
Towards Regular Data Languages

Henrik Björklund and Thomas Schwentick

September 30, 2006

Outline

1. Introduction (data languages, class-memory automata (CMA), register

automata)

2. Expressiveness

• Register automata are strictly weaker than CMAs

• Deterministic CMAs are incomparable to FO2(+1, <,∼)

• CMAs w. reset are strictly stronger than CMAs

3. Emptiness problem

• 2-way deterministic CMAs are undecidable

• CMA w. reset are decidable

4. Model checking (word problem)

Introduction

Data Languages

Let Σ be a finite alphabet, and ∆ an infinite data set.

Then any L ⊆ (Σ×∆)∗ is a data language.

Motivations

Introduction

Data Languages

Let Σ be a finite alphabet, and ∆ an infinite data set.

Then any L ⊆ (Σ×∆)∗ is a data language.

Motivations

XML databases. Attribute values often belong to an infinite domain.

Introduction

Data Languages

Let Σ be a finite alphabet, and ∆ an infinite data set.

Then any L ⊆ (Σ×∆)∗ is a data language.

Motivations

XML databases. Attribute values often belong to an infinite domain.

Parameterized verification. If a protocol is parameterized by the number of

processes involved, process IDs can be seen as values from an infinite domain.

Introduction

Data Languages

Let Σ be a finite alphabet, and ∆ an infinite data set.

Then any L ⊆ (Σ×∆)∗ is a data language.

Motivations

XML databases. Attribute values often belong to an infinite domain.

Parameterized verification. If a protocol is parameterized by the number of

processes involved, process IDs can be seen as values from an infinite domain.

Regular model checking defines regular sets of global states, and checks

reachability w.r.t. length-preserving transducers.

Introduction

Data Languages

Let Σ be a finite alphabet, and ∆ an infinite data set.

Then any L ⊆ (Σ×∆)∗ is a data language.

Motivations

XML databases. Attribute values often belong to an infinite domain.

Parameterized verification. If a protocol is parameterized by the number of

processes involved, process IDs can be seen as values from an infinite domain.

Regular model checking defines regular sets of global states, and checks

reachability w.r.t. length-preserving transducers.

When looking at computations as sequences of actions, we can instead check that

the global sequence and the sequences belonging to individual processes fulfill

regular properties.

Introduction

Data Languages

Let Σ be a finite alphabet, and ∆ an infinite data set.

Then any L ⊆ (Σ×∆)∗ is a data language.

Motivations

XML databases. Attribute values often belong to an infinite domain.

Parameterized verification. If a protocol is parameterized by the number of

processes involved, process IDs can be seen as values from an infinite domain.

Regular model checking defines regular sets of global states, and checks

reachability w.r.t. length-preserving transducers.

When looking at computations as sequences of actions, we can instead check that

the global sequence and the sequences belonging to individual processes fulfill

regular properties.

In other words, given regular expressions r1 and r2, we look at languages of the

type L(r1) ∩ L(r2)⊗.

Class-Memory Automata

A class-memory automaton (CMA) is a tuple (Q,Σ,∆, δ, qI , F1, F2), where

1. δ : (Q× Σ× (Q ∪ {⊥}))→ 2Q is the transition function,

2. F1 is the set of globally accepting states, and

3. F2 is the set of locally accepting states.

Class-Memory Automata

A class-memory automaton (CMA) is a tuple (Q,Σ,∆, δ, qI , F1, F2), where

1. δ : (Q× Σ× (Q ∪ {⊥}))→ 2Q is the transition function,

2. F1 is the set of globally accepting states, and

3. F2 is the set of locally accepting states.

A configuration is a pair (q, f), where q ∈ Q and f : ∆→ (Q ∪ {⊥}).

Class-Memory Automata

A class-memory automaton (CMA) is a tuple (Q,Σ,∆, δ, qI , F1, F2), where

1. δ : (Q× Σ× (Q ∪ {⊥}))→ 2Q is the transition function,

2. F1 is the set of globally accepting states, and

3. F2 is the set of locally accepting states.

A configuration is a pair (q, f), where q ∈ Q and f : ∆→ (Q ∪ {⊥}).
The automaton can go from (q, f) to (q′, f ′) when reading (a, d) if

1. f(d) = q′′ and q′ ∈ δ(q, a, q′′),
2. f ′(d) = q′, and

3. f ′(d′) = f(d) for all d′ 6= d.

Class-Memory Automata

A class-memory automaton (CMA) is a tuple (Q,Σ,∆, δ, qI , F1, F2), where

1. δ : (Q× Σ× (Q ∪ {⊥}))→ 2Q is the transition function,

2. F1 is the set of globally accepting states, and

3. F2 is the set of locally accepting states.

A configuration is a pair (q, f), where q ∈ Q and f : ∆→ (Q ∪ {⊥}).
The automaton can go from (q, f) to (q′, f ′) when reading (a, d) if

1. f(d) = q′′ and q′ ∈ δ(q, a, q′′),
2. f ′(d) = q′, and

3. f ′(d′) = f(d) for all d′ 6= d.

The automaton accepts a word w if, after reading w, it is in a configuration (q, f)

s.t.

1. q ∈ F1, and

2. ∀d ∈ ∆ : f(d) ∈ F2 ∪ {⊥}.

Example

Consider the data language L such that

1. the class of the first position may have any form, and

2. all other classes must begin with an a and contain a b.

Example

Consider the data language L such that

1. the class of the first position may have any form, and

2. all other classes must begin with an a and contain a b.PSfrag replacements

p1

p1

p2 p3

a, b, c/ ⊥
a, b, c/(p2, q2)

a, b, c/ ⊥
a/(p2, q3)

a/ ⊥c/ ⊥

a, b, c/p2

a/ ⊥b/p3

b/p3

a, c/p3a, b, c/p2

Data Automata[Bojańczyk, David, Muscholl, Schwentick, Segoufin]

A data automaton D has two parts, the Base automaton A and the class

automaton B.

A is a nondeterministic transducer, which reads marked string projections, and

writes symbols from a finite alphabet Γ.

B is an NFA, which reads class strings from Γ∗.

Data Automata[Bojańczyk, David, Muscholl, Schwentick, Segoufin]

A data automaton D has two parts, the Base automaton A and the class

automaton B.

A is a nondeterministic transducer, which reads marked string projections, and

writes symbols from a finite alphabet Γ.

B is an NFA, which reads class strings from Γ∗.

Proposition. Class-memory automata and data automata are equivalent.

Example Languages

Example Languages

1. Data values appear at most once. Check that each class string has length one.

Example Languages

1. Data values appear at most once. Check that each class string has length one.

2. The first and last data values are the same. Mark the first and last position

with special signs. Check that they are in the same class string.

Example Languages

1. Data values appear at most once. Check that each class string has length one.

2. The first and last data values are the same. Mark the first and last position

with special signs. Check that they are in the same class string.

3. Every class begins with an a and has a b in it. Copy the string projection.

Check that all class strings begin with a and contain a b.

Example Languages

1. Data values appear at most once. Check that each class string has length one.

2. The first and last data values are the same. Mark the first and last position

with special signs. Check that they are in the same class string.

3. Every class begins with an a and has a b in it. Copy the string projection.

Check that all class strings begin with a and contain a b.

A language that isn’t recognized:

Between any two occurrences of b, no data value appears more than once.

Example Languages

1. Data values appear at most once. Check that each class string has length one.

2. The first and last data values are the same. Mark the first and last position

with special signs. Check that they are in the same class string.

3. Every class begins with an a and has a b in it. Copy the string projection.

Check that all class strings begin with a and contain a b.

A language that isn’t recognized:

Between any two occurrences of b, no data value appears more than once.

This example also illustrates that the class of recognized languages is not closed

under Kleene *.

Register automata [Kaminski & Frances, Neven &

Schwentick & Vianu]

A register automaton is a tuple (Q,Σ,∆, P, qI , k, F), where

• k is the number of registers, and

• P is a set of transitions of the form (i, p, a)→ q or (p, a)→ (i, q), where

i ∈ {1, . . . , k}, a ∈ Σ and p, q ∈ Q.

Register automata [Kaminski & Frances, Neven &

Schwentick & Vianu]

A register automaton is a tuple (Q,Σ,∆, P, qI , k, F), where

• k is the number of registers, and

• P is a set of transitions of the form (i, p, a)→ q or (p, a)→ (i, q), where

i ∈ {1, . . . , k}, a ∈ Σ and p, q ∈ Q.

A configuration is a pair (p, f), where p ∈ Q and f : {1, . . . , k} → (∆ ∪ {⊥}) is a

register assignment.

Register automata [Kaminski & Frances, Neven &

Schwentick & Vianu]

A register automaton is a tuple (Q,Σ,∆, P, qI , k, F), where

• k is the number of registers, and

• P is a set of transitions of the form (i, p, a)→ q or (p, a)→ (i, q), where

i ∈ {1, . . . , k}, a ∈ Σ and p, q ∈ Q.

A configuration is a pair (p, f), where p ∈ Q and f : {1, . . . , k} → (∆ ∪ {⊥}) is a

register assignment.

We can go from (p, f) to (p′, f ′) with transition (i, a, p)→ p′ when reading (a, d) if

f(i) = d.

Register automata [Kaminski & Frances, Neven &

Schwentick & Vianu]

A register automaton is a tuple (Q,Σ,∆, P, qI , k, F), where

• k is the number of registers, and

• P is a set of transitions of the form (i, p, a)→ q or (p, a)→ (i, q), where

i ∈ {1, . . . , k}, a ∈ Σ and p, q ∈ Q.

A configuration is a pair (p, f), where p ∈ Q and f : {1, . . . , k} → (∆ ∪ {⊥}) is a

register assignment.

We can go from (p, f) to (p′, f ′) with transition (i, a, p)→ p′ when reading (a, d) if

f(i) = d.

We can go from (p, f) to (p′, f ′) with transition (p, a)→ (i, p′) if f(j) 6= d, for all i,

and f ′ = f except for f ′(i) = d.

Register automata [Kaminski & Frances, Neven &

Schwentick & Vianu]

A register automaton is a tuple (Q,Σ,∆, P, qI , k, F), where

• k is the number of registers, and

• P is a set of transitions of the form (i, p, a)→ q or (p, a)→ (i, q), where

i ∈ {1, . . . , k}, a ∈ Σ and p, q ∈ Q.

A configuration is a pair (p, f), where p ∈ Q and f : {1, . . . , k} → (∆ ∪ {⊥}) is a

register assignment.

We can go from (p, f) to (p′, f ′) with transition (i, a, p)→ p′ when reading (a, d) if

f(i) = d.

We can go from (p, f) to (p′, f ′) with transition (p, a)→ (i, p′) if f(j) 6= d, for all i,

and f ′ = f except for f ′(i) = d.

Weakness: Only remembers k data values. Cannot check all regular properties of

class strings, e.g. “each class string has length one”.

Schematic Picture

D-PA DatA + Sync 2D-CMA Undecidable

DecidableCMA + Reset DatA + restr. Sync

CMA
DatA

EMSO2(+1, <,∼,⊕)

FO2(+1, <,∼) RA D-CMA

D-RA D-DatA

Register Automata to Class-Memory Automata

Theorem. Register automata are strictly weaker than class-memory automata.

Register Automata to Class-Memory Automata

Theorem. Register automata are strictly weaker than class-memory automata.

We are given an RA R.

• Associate every accepting run of R with a valid colored trace. (Shown here)

• Show that there is a CMA that determines, for each data word, whether it

has a valid colored trace w.r.t. R. (Not shown here)

Register Automata to Class-Memory Automata

Theorem. Register automata are strictly weaker than class-memory automata.

We are given an RA R.

• Associate every accepting run of R with a valid colored trace. (Shown here)

• Show that there is a CMA that determines, for each data word, whether it

has a valid colored trace w.r.t. R. (Not shown here)

For each 1 ≤ i ≤ k, let Γi = {〈i〉, i, 〈/i〉} and Γ =
Q
i Γi.

Register Automata to Class-Memory Automata

Theorem. Register automata are strictly weaker than class-memory automata.

We are given an RA R.

• Associate every accepting run of R with a valid colored trace. (Shown here)

• Show that there is a CMA that determines, for each data word, whether it

has a valid colored trace w.r.t. R. (Not shown here)

For each 1 ≤ i ≤ k, let Γi = {〈i〉, i, 〈/i〉} and Γ =
Q
i Γi.

A trace is a string over Q× Γ, such that for each i, the i-projection is of the form

(〈i〉i∗〈/i〉+ 〈/i〉)∗.

Register Automata to Class-Memory Automata

Theorem. Register automata are strictly weaker than class-memory automata.

We are given an RA R.

• Associate every accepting run of R with a valid colored trace. (Shown here)

• Show that there is a CMA that determines, for each data word, whether it

has a valid colored trace w.r.t. R. (Not shown here)

For each 1 ≤ i ≤ k, let Γi = {〈i〉, i, 〈/i〉} and Γ =
Q
i Γi.

A trace is a string over Q× Γ, such that for each i, the i-projection is of the form

(〈i〉i∗〈/i〉+ 〈/i〉)∗.
Let ρ = (q0, τ0), . . . , (qn, τn) be a run of R on w = (a1, d1) . . . (an, dn).

Register Automata to Class-Memory Automata

Theorem. Register automata are strictly weaker than class-memory automata.

We are given an RA R.

• Associate every accepting run of R with a valid colored trace. (Shown here)

• Show that there is a CMA that determines, for each data word, whether it

has a valid colored trace w.r.t. R. (Not shown here)

For each 1 ≤ i ≤ k, let Γi = {〈i〉, i, 〈/i〉} and Γ =
Q
i Γi.

A trace is a string over Q× Γ, such that for each i, the i-projection is of the form

(〈i〉i∗〈/i〉+ 〈/i〉)∗.
Let ρ = (q0, τ0), . . . , (qn, τn) be a run of R on w = (a1, d1) . . . (an, dn).

A step of ρ is closing if it affects i, for some i, and there is no later step affecting i,

or the next such step is a write-transition.

We construct a trace t(ρ) = t1 . . . tn.

• If the jth step of ρ is a read transition (i, p, a)→ q, then tj is (q, 〈/i〉) if the

step is closing, otherwise (q, i).

• If the jth step is a write transition (p, a)→ (q, i), then tj is (q, 〈i〉) if the step

is closing, otherwise (q, 〈/i〉).

We construct a trace t(ρ) = t1 . . . tn.

• If the jth step of ρ is a read transition (i, p, a)→ q, then tj is (q, 〈/i〉) if the

step is closing, otherwise (q, i).

• If the jth step is a write transition (p, a)→ (q, i), then tj is (q, 〈i〉) if the step

is closing, otherwise (q, 〈/i〉).

A colored trace is a trace where each position is colored by 0 or 1.

We construct a trace t(ρ) = t1 . . . tn.

• If the jth step of ρ is a read transition (i, p, a)→ q, then tj is (q, 〈/i〉) if the

step is closing, otherwise (q, i).

• If the jth step is a write transition (p, a)→ (q, i), then tj is (q, 〈i〉) if the step

is closing, otherwise (q, 〈/i〉).

A colored trace is a trace where each position is colored by 0 or 1.

Given (q1, s1, c1) . . . (qn, sn, cn) and (a1, d1) . . . (an, dn), define (for each j)

• v(j) as the maximal l < j such that dj = dl (if it exists)

• ri(j) as the maximal l < j such that sl ∈ Γi.

We construct a trace t(ρ) = t1 . . . tn.

• If the jth step of ρ is a read transition (i, p, a)→ q, then tj is (q, 〈/i〉) if the

step is closing, otherwise (q, i).

• If the jth step is a write transition (p, a)→ (q, i), then tj is (q, 〈i〉) if the step

is closing, otherwise (q, 〈/i〉).

A colored trace is a trace where each position is colored by 0 or 1.

Given (q1, s1, c1) . . . (qn, sn, cn) and (a1, d1) . . . (an, dn), define (for each j)

• v(j) as the maximal l < j such that dj = dl (if it exists)

• ri(j) as the maximal l < j such that sl ∈ Γi.

A colored trace is valid w.r.t. R and w if there are appropriate transitions, qn is

accepting, and for each j, one of the following conditions holds.

We construct a trace t(ρ) = t1 . . . tn.

• If the jth step of ρ is a read transition (i, p, a)→ q, then tj is (q, 〈/i〉) if the

step is closing, otherwise (q, i).

• If the jth step is a write transition (p, a)→ (q, i), then tj is (q, 〈i〉) if the step

is closing, otherwise (q, 〈/i〉).

A colored trace is a trace where each position is colored by 0 or 1.

Given (q1, s1, c1) . . . (qn, sn, cn) and (a1, d1) . . . (an, dn), define (for each j)

• v(j) as the maximal l < j such that dj = dl (if it exists)

• ri(j) as the maximal l < j such that sl ∈ Γi.

A colored trace is valid w.r.t. R and w if there are appropriate transitions, qn is

accepting, and for each j, one of the following conditions holds.

1. sj = i, for some i, cj = cv(j), sri(j) ∈ {〈i〉, i}, and sv(j) ∈ {〈i〉},

We construct a trace t(ρ) = t1 . . . tn.

• If the jth step of ρ is a read transition (i, p, a)→ q, then tj is (q, 〈/i〉) if the

step is closing, otherwise (q, i).

• If the jth step is a write transition (p, a)→ (q, i), then tj is (q, 〈i〉) if the step

is closing, otherwise (q, 〈/i〉).

A colored trace is a trace where each position is colored by 0 or 1.

Given (q1, s1, c1) . . . (qn, sn, cn) and (a1, d1) . . . (an, dn), define (for each j)

• v(j) as the maximal l < j such that dj = dl (if it exists)

• ri(j) as the maximal l < j such that sl ∈ Γi.

A colored trace is valid w.r.t. R and w if there are appropriate transitions, qn is

accepting, and for each j, one of the following conditions holds.

1. sj = i, for some i, cj = cv(j), sri(j) ∈ {〈i〉, i}, and sv(j) ∈ {〈i〉},
2. sj = 〈i〉, for some i, v(j) =⊥, and register i is closed,

We construct a trace t(ρ) = t1 . . . tn.

• If the jth step of ρ is a read transition (i, p, a)→ q, then tj is (q, 〈/i〉) if the

step is closing, otherwise (q, i).

• If the jth step is a write transition (p, a)→ (q, i), then tj is (q, 〈i〉) if the step

is closing, otherwise (q, 〈/i〉).

A colored trace is a trace where each position is colored by 0 or 1.

Given (q1, s1, c1) . . . (qn, sn, cn) and (a1, d1) . . . (an, dn), define (for each j)

• v(j) as the maximal l < j such that dj = dl (if it exists)

• ri(j) as the maximal l < j such that sl ∈ Γi.

A colored trace is valid w.r.t. R and w if there are appropriate transitions, qn is

accepting, and for each j, one of the following conditions holds.

1. sj = i, for some i, cj = cv(j), sri(j) ∈ {〈i〉, i}, and sv(j) ∈ {〈i〉},
2. sj = 〈i〉, for some i, v(j) =⊥, and register i is closed,

3. sj = 〈i〉, for some i, sv(j) = 〈p〉, for some p, register i is closed, and

cv(j) 6= crp(j),

We construct a trace t(ρ) = t1 . . . tn.

• If the jth step of ρ is a read transition (i, p, a)→ q, then tj is (q, 〈/i〉) if the

step is closing, otherwise (q, i).

• If the jth step is a write transition (p, a)→ (q, i), then tj is (q, 〈i〉) if the step

is closing, otherwise (q, 〈/i〉).

A colored trace is a trace where each position is colored by 0 or 1.

Given (q1, s1, c1) . . . (qn, sn, cn) and (a1, d1) . . . (an, dn), define (for each j)

• v(j) as the maximal l < j such that dj = dl (if it exists)

• ri(j) as the maximal l < j such that sl ∈ Γi.

A colored trace is valid w.r.t. R and w if there are appropriate transitions, qn is

accepting, and for each j, one of the following conditions holds.

1. sj = i, for some i, cj = cv(j), sri(j) ∈ {〈i〉, i}, and sv(j) ∈ {〈i〉},
2. sj = 〈i〉, for some i, v(j) =⊥, and register i is closed,

3. sj = 〈i〉, for some i, sv(j) = 〈p〉, for some p, register i is closed, and

cv(j) 6= crp(j),

4. sj = 〈/i〉, for some i, and one of (1)-(3) applies.

Claim. Data word w is accepted by R iff there is a valid colored trace for w.

Claim. Data word w is accepted by R iff there is a valid colored trace for w.

(⇐) Straightforward. Important is that the coloring scheme makes sure that the

automaton doesn’t try to write a data letter into a register that already resides in

another register.

Claim. Data word w is accepted by R iff there is a valid colored trace for w.

(⇐) Straightforward. Important is that the coloring scheme makes sure that the

automaton doesn’t try to write a data letter into a register that already resides in

another register.

(⇒) (Sketch.) We have to show that every trace of an accepting run can be

extended to a valid colored trace.

Claim. Data word w is accepted by R iff there is a valid colored trace for w.

(⇐) Straightforward. Important is that the coloring scheme makes sure that the

automaton doesn’t try to write a data letter into a register that already resides in

another register.

(⇒) (Sketch.) We have to show that every trace of an accepting run can be

extended to a valid colored trace.

Pass through the trace from right to left.

Claim. Data word w is accepted by R iff there is a valid colored trace for w.

(⇐) Straightforward. Important is that the coloring scheme makes sure that the

automaton doesn’t try to write a data letter into a register that already resides in

another register.

(⇒) (Sketch.) We have to show that every trace of an accepting run can be

extended to a valid colored trace.

Pass through the trace from right to left.

Positions with i or 〈i〉 get the same color as their corresponding closing tag.

Claim. Data word w is accepted by R iff there is a valid colored trace for w.

(⇐) Straightforward. Important is that the coloring scheme makes sure that the

automaton doesn’t try to write a data letter into a register that already resides in

another register.

(⇒) (Sketch.) We have to show that every trace of an accepting run can be

extended to a valid colored trace.

Pass through the trace from right to left.

Positions with i or 〈i〉 get the same color as their corresponding closing tag.

For positions j with sj = 〈/i〉, let l > j be minimal s.t. dj = dl. Set cj = 1− cl.

Claim. Data word w is accepted by R iff there is a valid colored trace for w.

(⇐) Straightforward. Important is that the coloring scheme makes sure that the

automaton doesn’t try to write a data letter into a register that already resides in

another register.

(⇒) (Sketch.) We have to show that every trace of an accepting run can be

extended to a valid colored trace.

Pass through the trace from right to left.

Positions with i or 〈i〉 get the same color as their corresponding closing tag.

For positions j with sj = 〈/i〉, let l > j be minimal s.t. dj = dl. Set cj = 1− cl.
This gives a valid colored trace.

CMAs with Reset

Class-memory automata cannot recognize the language “between every two a

positions in the same class, there is a b”.

CMAs with Reset

Class-memory automata cannot recognize the language “between every two a

positions in the same class, there is a b”.

This property is expressible in LTL ↓1 (X,U) and by alternating 1-register

automata. [Demri & Lazić]

CMAs with Reset

Class-memory automata cannot recognize the language “between every two a

positions in the same class, there is a b”.

This property is expressible in LTL ↓1 (X,U) and by alternating 1-register

automata. [Demri & Lazić]

We extend CMAs by allowing reset transitions, erasing the memory for every class

(setting f(d) =⊥ for all d ∈ ∆).

CMAs with Reset

Class-memory automata cannot recognize the language “between every two a

positions in the same class, there is a b”.

This property is expressible in LTL ↓1 (X,U) and by alternating 1-register

automata. [Demri & Lazić]

We extend CMAs by allowing reset transitions, erasing the memory for every class

(setting f(d) =⊥ for all d ∈ ∆).

Condition: The reset transitions may only be taken if f(d) ∈ F2 ∪ {⊥} for all

d ∈ ∆.

CMAs with Reset

Class-memory automata cannot recognize the language “between every two a

positions in the same class, there is a b”.

This property is expressible in LTL ↓1 (X,U) and by alternating 1-register

automata. [Demri & Lazić]

We extend CMAs by allowing reset transitions, erasing the memory for every class

(setting f(d) =⊥ for all d ∈ ∆).

Condition: The reset transitions may only be taken if f(d) ∈ F2 ∪ {⊥} for all

d ∈ ∆.

We preserve decidability by using priority multicounter automata. When taking a

reset transition, empty the counters for F2, then zero-check all counters at once.

CMAs with Reset

Class-memory automata cannot recognize the language “between every two a

positions in the same class, there is a b”.

This property is expressible in LTL ↓1 (X,U) and by alternating 1-register

automata. [Demri & Lazić]

We extend CMAs by allowing reset transitions, erasing the memory for every class

(setting f(d) =⊥ for all d ∈ ∆).

Condition: The reset transitions may only be taken if f(d) ∈ F2 ∪ {⊥} for all

d ∈ ∆.

We preserve decidability by using priority multicounter automata. When taking a

reset transition, empty the counters for F2, then zero-check all counters at once.

Benefit: Can recognize the Kleene * of a data automaton language.

2-Way Deterministic CMA

2-Way Deterministic CMA

Theorem. Emptiness for 2-Way Deterministic CMA is undecidable.

2-Way Deterministic CMA

Theorem. Emptiness for 2-Way Deterministic CMA is undecidable.

The proof is by reduction from PCP.

The PCP

• Instances: (x1, y1), . . . , (xn, yn), where xi, yi ∈ {a, b}∗.
• Question: Is there a finite sequence i1, . . . , im such that

xi1 . . . xim = yi1 . . . yim?

2-Way Deterministic CMA

Theorem. Emptiness for 2-Way Deterministic CMA is undecidable.

The proof is by reduction from PCP.

The PCP

• Instances: (x1, y1), . . . , (xn, yn), where xi, yi ∈ {a, b}∗.
• Question: Is there a finite sequence i1, . . . , im such that

xi1 . . . xim = yi1 . . . yim?

Given instance I we construct a CMA A whose language is nonempty iff I has a

solution.

Encoding solution

Alphabet: {a, b,#} ∪ {1, . . . , n}.

Encoding solution

Alphabet: {a, b,#} ∪ {1, . . . , n}.
Construct the string i1xi1 . . . imxim#i1yi1 . . . imyim .

Encoding solution

Alphabet: {a, b,#} ∪ {1, . . . , n}.
Construct the string i1xi1 . . . imxim#i1yi1 . . . imyim .

• # gets a unique data value

• for 1 ≤ j ≤ m, both occurrences of ij get the same (unique) data value.

• two letter positions get the same data (unique) data value if they represent

the same position in xi1 . . . xim = yi1 . . . yim .

Encoding solution

Alphabet: {a, b,#} ∪ {1, . . . , n}.
Construct the string i1xi1 . . . imxim#i1yi1 . . . imyim .

• # gets a unique data value

• for 1 ≤ j ≤ m, both occurrences of ij get the same (unique) data value.

• two letter positions get the same data (unique) data value if they represent

the same position in xi1 . . . xim = yi1 . . . yim .

Constructing A

A should accept only correct encodings of solutions to I.

Encoding solution

Alphabet: {a, b,#} ∪ {1, . . . , n}.
Construct the string i1xi1 . . . imxim#i1yi1 . . . imyim .

• # gets a unique data value

• for 1 ≤ j ≤ m, both occurrences of ij get the same (unique) data value.

• two letter positions get the same data (unique) data value if they represent

the same position in xi1 . . . xim = yi1 . . . yim .

Constructing A

A should accept only correct encodings of solutions to I.

1. Check that each data value appears exactly twice (except the one for #).

Encoding solution

Alphabet: {a, b,#} ∪ {1, . . . , n}.
Construct the string i1xi1 . . . imxim#i1yi1 . . . imyim .

• # gets a unique data value

• for 1 ≤ j ≤ m, both occurrences of ij get the same (unique) data value.

• two letter positions get the same data (unique) data value if they represent

the same position in xi1 . . . xim = yi1 . . . yim .

Constructing A

A should accept only correct encodings of solutions to I.

1. Check that each data value appears exactly twice (except the one for #).

2. For each 1 ≤ j ≤ m, check that the string following ij is xij (yij).

Encoding solution

Alphabet: {a, b,#} ∪ {1, . . . , n}.
Construct the string i1xi1 . . . imxim#i1yi1 . . . imyim .

• # gets a unique data value

• for 1 ≤ j ≤ m, both occurrences of ij get the same (unique) data value.

• two letter positions get the same data (unique) data value if they represent

the same position in xi1 . . . xim = yi1 . . . yim .

Constructing A

A should accept only correct encodings of solutions to I.

1. Check that each data value appears exactly twice (except the one for #).

2. For each 1 ≤ j ≤ m, check that the string following ij is xij (yij).

3. Check that the sequences of indices are the same on both sides of #.

Encoding solution

Alphabet: {a, b,#} ∪ {1, . . . , n}.
Construct the string i1xi1 . . . imxim#i1yi1 . . . imyim .

• # gets a unique data value

• for 1 ≤ j ≤ m, both occurrences of ij get the same (unique) data value.

• two letter positions get the same data (unique) data value if they represent

the same position in xi1 . . . xim = yi1 . . . yim .

Constructing A

A should accept only correct encodings of solutions to I.

1. Check that each data value appears exactly twice (except the one for #).

2. For each 1 ≤ j ≤ m, check that the string following ij is xij (yij).

3. Check that the sequences of indices are the same on both sides of #.

4. Check that the strings formed by the text positions are the same on both

sides of #.

Model Checking (Word Problem)

We consider the model checking problem for CMA and RA, w.r.t. data complexity

and combined complexity.

Model Checking (Word Problem)

We consider the model checking problem for CMA and RA, w.r.t. data complexity

and combined complexity.

For deterministic CMA and RA, model checking is polynomial.

Model Checking (Word Problem)

We consider the model checking problem for CMA and RA, w.r.t. data complexity

and combined complexity.

For deterministic CMA and RA, model checking is polynomial.

Proposition. For CMA, the data complexity of model checking is NP-complete.

Proof is by reduction from 3-SAT.

Model Checking (Word Problem)

We consider the model checking problem for CMA and RA, w.r.t. data complexity

and combined complexity.

For deterministic CMA and RA, model checking is polynomial.

Proposition. For CMA, the data complexity of model checking is NP-complete.

Proof is by reduction from 3-SAT.

Proposition. For RA, the data complexity of model checking is polynomial.

When reading input w, there are at most |Q| ·
`|w|
k

´
· k!

Proposition. For RA, the combined complexity of model checking is

NP-complete.

Proof is by reduction from 3-SAT.

The complexity of model checking for RA depends strongly on the number of

registers.

The complexity of model checking for RA depends strongly on the number of

registers.

Proposition. Model checking for RA, parameterized by the number of registers,

is W [1]-hard.

The complexity of model checking for RA depends strongly on the number of

registers.

Proposition. Model checking for RA, parameterized by the number of registers,

is W [1]-hard.

By reduction from k-Clique.

The complexity of model checking for RA depends strongly on the number of

registers.

Proposition. Model checking for RA, parameterized by the number of registers,

is W [1]-hard.

By reduction from k-Clique.

Given G = (V,E), let Σ = V .

The complexity of model checking for RA depends strongly on the number of

registers.

Proposition. Model checking for RA, parameterized by the number of registers,

is W [1]-hard.

By reduction from k-Clique.

Given G = (V,E), let Σ = V .

Encode G as a data word uv, where u enumerates the vertices, and v is

enumerates the edges not in G as vertex pairs. Every time a vertex appears, it has

the same (unique) data value.

The complexity of model checking for RA depends strongly on the number of

registers.

Proposition. Model checking for RA, parameterized by the number of registers,

is W [1]-hard.

By reduction from k-Clique.

Given G = (V,E), let Σ = V .

Encode G as a data word uv, where u enumerates the vertices, and v is

enumerates the edges not in G as vertex pairs. Every time a vertex appears, it has

the same (unique) data value.

A RA with k + 1 registers can nondeterministically guess k vertices while reading

u. It then checks that no pair represents an edge between two guessed vertices.

Open Problems

Open Problems

Closure properties. What are reasonable definitions of homomorphisms?

Open Problems

Closure properties. What are reasonable definitions of homomorphisms?

Algebraic properties

Open Problems

Closure properties. What are reasonable definitions of homomorphisms?

Algebraic properties

Alternative characterizations for deterministic CMAs

Open Problems

Closure properties. What are reasonable definitions of homomorphisms?

Algebraic properties

Alternative characterizations for deterministic CMAs

How hard is it to determine whether L(r) ∩ L(r′)⊗ = ∅?

