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Let Σ be a finite alphabet, and ∆ an infinite data set.

Then any L ⊆ (Σ×∆)∗ is a data language.

Motivations

XML databases. Attribute values often belong to an infinite domain.

Parameterized verification. If a protocol is parameterized by the number of

processes involved, process IDs can be seen as values from an infinite domain.

Regular model checking defines regular sets of global states, and checks

reachability w.r.t. length-preserving transducers.

When looking at computations as sequences of actions, we can instead check that

the global sequence and the sequences belonging to individual processes fulfill

regular properties.

In other words, given regular expressions r1 and r2, we look at languages of the

type L(r1) ∩ L(r2)⊗.
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A class-memory automaton (CMA) is a tuple (Q,Σ,∆, δ, qI , F1, F2), where

1. δ : (Q× Σ× (Q ∪ {⊥}))→ 2Q is the transition function,

2. F1 is the set of globally accepting states, and

3. F2 is the set of locally accepting states.

A configuration is a pair (q, f), where q ∈ Q and f : ∆→ (Q ∪ {⊥}).
The automaton can go from (q, f) to (q′, f ′) when reading (a, d) if

1. f(d) = q′′ and q′ ∈ δ(q, a, q′′),
2. f ′(d) = q′, and

3. f ′(d′) = f(d) for all d′ 6= d.

The automaton accepts a word w if, after reading w, it is in a configuration (q, f)

s.t.

1. q ∈ F1, and

2. ∀d ∈ ∆ : f(d) ∈ F2 ∪ {⊥}.
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p1

p1

p2 p3

a, b, c/ ⊥
a, b, c/(p2, q2)

a, b, c/ ⊥
a/(p2, q3)

a/ ⊥c/ ⊥

a, b, c/p2

a/ ⊥b/p3

b/p3

a, c/p3a, b, c/p2
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Data Automata[Bojańczyk, David, Muscholl, Schwentick, Segoufin]

A data automaton D has two parts, the Base automaton A and the class

automaton B.

A is a nondeterministic transducer, which reads marked string projections, and

writes symbols from a finite alphabet Γ.

B is an NFA, which reads class strings from Γ∗.

Proposition. Class-memory automata and data automata are equivalent.
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1. Data values appear at most once. Check that each class string has length one.

2. The first and last data values are the same. Mark the first and last position

with special signs. Check that they are in the same class string.

3. Every class begins with an a and has a b in it. Copy the string projection.

Check that all class strings begin with a and contain a b.

A language that isn’t recognized:

Between any two occurrences of b, no data value appears more than once.

This example also illustrates that the class of recognized languages is not closed

under Kleene *.
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Register automata [Kaminski & Frances, Neven &

Schwentick & Vianu]

A register automaton is a tuple (Q,Σ,∆, P, qI , k, F ), where

• k is the number of registers, and

• P is a set of transitions of the form (i, p, a)→ q or (p, a)→ (i, q), where

i ∈ {1, . . . , k}, a ∈ Σ and p, q ∈ Q.

A configuration is a pair (p, f), where p ∈ Q and f : {1, . . . , k} → (∆ ∪ {⊥}) is a

register assignment.

We can go from (p, f) to (p′, f ′) with transition (i, a, p)→ p′ when reading (a, d) if

f(i) = d.

We can go from (p, f) to (p′, f ′) with transition (p, a)→ (i, p′) if f(j) 6= d, for all i,

and f ′ = f except for f ′(i) = d.

Weakness: Only remembers k data values. Cannot check all regular properties of

class strings, e.g. “each class string has length one”.



Schematic Picture

D-PA DatA + Sync 2D-CMA Undecidable

DecidableCMA + Reset DatA + restr. Sync

CMA
DatA

EMSO2(+1, <,∼,⊕)

FO2(+1, <,∼) RA D-CMA

D-RA D-DatA
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• Show that there is a CMA that determines, for each data word, whether it
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Claim. Data word w is accepted by R iff there is a valid colored trace for w.

(⇐) Straightforward. Important is that the coloring scheme makes sure that the

automaton doesn’t try to write a data letter into a register that already resides in

another register.

(⇒) (Sketch.) We have to show that every trace of an accepting run can be

extended to a valid colored trace.

Pass through the trace from right to left.

Positions with i or 〈i〉 get the same color as their corresponding closing tag.

For positions j with sj = 〈/i〉, let l > j be minimal s.t. dj = dl. Set cj = 1− cl.
This gives a valid colored trace.
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CMAs with Reset

Class-memory automata cannot recognize the language “between every two a
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CMAs with Reset

Class-memory automata cannot recognize the language “between every two a

positions in the same class, there is a b”.

This property is expressible in LTL ↓1 (X,U) and by alternating 1-register

automata. [Demri & Lazić]

We extend CMAs by allowing reset transitions, erasing the memory for every class

(setting f(d) =⊥ for all d ∈ ∆).

Condition: The reset transitions may only be taken if f(d) ∈ F2 ∪ {⊥} for all

d ∈ ∆.

We preserve decidability by using priority multicounter automata. When taking a

reset transition, empty the counters for F2, then zero-check all counters at once.

Benefit: Can recognize the Kleene * of a data automaton language.
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solution.
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Encoding solution

Alphabet: {a, b,#} ∪ {1, . . . , n}.
Construct the string i1xi1 . . . imxim#i1yi1 . . . imyim .

• # gets a unique data value

• for 1 ≤ j ≤ m, both occurrences of ij get the same (unique) data value.

• two letter positions get the same data (unique) data value if they represent

the same position in xi1 . . . xim = yi1 . . . yim .

Constructing A

A should accept only correct encodings of solutions to I.

1. Check that each data value appears exactly twice (except the one for #).

2. For each 1 ≤ j ≤ m, check that the string following ij is xij (yij ).

3. Check that the sequences of indices are the same on both sides of #.

4. Check that the strings formed by the text positions are the same on both

sides of #.
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We consider the model checking problem for CMA and RA, w.r.t. data complexity

and combined complexity.

For deterministic CMA and RA, model checking is polynomial.

Proposition. For CMA, the data complexity of model checking is NP-complete.

Proof is by reduction from 3-SAT.

Proposition. For RA, the data complexity of model checking is polynomial.

When reading input w, there are at most |Q| ·
`|w|
k

´
· k!

Proposition. For RA, the combined complexity of model checking is

NP-complete.

Proof is by reduction from 3-SAT.
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The complexity of model checking for RA depends strongly on the number of

registers.

Proposition. Model checking for RA, parameterized by the number of registers,

is W [1]-hard.

By reduction from k-Clique.

Given G = (V,E), let Σ = V .

Encode G as a data word uv, where u enumerates the vertices, and v is

enumerates the edges not in G as vertex pairs. Every time a vertex appears, it has

the same (unique) data value.

A RA with k + 1 registers can nondeterministically guess k vertices while reading

u. It then checks that no pair represents an edge between two guessed vertices.
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Open Problems

Closure properties. What are reasonable definitions of homomorphisms?

Algebraic properties

Alternative characterizations for deterministic CMAs

How hard is it to determine whether L(r) ∩ L(r′)⊗ = ∅?


