
Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Weighted Traces, Their Logics, and
an Extension to Weighted MSCs

Ingmar Meinecke
meinecke@informatik.uni-leipzig.de

Institute of Computer Science, Leipzig University
Germany

Workshop “Algebraic Theory of Automata and Logic”
Szeged 30.9.–1.10.2006

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Outline

1 Introduction

2 Weights & Traces

3 Weighted Logics

4 Directed Acyclic Graphs

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Introduction

quantitative aspects of sequential and distributed systems
runtime
multiplicities of certain patterns
unsafe behavior y probabilities

Mazurkiewicz traces as an important model of concurrency
comprehensive theory for trace languages
impact on other models like message
sequence charts (MSCs)

weighted logics as a new formalism
introduced for words by Droste & Gastin
extended to trees, images, infinite words
recently (Vogler, Droste, Mäurer, Rahonis)

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Introduction

quantitative aspects of sequential and distributed systems
runtime
multiplicities of certain patterns
unsafe behavior y probabilities

Mazurkiewicz traces as an important model of concurrency
comprehensive theory for trace languages
impact on other models like message
sequence charts (MSCs)

weighted logics as a new formalism
introduced for words by Droste & Gastin
extended to trees, images, infinite words
recently (Vogler, Droste, Mäurer, Rahonis)

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Introduction

quantitative aspects of sequential and distributed systems
runtime
multiplicities of certain patterns
unsafe behavior y probabilities

Mazurkiewicz traces as an important model of concurrency
comprehensive theory for trace languages
impact on other models like message
sequence charts (MSCs)

weighted logics as a new formalism
introduced for words by Droste & Gastin
extended to trees, images, infinite words
recently (Vogler, Droste, Mäurer, Rahonis)

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Outline

1 Introduction

2 Weights & Traces

3 Weighted Logics

4 Directed Acyclic Graphs

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Weight Structure = Semirings

general frame: execution of a system 7→ weight

Examples (weight structures)

(
�
, +, ·, 0, 1) (counting)

(
�
∪ {−∞}, max, +,−∞, 0) (runtime)

([0, 1], max, ·, 0, 1) (probabilities)
�

= ({0, 1},∨,∧, 0, 1) (Boolean algebra)

(P(Σ∗),∪, ·, ∅, {ε}) (transducer)

(RM,∪, ◦, ∅, ∆) (binary relations on M)

�
= (K,⊕, ◦,�,�) is a semiring if:

1 (K,⊕,�) commutative monoid, (K, ◦,�) monoid,
2 ◦ distributes over ⊕, and �◦ k = k ◦�= �for all k ∈ K

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Weight Structure = Semirings

general frame: execution of a system 7→ weight

Examples (weight structures)

(
�
, +, ·, 0, 1) (counting)

(
�
∪ {−∞}, max, +,−∞, 0) (runtime)

([0, 1], max, ·, 0, 1) (probabilities)
�

= ({0, 1},∨,∧, 0, 1) (Boolean algebra)

(P(Σ∗),∪, ·, ∅, {ε}) (transducer)

(RM,∪, ◦, ∅, ∆) (binary relations on M)

�
= (K,⊕, ◦,�,�) is a semiring if:

1 (K,⊕,�) commutative monoid, (K, ◦,�) monoid,
2 ◦ distributes over ⊕, and �◦ k = k ◦�= �for all k ∈ K

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Weight Structure = Semirings

general frame: execution of a system 7→ weight

Examples (weight structures)

(
�
, +, ·, 0, 1) (counting)

(
�
∪ {−∞}, max, +,−∞, 0) (runtime)

([0, 1], max, ·, 0, 1) (probabilities)
�

= ({0, 1},∨,∧, 0, 1) (Boolean algebra)

(P(Σ∗),∪, ·, ∅, {ε}) (transducer)

(RM,∪, ◦, ∅, ∆) (binary relations on M)

�
= (K,⊕, ◦,�,�) is a semiring if:

1 (K,⊕,�) commutative monoid, (K, ◦,�) monoid,
2 ◦ distributes over ⊕, and �◦ k = k ◦�= �for all k ∈ K

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

What are Traces?

global independency, no auto-concurrency

alphabet Σ, irreflexive and symmetric independence
relation I ⊆ Σ × Σ

interchange adjacent independent letters

trace = equivalence class of words

trace monoid �=�(Σ, I) = Σ∗/I

canonical epimorphism ϕ : Σ∗ →�: w 7→ [w]

Example

for I = a − b we have t = [abcbbad] = [bacabbd]

lexicographic normal form of t for a < b < c < d is
LNF(t) = abcabbd

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

What are Traces?

global independency, no auto-concurrency

alphabet Σ, irreflexive and symmetric independence
relation I ⊆ Σ × Σ

interchange adjacent independent letters

trace = equivalence class of words

trace monoid �=�(Σ, I) = Σ∗/I

canonical epimorphism ϕ : Σ∗ →�: w 7→ [w]

Example

for I = a − b we have t = [abcbbad] = [bacabbd]

lexicographic normal form of t for a < b < c < d is
LNF(t) = abcabbd

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Traces as Dependence Graphs

dependence graph (V, E, l) = acyclic graph with l : V → Σ such
that (l(x), l(y)) ∈ D ⇐⇒ (x, y) ∈ E ∪ E−1 ∪ idV

= abcabbd
with (a, b) ∈ I

monoid of finite dependence graphs ∼=�(Σ, D)
y graphical representation more appropriate for logic

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Traces as Dependence Graphs

dependence graph (V, E, l) = acyclic graph with l : V → Σ such
that (l(x), l(y)) ∈ D ⇐⇒ (x, y) ∈ E ∪ E−1 ∪ idV

a

b

c

b b

a

d
= abcabbd
with (a, b) ∈ I

monoid of finite dependence graphs ∼=�(Σ, D)
y graphical representation more appropriate for logic

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Traces as Dependence Graphs

dependence graph (V, E, l) = acyclic graph with l : V → Σ such
that (l(x), l(y)) ∈ D ⇐⇒ (x, y) ∈ E ∪ E−1 ∪ idV

a

b

c

b b

a

d
= abcabbd
with (a, b) ∈ I

monoid of finite dependence graphs ∼=�(Σ, D)
y graphical representation more appropriate for logic

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Traces as Dependence Graphs

dependence graph (V, E, l) = acyclic graph with l : V → Σ such
that (l(x), l(y)) ∈ D ⇐⇒ (x, y) ∈ E ∪ E−1 ∪ idV

a

b

c

b b

a

d
= abcabbd
with (a, b) ∈ I

monoid of finite dependence graphs ∼=�(Σ, D)
y graphical representation more appropriate for logic

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Traces as Dependence Graphs

dependence graph (V, E, l) = acyclic graph with l : V → Σ such
that (l(x), l(y)) ∈ D ⇐⇒ (x, y) ∈ E ∪ E−1 ∪ idV

a

b

c

b b

a

d
= abcabbd
with (a, b) ∈ I

monoid of finite dependence graphs ∼=�(Σ, D)
y graphical representation more appropriate for logic

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Recognizable Trace Series

�
= (K,⊕, ◦,�,�) commutative semiring, i.e., ◦ commutative

S :�→
�

recognizable if there are: a finite state set Q,
a monoid homomorphism µ :�→ �Q×Q, λ ∈

�1×Q, γ ∈
�Q×1

such that (S, t) = λµ(t) γ.

semiring
�

, (a, b) ∈ I,
S is the behavior of
a weighted automaton with
I-diamond-property: µ(ab) = µ(ba)
=⇒ (S, ab) = (S, ba) = 12

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Recognizable Trace Series

�
= (K,⊕, ◦,�,�) commutative semiring, i.e., ◦ commutative

S :�→
�

recognizable if there are: a finite state set Q,
a monoid homomorphism µ :�→ �Q×Q, λ ∈

�1×Q, γ ∈
�Q×1

such that (S, t) = λµ(t) γ.

semiring
�

, (a, b) ∈ I,
S is the behavior of
a weighted automaton with
I-diamond-property: µ(ab) = µ(ba)
=⇒ (S, ab) = (S, ba) = 12

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Recognizable Trace Series

�
= (K,⊕, ◦,�,�) commutative semiring, i.e., ◦ commutative

S :�→
�

recognizable if there are: a finite state set Q,
a monoid homomorphism µ :�→ �Q×Q, λ ∈

�1×Q, γ ∈
�Q×1

such that (S, t) = λµ(t) γ.

q1

q2

q3

q4

a/3

b/6

b/4

a/2

1

1 semiring
�

, (a, b) ∈ I,
S is the behavior of
a weighted automaton with
I-diamond-property: µ(ab) = µ(ba)
=⇒ (S, ab) = (S, ba) = 12

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Outline

1 Introduction

2 Weights & Traces

3 Weighted Logics

4 Directed Acyclic Graphs

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

The Intuition behind Weighted Logics

usual MSO-formula Φ: then Φ holds or not y [[Φ]] ∈ {0, 1}

a quantitative semantics = number of verifications:

(x, y) ∈ E has one verification y [[(x, y) ∈ E]] = 1

Φ ∨ Ψ has [[Φ]] + [[Ψ]] verifications

Φ ∧ Ψ has [[Φ]] · [[Ψ]] verifications

∃x. Φ has as many verifications as elements that verify Φ

What about negation?

could be defined in Boolean algebras, but in general
semirings not clear

solution: negate atomic formulas only (and extend syntax
by disjunction and universal quantification)

−→ weighted logics introduced for words by Droste & Gastin (2005)

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

The Intuition behind Weighted Logics

usual MSO-formula Φ: then Φ holds or not y [[Φ]] ∈ {0, 1}

a quantitative semantics = number of verifications:

(x, y) ∈ E has one verification y [[(x, y) ∈ E]] = 1

Φ ∨ Ψ has [[Φ]] + [[Ψ]] verifications

Φ ∧ Ψ has [[Φ]] · [[Ψ]] verifications

∃x. Φ has as many verifications as elements that verify Φ

What about negation?

could be defined in Boolean algebras, but in general
semirings not clear

solution: negate atomic formulas only (and extend syntax
by disjunction and universal quantification)

−→ weighted logics introduced for words by Droste & Gastin (2005)

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

The Intuition behind Weighted Logics

usual MSO-formula Φ: then Φ holds or not y [[Φ]] ∈ {0, 1}

a quantitative semantics = number of verifications:

(x, y) ∈ E has one verification y [[(x, y) ∈ E]] = 1

Φ ∨ Ψ has [[Φ]] + [[Ψ]] verifications

Φ ∧ Ψ has [[Φ]] · [[Ψ]] verifications

∃x. Φ has as many verifications as elements that verify Φ

What about negation?

could be defined in Boolean algebras, but in general
semirings not clear

solution: negate atomic formulas only (and extend syntax
by disjunction and universal quantification)

−→ weighted logics introduced for words by Droste & Gastin (2005)

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

The Intuition behind Weighted Logics

usual MSO-formula Φ: then Φ holds or not y [[Φ]] ∈ {0, 1}

a quantitative semantics = number of verifications:

(x, y) ∈ E has one verification y [[(x, y) ∈ E]] = 1

Φ ∨ Ψ has [[Φ]] + [[Ψ]] verifications

Φ ∧ Ψ has [[Φ]] · [[Ψ]] verifications

∃x. Φ has as many verifications as elements that verify Φ

What about negation?

could be defined in Boolean algebras, but in general
semirings not clear

solution: negate atomic formulas only (and extend syntax
by disjunction and universal quantification)

−→ weighted logics introduced for words by Droste & Gastin (2005)

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

The Intuition behind Weighted Logics

usual MSO-formula Φ: then Φ holds or not y [[Φ]] ∈ {0, 1}

a quantitative semantics = number of verifications:

(x, y) ∈ E has one verification y [[(x, y) ∈ E]] = 1

Φ ∨ Ψ has [[Φ]] + [[Ψ]] verifications

Φ ∧ Ψ has [[Φ]] · [[Ψ]] verifications

∃x. Φ has as many verifications as elements that verify Φ

What about negation?

could be defined in Boolean algebras, but in general
semirings not clear

solution: negate atomic formulas only (and extend syntax
by disjunction and universal quantification)

−→ weighted logics introduced for words by Droste & Gastin (2005)

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

The Intuition behind Weighted Logics

usual MSO-formula Φ: then Φ holds or not y [[Φ]] ∈ {0, 1}

a quantitative semantics = number of verifications:

(x, y) ∈ E has one verification y [[(x, y) ∈ E]] = 1

Φ ∨ Ψ has [[Φ]] + [[Ψ]] verifications

Φ ∧ Ψ has [[Φ]] · [[Ψ]] verifications

∃x. Φ has as many verifications as elements that verify Φ

What about negation?

could be defined in Boolean algebras, but in general
semirings not clear

solution: negate atomic formulas only (and extend syntax
by disjunction and universal quantification)

−→ weighted logics introduced for words by Droste & Gastin (2005)

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

The Intuition behind Weighted Logics

usual MSO-formula Φ: then Φ holds or not y [[Φ]] ∈ {0, 1}

a quantitative semantics = number of verifications:

(x, y) ∈ E has one verification y [[(x, y) ∈ E]] = 1

Φ ∨ Ψ has [[Φ]] + [[Ψ]] verifications

Φ ∧ Ψ has [[Φ]] · [[Ψ]] verifications

∃x. Φ has as many verifications as elements that verify Φ

What about negation?

could be defined in Boolean algebras, but in general
semirings not clear

solution: negate atomic formulas only (and extend syntax
by disjunction and universal quantification)

−→ weighted logics introduced for words by Droste & Gastin (2005)

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

The Intuition behind Weighted Logics

usual MSO-formula Φ: then Φ holds or not y [[Φ]] ∈ {0, 1}

a quantitative semantics = number of verifications:

(x, y) ∈ E has one verification y [[(x, y) ∈ E]] = 1

Φ ∨ Ψ has [[Φ]] + [[Ψ]] verifications

Φ ∧ Ψ has [[Φ]] · [[Ψ]] verifications

∃x. Φ has as many verifications as elements that verify Φ

What about negation?

could be defined in Boolean algebras, but in general
semirings not clear

solution: negate atomic formulas only (and extend syntax
by disjunction and universal quantification)

−→ weighted logics introduced for words by Droste & Gastin (2005)

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

The Intuition behind Weighted Logics

usual MSO-formula Φ: then Φ holds or not y [[Φ]] ∈ {0, 1}

a quantitative semantics = number of verifications:

(x, y) ∈ E has one verification y [[(x, y) ∈ E]] = 1

Φ ∨ Ψ has [[Φ]] + [[Ψ]] verifications

Φ ∧ Ψ has [[Φ]] · [[Ψ]] verifications

∃x. Φ has as many verifications as elements that verify Φ

What about negation?

could be defined in Boolean algebras, but in general
semirings not clear

solution: negate atomic formulas only (and extend syntax
by disjunction and universal quantification)

−→ weighted logics introduced for words by Droste & Gastin (2005)

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

The Intuition behind Weighted Logics

usual MSO-formula Φ: then Φ holds or not y [[Φ]] ∈ {0, 1}

a quantitative semantics = number of verifications:

(x, y) ∈ E has one verification y [[(x, y) ∈ E]] = 1

Φ ∨ Ψ has [[Φ]] + [[Ψ]] verifications

Φ ∧ Ψ has [[Φ]] · [[Ψ]] verifications

∃x. Φ has as many verifications as elements that verify Φ

What about negation?

could be defined in Boolean algebras, but in general
semirings not clear

solution: negate atomic formulas only (and extend syntax
by disjunction and universal quantification)

−→ weighted logics introduced for words by Droste & Gastin (2005)

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Weighted Logics for Traces

commutative
�

= (K,⊕, ◦,�,�), dependence graphs (V, E, l)

Φ ::= k | Pa(x) | E(x, y) | x ∈ X | ¬Pa(x) | ¬E(x, y) | ¬x ∈ X |

Φ ∨ Ψ | Φ ∧ Ψ | ∃x.Φ | ∃X.Φ | ∀x.Φ | ∀X.Φ

and semantics [[Φ]]V :�V(Σ, D) →
�

(assignment σ : V → V)

[[k]]V(t, σ) = k

[[E(x, y)]]V(t, σ) =

{
� if (σ(x), σ(y)) ∈ E,

� otherwise

[[¬Φ]]V(t, σ) =

{
� if [[Φ]]V(t, σ) = �,
� if [[Φ]]V(t, σ) = �

[[Φ ∧ Ψ]]V(t, σ) = [[Φ]]V(t, σ) ◦ [[Ψ]]V(t, σ)

[[∃x.Φ]]V(t, σ) =
⊕

v∈V [[Φ]]V∪{x}(t, σ[x → v])

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Weighted Logics for Traces

commutative
�

= (K,⊕, ◦,�,�), dependence graphs (V, E, l)

Φ ::= k | Pa(x) | E(x, y) | x ∈ X | ¬Pa(x) | ¬E(x, y) | ¬x ∈ X |

Φ ∨ Ψ | Φ ∧ Ψ | ∃x.Φ | ∃X.Φ | ∀x.Φ | ∀X.Φ

and semantics [[Φ]]V :�V(Σ, D) →
�

(assignment σ : V → V)

[[k]]V(t, σ) = k

[[E(x, y)]]V(t, σ) =

{
� if (σ(x), σ(y)) ∈ E,

� otherwise

[[¬Φ]]V(t, σ) =

{
� if [[Φ]]V(t, σ) = �,
� if [[Φ]]V(t, σ) = �

[[Φ ∧ Ψ]]V(t, σ) = [[Φ]]V(t, σ) ◦ [[Ψ]]V(t, σ)

[[∃x.Φ]]V(t, σ) =
⊕

v∈V [[Φ]]V∪{x}(t, σ[x → v])

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Weighted Logics for Traces

commutative
�

= (K,⊕, ◦,�,�), dependence graphs (V, E, l)

Φ ::= k | Pa(x) | E(x, y) | x ∈ X | ¬Pa(x) | ¬E(x, y) | ¬x ∈ X |

Φ ∨ Ψ | Φ ∧ Ψ | ∃x.Φ | ∃X.Φ | ∀x.Φ | ∀X.Φ

and semantics [[Φ]]V :�V(Σ, D) →
�

(assignment σ : V → V)

[[k]]V(t, σ) = k

[[E(x, y)]]V(t, σ) =

{
� if (σ(x), σ(y)) ∈ E,

� otherwise

[[¬Φ]]V(t, σ) =

{
� if [[Φ]]V(t, σ) = �,
� if [[Φ]]V(t, σ) = �

[[Φ ∧ Ψ]]V(t, σ) = [[Φ]]V(t, σ) ◦ [[Ψ]]V(t, σ)

[[∃x.Φ]]V(t, σ) =
⊕

v∈V [[Φ]]V∪{x}(t, σ[x → v])

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Recognizability = Definability

even for words: general wMSO-formulas exceed recognizability

define class RMSO with Φ restricted, if

no occurence of ∀X.Ψ and

∀x.Ψ only with [[Ψ]] =
∑n

i=1 ki1Li a definable step function
(Li definable languages)

Theorem

For�(Σ, D) trace monoid &
�

commutative semiring:
S :�(Σ, D) →

�
recognizable ⇐⇒ S = [[Φ]] for restricted Φ.

Adapt technique from trace languages:
Translate edge relation E to < for words and vice versa!
(Ebinger/Muscholl)
Then use result for words! (Droste/Gastin)

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Recognizability = Definability

even for words: general wMSO-formulas exceed recognizability

define class RMSO with Φ restricted, if

no occurence of ∀X.Ψ and

∀x.Ψ only with [[Ψ]] =
∑n

i=1 ki1Li a definable step function
(Li definable languages)

Theorem

For�(Σ, D) trace monoid &
�

commutative semiring:
S :�(Σ, D) →

�
recognizable ⇐⇒ S = [[Φ]] for restricted Φ.

Adapt technique from trace languages:
Translate edge relation E to < for words and vice versa!
(Ebinger/Muscholl)
Then use result for words! (Droste/Gastin)

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Recognizability = Definability

even for words: general wMSO-formulas exceed recognizability

define class RMSO with Φ restricted, if

no occurence of ∀X.Ψ and

∀x.Ψ only with [[Ψ]] =
∑n

i=1 ki1Li a definable step function
(Li definable languages)

Theorem

For�(Σ, D) trace monoid &
�

commutative semiring:
S :�(Σ, D) →

�
recognizable ⇐⇒ S = [[Φ]] for restricted Φ.

Adapt technique from trace languages:
Translate edge relation E to < for words and vice versa!
(Ebinger/Muscholl)
Then use result for words! (Droste/Gastin)

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Recognizability = Definability

even for words: general wMSO-formulas exceed recognizability

define class RMSO with Φ restricted, if

no occurence of ∀X.Ψ and

∀x.Ψ only with [[Ψ]] =
∑n

i=1 ki1Li a definable step function
(Li definable languages)

Theorem

For�(Σ, D) trace monoid &
�

commutative semiring:
S :�(Σ, D) →

�
recognizable ⇐⇒ S = [[Φ]] for restricted Φ.

Adapt technique from trace languages:
Translate edge relation E to < for words and vice versa!
(Ebinger/Muscholl)
Then use result for words! (Droste/Gastin)

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Translation Lemma

Lemma

For T :�→ �, ϕ : Σ∗ →�canonical epimorphism, and
(ϕ−1(T), w) := (T, ϕ(w)) for w ∈ Σ∗ are equivalent:

1 T definable in RMSO,
2 S = ϕ−1(T) : Σ∗ →

�
RMSO-definable,

3 S′ = ϕ−1(T)|LNF : Σ∗ →
�

RMSO-definable.

Proof idea of (3) =⇒ (1).

Let S′ be defined by RMSO-formula Φ. Replace x < y in Φ by
new FO-formula lex(x, y) for traces with
(t, σ) |= lex(x, y) ⇐⇒ σ(x) < σ(y) in LNF(t)
and make lex(x, y) unambiguous! proof details

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Translation Lemma

Lemma
For T :�→

�
, ϕ : Σ∗ →�canonical epimorphism, and

(ϕ−1(T), w) := (T, ϕ(w)) for w ∈ Σ∗ are equivalent:
1 T definable in RMSO,
2 S = ϕ−1(T) : Σ∗ →

�
RMSO-definable,

3 S′ = ϕ−1(T)|LNF : Σ∗ →
�

RMSO-definable.

Proof idea of (3) =⇒ (1).

Let S′ be defined by RMSO-formula Φ. Replace x < y in Φ by
new FO-formula lex(x, y) for traces with
(t, σ) |= lex(x, y) ⇐⇒ σ(x) < σ(y) in LNF(t)
and make lex(x, y) unambiguous! proof details

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Example: Height of a Trace

�
= (
�
∪ {−∞}, max, +,−∞, 0) and H :�→ �: t 7→ height(t)

chain(X) = ∀x, y ∈ X.
(
x = y ∨ (x, y) ∈ E+ ∨ (y, x) ∈ E+

)

is an FO-formula (E+ FO over traces).

=⇒ ∃ RFO-formula ̂chain(X) defining 1L(chain(X))

card(X) = ∀x.
(
(x ∈ X −→ 1) ∧ (¬x ∈ X −→ 0)

)

has semantics |X| over
�

.

=⇒ H defined by Φ = ∃X. ̂chain(X) ∧ card(X)

=⇒ H :�→
�

recognizable

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Example: Height of a Trace

�
= (
�
∪ {−∞}, max, +,−∞, 0) and H :�→ �: t 7→ height(t)

chain(X) = ∀x, y ∈ X.
(
x = y ∨ (x, y) ∈ E+ ∨ (y, x) ∈ E+

)

is an FO-formula (E+ FO over traces).

=⇒ ∃ RFO-formula ̂chain(X) defining 1L(chain(X))

card(X) = ∀x.
(
(x ∈ X −→ 1) ∧ (¬x ∈ X −→ 0)

)

has semantics |X| over
�

.

=⇒ H defined by Φ = ∃X. ̂chain(X) ∧ card(X)

=⇒ H :�→
�

recognizable

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Example: Height of a Trace

�
= (
�
∪ {−∞}, max, +,−∞, 0) and H :�→ �: t 7→ height(t)

chain(X) = ∀x, y ∈ X.
(
x = y ∨ (x, y) ∈ E+ ∨ (y, x) ∈ E+

)

is an FO-formula (E+ FO over traces).

=⇒ ∃ RFO-formula ̂chain(X) defining 1L(chain(X))

card(X) = ∀x.
(
(x ∈ X −→ 1) ∧ (¬x ∈ X −→ 0)

)

has semantics |X| over
�

.

=⇒ H defined by Φ = ∃X. ̂chain(X) ∧ card(X)

=⇒ H :�→
�

recognizable

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Example: Height of a Trace

�
= (
�
∪ {−∞}, max, +,−∞, 0) and H :�→ �: t 7→ height(t)

chain(X) = ∀x, y ∈ X.
(
x = y ∨ (x, y) ∈ E+ ∨ (y, x) ∈ E+

)

is an FO-formula (E+ FO over traces).

=⇒ ∃ RFO-formula ̂chain(X) defining 1L(chain(X))

card(X) = ∀x.
(
(x ∈ X −→ 1) ∧ (¬x ∈ X −→ 0)

)

has semantics |X| over
�

.

=⇒ H defined by Φ = ∃X. ̂chain(X) ∧ card(X)

=⇒ H :�→
�

recognizable

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Outline

1 Introduction

2 Weights & Traces

3 Weighted Logics

4 Directed Acyclic Graphs

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Dags over Distributed Alphabets

d c

a

b
d

trace

1!2 2!1

2?1

2?1

1?2

1!2

MSC

1!2 2?1

2?1

1!2

1!2

lossy MSC

Unifying frame: distributed alphabet Σ̃ =
⋃

i∈Ag Σi and
dependence DeΣ

= {(a, b) | a & b share a process};
directed acyclic graph (V, �, l) with l : V → Σ̃ is a Σ̃-dag if

∀i ∈ Ag : l−1(Σi) totally ordered

∀(u, v), (u′, v′) ∈ � with l(u)DeΣ
l(u′) and l(v)DeΣ

l(v′):
u ≤ u′ ⇐⇒ v ≤ v′ (FIFO-property)

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Dags over Distributed Alphabets

d c

a

b
d

trace

1!2 2!1

2?1

2?1

1?2

1!2

MSC

1!2 2?1

2?1

1!2

1!2

lossy MSC

Unifying frame: distributed alphabet Σ̃ =
⋃

i∈Ag Σi and
dependence DeΣ

= {(a, b) | a & b share a process};
directed acyclic graph (V, �, l) with l : V → Σ̃ is a Σ̃-dag if

∀i ∈ Ag : l−1(Σi) totally ordered

∀(u, v), (u′, v′) ∈ � with l(u)DeΣ
l(u′) and l(v)DeΣ

l(v′):
u ≤ u′ ⇐⇒ v ≤ v′ (FIFO-property)

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Weighted ACAs over Σ̃-dags

weight structure = commutative semiring
�

Σ1 = {a}, Σ2 = {b, d}, Σ3 = {c, e}

perform an action, new state and weight
depending on immediate past,

determine immediate future by a
type function (a, p1) → {b},

leaving the system with global weight

Multiply weights of a run!
→ wgt(G) = 72 in

�

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Weighted ACAs over Σ̃-dags

weight structure = commutative semiring
�

Σ1 = {a}, Σ2 = {b, d}, Σ3 = {c, e}

a/q1/1

perform an action, new state and weight
depending on immediate past,

determine immediate future by a
type function (a, p1) → {b},

leaving the system with global weight

Multiply weights of a run!
→ wgt(G) = 72 in

�

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Weighted ACAs over Σ̃-dags

weight structure = commutative semiring
�

Σ1 = {a}, Σ2 = {b, d}, Σ3 = {c, e}

a/q1/1 d/q2/1

perform an action, new state and weight
depending on immediate past,

determine immediate future by a
type function (a, p1) → {b},

leaving the system with global weight

Multiply weights of a run!
→ wgt(G) = 72 in

�

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Weighted ACAs over Σ̃-dags

weight structure = commutative semiring
�

Σ1 = {a}, Σ2 = {b, d}, Σ3 = {c, e}

a/q1/1 d/q2/1 e/q3/2

perform an action, new state and weight
depending on immediate past,

determine immediate future by a
type function (a, p1) → {b},

leaving the system with global weight

Multiply weights of a run!
→ wgt(G) = 72 in

�

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Weighted ACAs over Σ̃-dags

weight structure = commutative semiring
�

Σ1 = {a}, Σ2 = {b, d}, Σ3 = {c, e}

a/q1/1 d/q2/1 e/q3/2

a/p1/3

perform an action, new state and weight
depending on immediate past,

determine immediate future by a
type function (a, p1) → {b},

leaving the system with global weight

Multiply weights of a run!
→ wgt(G) = 72 in

�

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Weighted ACAs over Σ̃-dags

weight structure = commutative semiring
�

Σ1 = {a}, Σ2 = {b, d}, Σ3 = {c, e}

a/q1/1 d/q2/1 e/q3/2

a/p1/3 b/p2/1

perform an action, new state and weight
depending on immediate past,

determine immediate future by a
type function (a, p1) → {b},

leaving the system with global weight

Multiply weights of a run!
→ wgt(G) = 72 in

�

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Weighted ACAs over Σ̃-dags

weight structure = commutative semiring
�

Σ1 = {a}, Σ2 = {b, d}, Σ3 = {c, e}

a/q1/1 d/q2/1 e/q3/2

a/p1/3 b/p2/1 c/q2/2

perform an action, new state and weight
depending on immediate past,

determine immediate future by a
type function (a, p1) → {b},

leaving the system with global weight

Multiply weights of a run!
→ wgt(G) = 72 in

�

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Weighted ACAs over Σ̃-dags

weight structure = commutative semiring
�

Σ1 = {a}, Σ2 = {b, d}, Σ3 = {c, e}

a/q1/1 d/q2/1 e/q3/2

a/p1/3 b/p2/1 c/q2/2

b
perform an action, new state and weight
depending on immediate past,

determine immediate future by a
type function (a, p1) → {b},

leaving the system with global weight

Multiply weights of a run!
→ wgt(G) = 72 in

�

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Weighted ACAs over Σ̃-dags

weight structure = commutative semiring
�

Σ1 = {a}, Σ2 = {b, d}, Σ3 = {c, e}

a/q1/1 d/q2/1 e/q3/2

a/p1/3 b/p2/1 c/q2/2

b/p3/3
perform an action, new state and weight
depending on immediate past,

determine immediate future by a
type function (a, p1) → {b},

leaving the system with global weight

Multiply weights of a run!
→ wgt(G) = 72 in

�

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Weighted ACAs over Σ̃-dags

weight structure = commutative semiring
�

Σ1 = {a}, Σ2 = {b, d}, Σ3 = {c, e}

a/q1/1 d/q2/1 e/q3/2

a/p1/3 b/p2/1 c/q2/2

b/p3/3 c/p3/1
perform an action, new state and weight
depending on immediate past,

determine immediate future by a
type function (a, p1) → {b},

leaving the system with global weight

Multiply weights of a run!
→ wgt(G) = 72 in

�

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Weighted ACAs over Σ̃-dags

weight structure = commutative semiring
�

Σ1 = {a}, Σ2 = {b, d}, Σ3 = {c, e}

a/q1/1 d/q2/1 e/q3/2

a/p1/3 b/p2/1 c/q2/2

b/p3/3 c/p3/1

2 perform an action, new state and weight
depending on immediate past,

determine immediate future by a
type function (a, p1) → {b},

leaving the system with global weight

Multiply weights of a run!
→ wgt(G) = 72 in

�

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Weighted ACAs over Σ̃-dags

weight structure = commutative semiring
�

Σ1 = {a}, Σ2 = {b, d}, Σ3 = {c, e}

a/q1/1 d/q2/1 e/q3/2

a/p1/3 b/p2/1 c/q2/2

b/p3/3 c/p3/1

2 perform an action, new state and weight
depending on immediate past,

determine immediate future by a
type function (a, p1) → {b},

leaving the system with global weight

Multiply weights of a run!
→ wgt(G) = 72 in

�

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Logical Characterization

Define a reduced weighted MSO-logic (RMSO) similar to those
for traces.

Theorem (B. Bollig & I.M. 2006)

For a commutative semiring
�

and S : ��
�
(Σ̃) →

�
are

equivalent:
1 S = ‖A‖ for some wACA with types A,
2 S is RMSO-definable.

(direct proof with rather tricky constructions)

generalizations & applications for:
traces, message sequence charts (MSCs), probabilistic
lossy-channel systems, probabilistic asynchronous automata

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Logical Characterization

Define a reduced weighted MSO-logic (RMSO) similar to those
for traces.

Theorem (B. Bollig & I.M. 2006)

For a commutative semiring
�

and S : ��
�
(Σ̃) →

�
are

equivalent:
1 S = ‖A‖ for some wACA with types A,
2 S is RMSO-definable.

(direct proof with rather tricky constructions)

generalizations & applications for:
traces, message sequence charts (MSCs), probabilistic
lossy-channel systems, probabilistic asynchronous automata

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Summary

gave logical characterization of recognizable trace series

avoided to repeat the whole proof, used a translation to
word series and an unambiguity result instead

moreover, a characterization of the FO-fragment FO

more general unifying frame by wACA for Σ̃-dags

Outlook

What class is defined by wMSO?

find other weighted logics (temporal logics)
case studies and practical relevance of quantitative
aspects of concurrency

message sequence charts (international
telecommunication standard)
probabilistic lossy-channel systems

Introduction Weights & Traces Weighted Logics Directed Acyclic Graphs Summary

Summary

gave logical characterization of recognizable trace series

avoided to repeat the whole proof, used a translation to
word series and an unambiguity result instead

moreover, a characterization of the FO-fragment FO

more general unifying frame by wACA for Σ̃-dags

Outlook

What class is defined by wMSO?

find other weighted logics (temporal logics)
case studies and practical relevance of quantitative
aspects of concurrency

message sequence charts (international
telecommunication standard)
probabilistic lossy-channel systems

Translation Lemma – Proof Details

Proof (cont.)

lex(x, y) is an FO-formula.
(for dependence graphs transitive closure is FO-definable)

Critical:

weighted semantics of lex(x, y) should be �or �

∃ RFO-formula ̂lex(x, y) with weighted semantics 1L(lex(x,y))?
y unambiguity unambiguity

Then we proceed and obtain an RMSO-formula Φ̃ with

[[Φ̃]](t, σ) = [[Φ]](LNF(t), σ).

=⇒ Φ̃ defines T :�→
�

. return

Translation Lemma – Proof Details

Proof (cont.)

lex(x, y) is an FO-formula.
(for dependence graphs transitive closure is FO-definable)

Critical:

weighted semantics of lex(x, y) should be �or �

∃ RFO-formula ̂lex(x, y) with weighted semantics 1L(lex(x,y))?
y unambiguity unambiguity

Then we proceed and obtain an RMSO-formula Φ̃ with

[[Φ̃]](t, σ) = [[Φ]](LNF(t), σ).

=⇒ Φ̃ defines T :�→
�

. return

Translation Lemma – Proof Details

Proof (cont.)

lex(x, y) is an FO-formula.
(for dependence graphs transitive closure is FO-definable)

Critical:

weighted semantics of lex(x, y) should be �or �

∃ RFO-formula ̂lex(x, y) with weighted semantics 1L(lex(x,y))?
y unambiguity unambiguity

Then we proceed and obtain an RMSO-formula Φ̃ with

[[Φ̃]](t, σ) = [[Φ]](LNF(t), σ).

=⇒ Φ̃ defines T :�→
�

. return

Unambiguity of FO-languages

C = class of finite relational structures
Let C have a simply definable linear order, i.e., ∃ propositional
Ω(x, y) defining a linear order on the elements of every t ∈ C.

Lemma

Let L = L(Φ) ⊆ C for Φ ∈ FO. Then both 1L and 1L are definable
in RFO.

Corollary

L FO-definable trace language =⇒ 1L RFO-definable.

Ω(x, y) =
∨

(a,b)∈≺

(
Pa(x) ∧ Pb(y)

)
∨

∨

a∈Σ

(
Pa(x) ∧ Pa(y) ∧ ¬E(y, x)

)

main proof

Unambiguity of FO-languages

C = class of finite relational structures
Let C have a simply definable linear order, i.e., ∃ propositional
Ω(x, y) defining a linear order on the elements of every t ∈ C.

Lemma

Let L = L(Φ) ⊆ C for Φ ∈ FO. Then both 1L and 1L are definable
in RFO.

Corollary

L FO-definable trace language =⇒ 1L RFO-definable.

Ω(x, y) =
∨

(a,b)∈≺

(
Pa(x) ∧ Pb(y)

)
∨

∨

a∈Σ

(
Pa(x) ∧ Pa(y) ∧ ¬E(y, x)

)

main proof

Unambiguity of FO-languages

C = class of finite relational structures
Let C have a simply definable linear order, i.e., ∃ propositional
Ω(x, y) defining a linear order on the elements of every t ∈ C.

Lemma

Let L = L(Φ) ⊆ C for Φ ∈ FO. Then both 1L and 1L are definable
in RFO.

Corollary

L FO-definable trace language =⇒ 1L RFO-definable.

Ω(x, y) =
∨

(a,b)∈≺

(
Pa(x) ∧ Pb(y)

)
∨

∨

a∈Σ

(
Pa(x) ∧ Pa(y) ∧ ¬E(y, x)

)

main proof

FO-definable Trace Series

Theorem
�

commutative & weakly bi-aperiodic semiring.
For T :�→

�
are equivalent:

1 T is RFO-definable,
2 T is FO-definable,
3 T is aperiodic,
4 T is weakly aperiodic.

�
weakly bi-aperiodic if (K,⊕,�) and (K, ◦,�) weakly aperiodic,

S = (λ, µ, γ) aperiodic if µ(M) aperiodic,

S = (λ, µ, γ) weakly aperiodic if
∃n ≥ 0 ∀u, v, w ∈ M (S, uvnw) = (S, uvn+1w) summary

FO-definable Trace Series

Theorem
�

commutative & weakly bi-aperiodic semiring.
For T :�→

�
are equivalent:

1 T is RFO-definable,
2 T is FO-definable,
3 T is aperiodic,
4 T is weakly aperiodic.

�
weakly bi-aperiodic if (K,⊕,�) and (K, ◦,�) weakly aperiodic,

S = (λ, µ, γ) aperiodic if µ(M) aperiodic,

S = (λ, µ, γ) weakly aperiodic if
∃n ≥ 0 ∀u, v, w ∈ M (S, uvnw) = (S, uvn+1w) summary

	Introduction
	Weights & Traces
	Weighted Logics
	Directed Acyclic Graphs
	Summary

