ? pag A,
Answer: i} pq)
o1/ (1o A a A (L)) /10al/1r U
Pq r
The general case: use loop to cut all p T

detours short.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (14/19)

Summary of results

/ pRegular XPath = MSO[], —]
\

u (M Fn’egu/agXPathz = FO + TCl, [\, —]

\ *-positive ReUgular XPath~ = FO + posTC,lp[l, —]

Conditioﬁjal XPath =® FO[l*, =]

CoreLf(Path =0 FO?[l,—, 1", —7]

(1) Bojanczyk et al. (2006 ICALP)
(2) Marx (2004 PODS)
(3) Marx & De Rijke (2005 SIGMOD Record), only for absolute path expr’s

Balder ten Cate Regular XPath: Algebra, Logic and Automata (15/19)

Questions

Balder ten Cate Regular XP: Algebra, Logic and A a (16/19)

Questions

@ |s Regular XPath strictly contained in Regular XPath™?
(does loop really contribute to the expressive power of
Regular XPath®?)

Balder ten Cate Regular XPath: Algebra, Logic and Automata (16/19)

Questions

@ |s Regular XPath strictly contained in Regular XPath™?
(does loop really contribute to the expressive power of
Regular XPath®?)

@ Is FO + (pos)TC}, strictly contained in FO + (pos) TC'?

Balder ten Cate Regular XPath: Algebra, Logic and Automata (16/19)

Questions

@ |s Regular XPath strictly contained in Regular XPath™?
(does loop really contribute to the expressive power of
Regular XPath®?)

@ Is FO + (pos)TC}, strictly contained in FO + (pos) TC'?

@ Is FO + TC}, strictly contained in MSO?

Balder ten Cate Regular XPath: Algebra, Logic and Automata (16/19)

Questions

@ |s Regular XPath strictly contained in Regular XPath™?
(does loop really contribute to the expressive power of
Regular XPath®?)

@ Is FO + (pos)TC}, strictly contained in FO + (pos) TC'?
@ Is FO + TC}, strictly contained in MSO?
@ Does Regular XPath or Regular XPath™ admit an

automata theoretic characterization, and, if so, can we use
it to answer questions such as the above?

- Partial result: a characterization for the x-positive fragment.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (16/19)

Pebble tree walking automata

@ Let’s consider (non-deterministic) pebble tree walking
automata with the following types of pebbles:

Balder ten Cate Regular XPath: Algebra, Logic and Automata (17119)

Pebble tree walking automata

@ Let’s consider (non-deterministic) pebble tree walking
automata with the following types of pebbles:

e weak pebbles can only be lifted when the automaton is
visiting the relevant node.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (1719)

Pebble tree walking automata

@ Let’s consider (non-deterministic) pebble tree walking
automata with the following types of pebbles:

e weak pebbles can only be lifted when the automaton is
visiting the relevant node.

e strong pebbles can be lifted from anywhere.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (1719)

Pebble tree walking automata

@ Let’s consider (non-deterministic) pebble tree walking
automata with the following types of pebbles:

e weak pebbles can only be lifted when the automaton is
visiting the relevant node.

e strong pebbles can be lifted from anywhere.

@ non-inspectable weak pebbles are weak pebbles that
cannot be inspected. Note: the automaton might not know
for sure whether lifting is a valid move! It may crash.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (1719)

Pebble tree walking automata

@ Let’s consider (non-deterministic) pebble tree walking
automata with the following types of pebbles:

e weak pebbles can only be lifted when the automaton is
visiting the relevant node.

e strong pebbles can be lifted from anywhere.

@ non-inspectable weak pebbles are weak pebbles that
cannot be inspected. Note: the automaton might not know
for sure whether lifting is a valid move! It may crash.

e return pebbles can be lifted from anywhere, with the side
effect that the automaton moves to the relevant node.
Furthermore, these pebbles cannot be inspected.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (1719)

Pebble tree walking automata

@ Let’s consider (non-deterministic) pebble tree walking
automata with the following types of pebbles:

e weak pebbles can only be lifted when the automaton is
visiting the relevant node.

e strong pebbles can be lifted from anywhere.
@ non-inspectable weak pebbles are weak pebbles that

cannot be inspected. Note: the automaton might not know
for sure whether lifting is a valid move! It may crash.

e return pebbles can be lifted from anywhere, with the side
effect that the automaton moves to the relevant node.
Furthermore, these pebbles cannot be inspected.

@ We use these automata to accept paths: the automata
start somewhere in the tree and finish somewhere.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (1719)

Some partial results

Balder ten Cate Regular XPai Igebra, Logic and Automata (18/19)

Some partial results

@ Thm:
x-positive Regular XPath™ (hence also FO+posTC}7p) can
define the same binary relations as twa with
non-inspectable weak pebbles.
(extends a result of Goris and Marx '05)

Balder ten Cate Regular XPath: Algebra, Logic and Automata (18/19)

Some partial results

@ Thm:
x-positive Regular XPath™ (hence also FO+posTC}7p) can
define the same binary relations as twa with
non-inspectable weak pebbles.
(extends a result of Goris and Marx '05)

@ Thm (Engelfriet and Hoogeboom °05): «-positive
FO+TC' can define the same binary relations as twa with
strong pebbles.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (18/19)

Some partial results

@ Thm:
x-positive Regular XPath™ (hence also FO+posTC}7p) can
define the same binary relations as twa with
non-inspectable weak pebbles.
(extends a result of Goris and Marx '05)

@ Thm (Engelfriet and Hoogeboom °05): «-positive
FO+TC' can define the same binary relations as twa with
strong pebbles.

@ Thm (Bojanczyk e.a. '06): Weak pebbles suffice.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (18/19)

Some partial results

@ Thm:
x-positive Regular XPath™ (hence also FO+posTC}7p) can
define the same binary relations as twa with
non-inspectable weak pebbles.
(extends a result of Goris and Marx '05)

@ Thm (Engelfriet and Hoogeboom °05): «-positive
FO+TC' can define the same binary relations as twa with
strong pebbles.

@ Thm (Bojanczyk e.a. '06): Weak pebbles suffice.

Call an Regular XPath expression positive if it uses only atomic
negation, of the from —(7), —=(]), =(«~) and —(—)

Balder ten Cate Regular XPath: Algebra, Logic and Automata (18/19)

Some partial results

@ Thm:
x-positive Regular XPath™ (hence also FO+posTC}7p) can
define the same binary relations as twa with
non-inspectable weak pebbles.
(extends a result of Goris and Marx '05)

@ Thm (Engelfriet and Hoogeboom °05): «-positive
FO+TC' can define the same binary relations as twa with
strong pebbles.

@ Thm (Bojanczyk e.a. '06): Weak pebbles suffice.

Call an Regular XPath expression positive if it uses only atomic
negation, of the from —(7), —=(]), =(«~) and —(—)

@ Thm: Positive Regular XPath can define the same binary
relations as twa with return pebbles.

Balder ten Cate Regular XPath: Algebra, Logic and Automata (18/19)

That’s all.

Balder ten Cate CIEI@GEGH i ta (19/19)

