Weighted Traces, Their Logics, and
an Extension to Weighted MSCs

Ingmar Meinecke
nmei necke@ nf ormati k. uni - | ei pzi g. de

Institute of Computer Science, Leipzig University
Germany

Workshop “Algebraic Theory of Automata and Logic”
Szeged 30.9.-1.10.2006

Introduction

Outline

Q Introduction

Introduction

Introduction

guantitative aspects of sequential and distributed systems
@ runtime
@ multiplicities of certain patterns
@ unsafe behavior ~ probabilities

Introduction

Introduction

guantitative aspects of sequential and distributed systems
@ runtime
@ multiplicities of certain patterns
@ unsafe behavior ~ probabilities
Mazurkiewicz traces as an important model of concurrency
@ comprehensive theory for trace languages
@ impact on other models like message
sequence charts (MSCs)

Introduction

Introduction

guantitative aspects of sequential and distributed systems
@ runtime
@ multiplicities of certain patterns
@ unsafe behavior ~ probabilities
Mazurkiewicz traces as an important model of concurrency
@ comprehensive theory for trace languages
@ impact on other models like message
sequence charts (MSCs)
weighted logics as a new formalism
@ introduced for words by Droste & Gastin
@ extended to trees, images, infinite words
recently (Vogler, Droste, Maurer, Rahonis)

Weights & Traces

Outline

9 Weights & Traces

Weights & Traces

Weight Structure = Semirings

general frame: execution of a system — weight

Weights & Traces

Weight Structure = Semirings

general frame: execution of a system — weight

Examples (weight structures)

@ (N,+,-,0,1) (counting)

@ (NU{—o0}, max, +, —oo, 0) (runtime)
([0, 1], max, -, 0, 1) (probabilities)

B = ({0,1},V,A,0,1) (Boolean algebra)

B(Z*),U,-,0,{e}) (transducer)

°
°
°
@ (Rv,U, 0,0, A) (binary relations on M)

(
(

Weights & Traces

Weight Structure = Semirings

general frame: execution of a system — weight

Examples (weight structures)

@ (N,+,-,0,1) (counting)

@ (NU{—o0}, max, +, —oo, 0) (runtime)
([0, 1], max, -, 0, 1) (probabilities)

B = ({0,1},V,A,0,1) (Boolean algebra)

B(Z*),U,-,0,{e}) (transducer)
Rwv, U, 0,0, A) (binary relations on M)
K

(
(

(

0 (K, ®,0) commutative monoid, (K, o, 1) monoid,
Qo dlstrlbutes over @,and Dok =ko0 =0 forallk € K

@, 0,0,1) is a semiring if:

Weights & Traces

What are Traces?

global independency, no auto-concurrency

alphabet ¥, irreflexive and symmetric independence
relation| C ¥ x ¥

interchange adjacent independent letters
trace = equivalence class of words

trace monoid M = M(X, 1) = X*/I

canonical epimorphism ¢ : ¥* — M : w— [W]

Weights & Traces

What are Traces?

global independency, no auto-concurrency

alphabet ¥, irreflexive and symmetric independence
relation| C ¥ x ¥

interchange adjacent independent letters
trace = equivalence class of words

trace monoid M = M(X, 1) = X*/I

canonical epimorphism ¢ : ¥* — M : w— [W]

for | = a— bwe have t = [abcbbad] = [bacabbd]

lexicographic normal form of tfora<b<c< dis
LNF(t) = abcabbd

Weights & Traces

Traces as Dependence Graphs

dependence graph (V, E,|) = acyclic graph with | : V — 3 such
that (1(x),1(y)) € D <= (x,y) € EUE™lUidy

Weights & Traces

Traces as Dependence Graphs

dependence graph (V, E,|) = acyclic graph with | : V — 3 such
that (1(x),1(y)) € D <= (x,y) € EUE™lUidy

— abcabbd
with (a,b) € |

Weights & Traces

Traces as Dependence Graphs

dependence graph (V, E,|) = acyclic graph with | : V — 3 such
that (1(x),1(y)) € D <= (x,y) € EUE™lUidy

— abcabbd
with (a,b) € |

Weights & Traces

Traces as Dependence Graphs

dependence graph (V, E,|) = acyclic graph with | : V — 3 such
that (1(x),1(y)) € D <= (x,y) € EUE™lUidy

— abcabbd
with (a,b) € |

monoid of finite dependence graphs = M(3, D)

Weights & Traces

Traces as Dependence Graphs

dependence graph (V, E,|) = acyclic graph with | : V — 3 such
that (1(x),1(y)) € D <= (x,y) € EUE™lUidy

— abcabbd
with (a,b) € |

monoid of finite dependence graphs = M(3, D)
~ graphical representation more appropriate for logic

Weights & Traces

Recognizable Trace Series

K = (K, ®,0,0,1) commutative semiring, i.e., o commutative

Weights & Traces

Recognizable Trace Series

K = (K, ®,0,0,1) commutative semiring, i.e., o commutative
S: M — K recognizable if there are: a finite state set Q,

a monoid homomorphism g : M — K@Q)\ € K1¥Q, ~r ¢ KQx1
such that (S;t) = A u(t) v.

Weights & Traces

Recognizable Trace Series

K = (K, ®,0,0,1) commutative semiring, i.e., o commutative

S: M — K recognizable if there are: a finite state set Q,
a monoid homomorphism g : M — K@Q)\ € K1¥Q, ~r ¢ KQx1
such that (S;t) = A u(t) v.

b/4 1

semiring N, (a,b) € 1,

Sis the behavior of

a weighted automaton with
I-diamond-property: p(ab) = u(ba)
— (Sab) = (Sha) =12

Weighted Logics

Outline

9 Weighted Logics

Weighted Logics

The Intuition behind Weighted Logics

usual MSO-formula ®: then ® holds or not ~ [®] € {0, 1}

Weighted Logics

The Intuition behind Weighted Logics

usual MSO-formula ®: then ® holds or not ~ [®] € {0, 1}

a quantitative semantics = number of verifications:

Weighted Logics

The Intuition behind Weighted Logics

usual MSO-formula ®: then ® holds or not ~ [®] € {0, 1}

a quantitative semantics = number of verifications:
@ (x,y) € E has one verification ~ [(x,y) e E] =1

Weighted Logics

The Intuition behind Weighted Logics

usual MSO-formula ®: then ® holds or not ~ [®] € {0, 1}

a quantitative semantics = number of verifications:
@ (x,y) € E has one verification ~ [(x,y) e E] =1
@ &V V¥has|[®]+ [¥] verifications

Weighted Logics

The Intuition behind Weighted Logics

usual MSO-formula ®: then ® holds or not ~ [®] € {0, 1}

a quantitative semantics = number of verifications:
@ (x,y) € E has one verification ~ [(x,y) e E] =1
@ &V V¥has|[®]+ [¥] verifications
@ ®AVhas[®]-[¥] verifications

Weighted Logics

The Intuition behind Weighted Logics

usual MSO-formula ®: then ® holds or not ~ [®] € {0, 1}

a quantitative semantics = number of verifications:
@ (x,y) € E has one verification ~ [(x,y) e E] =1
@ &V V¥has|[®]+ [¥] verifications
@ ®AVhas[®]-[¥] verifications
@ Jx. ® has as many verifications as elements that verify ¢

Weighted Logics

The Intuition behind Weighted Logics

usual MSO-formula ®: then ® holds or not ~ [®] € {0, 1}

a quantitative semantics = number of verifications:

@ (x,y) € E has one verification ~ [(x,y) e E] =1

@ &V V¥has|[®]+ [¥] verifications

@ ®AVhas[®]-[¥] verifications

@ Jx. ® has as many verifications as elements that verify ¢
What about negation?

Weighted Logics

The Intuition behind Weighted Logics

usual MSO-formula ®: then ® holds or not ~ [®] € {0, 1}

a quantitative semantics = number of verifications:

@ (x,y) € E has one verification ~ [(x,y) e E] =1

@ &V V¥has|[®]+ [¥] verifications

@ ®AVhas[®]-[¥] verifications

@ Jx. ® has as many verifications as elements that verify ¢
What about negation?

@ could be defined in Boolean algebras, but in general
semirings not clear

Weighted Logics

The Intuition behind Weighted Logics

usual MSO-formula ®: then ® holds or not ~ [®] € {0, 1}

a quantitative semantics = number of verifications:

@ (x,y) € E has one verification ~ [(x,y) e E] =1

@ &V V¥has|[®]+ [¥] verifications

@ ®AVhas[®]-[¥] verifications

@ Jx. ® has as many verifications as elements that verify ¢
What about negation?

@ could be defined in Boolean algebras, but in general
semirings not clear

@ solution: negate atomic formulas only (and extend syntax
by disjunction and universal quantification)

Weighted Logics

The Intuition behind Weighted Logics

usual MSO-formula ®: then ® holds or not ~ [®] € {0, 1}

a quantitative semantics = number of verifications:

@ (x,y) € E has one verification ~ [(x,y) e E] =1

@ &V V¥has|[®]+ [¥] verifications

@ ®AVhas[®]-[¥] verifications

@ Jx. ® has as many verifications as elements that verify ¢
What about negation?

@ could be defined in Boolean algebras, but in general
semirings not clear

@ solution: negate atomic formulas only (and extend syntax
by disjunction and universal quantification)

— weighted logics introduced for words by Droste & Gastin (2005)

Weighted Logics

Weighted Logics for Traces

commutative K = (K, ®, 0,0, 1), dependence graphs (V, E,I)

Weighted Logics

Weighted Logics for Traces

commutative K = (K, ®, 0,0, 1), dependence graphs (V, E,I)

® =k | Pa(X) [E(%,Y) | X € X | =Pa(X) | ~E(X,y) | =X € X |
VY| DAY |IXD | IXP | VXD | VX.P

Weighted Logics

Weighted Logics for Traces

commutative K = (K, ®, 0,0, 1), dependence graphs (V, E,I)

® =k | Pa(X) [E(%,Y) | X € X | =Pa(X) | ~E(X,y) | =X € X |
VY| DAY |IXD | IXP | VXD | VX.P

and semantics [@]y : My(¥,D) — K (assignment o : V — V)
o [k]y(t,0) =k
o [E0Y) Iuit,o0) = {1 f (0(x), o(y) € E,

0 otherwise
_J1 if[@]y(t,o) =0,
° [melvto)= {@ if [®]v(t,0) =1
o [eAY]y(tio)=[2]v(to)o[¥]u(t o)
o [[Elx'q)]]V(t’g) = @vev[[q)]]vu{x}(tao-[xg) V])

Weighted Logics

Recognizability = Definability

even for words: general wMSO-formulas exceed recognizability

Weighted Logics

Recognizability = Definability

even for words: general wMSO-formulas exceed recognizability
define class RM SO with ® restricted, if

@ no occurence of VX.¥ and

@ vx.¥only with [¥] = >, ki1, a definable step function
(L; definable languages)

Weighted Logics

Recognizability = Definability

even for words: general wMSO-formulas exceed recognizability

define class RM SO with ® restricted, if
@ no occurence of VX.¥ and

@ vx.¥only with [¥] = >, ki1, a definable step function
(L; definable languages)

For M(X, D) trace monoid & K commutative semiring:
S: M(X,D) — K recognizable <= S= [@] for restricted ®.

Weighted Logics

Recognizability = Definability

even for words: general wMSO-formulas exceed recognizability

define class RM SO with ® restricted, if
@ no occurence of VX.¥ and

@ vx.¥only with [¥] = >, ki1, a definable step function
(L; definable languages)

For M(X, D) trace monoid & K commutative semiring:
S: M(X,D) — K recognizable <= S= [@] for restricted ®.

Adapt technique from trace languages:

Translate edge relation E to < for words and vice versa!
(Ebinger/Muscholl)

Then use result for words! (Droste/Gastin)

Weighted Logics

Translation Lemma

Lemma

ForT:M — K, ¢ : ¥* — M canonical epimorphism, and
(o™ X(T),w) := (T, o(w)) for w € ¥* are equivalent:

© T definable in RMSO,

Q S= ¢ 4T): ¥* - K RMSO-definable,

© S = ¢ }(T)|ne : BF — K RMSO-definable.

Weighted Logics

Translation Lemma

Lemma

ForT:M— K, ¢ : ¥* — M canonical epimorphism, and
(o™ X(T),w) := (T, p(w)) for w € ¥* are equivalent:

© T definable in RMSO,

Q S=p}T): 2" — K RMSO-definable,

© S = }(T)|ne : BF — K RMSO-definable.

Proof idea of (3) = (1).

Let S be defined by RMSO-formula ®. Replace x < yin ® by
new FO-formula lex(x, y) for traces with

(t,0) = lex(x,y) <= o(x) < o(y) in LNF(t)

and make lex(x,y) unambiguous!

Weighted Logics

Example: Height of a Trace

K = (NU{—o0}, max,+,—o0,0)and H : M — K : t — height(t)

Weighted Logics

Example: Height of a Trace

K = (NU{—o0}, max,+,—o0,0)and H : M — K : t — height(t)

chain(X) = ¥x,y € X.(x=yV (x,y) € ET v (y,x) € ET)
is an FO-formula (E™ FO over traces).

o —

= 3 RFO-formula chain(X) defining 1, (¢hain(x))

Weighted Logics

Example: Height of a Trace

K = (NU{—o0}, max,+,—o0,0)and H : M — K : t — height(t)

chain(X) = ¥x,y € X.(x=yV (x,y) € ET v (y,x) € ET)
is an FO-formula (E™ FO over traces).

o —

= 3 RFO-formula chain(X) defining 1, (¢hain(x))

card(X) = Vx.((x€ X — 1) A (-x € X — 0))
has semantics |X| over K.

Weighted Logics

Example: Height of a Trace

K = (NU{—o0}, max,+,—o0,0)and H : M — K : t — height(t)

chain(X) = ¥x,y € X.(x=yV (x,y) € ET v (y,x) € ET)
is an FO-formula (E™ FO over traces).

o —

= 3 RFO-formula chain(X) defining 1, (¢hain(x))

card(X) = Vx.((x€ X — 1) A (-x € X — 0))
has semantics |X| over K.

—

= H defined by ® = 3X.chain(X) A card(X)

— H: M — K recognizable

Directed Acyclic Graphs

Outline

@ Directed Acyclic Graphs

Directed Acyclic Graphs

Dags over Distributed Alphabets

b 112 271 112 271
d

a 172 271 112
d c 112 211 112 271

trace MSC lossy MSC

Directed Acyclic Graphs

Dags over Distributed Alphabets

b 112 271 112 271
d
a 172 271 112
d c 112 211 112 271
trace MSC lossy MSC

Unifying frame: distributed alphabet % = (J;_ag 3i and
dependence Dy, = {(a,b) | a & b share a process};
directed acyclic graph (V, <, 1) with | : V — 3 is a $-dag if
@ Vi € Ag: I71(%)) totally ordered
@ V(u,v), (U,V) € < with I(u)Dgl(u) and I(v)Dsl(V):
u<u <= v <V (FIFO-property)

Directed Acyclic Graphs

Weighted ACAs over $-dags

weight structure = commutative semiring K
Y1 = {a}, Yo = {b,d}, Y3 = {C, e}

Directed Acyclic Graphs

Weighted ACAs over $-dags

weight structure = commutative semiring K
Y1 = {a}, Yo = {b,d}, Y3 = {C, e}

perform an action, new state and weight
depending on immediate past,

(©]
a/q1/1

Directed Acyclic Graphs

Weighted ACAs over $-dags

weight structure = commutative semiring K
Y1 = {a}, Yo = {b,d}, Y3 = {C, e}

perform an action, new state and weight
depending on immediate past,

(@] (@)
alqu/l digpll

Directed Acyclic Graphs

Weighted ACAs over $-dags

weight structure = commutative semiring K
Y1 = {a}, Yo = {b,d}, Y3 = {C, e}

perform an action, new state and weight
depending on immediate past,

@) O (©)
a/q1/l d/q2/1 G/Q3/2

Directed Acyclic Graphs

Weighted ACAs over $-dags

weight structure = commutative semiring K
Y1 = {a}, Yo = {b,d}, Y3 = {C, e}

perform an action, new state and weight

depending on immediate past,

alp1/3

O
a/q1/l d/q2/1 G/Q3/2

Directed Acyclic Graphs

Weighted ACAs over $-dags

weight structure = commutative semiring K
Y1 = {a}, Yo = {b,d}, Y3 = {C, e}

perform an action, new state and weight

depending on immediate past,

alp1/3 bipy/l

a/q1/l d/q2/1 G/Q3/2

Directed Acyclic Graphs

Weighted ACAs over $-dags

weight structure = commutative semiring K
Y1 = {a}, Yo = {b,d}, Y3 = {C, e}

perform an action, new state and weight

depending on immediate past,

alp1/3 blpa/l clgy/2

a/q1/l d/q2/1 G/Q3/2

Directed Acyclic Graphs

Weighted ACAs over $-dags

weight structure = commutative semiring K
Y1 = {a}, Yo = {b,d}, Y3 = {C, e}

perform an action, new state and weight
b depending on immediate past,

determine immediate future by a

type function (a, — {b},
apf blppll clpl2 ' (8 Pa) = {b}

a/q1/l d/q2/1 G/Q3/2

Directed Acyclic Graphs

Weighted ACAs over $-dags

weight structure = commutative semiring K
Y1 = {a}, Yo = {b,d}, Y3 = {C, e}

b/ p3/ 3
@)

O O O
a/q1/l d/q2/1 G/Q3/2

perform an action, new state and weight
depending on immediate past,

determine immediate future by a
type function (a, p1) — {b},

Directed Acyclic Graphs

Weighted ACAs over $-dags

weight structure = commutative semiring K
Y1 = {a}, Yo = {b,d}, Y3 = {C, e}

perform an action, new state and weight
b/ps/3 clps/l depending on immediate past,
O 0O

determine immediate future by a
) type function (a, p1) — {b},

O O O
a/q1/l d/q2/1 G/Q3/2

Directed Acyclic Graphs

Weighted ACAs over $-dags

weight structure = commutative semiring K
Y1 = {a}, Yo = {b,d}, Y3 = {C, e}

2 perform an action, new state and weight
b/ps/3 clps/l depending on immediate past,

determine immediate future by a
type function (a, p1) — {b},

leaving the system with global weight

O O O
a/q1/l d/q2/1 G/Q3/2

Directed Acyclic Graphs

Weighted ACAs over $-dags

weight structure = commutative semiring K
Y1 = {a}, Yo = {b,d}, Y3 = {C, e}

2 perform an action, new state and weight
b/ps/3 clps/l depending on immediate past,

determine immediate future by a
type function (a, p1) — {b},

leaving the system with global weight

Multiply weights of a run!
— wgt(G) =72in N

O O O
a/q1/l d/q2/1 G/Q3/2

Directed Acyclic Graphs

Logical Characterization

Define a reduced weighted MSO-logic (RMSO) similar to those
for traces.

Theorem (B. Bollig & I.M. 2006)

For a commutative semiring K and S: DAG(X) — K are
equivalent:

© S= || A|| for some WACA with types A,
© Sis RMSO-definable.

(direct proof with rather tricky constructions)

Directed Acyclic Graphs

Logical Characterization

Define a reduced weighted MSO-logic (RMSO) similar to those
for traces.

Theorem (B. Bollig & I.M. 2006)

For a commutative semiring K and S: DAG(X) — K are
equivalent:

© S= || A|| for some WACA with types A,
© Sis RMSO-definable.

(direct proof with rather tricky constructions)

generalizations & applications for:
traces, message sequence charts (MSCs), probabilistic
lossy-channel systems, probabilistic asynchronous automata

Summary

Summary

@ gave logical characterization of recognizable trace series

@ avoided to repeat the whole proof, used a translation to
word series and an unambiguity result instead

@ moreover, a characterization of the FO-fragment
@ more general unifying frame by wACA for i-dags

Summary

Summary

@ gave logical characterization of recognizable trace series

@ avoided to repeat the whole proof, used a translation to
word series and an unambiguity result instead
@ moreover, a characterization of the FO-fragment

@ more general unifying frame by wACA for f]—dags
Outlook
@ What class is defined by wMSO?

@ find other weighted logics (temporal logics)
@ case studies and practical relevance of quantitative
aspects of concurrency
@ message sequence charts (international
telecommunication standard)
@ probabilistic lossy-channel systems

Translation Lemma — Proof Details

Proof (cont.)

lex(x,y) is an FO-formula.
(for dependence graphs transitive closure is FO-definable)

Translation Lemma — Proof Details

Proof (cont.)

lex(x,y) is an FO-formula.
(for dependence graphs transitive closure is FO-definable)

Critical:
@ weighted semantics of lex(x, y) should be 1 or 0

—

@ J RFO-formula lex(x,y) with weighted semantics 1 (jex(xy))?
~ unambiguity

Translation Lemma — Proof Details

Proof (cont.)

lex(x,y) is an FO-formula.
(for dependence graphs transitive closure is FO-definable)

Critical:
@ weighted semantics of lex(x, y) should be 1 or 0

—

@ J RFO-formula lex(x, y) with weighted semantics 1, jex(xy))?
~ unambiguity
Then we proceed and obtain an RMSO-formula ® with

[2](t,0) = [@](LNF(1),0).

— O definesT: M — K.)

Unambiguity of FO-languages

C = class of finite relational structures
Let C have a simply definable linear order, i.e., 3 propositional
Q(x,y) defining a linear order on the elements of every t € C.

Unambiguity of FO-languages

C = class of finite relational structures
Let C have a simply definable linear order, i.e., 3 propositional
Q(x,y) defining a linear order on the elements of every t € C.

LetL =L(®) C C for ® € FO. Then both 1, and 1 are definable
in RFO.

Unambiguity of FO-languages

C = class of finite relational structures
Let C have a simply definable linear order, i.e., 3 propositional
Q(x,y) defining a linear order on the elements of every t € C.

LetL =L(®) C C for ® € FO. Then both 1, and 1 are definable
in RFO.

L FO-definable trace language — 1, RFO-definable.

Qxy) =\ (Pab) APo(y)) v \/ (Palx) A Paly) A —E(y. X))

(a,b)e< acy

FO-definable Trace Series

K commutative & weakly bi-aperiodic semiring.
ForT:M — K are equivalent:

© T is RFO-definable,
@ T is FO-definable,

© T is aperiodic,

© T is weakly aperiodic.

FO-definable Trace Series

Theorem

K commutative & weakly bi-aperiodic semiring.
ForT:M — K are equivalent:

© T is RFO-definable,
@ T is FO-definable,

© T is aperiodic,

© T is weakly aperiodic.

K weakly bi-aperiodic if (K, &, 0) and (K, o, 1) weakly aperiodic,
S= (\, u,y) aperiodic if (M) aperiodic,

S= (A, u,7y) weakly aperiodic if
n>0Vu,v,we M (S uw'w) = (S uwlw)

	Introduction
	Weights & Traces
	Weighted Logics
	Directed Acyclic Graphs
	Summary

