Myhill-Nerode theory
for fuzzy languages and automata

Jelena Ignjatović and Miroslav Ćirić
University of Niš, Serbia
The original Zadeh’s definition of a fuzzy set is:

A fuzzy subset of a set A is any mapping $f : A \to [0, 1]$, where $[0, 1]$ is the real unit closed interval.

For $x \in A$, the value $f(x)$ is interpreted as

the degree of membership of x to f

that is

the truth value of the proposition $'x \in f'$

Of course, if f takes values only in the set $\{0, 1\}$, then it is treated as an ordinary crisp subset of A.
Nowadays, various more general structures of truth values are used instead of $[0, 1]$.

- Gödel algebras (algebraic counterpart of the Gödel logic)
- MV-algebras or Wajsberg algebras (Łukasiewicz logic)
- Product algebras (Product logic)
- BL-algebras (Basic fuzzy logic)
- Heyting algebras (Intuitionistic logic)
- Complete residuated lattices (Residuated logic)
- Complete orthomodular lattices (Quantum logic), and others.

Here we work with **complete residuated lattices**, which include the first five kinds of the above mentioned algebras as special cases.
A residuated lattice is an algebra $\mathcal{L} = (L, \land, \lor, \otimes, \rightarrow, 0, 1)$ satisfying the following conditions

(L1) $(L, \land, \lor, 0, 1)$ is a lattice with the least element 0 and the greatest element 1,
(L2) $(L, \otimes, 1)$ is a commutative monoid with the unit 1,
(L3) \otimes and \rightarrow form an adjoint pair, i.e., they satisfy the adjunction property: for all $x, y, z \in L$,

$$x \otimes y \leq z \iff x \leq y \rightarrow z.$$

If, in addition, $(L, \land, \lor, 0, 1)$ is a complete lattice, then \mathcal{L} is called a complete residuated lattice.
The operation \otimes is called a \textit{multiplication}, and \rightarrow a \textit{residuum}.

They are intended for modeling the \textit{conjunction} and \textit{implication} of the corresponding logical calculus.

Supremum \lor and infimum \land are intended for modeling of the \textit{general} and \textit{existential quantifier}, respectively.

A \textit{biresiduum} or \textit{biimplication} in \mathcal{L} is an operation \leftrightarrow defined by

$$x \leftrightarrow y = (x \rightarrow y) \land (y \rightarrow x),$$

It is used for modeling the \textit{equivalence} of truth values.

A \textit{negation} in \mathcal{L} is a unary operation \neg defined by

$$\neg x = x \rightarrow 0.$$
The most studied and applied set of truth values is the real unit interval $[0, 1]$ with

$$x \land y = \min(x, y), \quad x \lor y = \max(x, y),$$

and three important pairs of adjoint operations:

- Łukasiewicz operations

$$x \otimes y = \max(x + y - 1, 0), \quad x \rightarrow y = \min(1 - x + y, 1),$$

$$x \leftrightarrow y = 1 - |x - y|, \quad \neg x = 1 - x;$$
Łukasiewicz, Product and Gödel Operations

Product operations

\[x \otimes y = x \cdot y, \quad x \rightarrow y = \begin{cases} 1 & \text{if } x \leq y \\ y/x & \text{otherwise} \end{cases}, \]

\[x \leftrightarrow y = \frac{\min(x, y)}{\max(x, y)}, \quad \neg x = \begin{cases} 1 & \text{for } x = 0 \\ 0 & \text{for } x > 0 \end{cases}; \]

Gödel operations

\[x \otimes y = \min(x, y), \quad x \rightarrow y = \begin{cases} 1 & \text{if } x \leq y \\ y & \text{otherwise} \end{cases}, \]

\[x \leftrightarrow y = \begin{cases} 1 & \text{for } x = y \\ \min(x, y) & \text{otherwise} \end{cases}, \quad \neg x = \begin{cases} 1 & \text{for } x = 0 \\ 0 & \text{for } x > 0 \end{cases}; \]
Another important set of truth values is
\[\{a_0, a_1, \ldots, a_n\}, \quad 0 = a_0 < \cdots < a_n = 1, \]

with
\[a_k \otimes a_l = a_{\max(k+l-n,0)}, \quad a_k \rightarrow a_l = a_{\min(n-k+l,n)}. \]

A special case of the latter algebras is the two-element Boolean algebra of classical logic with the support \(\{0, 1\} \).

The only adjoint pair on it consist of the classical conjunction and implication operations.
Let \mathcal{L} will be a complete residuated lattice.

A **fuzzy subset** of a set A over \mathcal{L}, or simply a fuzzy subset of A, is any mapping $f : A \rightarrow \mathcal{L}$.

The set $\mathcal{F}(A)$ of all fuzzy subsets of A we call the **fuzzy power set** of A.

For $f, g \in \mathcal{F}(A)$ we define

Equality: $f = g$ if and only if $f(x) = g(x)$, for every $x \in A$

Inclusion: $f \leq g$ if and only if $f(x) \leq g(x)$, for every $x \in A$

The **meet** or **intersection** $\bigwedge_{i \in I} f_i$ and the **join** or **union** $\bigvee_{i \in I} f_i$ of a family $\{f_i\}_{i \in I} \subseteq \mathcal{F}(A)$ are mappings from A into \mathcal{L} defined by

$$\left(\bigwedge_{i \in I} f_i \right)(x) = \bigwedge_{i \in I} f_i(x), \quad \left(\bigvee_{i \in I} f_i \right)(x) = \bigvee_{i \in I} f_i(x).$$
The crisp part of a fuzzy subset $f \in \mathcal{F}(A)$ is a crisp set defined by

$$\hat{f} = \{ x \in A | f(x) = 1 \}.$$

A fuzzy relation on A is any mapping $\mu : A \times A \rightarrow L$, i.e., any fuzzy subset of $A \times A$.

Hence, the equality, inclusion, joins, meets and ordering of fuzzy relations are defined as for fuzzy sets.
A fuzzy relation μ on A is said to be

(R) reflexive or fuzzy reflexive if $\mu(x, x) = 1$, for every $x \in A$;

(S) symmetric or fuzzy symmetric if $\mu(x, y) = \mu(y, x)$, for all $x, y \in A$;

(T) transitive or fuzzy transitive if for all $x, a, y \in A$

$$
\mu(x, a) \otimes \mu(a, y) \leq \mu(x, y).
$$

A reflexive, symmetric and transitive fuzzy relation on A is called a fuzzy equivalence relation, or just a fuzzy equivalence, on A.

With respect to the ordering of fuzzy relations, the set $E(A)$ of all fuzzy equivalence relations on a set A is a complete lattice.
Let μ be a fuzzy equivalence relation on A.

For each $a \in A$ we define $\mu_a \in \mathcal{F}(A)$, i.e., $\mu_a : A \to L$, by:

$$\mu_a(x) = \mu(a, x), \quad \text{for every } x \in A.$$

We call μ_a a fuzzy equivalence class, or just an equivalence class, of μ determined by the element a.

The set $A/\mu = \{\mu_a \mid a \in A\}$ is called the factor set of A w.r.t. μ. Its cardinality $|A/\mu|$ is called the index of μ, in notation $\text{ind}(\mu)$.

A fuzzy subset $f \in \mathcal{F}(A)$ is said to be extensional w.r.t. μ if

$$f(x) \otimes \mu(x, y) \leq f(y),$$

for all $x, y \in A$.

Myhill-Nerode Theory for Fuzzy Languages and Automata
A fuzzy automaton over \(\mathcal{L} \), or simply a fuzzy automaton, is a triple \(\mathcal{A} = (A, X, \delta) \), where

- \(A \) and \(X \) are sets, called respectively a set of states and an input alphabet,
- \(\delta : A \times X \times A \rightarrow L \) is a fuzzy subset of \(A \times X \times A \), called a fuzzy transition function.

We will always assume that the input alphabet \(X \) is finite, but from methodological reasons we will allow the set of states \(A \) to be infinite.

A fuzzy automaton whose set of states is finite is called a finite fuzzy automaton.
Let X^* denote the free monoid over the alphabet X.

The mapping δ can be extended up to a mapping $\delta^* : A \times X^* \times A \to L$ as follows: If $a, b \in A$ and $e \in X^*$ is the empty word, then

$$\delta^*(a, e, b) = \begin{cases} 1 & \text{if } a = b \\ 0 & \text{otherwise} \end{cases},$$

and if $a, b \in A$, $u \in X^*$ and $x \in X$, then

$$\delta^*(a, ux, b) = \bigvee_{c \in A} \delta^*(a, u, c) \otimes \delta(c, x, b).$$

We have that for all $a, b \in A$ and $u, v \in X^*$,

$$\delta^*(a, uv, b) = \bigvee_{c \in A} \delta^*(a, u, c) \otimes \delta^*(c, v, b).$$
If δ is a crisp subset of $A \times X \times A$, i.e., $\delta : A \times X \times A \rightarrow \{0, 1\}$, then \mathcal{A} is an ordinary crisp **nondeterministic automaton**.

Moreover, if δ is a mapping of $A \times X$ into A, then \mathcal{A} is an ordinary **deterministic automaton**.

Evidently, in these two cases we have that δ^* is also a crisp subset of $A \times X^* \times A$, and a mapping of $A \times X^*$ into A, respectively.

Let $\mathcal{A} = (A, X, \delta)$ be a fuzzy automaton.

Then $\hat{\delta}$, the crisp part of δ, is a crisp subset of $A \times X \times A$, and $\hat{\mathcal{A}} = (A, X, \hat{\delta})$ is a nondeterministic automaton, called the **crisp part** of the fuzzy automaton \mathcal{A}.
A fuzzy language is any fuzzy subset of a free monoid.

A fuzzy automaton \(\mathcal{A} = (A, X, \delta) \) is said to recognize a fuzzy language \(f \in \mathcal{F}(X^*) \), by a fuzzy set \(\sigma \) of initial states and a fuzzy set \(\tau \) of final states, if for any \(u \in X^* \),

\[
f(u) = \bigvee_{a,b \in A} \sigma(a) \otimes \delta^*(a, u, b) \otimes \tau(b).
\]

Here we consider only those fuzzy automata having a single crisp initial state \(\{a_0\} \).

In this case, \(\mathcal{A} \) is said to recognize a fuzzy language \(f \in \mathcal{F}(X^*) \) by a crisp initial state \(a_0 \) and a fuzzy set \(\tau \) of final states, if for any \(u \in X^* \),

\[
f(u) = \bigvee_{b \in A} \delta^*(a_0, u, b) \otimes \tau(b).
\]
In particular, if \mathcal{A} is a deterministic automaton, i.e., $\delta : A \times X \rightarrow A$, then it recognizes a fuzzy language $f \in \mathcal{F}(X^*)$ by a crisp initial state a_0 and a fuzzy set τ of final states, if for any $u \in X^*$,

$$f(u) = \tau(\delta^*(a_0, u)).$$
A fuzzy equivalence relation μ on a semigroup S is

- a fuzzy left congruence, if $\mu(a, b) \leq \mu(xa, xb)$, for all $a, b, x \in S$,
- a fuzzy right congruence, if $\mu(a, b) \leq \mu(ax, bx)$, for all $a, b, x \in S$,
- a fuzzy congruence, if it is both fuzzy left and right congruence.

For a fuzzy equivalence relation μ on a semigroup S we define fuzzy relations μ^0_l, μ^0_r and μ^0 on S by

$$
\mu^0_l(a, b) = \bigwedge_{x \in S^1} \mu(xa, xb), \quad \mu^0_r(a, b) = \bigwedge_{x \in S^1} \mu(ax, bx),
$$

$$
\mu^0(a, b) = \bigwedge_{x, y \in S^1} \mu(xay, xby),
$$

for all $a, b \in S$.

We have that

1. μ_0^l is the largest fuzzy left congruence on S contained in μ;
2. μ_0^r is the largest fuzzy right congruence on S contained in μ;
3. μ_0^l is the largest fuzzy congruence on S contained in μ;
4. if μ is a fuzzy right (left) congruence, then $\mu^0 = \mu_0^l$ ($\mu^0 = \mu_0^r$).

Therefore, the mappings $\mu \mapsto \mu_0^l$, $\mu \mapsto \mu_0^r$ and $\mu \mapsto \mu^0$ are opening operators on the lattice of fuzzy equivalence relations on S, so

1. μ_0^l is called the fuzzy left congruence opening of μ,
2. μ_0^r is the fuzzy right congruence opening of μ,
3. μ^0 is the fuzzy congruence opening of μ.

Now, we will consider fuzzy right congruences on free monoids. Let μ be a fuzzy right congruence on a free monoid X^* and let $A_\mu = X^*/\mu$. We define a mapping $\delta_\mu : A_\mu \times X \times A_\mu \to L$ by

$$\delta_\mu(\mu_u, x, \mu_v) = \mu_{ux}(v),$$

for all $u, v \in X^*$ and $x \in X$.

The mapping δ_μ is well-defined, and $A_\mu = (A_\mu, X, \delta_\mu)$ is a fuzzy automaton, called a fuzzy right congruence automaton associated with μ.

The transition function can be extended to a function $\delta^*_\mu : A_\mu \times X^* \times A_\mu \to L$ by:

$$\delta^*_\mu(\mu_u, p, \mu_v) = \mu_{u_p}(v) = \mu(u_p, v),$$

for all $u, v \in X^*$ and $p \in X^+$.

Myhill-Nerode Theory for Fuzzy Languages and Automata

– 19 –
Note that δ^*_μ can be also characterized as follows:

$$\delta^*_\mu(\mu_u, p, \mu_v) = \bigwedge_{w \in X^*} \mu_{up}(w) \leftrightarrow \mu_v(w) = \bigvee_{w \in X^*} \mu_{up}(w) \otimes \mu_v(w),$$

for all $u, v, p \in X^*$.

These equalities can be interpreted as

"$\delta^*_\mu(\mu_u, p, \mu_v)$ is the degree of equality of the classes μ_{up} and μ_v", or

"$\delta^*_\mu(\mu_u, p, \mu_v)$ is the degree of intersection of the classes μ_{up} and μ_v"

A fuzzy right congruence automaton A_μ is usually considered as a fuzzy automaton with a crisp initial state μ_e, and then we write

$$A_\mu = (A_\mu, X, \mu_e, \delta_\mu).$$
When we recognize fuzzy languages by A_μ we always assume that A_μ starts from the crisp initial state μ_e.

We say that the automaton A_μ recognizes a fuzzy language $f \in \mathcal{F}(X^*)$ by a fuzzy set of final states $\tau \in \mathcal{F}(A_\mu)$ if

$$f(u) = \bigvee_{\xi \in A_\mu} \delta^*_\mu(\mu_e, u, \xi) \otimes \tau(\xi) = \bigvee_{w \in X^*} \delta^*_\mu(\mu_e, u, \mu_w) \otimes \tau(\mu_w),$$

for each $u \in X^*$.

Our main result is

Theorem 2. Let μ be a fuzzy right congruence on a free monoid X^*. A fuzzy language $f \in \mathcal{F}(X^*)$ is recognized by A_μ if and only if f is extensional with respect to μ.
As known, to any crisp right congruence π on a free monoid X^* we can associate a crisp deterministic automaton $A_\pi = (A_\pi, X, \lambda_\pi)$, where $A_\pi = X^*/\pi$ and a mapping $\lambda_\pi : A_\pi \times X \rightarrow A_\pi$ is defined by

$$\lambda_\pi(\pi_u, x) = \pi_{ux},$$

for all $u \in X^*$ and $x \in X$.

Also, λ_π can be extended up to $\lambda_\pi^* : A_\pi \times X^* \rightarrow A_\pi$ so that

$$\lambda_\pi^*(\pi_u, v) = \pi_{uv},$$

for all $u, v \in X^*$.
We prove the following:

Theorem 3. Let μ be a fuzzy right congruence on X^* and let $\hat{\mu}$ be its crisp part. Then

(a) $A_{\hat{\mu}}$ is the crisp part of A_μ;
(b) any $f \in \mathcal{F}(X^*)$ recognized by A_μ is also recognized by $A_{\hat{\mu}}$.

Theorem 4. For any fuzzy language $f \in \mathcal{F}(X^*)$ the following is true:

(a) A fuzzy relation ρ_f on X^* defined by

$$\rho_f(u, v) = \bigwedge_{w \in X^*} f(uw) \leftrightarrow f(vw), \text{ for any } u, v \in X^*,$$

is the greatest fuzzy right congruence on X^* such that f is extensional w.r.t. to it;
(b) $A_{\hat{\rho}_f}$ is a minimal deterministic automaton recognizing f.
For a fuzzy language $f \in \mathcal{F}(X^*)$ and $u \in X^*$, a fuzzy language $f_u \in \mathcal{F}(X^*)$ defined by

$$f_u(v) = f(uv), \quad \text{for each } v \in X^*,$$

is called a derivative or a (right quotient) of f with respect to u.

Let A_f be the set of all derivatives of f, i.e., $A_f = \{f_u \mid u \in X^*\}$, and define a mapping $\delta_f : A_f \times X \times A_f \to L$ by

$$(5) \quad \delta_f(f_u, x, f_v) = \bigwedge_{w \in X^*} f_{ux}(w) \leftrightarrow f_v(w),$$

for all $u, v \in X^*$ and $x \in X$.

We prove:

Theorem 5. For any $f \in \mathcal{F}(X^*)$, the mapping δ_f is well-defined and $A_f = (A_f, X, \delta_f)$ is a fuzzy automaton isomorphic to A_{ρ_f}.

For a fuzzy language $f \in \mathcal{F}(X^*)$, we also define a mapping $\lambda_f : A_f \times X \to A_f$ by

\[(6) \quad \lambda_f(fu, x) = fu_x,\]

for any $u \in X^*$ and $x \in X$.

Evidently, λ_f can be extended up to $\lambda_f^* : A_f \times X^* \to A_f$ so that

\[(7) \quad \lambda_f^*(fu, v) = fu_v,\]

for all $u, v \in X^*$.

Myhill-Nerode Theory for Fuzzy Languages and Automata
We also prove:

Theorem 6. For any fuzzy language $f \in \mathcal{F}(X^*)$, the mapping λ_f is well-defined and $B = (A_f, X, \lambda_f)$ is a deterministic automaton isomorphic to \hat{A}_f.

Moreover, B is the crisp part of A_f, that is $B = \hat{A}_f$.

Theorem 7. For any fuzzy language $f \in \mathcal{F}(X^*)$, both A_f and \hat{A}_f recognize f with the crisp initial state f and the fuzzy set of final states $\tau \in \mathcal{F}(A_f)$ defined by

$$\tau(g) = g(e),$$

for any derivative $g \in A_f$.
Given a fuzzy automaton $\mathcal{A} = (A, X, \delta)$ and a state $a \in A$.

A fuzzy relation ϱ_a on the free monoid X^* defined by

$$
\varrho_a(u, v) = \bigwedge_{b \in A} \delta^*(a, u, b) \leftrightarrow \delta^*(a, v, b),
$$

for $u, v \in X^*$, is called **Nerode’s fuzzy relation** determined by a.

If \mathcal{A} is an initial fuzzy automaton with a crisp initial state a_0, then
the fuzzy relation ϱ_{a_0} is denoted by $\varrho_\mathcal{A}$ and called a **Nerode’s fuzzy relation** of the fuzzy automaton \mathcal{A}.

We prove the following:

Theorem 8. For any state a of a fuzzy automaton $\mathcal{A} = (A, X, \delta)$, the
Nerode’s fuzzy relation ϱ_a is a fuzzy right congruence on X^*.

Myhill-Nerode Theory for Fuzzy Languages and Automata
Theorem 9. Any fuzzy language $f \in F(X^*)$ recognized by a fuzzy automaton \mathcal{A} is also recognized by the fuzzy automaton $\mathcal{A}_{\vartheta}\mathcal{A}$.

To a fuzzy automaton $\mathcal{A} = (A, X, \delta)$, we also assign a fuzzy relation $\vartheta\mathcal{A}$ on the free monoid X^* defined by

$$\vartheta\mathcal{A}(u, v) = \bigwedge_{a \in A} \varrho_a(u, v) = \bigwedge_{a, b \in A} \delta^*(a, u, b) \leftrightarrow \delta^*(a, v, b),$$

for $u, v \in X^*$, which is called Myhill's fuzzy relation of the fuzzy automaton \mathcal{A}.

Theorem 10. For any fuzzy automaton $\mathcal{A} = (A, X, \delta)$, the Myhill’s fuzzy relation $\vartheta\mathcal{A}$ is a fuzzy congruence on X^*.
Theorem 11. Let μ be a fuzzy right congruence on X^*. Then

(a) Nerode’s fuzzy right congruence of A_μ coincide with μ;

(b) Myhill’s fuzzy congruence of A_μ is the fuzzy congruence opening of μ.

Let $\mathcal{A} = (A, X, a_0, \delta)$ be a fuzzy automaton with a crisp initial state a_0.

We denote by $(L_\mathcal{A}, \lor, \otimes)$ the subalgebra of the reduct (L, \lor, \otimes) of L generated by the set $\{\delta(a, x, b) \mid a, b \in A, x \in X\}$.

For any $u \in X^*$ let a mapping $\Delta_u : A \to L_\mathcal{A}$ be defined by

$$\Delta_u(a) = \delta^*(a_0, u, a),$$

for each $a \in A$, let $A_\Delta = \{\Delta_u \mid u \in X^*\}$ and let $\lambda_\Delta : A_\Delta \times X \to A_\Delta$ be defined by

$$\lambda_\Delta(\Delta_u, x) = \Delta_{ux},$$

for all $u \in X^*$ and $x \in X$.
We have the following

Theorem 12. Let $\mathcal{A} = (A, X, a_0, \delta)$ be a fuzzy automaton with a crisp initial state a_0. Then

(a) the mapping λ_Δ is well-defined and $\mathcal{A}_\Delta = (A_\Delta, X, \lambda_\Delta)$ is an automaton isomorphic to $\mathcal{A}_{\hat{\rho}_\mathcal{A}}$;

(b) $\text{ind}(\mathcal{Q}_\mathcal{A}) = \text{ind}(\hat{\mathcal{Q}}_\mathcal{A}) \leq |L_\mathcal{A}|$.
By this we deduce the following:

Theorem 13. The following conditions are equivalent:

(i) The reduct (L, \lor, \otimes) of \mathcal{L} is a locally finite algebra;

(ii) Nerode’s fuzzy right congruence of any finite fuzzy automaton over \mathcal{L} has a finite index;

(iii) Myhill’s fuzzy congruence of any finite fuzzy automaton \mathcal{L} has a finite index.

As a consequence, a result of Li and Pedrycz (Fuzzy Sets and Systems 156 (2005), 68–92) one obtains, which says that (i) is equivalent to

(iv) Any fuzzy language recognizable by a finite fuzzy automaton, is also recognizable by a finite deterministic automaton (over \mathcal{L}).
Finally, the second main result is:

Theorem 14. For a fuzzy language $f \in \mathcal{F}(X^*)$, the following five conditions are equivalent if and only if the algebra (L, \vee, \otimes) is locally finite:

(i) f is a recognizable fuzzy language;

(ii) f is extensional with respect to a fuzzy right congruence of finite index;

(iii) f is extensional with respect to a fuzzy congruence of finite index;

(iv) the syntactic fuzzy right congruence ρ_f has a finite index;

(v) the syntactic fuzzy congruence ϑ_f has a finite index.
Concluding Remarks

(1) Syntactic right congruences, syntactic congruences and derivatives of fuzzy languages have been considered in

- Shen (Information Sciences 88 (1996), 149-168)

Here, fuzzy languages were studied in terms of fuzzy right congruences and fuzzy congruences for the first time.

Nerode’s fuzzy right congruence and Myhill’s fuzzy congruence of a fuzzy automaton are also new concepts.

(2) The concept of extensionality, which play an outstanding role in our research, has important applications in fuzzy control, fuzzy clustering, and other fields.