Regular XPath: Algebra, Logic and Automata

Balder ten Cate

Szeged, 1 October 2006

Balder ten Cate Regular XPath: Algebra, Logic and Automata (1/19)

< 🗇 🕨

프 🕨 🗉 프

- This talk is about languages for describing binary relations in trees.
- Binary relations means that
 - Instead of sentences, we use formulas with two free variables φ(x, y)
 - Our tree walking automata can start and finish their walk anywhere in the tree, not neccessarily at the root.
- The motivation comes from XML
- Specifically, we are interested in the XML path language Regular XPath.
- We would like to characterize this language in terms of logic and/or automata.

ヘロン 人間 とくほ とくほ とう

- This talk is about languages for describing binary relations in trees.
- Binary relations means that
 - Instead of sentences, we use formulas with two free variables φ(x, y)
 - Our tree walking automata can start and finish their walk anywhere in the tree, not neccessarily at the root.
- The motivation comes from XML
- Specifically, we are interested in the XML path language Regular XPath.
- We would like to characterize this language in terms of logic and/or automata.

ヘロン 人間 とくほ とくほ とう

- This talk is about languages for describing binary relations in trees.
- Binary relations means that
 - Instead of sentences, we use formulas with two free variables φ(x, y)
 - Our tree walking automata can start and finish their walk anywhere in the tree, not neccessarily at the root.
- The motivation comes from XML
- Specifically, we are interested in the XML path language Regular XPath.
- We would like to characterize this language in terms of logic and/or automata.

ヘロト 人間 ト ヘヨト ヘヨト

- This talk is about languages for describing binary relations in trees.
- Binary relations means that
 - Instead of sentences, we use formulas with two free variables φ(x, y)
 - Our tree walking automata can start and finish their walk anywhere in the tree, not neccessarily at the root.
- The motivation comes from XML
- Specifically, we are interested in the XML path language Regular XPath.
- We would like to characterize this language in terms of logic and/or automata.

ヘロト 人間 ト ヘヨト ヘヨト

- This talk is about languages for describing binary relations in trees.
- Binary relations means that
 - Instead of sentences, we use formulas with two free variables φ(x, y)
 - Our tree walking automata can start and finish their walk anywhere in the tree, not neccessarily at the root.
- The motivation comes from XML
- Specifically, we are interested in the XML path language Regular XPath.
- We would like to characterize this language in terms of logic and/or automata.

ヘロト 人間 ト ヘヨト ヘヨト

- This talk is about languages for describing binary relations in trees.
- Binary relations means that
 - Instead of sentences, we use formulas with two free variables φ(x, y)
 - Our tree walking automata can start and finish their walk anywhere in the tree, not neccessarily at the root.
- The motivation comes from XML
- Specifically, we are interested in the XML path language Regular XPath.
- We would like to characterize this language in terms of logic and/or automata.

- This talk is about languages for describing binary relations in trees.
- Binary relations means that
 - Instead of sentences, we use formulas with two free variables φ(x, y)
 - Our tree walking automata can start and finish their walk anywhere in the tree, not neccessarily at the root.
- The motivation comes from XML
- Specifically, we are interested in the XML path language Regular XPath.
- We would like to characterize this language in terms of logic and/or automata.

・ 同 ト ・ ヨ ト ・ ヨ ト

- XML documents are (for present purposes) are finite unranked sibling-ordered node labelled trees.
- So, an XML document is a tuple $T = (N, R_{\downarrow}, R_{\rightarrow}, V)$ where
 - N is the set of nodes,
 - R_{\downarrow} and R_{\rightarrow} are the 'child' and 'next sibling' relations, and
 - $-V:N\to \Sigma.$

- XML documents are (for present purposes) are finite unranked sibling-ordered node labelled trees.
- So, an XML document is a tuple $T = (N, R_{\downarrow}, R_{\rightarrow}, V)$ where
 - *N* is the set of nodes,
 - R_{\downarrow} and R_{\rightarrow} are the 'child' and 'next sibling' relations, and
 - $-V:N \to \Sigma.$

▲ 圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

E DQC

- XML documents are (for present purposes) are finite unranked sibling-ordered node labelled trees.
- So, an XML document is a tuple $T = (N, R_{\downarrow}, R_{\rightarrow}, V)$ where
 - N is the set of nodes,
 - R_{\perp} and R_{\rightarrow} are the 'child' and 'next sibling' relations, and
 - $V: N \to \Sigma$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

E DQC

- XML documents are (for present purposes) are finite unranked sibling-ordered node labelled trees.
- So, an XML document is a tuple $T = (N, R_{\downarrow}, R_{\rightarrow}, V)$ where
 - N is the set of nodes,
 - R_{\downarrow} and R_{\rightarrow} are the 'child' and 'next sibling' relations, and
 - $V: N \to \Sigma$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

∃ <2 <</p>

- XML documents are (for present purposes) are finite unranked sibling-ordered node labelled trees.
- So, an XML document is a tuple $T = (N, R_{\downarrow}, R_{\rightarrow}, V)$ where
 - *N* is the set of nodes,
 - R_{\downarrow} and R_{\rightarrow} are the 'child' and 'next sibling' relations, and
 - $V: N \rightarrow \Sigma$.

3

・ 同 ト ・ ヨ ト ・ ヨ ト …

Regular XPath has two types of expressions:

- path expressions $\alpha ::= \uparrow |\downarrow| \leftarrow | \rightarrow | . | \alpha/\beta | \alpha \cup \beta | \alpha^* | \alpha[\phi]$ • node expressions $\phi ::= p | \neg \phi | \phi \land \psi | \langle \alpha \rangle$
- Path expression define binary relations. When applied to a given "context node", they yield a set of nodes.
 Node expressions define sets of nodes.
- We use $/\alpha$ as shorthand for $\uparrow^* [\neg \langle \uparrow \rangle]/\alpha$.

- Regular XPath has two types of expressions:
 - path expressions

 α ::= ↑ |↓ | ← | → |. | α/β | α ∪ β | α* | α[φ]

 node expressions

 φ ::= p | ¬φ | φ ∧ ψ | (α)
- Path expression define binary relations. When applied to a given "context node", they yield a set of nodes.
 Node expressions define sets of nodes.
- We use $/\alpha$ as shorthand for $\uparrow^* [\neg \langle \uparrow \rangle]/\alpha$.

- Regular XPath has two types of expressions:
 - path expressions

 $\alpha ::= \uparrow \mid \downarrow \mid \leftarrow \mid \rightarrow \mid . \mid \alpha / \beta \mid \alpha \cup \beta \mid \alpha^* \mid \alpha [\phi]$

- node expressions $\phi ::= \mathbf{p} \mid \neg \phi \mid \phi \land \psi \mid \langle \alpha \rangle$
- Path expression define binary relations. When applied to a given "context node", they yield a set of nodes.
 Node expressions define sets of nodes.
- We use $/\alpha$ as shorthand for $\uparrow^* [\neg \langle \uparrow \rangle]/\alpha$.

- Regular XPath has two types of expressions:
 - path expressions

 $\alpha \ ::= \uparrow \mid \downarrow \mid \leftarrow \mid \rightarrow \mid . \mid \alpha / \beta \mid \alpha \cup \beta \mid \alpha^* \mid \alpha [\phi]$

node expressions

 $\phi ::= \boldsymbol{p} \mid \neg \phi \mid \phi \land \psi \mid \langle \alpha \rangle$

 Path expression define binary relations. When applied to a given "context node", they yield a set of nodes.
 Node expressions define sets of nodes.

• We use $/\alpha$ as shorthand for $\uparrow^* [\neg \langle \uparrow \rangle]/\alpha$.

- Regular XPath has two types of expressions:
 - path expressions

 $\alpha \ ::= \uparrow \mid \downarrow \mid \leftarrow \mid \rightarrow \mid . \mid \alpha / \beta \mid \alpha \cup \beta \mid \alpha^* \mid \alpha [\phi]$

• node expressions $\phi ::= \mathbf{p} \mid \neg \phi \mid \phi \land \psi \mid \langle \alpha \rangle$

 $\phi ::= \boldsymbol{\rho} \mid \neg \phi \mid \phi \land \psi \mid \langle \alpha \rangle$

- Path expression define binary relations. When applied to a given "context node", they yield a set of nodes.
 Node expressions define sets of nodes.
- We use $/\alpha$ as shorthand for $\uparrow^* [\neg \langle \uparrow \rangle]/\alpha$.

Semantics of Regular XPath

$$\begin{split} \llbracket \alpha \rrbracket^{M} &= R_{\alpha} \quad \text{for } \alpha \in \{\downarrow, \uparrow, \leftarrow, \rightarrow\} \\ \llbracket . \rrbracket^{M} &= \text{the identity relation on } N \\ \llbracket \alpha / \beta \rrbracket^{M} &= \text{composition of } \llbracket \alpha \rrbracket^{M} \text{ and } \llbracket \beta \rrbracket^{M} \\ \llbracket \alpha \cup \beta \rrbracket^{M} &= \text{union of } \llbracket \alpha \rrbracket^{M} \text{ and } \llbracket \beta \rrbracket^{M} \\ \llbracket \alpha^{*} \rrbracket^{M} &= \text{reflexive transitive closure of } \llbracket \alpha \rrbracket^{M} \\ \llbracket \alpha \llbracket \phi \rrbracket^{M} &= \{(n, m) \in \llbracket \alpha \rrbracket^{M} \mid m \in \llbracket \phi \rrbracket^{M} \} \end{split}$$

$$\begin{split} \llbracket p \rrbracket^{M} &= V(p) \\ \llbracket \phi \wedge \psi \rrbracket^{M} &= \llbracket \phi \rrbracket^{M} \cap \llbracket \psi \rrbracket^{M} \\ \llbracket \neg \phi \rrbracket^{M} &= N \setminus \llbracket \phi \rrbracket^{M} \\ \llbracket \langle \alpha \rangle \rrbracket^{M} &= \text{domain of } \llbracket \alpha \rrbracket^{M} = \{n \mid (n, m) \in \llbracket \alpha \rrbracket^{M} \} \end{split}$$

토 🖌 🔺 토 🛌

< 🗇 > <

æ

"Go to the next book that has at least two authors." In Regular XPath:

 $(\rightarrow [\neg two authorbook])^* / \rightarrow [two authorbook]$

where twoauthorbook stands for book $\land \langle \downarrow [author] / \rightarrow^+ [author] \rangle$.

イロト イポト イヨト イヨト

э

"Go to the next book that has at least two authors."

In Regular XPath:

 $(\rightarrow [\neg two authorbook])^* / \rightarrow [two authorbook]$

where *twoauthorbook* stands for *book* $\land (\downarrow [author] / \rightarrow^+ [author])$.

э

< ≣ >

The following can be expressed in Regular XPath: "Go to the root if it has an even number of descendants, otherwise retrieve nothing"

To see this, note that

- Let $(\alpha \text{ while } \phi)$ be shorthand for $(.[\phi]/\alpha)^*$
- Let suc be shorthand for $\downarrow [\neg \langle \leftrightarrow \rangle] \cup .[\neg \langle \downarrow \rangle]/(\uparrow \text{ while } \neg \langle \rightarrow \rangle)/\rightarrow$ (the successor in depth first left-to-right ordering).
- Then /(suc/suc)*[¬⟨↓⟩]/(↑ while ¬⟨→⟩)[¬⟨↑⟩] expresses the intended query.

ヘロン 人間 とくほ とくほ とう

The following can be expressed in Regular XPath: "Go to the root if it has an even number of

descendants, otherwise retrieve nothing"

To see this, note that

- Let (α while ϕ) be shorthand for $(.[\phi]/\alpha)^*$
- Let suc be shorthand for
 ↓[¬⟨↔⟩] ∪ .[¬⟨↓⟩]/(↑ while ¬⟨→⟩)/→
 (the successor in depth first left-to-right ordering).
- Then /(suc/suc)*[¬⟨↓⟩]/(↑ while ¬⟨→⟩)[¬⟨↑⟩] expresses the intended query.

ヘロン 人間 とくほ とくほ とう

The following can be expressed in Regular XPath: "Go to the root if it has an even number of

descendants, otherwise retrieve nothing"

To see this, note that

• Let (α while ϕ) be shorthand for $(.[\phi]/\alpha)^*$

Let suc be shorthand for
 ↓[¬⟨↔⟩] ∪ .[¬⟨↓⟩]/(↑ while ¬⟨→⟩)/→
 (the successor in depth first left-to-right ordering).

 Then /(suc/suc)*[¬⟨↓⟩]/(↑ while ¬⟨→⟩)[¬⟨↑⟩] expresses the intended query.

ヘロン 人間 とくほ とくほ とう

The following can be expressed in Regular XPath: "Go to the root if it has an even number of

descendants, otherwise retrieve nothing"

To see this, note that

• Let (α while ϕ) be shorthand for $(.[\phi]/\alpha)^*$

Let suc be shorthand for
 ↓[¬⟨↔⟩] ∪ .[¬⟨↓⟩]/(↑ while ¬⟨→⟩)/→
 (the successor in depth first left-to-right ordering).

 Then /(suc/suc)*[¬⟨↓⟩]/(↑ while ¬⟨→⟩)[¬⟨↑⟩] expresses the intended query.

ヘロン 人間 とくほ とくほ とう

• Can we express the following query in Regular XPath?

"Go to any node with an even number of descendants"

- The previous trick does not work: during the depth-first traversal we might accidentally leave the subtree.
- Yes, it is possible: we can count
 - the (parity of the) number of nodes in the entire tree
 - the (parity of the) number of ancestors of a node n
 - the (parity of the) number of nodes before *n* in the df order
 - the (parity of the) number of nodes after *n* in the df order (not counting the descendants)
- With a *loop* operator things would be much easier:

$$\llbracket loop(\alpha) \rrbracket = \{ w \mid (w, w) \in \llbracket \alpha \rrbracket \}$$

$$/\downarrow^* [loop((suc/suc)^*[\neg\langle\downarrow\rangle]/(\uparrow while \neg\langle\rightarrow\rangle))]$$

• Can we express the following query in Regular XPath?

"Go to any node with an even number of descendants"

- The previous trick does not work: during the depth-first traversal we might accidentally leave the subtree.
- Yes, it is possible: we can count
 - the (parity of the) number of nodes in the entire tree
 - the (parity of the) number of ancestors of a node n
 - the (parity of the) number of nodes before *n* in the df order
 - the (parity of the) number of nodes after *n* in the df order (not counting the descendants)
- With a *loop* operator things would be much easier:

$$\llbracket loop(\alpha) \rrbracket = \{ w \mid (w, w) \in \llbracket \alpha \rrbracket \}$$

Using loop we could express it as follows:

$$/\downarrow^* [loop((suc/suc)^*[\neg\langle\downarrow\rangle]/(\uparrow while \neg\langle\rightarrow\rangle))]$$

4 **A b b b b b**

• Can we express the following query in Regular XPath?

"Go to any node with an even number of descendants"

- The previous trick does not work: during the depth-first traversal we might accidentally leave the subtree.
- Yes, it is possible: we can count
 - the (parity of the) number of nodes in the entire tree
 - the (parity of the) number of ancestors of a node n
 - the (parity of the) number of nodes before *n* in the df order
 - the (parity of the) number of nodes after *n* in the df order (not counting the descendants)

• With a *loop* operator things would be much easier:

$$\llbracket loop(\alpha) \rrbracket = \{ w \mid (w, w) \in \llbracket \alpha \rrbracket \}$$

Using loop we could express it as follows:

$$/\downarrow^* [loop((suc/suc)^*[\neg\langle\downarrow\rangle]/(\uparrow while \neg\langle\rightarrow\rangle))]$$

• Can we express the following query in Regular XPath?

"Go to any node with an even number of descendants"

- The previous trick does not work: during the depth-first traversal we might accidentally leave the subtree.
- Yes, it is possible: we can count
 - the (parity of the) number of nodes in the entire tree
 - the (parity of the) number of ancestors of a node n
 - the (parity of the) number of nodes before *n* in the df order
 - the (parity of the) number of nodes after *n* in the df order (not counting the descendants)

• With a *loop* operator things would be much easier:

$$\llbracket loop(\alpha) \rrbracket = \{ w \mid (w, w) \in \llbracket \alpha \rrbracket \}$$

Using loop we could express it as follows:

$$/\downarrow^* [loop((suc/suc)^*[\neg\langle\downarrow\rangle]/(\uparrow while \neg\langle\rightarrow\rangle))]$$

• Can we express the following query in Regular XPath?

"Go to any node with an even number of descendants"

- The previous trick does not work: during the depth-first traversal we might accidentally leave the subtree.
- Yes, it is possible: we can count
 - the (parity of the) number of nodes in the entire tree
 - the (parity of the) number of ancestors of a node r
 - the (parity of the) number of nodes before *n* in the df order
 - the (parity of the) number of nodes after *n* in the df order (not counting the descendants)
- With a *loop* operator things would be much easier:

$$\llbracket loop(\alpha) \rrbracket = \{ w \mid (w, w) \in \llbracket \alpha \rrbracket \}$$

Using loop we could express it as follows:

$$/\downarrow^* [loop((suc/suc)^*[\neg\langle\downarrow\rangle]/(\uparrow while \neg\langle\rightarrow\rangle))]$$

• Can we express the following query in Regular XPath?

"Go to any node with an even number of descendants"

- The previous trick does not work: during the depth-first traversal we might accidentally leave the subtree.
- Yes, it is possible: we can count
 - the (parity of the) number of nodes in the entire tree
 - the (parity of the) number of ancestors of a node n
 - the (parity of the) number of nodes before *n* in the df order
 - the (parity of the) number of nodes after *n* in the df order (not counting the descendants)
- With a *loop* operator things would be much easier:

$$\llbracket loop(\alpha) \rrbracket = \{ w \mid (w, w) \in \llbracket \alpha \rrbracket \}$$

Using loop we could express it as follows:

$$/\downarrow^* [loop((suc/suc)^*[\neg\langle\downarrow\rangle]/(\uparrow while \neg\langle\rightarrow\rangle))]$$

• Can we express the following query in Regular XPath?

"Go to any node with an even number of descendants"

- The previous trick does not work: during the depth-first traversal we might accidentally leave the subtree.
- Yes, it is possible: we can count
 - the (parity of the) number of nodes in the entire tree
 - the (parity of the) number of ancestors of a node n
 - the (parity of the) number of nodes before *n* in the df order
 - the (parity of the) number of nodes after *n* in the df order (not counting the descendants)
- With a *loop* operator things would be much easier:

$$\llbracket loop(\alpha) \rrbracket = \{ w \mid (w, w) \in \llbracket \alpha \rrbracket \}$$

Using loop we could express it as follows:

$$/\downarrow^* [loop((suc/suc)^*[\neg\langle\downarrow\rangle]/(\uparrow while \neg\langle\rightarrow\rangle))]$$

• Can we express the following query in Regular XPath?

"Go to any node with an even number of descendants"

- The previous trick does not work: during the depth-first traversal we might accidentally leave the subtree.
- Yes, it is possible: we can count
 - the (parity of the) number of nodes in the entire tree
 - the (parity of the) number of ancestors of a node n
 - the (parity of the) number of nodes before *n* in the df order
 - the (parity of the) number of nodes after *n* in the df order (not counting the descendants)
- With a *loop* operator things would be much easier:

$$\llbracket loop(\alpha) \rrbracket = \{ w \mid (w, w) \in \llbracket \alpha \rrbracket \}$$

$$/\downarrow^* [loop ((suc/suc)^* [\neg \langle \downarrow \rangle] / (\uparrow while \neg \langle \rightarrow \rangle))]$$

• Can we express the following query in Regular XPath?

"Go to any node with an even number of descendants"

- The previous trick does not work: during the depth-first traversal we might accidentally leave the subtree.
- Yes, it is possible: we can count
 - the (parity of the) number of nodes in the entire tree
 - the (parity of the) number of ancestors of a node n
 - the (parity of the) number of nodes before *n* in the df order
 - the (parity of the) number of nodes after *n* in the df order (not counting the descendants)
- With a *loop* operator things would be much easier:

 $\llbracket loop(\alpha) \rrbracket = \{ w \mid (w, w) \in \llbracket \alpha \rrbracket \}$

$$|\downarrow^*[loop((suc/suc)^*[\neg\langle\downarrow
angle]/(\uparrow while \neg\langle
ightarrow))]$$

• Can we express the following query in Regular XPath?

"Go to any node with an even number of descendants"

- The previous trick does not work: during the depth-first traversal we might accidentally leave the subtree.
- Yes, it is possible: we can count
 - the (parity of the) number of nodes in the entire tree
 - the (parity of the) number of ancestors of a node n
 - the (parity of the) number of nodes before n in the df order
 - the (parity of the) number of nodes after *n* in the df order (not counting the descendants)
- With a *loop* operator things would be much easier:

$$\llbracket loop(\alpha) \rrbracket = \{ w \mid (w, w) \in \llbracket \alpha \rrbracket \}$$

$$/\downarrow^*[loop((suc/suc)^*[\neg\langle\downarrow
angle]/(\uparrow while \neg\langle
ightarrow))]$$

• Can we express the following query in Regular XPath?

"Go to any node with an even number of descendants"

- The previous trick does not work: during the depth-first traversal we might accidentally leave the subtree.
- Yes, it is possible: we can count
 - the (parity of the) number of nodes in the entire tree
 - the (parity of the) number of ancestors of a node n
 - the (parity of the) number of nodes before *n* in the df order
 - the (parity of the) number of nodes after *n* in the df order (not counting the descendants)
- With a *loop* operator things would be much easier:

$$\llbracket loop(\alpha) \rrbracket = \{ w \mid (w, w) \in \llbracket \alpha \rrbracket \}$$

$$/\downarrow^* [loop((suc/suc)^*[\neg\langle\downarrow\rangle]/(\uparrow while \neg\langle\rightarrow\rangle))]$$
• What is the expressive power of Regular XPath?

I.e., which binary relations are definable by path expressions?

・ 回 ト ・ ヨ ト ・ ヨ ト

э

What is the expressive power of Regular XPath?

I.e., which binary relations are definable by path expressions?

< /□ ▶ < 三 ▶ .

< ⊒ >

What we know:

 $FO \subseteq Regular XPath \subseteq FO + TC^1$

(The first inclusion follows from Marx PODS'04).

• A natural conjecture:

Regular XPath \equiv FO + TC¹

(after all, Regular XPath has a transitive closure operator!)

• We managed to prove a result along these lines only by extending the language with loop.

《曰》《御》《臣》《臣》 [臣]

What we know:

 $FO \subseteq Regular XPath \subseteq FO + TC^1$

(The first inclusion follows from Marx PODS'04).

• A natural conjecture:

Regular XPath \equiv FO + TC¹

(after all, Regular XPath has a transitive closure operator!)

• We managed to prove a result along these lines only by extending the language with loop.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

What we know:

 $FO \subseteq Regular XPath \subseteq FO + TC^1$

(The first inclusion follows from Marx PODS'04).

• A natural conjecture:

Regular XPath \equiv FO + TC¹

(after all, Regular XPath has a transitive closure operator!)

 We managed to prove a result along these lines only by extending the language with loop.

ヘロン 人間 とくほ とくほ とう

э.

- loop provides a weak form of path intersection:
 loop(α) is equivalent to the node expression ⟨α ∩ .⟩.
- We denote the extension of Regular XPath with loop by Regular XPath \approx .
- Adding loop does not affect the complexity:
 - Query evaluation can still be performed in PTime.
 - Query containment can still be solved in ExpTime.

ヘロト ヘワト ヘビト ヘビト

- loop provides a weak form of path intersection:
 loop(α) is equivalent to the node expression ⟨α ∩ .⟩.
- We denote the extension of Regular XPath with loop by Regular XPath \approx .
- Adding loop does not affect the complexity:
 - Query evaluation can still be performed in PTime.
 - Query containment can still be solved in ExpTime.

- loop provides a weak form of path intersection:
 loop(α) is equivalent to the node expression ⟨α ∩ .⟩.
- We denote the extension of Regular XPath with loop by Regular XPath[≈].
- Adding loop does not affect the complexity:
 - Query evaluation can still be performed in PTime.
 - Query containment can still be solved in ExpTime.

- loop provides a weak form of path intersection:
 loop(α) is equivalent to the node expression ⟨α ∩ .⟩.
- We denote the extension of Regular XPath with loop by Regular XPath[≈].
- Adding loop does not affect the complexity:
 - Query evaluation can still be performed in PTime.
 - Query containment can still be solved in ExpTime.

・聞き ・ヨト ・ヨト

- Let $FO + TC_{np}^{1}$ be the extension of first-order logic with transitive closure over formulas with exactly two free variables.
- $FO + TC_{np}^{1}$ differs from $FO + TC^{1}$: the latter has transitive closure over formulas with two designated free variables plus possibly other free variables.

Main result: Regular XPath^{\approx} \equiv FO¹_{np}

More precisely, Regular XPath^{\approx} path expressions define the same binary relations as $FO + TC_{np}^{1}$ formulas with two free variables.

• **Corollary:** Regular XPath[≈] is closed under path intersection and complementation.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- Let $FO + TC_{np}^{1}$ be the extension of first-order logic with transitive closure over formulas with exactly two free variables.
- $FO + TC_{np}^{1}$ differs from $FO + TC^{1}$: the latter has transitive closure over formulas with two designated free variables plus possibly other free variables.

Main result: Regular XPath^{\approx} \equiv FO¹_{no}

More precisely, Regular XPath^{\approx} path expressions define the same binary relations as $FO + TC_{np}^{1}$ formulas with two free variables.

• **Corollary:** Regular XPath[≈] is closed under path intersection and complementation.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- Let $FO + TC_{np}^{1}$ be the extension of first-order logic with transitive closure over formulas with exactly two free variables.
- $FO + TC_{np}^{1}$ differs from $FO + TC^{1}$: the latter has transitive closure over formulas with two designated free variables plus possibly other free variables.

Main result: Regular XPath^{\approx} \equiv FO¹_{no}

More precisely, Regular XPath^{\approx} path expressions define the same binary relations as $FO + TC_{np}^{1}$ formulas with two free variables.

• **Corollary:** Regular XPath[≈] is closed under path intersection and complementation.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

э

- Let $FO + TC_{np}^{1}$ be the extension of first-order logic with transitive closure over formulas with exactly two free variables.
- $FO + TC_{np}^{1}$ differs from $FO + TC^{1}$: the latter has transitive closure over formulas with two designated free variables plus possibly other free variables.

Main result: Regular XPath^{\approx} \equiv FO¹_{np}

More precisely, Regular XPath^{\approx} path expressions define the same binary relations as $FO + TC_{np}^{1}$ formulas with two free variables.

• **Corollary:** Regular XPath[≈] is closed under path intersection and complementation.

ヘロン ヘアン ヘビン ヘビン

э

- Let $FO + TC_{np}^{1}$ be the extension of first-order logic with transitive closure over formulas with exactly two free variables.
- $FO + TC_{np}^{1}$ differs from $FO + TC^{1}$: the latter has transitive closure over formulas with two designated free variables plus possibly other free variables.

Main result: Regular XPath^{\approx} \equiv FO¹_{np}

More precisely, Regular XPath^{\approx} path expressions define the same binary relations as $FO + TC_{np}^{1}$ formulas with two free variables.

• **Corollary:** Regular XPath[≈] is closed under path intersection and complementation.

< ⊒ >

Difficult direction: $FO + TC_{np}^1 \subseteq \text{Regular XPath}^{\approx}$

- Step 1. Restrict attention to binary branching trees. On such trees \rightarrow can be written as $\cdot [\langle \rightarrow \rangle] / \uparrow / \downarrow [\langle \leftarrow \rangle]$, and likewise for \leftarrow . This helps reduce the number of cases.
- Step 2. A normal form: a path expression is separated if it is a union of expressions of the form α/β , with α walking upwards and β downwards in the tree.
- Step 3. The translation itself from formulas $\phi(x, y) \in FO + TC_{np}^{1}$ to separated Regular XPath^{\approx} path expressions.

To enable an inductive translation, we use conjunctive tree queries over path expressions.

Difficult direction: $FO + TC_{np}^1 \subseteq \text{Regular XPath}^{\approx}$

- Step 1. Restrict attention to binary branching trees. On such trees \rightarrow can be written as $[\langle \rightarrow \rangle]/\uparrow/\downarrow[\langle \leftarrow \rangle]$, and likewise for \leftarrow . This helps reduce the number of cases.
- Step 2. A normal form: a path expression is separated if it is a union of expressions of the form α/β , with α walking upwards and β downwards in the tree.
- Step 3. The translation itself from formulas $\phi(x, y) \in FO + TC_{np}^{1}$ to separated Regular XPath^{\approx} path expressions.

To enable an inductive translation, we use conjunctive tree queries over path expressions.

Difficult direction: $FO + TC_{np}^1 \subseteq \text{Regular XPath}^{\approx}$

- Step 1. Restrict attention to binary branching trees. On such trees \rightarrow can be written as $.[\langle \rightarrow \rangle]/\uparrow/\downarrow[\langle \leftarrow \rangle]$, and likewise for \leftarrow . This helps reduce the number of cases.
- Step 2. A normal form: a path expression is separated if it is a union of expressions of the form α/β , with α walking upwards and β downwards in the tree.

Step 3. The translation itself from formulas $\phi(x, y) \in FO + TC_{np}^{1}$ to separated Regular XPath^{\approx} path expressions.

> To enable an inductive translation, we use conjunctive tree queries over path expressions.

Difficult direction: $FO + TC_{np}^1 \subseteq \text{Regular XPath}^{\approx}$

- Step 1. Restrict attention to binary branching trees. On such trees \rightarrow can be written as $.[\langle \rightarrow \rangle]/\uparrow/\downarrow[\langle \leftarrow \rangle]$, and likewise for \leftarrow . This helps reduce the number of cases.
- Step 2. A normal form: a path expression is separated if it is a union of expressions of the form α/β , with α walking upwards and β downwards in the tree.
- Step 3. The translation itself from formulas $\phi(x, y) \in FO + TC_{np}^{1}$ to separated Regular XPath^{\approx} path expressions.

To enable an inductive translation, we use conjunctive tree queries over path expressions.

Difficult direction: $FO + TC_{np}^1 \subseteq \text{Regular XPath}^{\approx}$

- Step 1. Restrict attention to binary branching trees. On such trees \rightarrow can be written as $.[\langle \rightarrow \rangle]/\uparrow/\downarrow[\langle \leftarrow \rangle]$, and likewise for \leftarrow . This helps reduce the number of cases.
- Step 2. A normal form: a path expression is separated if it is a union of expressions of the form α/β , with α walking upwards and β downwards in the tree.
- Step 3. The translation itself from formulas $\phi(x, y) \in FO + TC_{np}^{1}$ to separated Regular XPath^{\approx} path expressions.

To enable an inductive translation, we use conjunctive tree queries over path expressions.

A path expression is separated if it is of the form $\bigcup_i (\alpha_i / \beta_i)$, with each α_i walking upwards and β_i downwards in the tree (but allowing arbitrary tests).

Example: How to separate $(\uparrow [p] / \uparrow [q] / \downarrow [r])^*$?

Answer: $\uparrow[\rho]/\left(\uparrow[\rho \land q \land \langle\downarrow[r]\rangle]\right)^*/\uparrow[q]/\downarrow[r] \cup$

A path expression is separated if it is of the form $\bigcup_i (\alpha_i / \beta_i)$, with each α_i walking upwards and β_i downwards in the tree (but allowing arbitrary tests).

Example: How to separate $(\uparrow [p]/\uparrow [q]/\downarrow [r])^*$?

Answer: $\uparrow[
ho]/\left(\uparrow[
ho\land q\land \langle\downarrow[r]
angle]
ight)^*/\uparrow[q]/\downarrow[r] \cup \square$

A path expression is separated if it is of the form $\bigcup_i (\alpha_i / \beta_i)$, with each α_i walking upwards and β_i downwards in the tree (but allowing arbitrary tests).

Example:

How to separate $(\uparrow [p] / \uparrow [q] / \downarrow [r])^*$?

Answer:

 $\uparrow [p] / (\uparrow [p \land q \land \langle \downarrow [r] \rangle])^* / \uparrow [q] / \downarrow [r] \cup .$

A path expression is separated if it is of the form $\bigcup_i (\alpha_i / \beta_i)$, with each α_i walking upwards and β_i downwards in the tree (but allowing arbitrary tests).

Example:

How to separate $(\uparrow [p] / \uparrow [q] / \downarrow [r])^*$?

Answer:

 $\uparrow [p] / (\uparrow [p \land q \land \langle \downarrow [r] \rangle])^* / \uparrow [q] / \downarrow [r] \cup .$

Summary of results

	μ Regular XPath	≡	$MSO[\downarrow, ightarrow]$
∕ ∪¦(1)	Regular XPath [≈]	≡	$\textit{FO} + \textit{TC}_{\textit{np}}^{1}[\downarrow, \rightarrow]$
✓ ∗-pc	ositive <i>Regular XPath</i> ≈	≡	$\textit{FO} + \textit{posTC}_{\textit{np}}^{1}[\downarrow, \rightarrow]$
	Conditional XPath	≡ (2)	$\mathit{FO}[\downarrow^*, \rightarrow^*]$
	Core XPath	≡ ⁽³⁾	$FO^2[\downarrow, \rightarrow, \downarrow^*, \rightarrow^*]$

- (1) Bojańczyk et al. (2006 ICALP)
- (2) Marx (2004 PODS)
- (3) Marx & De Rijke (2005 SIGMOD Record), only for absolute path expr's

ヘロト ヘアト ヘビト ヘビト

ъ

- Is Regular XPath strictly contained in Regular XPath²? (does loop really contribute to the expressive power of Regular XPath²?)
- Is $FO + (pos)TC_{np}^{1}$ strictly contained in $FO + (pos)TC^{1}$?
- Is $FO + TC_{np}^{1}$ strictly contained in *MSO*?
- Does Regular XPath or Regular XPath[≈] admit an automata theoretic characterization, and, if so, can we use it to answer questions such as the above?
 - Partial result: a characterization for the *-positive fragment.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- Is Regular XPath strictly contained in Regular XPath[≈]? (does loop really contribute to the expressive power of Regular XPath[≈]?)
- Is $FO + (pos)TC_{np}^{1}$ strictly contained in $FO + (pos)TC^{1}$?
- Is $FO + TC_{np}^{1}$ strictly contained in *MSO*?
- Does Regular XPath or Regular XPath[≈] admit an automata theoretic characterization, and, if so, can we use it to answer questions such as the above?
 - Partial result: a characterization for the *-positive fragment.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- Is Regular XPath strictly contained in Regular XPath[≈]? (does loop really contribute to the expressive power of Regular XPath[≈]?)
- Is $FO + (pos)TC_{np}^{1}$ strictly contained in $FO + (pos)TC^{1}$?
- Is $FO + TC_{np}^{1}$ strictly contained in *MSO*?
- Does Regular XPath or Regular XPath[≈] admit an automata theoretic characterization, and, if so, can we use it to answer questions such as the above?
 - Partial result: a characterization for the *-positive fragment.

<ロ> (四) (四) (三) (三) (三)

- Is Regular XPath strictly contained in Regular XPath[≈]? (does loop really contribute to the expressive power of Regular XPath[≈]?)
- Is $FO + (pos)TC_{np}^{1}$ strictly contained in $FO + (pos)TC^{1}$?
- Is $FO + TC_{np}^1$ strictly contained in MSO?
- Does Regular XPath or Regular XPath[≈] admit an automata theoretic characterization, and, if so, can we use it to answer questions such as the above?
 - Partial result: a characterization for the *-positive fragment.

<ロ> (四) (四) (三) (三) (三)

- Is Regular XPath strictly contained in Regular XPath²? (does loop really contribute to the expressive power of Regular XPath²?)
- Is $FO + (pos)TC_{np}^{1}$ strictly contained in $FO + (pos)TC^{1}$?
- Is $FO + TC_{np}^1$ strictly contained in MSO?
- Does Regular XPath or Regular XPath[≈] admit an automata theoretic characterization, and, if so, can we use it to answer questions such as the above?
 - Partial result: a characterization for the *****-positive fragment.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

3

- Let's consider (non-deterministic) pebble tree walking automata with the following types of pebbles:
 - weak pebbles can only be lifted when the automaton is visiting the relevant node.
 - strong pebbles can be lifted from anywhere.
 - non-inspectable weak pebbles are weak pebbles that cannot be inspected. Note: the automaton might not know for sure whether lifting is a valid move! It may crash.
 - return pebbles can be lifted from anywhere, with the side effect that the automaton moves to the relevant node. Furthermore, these pebbles cannot be inspected.
- We use these automata to accept paths: the automata start somewhere in the tree and finish somewhere.

ヘロア 人間 アメヨア 人口 ア

ъ

- Let's consider (non-deterministic) pebble tree walking automata with the following types of pebbles:
 - weak pebbles can only be lifted when the automaton is visiting the relevant node.
 - strong pebbles can be lifted from anywhere.
 - non-inspectable weak pebbles are weak pebbles that cannot be inspected. Note: the automaton might not know for sure whether lifting is a valid move! It may crash.
 - return pebbles can be lifted from anywhere, with the side effect that the automaton moves to the relevant node. Furthermore, these pebbles cannot be inspected.
- We use these automata to accept paths: the automata start somewhere in the tree and finish somewhere.

ヘロア 人間 アメヨア 人口 ア

ъ

- Let's consider (non-deterministic) pebble tree walking automata with the following types of pebbles:
 - weak pebbles can only be lifted when the automaton is visiting the relevant node.
 - strong pebbles can be lifted from anywhere.
 - non-inspectable weak pebbles are weak pebbles that cannot be inspected. Note: the automaton might not know for sure whether lifting is a valid move! It may crash.
 - return pebbles can be lifted from anywhere, with the side effect that the automaton moves to the relevant node. Furthermore, these pebbles cannot be inspected.
- We use these automata to accept paths: the automata start somewhere in the tree and finish somewhere.

ヘロア 人間 アメヨア 人口 ア

э

- Let's consider (non-deterministic) pebble tree walking automata with the following types of pebbles:
 - weak pebbles can only be lifted when the automaton is visiting the relevant node.
 - strong pebbles can be lifted from anywhere.
 - non-inspectable weak pebbles are weak pebbles that cannot be inspected. Note: the automaton might not know for sure whether lifting is a valid move! It may crash.
 - return pebbles can be lifted from anywhere, with the side effect that the automaton moves to the relevant node. Furthermore, these pebbles cannot be inspected.
- We use these automata to accept paths: the automata start somewhere in the tree and finish somewhere.

- Let's consider (non-deterministic) pebble tree walking automata with the following types of pebbles:
 - weak pebbles can only be lifted when the automaton is visiting the relevant node.
 - strong pebbles can be lifted from anywhere.
 - non-inspectable weak pebbles are weak pebbles that cannot be inspected. Note: the automaton might not know for sure whether lifting is a valid move! It may crash.
 - return pebbles can be lifted from anywhere, with the side effect that the automaton moves to the relevant node. Furthermore, these pebbles cannot be inspected.
- We use these automata to accept paths: the automata start somewhere in the tree and finish somewhere.

- Let's consider (non-deterministic) pebble tree walking automata with the following types of pebbles:
 - weak pebbles can only be lifted when the automaton is visiting the relevant node.
 - strong pebbles can be lifted from anywhere.
 - non-inspectable weak pebbles are weak pebbles that cannot be inspected. Note: the automaton might not know for sure whether lifting is a valid move! It may crash.
 - return pebbles can be lifted from anywhere, with the side effect that the automaton moves to the relevant node. Furthermore, these pebbles cannot be inspected.
- We use these automata to accept paths: the automata start somewhere in the tree and finish somewhere.

Some partial results

• Thm:

*-positive Regular XPath^{\approx} (hence also FO+posTC¹_{np}) can define the same binary relations as twa with non-inspectable weak pebbles.

(extends a result of Goris and Marx '05)

- Thm (Engelfriet and Hoogeboom '05): *-positive FO+TC¹ can define the same binary relations as twa with strong pebbles.
- Thm (Bojanczyk e.a. '06): Weak pebbles suffice.

Call an Regular XPath expression positive if it uses only atomic negation, of the from $\neg\langle\uparrow\rangle$, $\neg\langle\downarrow\rangle$, $\neg\langle\leftarrow\rangle$ and $\neg\langle\rightarrow\rangle$

• **Thm:** Positive Regular XPath can define the same binary relations as twa with return pebbles.

・ロット (雪) () () () ()
Some partial results

Thm:

*-positive Regular XPath^{\approx} (hence also FO+posTC¹_{np}) can define the same binary relations as twa with non-inspectable weak pebbles.

(extends a result of Goris and Marx '05)

- Thm (Engelfriet and Hoogeboom '05): *-positive FO+TC¹ can define the same binary relations as twa with strong pebbles.
- Thm (Bojanczyk e.a. '06): Weak pebbles suffice.

Call an Regular XPath expression positive if it uses only atomic negation, of the from $\neg\langle\uparrow\rangle$, $\neg\langle\downarrow\rangle$, $\neg\langle\leftarrow\rangle$ and $\neg\langle\rightarrow\rangle$

• **Thm:** Positive Regular XPath can define the same binary relations as twa with return pebbles.

・ロット (雪) () () () ()

Some partial results

• Thm:

*-positive Regular XPath^{\approx} (hence also FO+posTC¹_{np}) can define the same binary relations as twa with non-inspectable weak pebbles.

(extends a result of Goris and Marx '05)

- Thm (Engelfriet and Hoogeboom '05): *-positive FO+TC¹ can define the same binary relations as twa with strong pebbles.
- Thm (Bojanczyk e.a. '06): Weak pebbles suffice.

Call an Regular XPath expression positive if it uses only atomic negation, of the from $\neg\langle\uparrow\rangle$, $\neg\langle\downarrow\rangle$, $\neg\langle\leftarrow\rangle$ and $\neg\langle\rightarrow\rangle$

• **Thm:** Positive Regular XPath can define the same binary relations as twa with return pebbles.

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Some partial results

• Thm:

*-positive Regular XPath^{\approx} (hence also FO+posTC¹_{np}) can define the same binary relations as twa with non-inspectable weak pebbles.

(extends a result of Goris and Marx '05)

- Thm (Engelfriet and Hoogeboom '05): *-positive FO+TC¹ can define the same binary relations as twa with strong pebbles.
- Thm (Bojanczyk e.a. '06): Weak pebbles suffice.

Call an Regular XPath expression positive if it uses only atomic negation, of the from $\neg\langle\uparrow\rangle$, $\neg\langle\downarrow\rangle$, $\neg\langle\leftarrow\rangle$ and $\neg\langle\rightarrow\rangle$

• **Thm:** Positive Regular XPath can define the same binary relations as twa with return pebbles.

A D > A B > A

⇒ < ⇒ >

• Thm:

*-positive Regular XPath^{\approx} (hence also FO+posTC¹_{np}) can define the same binary relations as twa with non-inspectable weak pebbles.

(extends a result of Goris and Marx '05)

- Thm (Engelfriet and Hoogeboom '05): *-positive FO+TC¹ can define the same binary relations as twa with strong pebbles.
- Thm (Bojanczyk e.a. '06): Weak pebbles suffice.

Call an Regular XPath expression positive if it uses only atomic negation, of the from $\neg\langle\uparrow\rangle$, $\neg\langle\downarrow\rangle$, $\neg\langle\leftarrow\rangle$ and $\neg\langle\rightarrow\rangle$

• **Thm:** Positive Regular XPath can define the same binary relations as twa with return pebbles.

A D > A B > A

• Thm:

*-positive Regular XPath^{\approx} (hence also FO+posTC¹_{np}) can define the same binary relations as twa with non-inspectable weak pebbles.

(extends a result of Goris and Marx '05)

- Thm (Engelfriet and Hoogeboom '05): *-positive FO+TC¹ can define the same binary relations as twa with strong pebbles.
- Thm (Bojanczyk e.a. '06): Weak pebbles suffice.

Call an Regular XPath expression positive if it uses only atomic negation, of the from $\neg\langle\uparrow\rangle$, $\neg\langle\downarrow\rangle$, $\neg\langle\leftarrow\rangle$ and $\neg\langle\rightarrow\rangle$

• **Thm:** Positive Regular XPath can define the same binary relations as twa with return pebbles.

< ∃→

That's all.

■ _ _ のへ (~