

## Weighted Traces, Their Logics, and an Extension to Weighted MSCs

#### Ingmar Meinecke

meinecke@informatik.uni-leipzig.de

Institute of Computer Science, Leipzig University Germany

Workshop "Algebraic Theory of Automata and Logic" Szeged 30.9.–1.10.2006

| Introduction | Weights & Traces | Weighted Logics | Directed Acyclic Graphs | Summary |
|--------------|------------------|-----------------|-------------------------|---------|
| Outline      |                  |                 |                         |         |

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへぐ



2 Weights & Traces

3 Weighted Logics

4 Directed Acyclic Graphs



#### quantitative aspects of sequential and distributed systems

- runtime
- multiplicities of certain patterns
- unsafe behavior 
   probabilities

Mazurkiewicz traces as an important model of concurrency

- comprehensive theory for trace languages
- impact on other models like message sequence charts (MSCs)

weighted logics as a new formalism

- introduced for words by Droste & Gastin
- extended to trees, images, infinite words recently (Vogler, Droste, Mäurer, Rahonis)



quantitative aspects of sequential and distributed systems

- runtime
- multiplicities of certain patterns
- unsafe behavior probabilities

Mazurkiewicz traces as an important model of concurrency

- comprehensive theory for trace languages
- impact on other models like message sequence charts (MSCs)

weighted logics as a new formalism

- introduced for words by Droste & Gastin
- extended to trees, images, infinite words recently (Vogler, Droste, Mäurer, Rahonis)



quantitative aspects of sequential and distributed systems

- runtime
- multiplicities of certain patterns
- unsafe behavior probabilities

Mazurkiewicz traces as an important model of concurrency

- comprehensive theory for trace languages
- impact on other models like message sequence charts (MSCs)

weighted logics as a new formalism

- Introduced for words by Droste & Gastin
- extended to trees, images, infinite words recently (Vogler, Droste, Mäurer, Rahonis)

| Introduction | Weights & Traces | Weighted Logics | Directed Acyclic Graphs | Summary |
|--------------|------------------|-----------------|-------------------------|---------|
|              |                  |                 |                         |         |
|              |                  |                 |                         |         |
| Outline      |                  |                 |                         |         |

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへぐ





- 3 Weighted Logics
- 4 Directed Acyclic Graphs

# Weight Structure = Semirings

#### general frame: execution of a system $\mapsto$ weight

#### Examples (weight structures)

- $(\mathbb{N}, +, \cdot, 0, 1)$  (counting)
- $(\mathbb{N} \cup \{-\infty\}, \max, +, -\infty, 0)$  (runtime)
- ([0, 1], max, ·, 0, 1) (probabilities)
- $\mathbb{B} = (\{0,1\}, \lor, \land, 0, 1)$  (Boolean algebra)
- $(\mathfrak{P}(\Sigma^*), \cup, \cdot, \emptyset, \{\varepsilon\})$  (transducer)
- $(R_M, \cup, \circ, \emptyset, \Delta)$  (binary relations on *M*)
- $\mathbb{K} = (K, \oplus, \circ, 0, \mathbb{1})$  is a *semiring* if:
- $(K, \oplus, 0)$  commutative monoid,  $(K, \circ, 1)$  monoid,
- **2**  $\circ$  distributes over  $\oplus$ , and  $0 \circ k = k \circ 0 = 0$  for all  $k \in K$

# Weight Structure = Semirings

general frame: execution of a system  $\mapsto$  weight

#### Examples (weight structures)

- $(\mathbb{N}, +, \cdot, 0, 1)$  (counting)
- $(\mathbb{N} \cup \{-\infty\}, \max, +, -\infty, 0)$  (runtime)
- $([0,1], \max, \cdot, 0, 1)$  (probabilities)
- $\mathbb{B} = (\{0,1\}, \lor, \land, 0, 1)$  (Boolean algebra)
- $(\mathfrak{P}(\Sigma^*), \cup, \cdot, \emptyset, \{\varepsilon\})$  (transducer)
- $(R_M, \cup, \circ, \emptyset, \Delta)$  (binary relations on *M*)
- $\mathbb{K} = (K, \oplus, \circ, 0, 1)$  is a *semiring* if:
  - ( $K, \oplus, 0$ ) commutative monoid,  $(K, \circ, 1)$  monoid,
  - ②  $\circ$  distributes over ⊕, and  $0 \circ k = k \circ 0 = 0$  for all  $k \in K$

# Weight Structure = Semirings

general frame: execution of a system  $\mapsto$  weight

#### Examples (weight structures)

- $(\mathbb{N}, +, \cdot, 0, 1)$  (counting)
- $(\mathbb{N} \cup \{-\infty\}, \max, +, -\infty, 0)$  (runtime)
- $([0,1], \max, \cdot, 0, 1)$  (probabilities)
- $\bullet \ \mathbb{B} = (\{0,1\}, \lor, \land, 0, 1)$  (Boolean algebra)
- $(\mathfrak{P}(\Sigma^*), \cup, \cdot, \emptyset, \{\varepsilon\})$  (transducer)
- $(R_M, \cup, \circ, \emptyset, \Delta)$  (binary relations on *M*)
- $\mathbb{K} = (K, \oplus, \circ, 0, \mathbb{1})$  is a *semiring* if:
  - **(** $K, \oplus, \emptyset$ **)** commutative monoid, ( $K, \circ, 1$ ) monoid,
  - **2**  $\circ$  distributes over  $\oplus$ , and  $0 \circ k = k \circ 0 = 0$  for all  $k \in K$



- global independency, no auto-concurrency
- alphabet Σ, irreflexive and symmetric *independence* relation I ⊆ Σ × Σ
- interchange adjacent independent letters
- trace = equivalence class of words
- trace monoid  $\mathbb{M} = \mathbb{M}(\Sigma, I) = \Sigma^*/I$
- canonical epimorphism  $\varphi : \Sigma^* \to \mathbb{M} : w \mapsto [w]$

#### Example

• for I = a - b we have t = [abcbbad] = [bacabbd]

• *lexicographic normal form* of *t* for a < b < c < d is LNF(t) = abcabbd



- global independency, no auto-concurrency
- alphabet Σ, irreflexive and symmetric *independence* relation I ⊆ Σ × Σ
- interchange adjacent independent letters
- trace = equivalence class of words
- trace monoid  $\mathbb{M} = \mathbb{M}(\Sigma, I) = \Sigma^*/I$
- canonical epimorphism  $\varphi : \Sigma^* \to \mathbb{M} : w \mapsto [w]$

#### Example

• for I = a - b we have t = [abcbbad] = [bacabbd]

 lexicographic normal form of t for a < b < c < d is LNF(t) = abcabbd

## Traces as Dependence Graphs

dependence graph (V, E, l) = acyclic graph with  $l : V \to \Sigma$  such that  $(l(x), l(y)) \in D \iff (x, y) \in E \cup E^{-1} \cup id_V$ 

= abcabbdwith  $(a, b) \in I$ 

monoid of finite dependence graphs  $\cong \mathbb{M}(\Sigma, D)$  $\curvearrowright$  graphical representation more appropriate for logic

Summary

*dependence graph* (V, E, l) = acyclic graph with  $l: V \rightarrow \Sigma$  such that  $(l(x), l(y)) \in D \iff (x, y) \in E \cup E^{-1} \cup id_V$ 



= abcabbdwith  $(a, b) \in I$ 

◆□▶ ◆□▶ ▲□▶ ▲□▶ □□□ のQ@

Summary

### Traces as Dependence Graphs

*dependence graph* (V, E, l) = acyclic graph with  $l: V \rightarrow \Sigma$  such that  $(l(x), l(y)) \in D \iff (x, y) \in E \cup E^{-1} \cup id_V$ 



= abcabbdwith  $(a, b) \in I$ 

◆□▶ ◆□▶ ▲□▶ ▲□▶ □□□ のQ@

### Traces as Dependence Graphs

*dependence graph* (V, E, l) = acyclic graph with  $l: V \rightarrow \Sigma$  such that  $(l(x), l(y)) \in D \iff (x, y) \in E \cup E^{-1} \cup id_V$ 



= abcabbdwith  $(a, b) \in I$ 

monoid of finite dependence graphs  $\cong \mathbb{M}(\Sigma, D)$ 

◆□▶ ◆□▶ ▲□▶ ▲□▶ □□□ のQ@

Summary

*dependence graph* (V, E, l) = acyclic graph with  $l: V \rightarrow \Sigma$  such that  $(l(x), l(y)) \in D \iff (x, y) \in E \cup E^{-1} \cup id_V$ 



= abcabbdwith  $(a, b) \in I$ 

monoid of finite dependence graphs  $\cong \mathbb{M}(\Sigma, D)$  $\sim$  graphical representation more appropriate for logic

## Recognizable Trace Series

#### $\mathbb{K} = (K, \oplus, \circ, 0, 1)$ commutative semiring, i.e., $\circ$ commutative

### Recognizable Trace Series

 $\mathbb{K} = (K, \oplus, \circ, 0, 1)$  commutative semiring, i.e.,  $\circ$  commutative  $S: \mathbb{M} \to \mathbb{K}$  recognizable if there are: a finite state set Q, a monoid homomorphism  $\mu: \mathbb{M} \to \mathbb{K}^{Q \times Q}, \lambda \in \mathbb{K}^{1 \times Q}, \gamma \in \mathbb{K}^{Q \times 1}$ such that  $(S, t) = \lambda \mu(t) \gamma$ .

## **Recognizable Trace Series**

 $\mathbb{K} = (K, \oplus, \circ, 0, 1)$  commutative semiring, i.e.,  $\circ$  commutative

 $S: \mathbb{M} \to \mathbb{K}$  recognizable if there are: a finite state set Q, a monoid homomorphism  $\mu : \mathbb{M} \to \mathbb{K}^{\mathcal{Q} \times \mathcal{Q}}, \lambda \in \mathbb{K}^{1 \times \mathcal{Q}}, \gamma \in \mathbb{K}^{\mathcal{Q} \times 1}$ such that  $(S, t) = \lambda \mu(t) \gamma$ .



semiring  $\mathbb{N}$ ,  $(a, b) \in I$ , S is the behavior of a weighted automaton with *I-diamond-property*:  $\mu(ab) = \mu(ba)$  $\implies$  (S, ab) = (S, ba) = 12

| Introduction | Weights & Traces | Weighted Logics | Directed Acyclic Graphs | Summary |
|--------------|------------------|-----------------|-------------------------|---------|
|              |                  |                 |                         |         |
|              |                  |                 |                         |         |
| Outline      |                  |                 |                         |         |











# The Intuition behind Weighted Logics

#### <u>usual MSO-formula $\Phi$ :</u> then $\Phi$ holds or not $\frown \llbracket \Phi \rrbracket \in \{0,1\}$

a *quantitative semantics* = number of verifications:

- $(x, y) \in E$  has one verification  $\frown [[(x, y) \in E]] = 1$
- $\Phi \lor \Psi$  has  $\llbracket \Phi \rrbracket + \llbracket \Psi \rrbracket$  verifications
- $\Phi \land \Psi$  has  $\llbracket \Phi \rrbracket \cdot \llbracket \Psi \rrbracket$  verifications
- $\exists x. \Phi$  has as many verifications as elements that verify  $\Phi$

- could be defined in Boolean algebras, but in general semirings not clear
- solution: *negate atomic formulas only* (and extend syntax by disjunction and universal quantification)
- $\longrightarrow$  weighted logics introduced for words by Droste & Gastin (2005)

# The Intuition behind Weighted Logics

<u>usual MSO-formula  $\Phi$ </u>: then  $\Phi$  holds or not  $\frown \llbracket \Phi \rrbracket \in \{0,1\}$ 

a *quantitative semantics* = number of verifications:

- $(x, y) \in E$  has one verification  $\curvearrowright [[(x, y) \in E]] = 1$
- $\Phi \lor \Psi$  has  $\llbracket \Phi \rrbracket + \llbracket \Psi \rrbracket$  verifications
- $\Phi \land \Psi$  has  $\llbracket \Phi \rrbracket \cdot \llbracket \Psi \rrbracket$  verifications
- $\exists x. \Phi$  has as many verifications as elements that verify  $\Phi$

- could be defined in Boolean algebras, but in general semirings not clear
- solution: *negate atomic formulas only* (and extend syntax by disjunction and universal quantification)
- $\longrightarrow$  weighted logics introduced for words by Droste & Gastin (2005)

# The Intuition behind Weighted Logics

<u>usual MSO-formula  $\Phi$ </u>: then  $\Phi$  holds or not  $\frown \llbracket \Phi \rrbracket \in \{0,1\}$ 

a *quantitative semantics* = number of verifications:

- $(x, y) \in E$  has one verification  $\frown [[(x, y) \in E]] = 1$
- $\Phi \lor \Psi$  has  $\llbracket \Phi \rrbracket + \llbracket \Psi \rrbracket$  verifications
- $\Phi \land \Psi$  has  $\llbracket \Phi \rrbracket \cdot \llbracket \Psi \rrbracket$  verifications
- $\exists x. \Phi$  has as many verifications as elements that verify  $\Phi$

- could be defined in Boolean algebras, but in general semirings not clear
- solution: *negate atomic formulas only* (and extend syntax by disjunction and universal quantification)
- $\longrightarrow$  weighted logics introduced for words by Droste & Gastin (2005)

# The Intuition behind Weighted Logics

<u>usual MSO-formula  $\Phi$ </u>: then  $\Phi$  holds or not  $\frown \llbracket \Phi \rrbracket \in \{0,1\}$ 

a *quantitative semantics* = number of verifications:

- $(x, y) \in E$  has one verification  $\frown [[(x, y) \in E]] = 1$
- $\Phi \lor \Psi$  has  $\llbracket \Phi \rrbracket + \llbracket \Psi \rrbracket$  verifications
- $\Phi \land \Psi$  has  $\llbracket \Phi \rrbracket \cdot \llbracket \Psi \rrbracket$  verifications
- $\exists x. \Phi$  has as many verifications as elements that verify  $\Phi$

- could be defined in Boolean algebras, but in general semirings not clear
- solution: *negate atomic formulas only* (and extend syntax by disjunction and universal quantification)
- $\longrightarrow$  weighted logics introduced for words by Droste & Gastin (2005)

# The Intuition behind Weighted Logics

<u>usual MSO-formula  $\Phi$ </u>: then  $\Phi$  holds or not  $\frown \llbracket \Phi \rrbracket \in \{0,1\}$ 

a *quantitative semantics* = number of verifications:

- $(x, y) \in E$  has one verification  $\frown [[(x, y) \in E]] = 1$
- $\Phi \lor \Psi$  has  $[\![\Phi]\!] + [\![\Psi]\!]$  verifications
- $\Phi \land \Psi$  has  $\llbracket \Phi \rrbracket \cdot \llbracket \Psi \rrbracket$  verifications

•  $\exists x. \Phi$  has as many verifications as elements that verify  $\Phi$ 

- could be defined in Boolean algebras, but in general semirings not clear
- solution: *negate atomic formulas only* (and extend syntax by disjunction and universal quantification)
- $\longrightarrow$  weighted logics introduced for words by Droste & Gastin (2005)

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (1)

 (1)
 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)
 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)</

# The Intuition behind Weighted Logics

<u>usual MSO-formula  $\Phi$ </u>: then  $\Phi$  holds or not  $\frown \llbracket \Phi \rrbracket \in \{0,1\}$ 

a *quantitative semantics* = number of verifications:

- $(x, y) \in E$  has one verification  $\frown [[(x, y) \in E]] = 1$
- $\Phi \lor \Psi$  has  $[\![\Phi]\!] + [\![\Psi]\!]$  verifications
- $\Phi \land \Psi$  has  $\llbracket \Phi \rrbracket \cdot \llbracket \Psi \rrbracket$  verifications
- $\exists x. \Phi$  has as many verifications as elements that verify  $\Phi$

- could be defined in Boolean algebras, but in general semirings not clear
- solution: *negate atomic formulas only* (and extend syntax by disjunction and universal quantification)
- $\longrightarrow$  weighted logics introduced for words by Droste & Gastin (2005)

# The Intuition behind Weighted Logics

<u>usual MSO-formula  $\Phi$ </u>: then  $\Phi$  holds or not  $\frown \llbracket \Phi \rrbracket \in \{0,1\}$ 

a *quantitative semantics* = number of verifications:

- $(x, y) \in E$  has one verification  $\frown [[(x, y) \in E]] = 1$
- $\Phi \lor \Psi$  has  $[\![\Phi]\!] + [\![\Psi]\!]$  verifications
- $\Phi \land \Psi$  has  $\llbracket \Phi \rrbracket \cdot \llbracket \Psi \rrbracket$  verifications
- $\exists x. \Phi$  has as many verifications as elements that verify  $\Phi$

- could be defined in Boolean algebras, but in general semirings not clear
- solution: *negate atomic formulas only* (and extend syntax by disjunction and universal quantification)
- $\longrightarrow$  weighted logics introduced for words by Droste & Gastin (2005)

# The Intuition behind Weighted Logics

<u>usual MSO-formula  $\Phi$ </u>: then  $\Phi$  holds or not  $\frown \llbracket \Phi \rrbracket \in \{0,1\}$ 

a *quantitative semantics* = number of verifications:

- $(x, y) \in E$  has one verification  $\frown [[(x, y) \in E]] = 1$
- $\Phi \lor \Psi$  has  $[\![\Phi]\!] + [\![\Psi]\!]$  verifications
- $\Phi \land \Psi$  has  $\llbracket \Phi \rrbracket \cdot \llbracket \Psi \rrbracket$  verifications
- $\exists x. \Phi$  has as many verifications as elements that verify  $\Phi$

- could be defined in Boolean algebras, but in general semirings not clear
- solution: *negate atomic formulas only* (and extend syntax by disjunction and universal quantification)
- $\longrightarrow$  weighted logics introduced for words by Droste & Gastin (2005)

# The Intuition behind Weighted Logics

<u>usual MSO-formula  $\Phi$ </u>: then  $\Phi$  holds or not  $\frown \llbracket \Phi \rrbracket \in \{0,1\}$ 

a *quantitative semantics* = number of verifications:

- $(x, y) \in E$  has one verification  $\frown [[(x, y) \in E]] = 1$
- $\Phi \lor \Psi$  has  $[\![\Phi]\!] + [\![\Psi]\!]$  verifications
- $\Phi \land \Psi$  has  $\llbracket \Phi \rrbracket \cdot \llbracket \Psi \rrbracket$  verifications
- $\exists x. \Phi$  has as many verifications as elements that verify  $\Phi$

- could be defined in Boolean algebras, but in general semirings not clear
- solution: *negate atomic formulas only* (and extend syntax by disjunction and universal quantification)
- $\longrightarrow$  weighted logics introduced for words by Droste & Gastin (2005)

# The Intuition behind Weighted Logics

<u>usual MSO-formula  $\Phi$ </u>: then  $\Phi$  holds or not  $\frown \llbracket \Phi \rrbracket \in \{0,1\}$ 

a *quantitative semantics* = number of verifications:

- $(x, y) \in E$  has one verification  $\frown [[(x, y) \in E]] = 1$
- $\Phi \lor \Psi$  has  $[\![\Phi]\!] + [\![\Psi]\!]$  verifications
- $\Phi \land \Psi$  has  $\llbracket \Phi \rrbracket \cdot \llbracket \Psi \rrbracket$  verifications
- $\exists x. \Phi$  has as many verifications as elements that verify  $\Phi$

- could be defined in Boolean algebras, but in general semirings not clear
- solution: *negate atomic formulas only* (and extend syntax by disjunction and universal quantification)
- $\rightarrow$  weighted logics introduced for words by Droste & Gastin (2005)

# Weighted Logics for Traces

commutative  $\mathbb{K} = (K, \oplus, \circ, \mathbb{O}, \mathbb{1})$ , dependence graphs (V, E, l)

 $\Phi ::= k \mid P_a(x) \mid E(x, y) \mid x \in X \mid \neg P_a(x) \mid \neg E(x, y) \mid \neg x \in X \mid$  $\Phi \lor \Psi \mid \Phi \land \Psi \mid \exists x. \Phi \mid \exists X. \Phi \mid \forall x. \Phi \mid \forall X. \Phi$ 

and semantics  $\llbracket \Phi \rrbracket_{\mathcal{V}} : \mathbb{M}_{\mathcal{V}}(\Sigma, D) \to \mathbb{K}$  (assignment  $\sigma : \mathcal{V} \to V$ )

• 
$$\llbracket k \rrbracket_{\mathcal{V}}(t,\sigma) = k$$
  
•  $\llbracket E(x,y) \rrbracket_{\mathcal{V}}(t,\sigma) = \begin{cases} 1 & \text{if } (\sigma(x),\sigma(y)) \in E, \\ 0 & \text{otherwise} \end{cases}$   
•  $\llbracket \neg \Phi \rrbracket_{\mathcal{V}}(t,\sigma) = \begin{cases} 1 & \text{if } \llbracket \Phi \rrbracket_{\mathcal{V}}(t,\sigma) = 0, \\ 0 & \text{if } \llbracket \Phi \rrbracket_{\mathcal{V}}(t,\sigma) = 1 \end{cases}$   
•  $\llbracket \Phi \land \Psi \rrbracket_{\mathcal{V}}(t,\sigma) = \llbracket \Phi \rrbracket_{\mathcal{V}}(t,\sigma) \circ \llbracket \Psi \rrbracket_{\mathcal{V}}(t,\sigma)$   
•  $\llbracket \exists x.\Phi \rrbracket_{\mathcal{V}}(t,\sigma) = \bigoplus_{v \in V} \llbracket \Phi \rrbracket_{\mathcal{V} \cup \{x\}}(t,\sigma[x \to v])$ 

## Weighted Logics for Traces

commutative  $\mathbb{K} = (K, \oplus, \circ, \mathbb{O}, \mathbb{1})$ , dependence graphs (V, E, l)

$$\Phi ::= k \mid P_a(x) \mid E(x, y) \mid x \in X \mid \neg P_a(x) \mid \neg E(x, y) \mid \neg x \in X \mid \Phi \lor \Psi \mid \Phi \land \Psi \mid \exists x. \Phi \mid \exists X. \Phi \mid \forall x. \Phi \mid \forall X. \Phi$$

and *semantics*  $\llbracket \Phi \rrbracket_{\mathcal{V}} : \mathbb{M}_{\mathcal{V}}(\Sigma, D) \to \mathbb{K}$  (assignment  $\sigma : \mathcal{V} \to V$ ) •  $\llbracket k \rrbracket_{\mathcal{V}}(t, \sigma) = k$ 

• 
$$\llbracket E(x,y) \rrbracket_{\mathcal{V}}(t,\sigma) = \begin{cases} \mathbb{1} & \text{if } (\sigma(x),\sigma(y)) \in E, \\ \mathbb{0} & \text{otherwise} \end{cases}$$

$$\bullet \ [\![ \neg \Phi ]\!]_{\mathcal{V}}(t,\sigma) = \begin{cases} \mathbbm{1} & \text{if } [\![ \Phi ]\!]_{\mathcal{V}}(t,\sigma) = \mathbbm{0}, \\ \mathbbm{0} & \text{if } [\![ \Phi ]\!]_{\mathcal{V}}(t,\sigma) = \mathbbm{1} \end{cases}$$

- $\llbracket \Phi \land \Psi \rrbracket_{\mathcal{V}}(t,\sigma) = \llbracket \Phi \rrbracket_{\mathcal{V}}(t,\sigma) \circ \llbracket \Psi \rrbracket_{\mathcal{V}}(t,\sigma)$
- $\llbracket \exists x.\Phi \rrbracket_{\mathcal{V}}(t,\sigma) = \bigoplus_{v \in V} \llbracket \Phi \rrbracket_{\mathcal{V} \cup \{x\}}(t,\sigma[x \to v])$

## Weighted Logics for Traces

commutative  $\mathbb{K} = (K, \oplus, \circ, \mathbb{O}, \mathbb{1})$ , dependence graphs (V, E, l)

$$\Phi ::= k \mid P_a(x) \mid E(x, y) \mid x \in X \mid \neg P_a(x) \mid \neg E(x, y) \mid \neg x \in X \mid$$
$$\Phi \lor \Psi \mid \Phi \land \Psi \mid \exists x. \Phi \mid \exists X. \Phi \mid \forall x. \Phi \mid \forall X. \Phi$$

and semantics  $\llbracket \Phi \rrbracket_{\mathcal{V}} : \mathbb{M}_{\mathcal{V}}(\Sigma, D) \to \mathbb{K}$  (assignment  $\sigma : \mathcal{V} \to V$ )

• 
$$\llbracket k \rrbracket_{\mathcal{V}}(t,\sigma) = k$$
  
•  $\llbracket E(x,y) \rrbracket_{\mathcal{V}}(t,\sigma) = \begin{cases} 1 & \text{if } (\sigma(x),\sigma(y)) \in E, \\ 0 & \text{otherwise} \end{cases}$   
•  $\llbracket \neg \Phi \rrbracket_{\mathcal{V}}(t,\sigma) = \begin{cases} 1 & \text{if } \llbracket \Phi \rrbracket_{\mathcal{V}}(t,\sigma) = 0, \\ 0 & \text{if } \llbracket \Phi \rrbracket_{\mathcal{V}}(t,\sigma) = 1 \end{cases}$   
•  $\llbracket \Phi \land \Psi \rrbracket_{\mathcal{V}}(t,\sigma) = \llbracket \Phi \rrbracket_{\mathcal{V}}(t,\sigma) \circ \llbracket \Psi \rrbracket_{\mathcal{V}}(t,\sigma)$   
•  $\llbracket \exists x.\Phi \rrbracket_{\mathcal{V}}(t,\sigma) = \bigoplus_{v \in V} \llbracket \Phi \rrbracket_{\mathcal{V} \cup \{x\}}(t,\sigma[x \to v])$ 

#### even for words: general wMSO-formulas exceed recognizability

define class RMSO with  $\Phi$  restricted, if

- no occurence of  $\forall X.\Psi$  and
- $\forall x.\Psi$  only with  $\llbracket \Psi \rrbracket = \sum_{i=1}^{n} k_i \mathbf{1}_{L_i}$  a *definable step function* ( $L_i$  definable languages)

#### Theorem

For  $\mathbb{M}(\Sigma, D)$  trace monoid &  $\mathbb{K}$  commutative semiring:  $S : \mathbb{M}(\Sigma, D) \to \mathbb{K}$  recognizable  $\iff S = \llbracket \Phi \rrbracket$  for restricted  $\Phi$ .

Adapt technique from trace languages: Translate edge relation E to < for words and vice versa! (Ebinger/Muscholl) Then use result for words! (Dreste/Gastin)

◆□▶ ◆圖▶ ◆目▶ ◆目▶ ◆回▶

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

# Recognizability = Definability

even for words: general wMSO-formulas exceed recognizability

define class RMSO with  $\Phi$  restricted, if

- no occurrence of  $\forall X.\Psi$  and
- $\forall x.\Psi$  only with  $\llbracket \Psi \rrbracket = \sum_{i=1}^{n} k_i \mathbf{1}_{L_i}$  a *definable step function* ( $L_i$  definable languages)

#### Theorem

For  $\mathbb{M}(\Sigma, D)$  trace monoid &  $\mathbb{K}$  commutative semiring:  $S : \mathbb{M}(\Sigma, D) \to \mathbb{K}$  recognizable  $\iff S = \llbracket \Phi \rrbracket$  for restricted  $\Phi$ .

Adapt technique from trace languages: Translate edge relation E to < for words and vice versa! (Ebinger/Muscholl) Then use result for words! (Droste/Gastin)

# Recognizability = Definability

even for words: general wMSO-formulas exceed recognizability

define class RMSO with  $\Phi$  restricted, if

- no occurrence of  $\forall X.\Psi$  and
- $\forall x.\Psi$  only with  $\llbracket \Psi \rrbracket = \sum_{i=1}^{n} k_i \mathbf{1}_{L_i}$  a *definable step function* ( $L_i$  definable languages)

#### Theorem

For  $\mathbb{M}(\Sigma, D)$  trace monoid &  $\mathbb{K}$  commutative semiring:  $S : \mathbb{M}(\Sigma, D) \to \mathbb{K}$  recognizable  $\iff S = \llbracket \Phi \rrbracket$  for restricted  $\Phi$ .

Adapt technique from trace languages: Translate edge relation E to < for words and vice versa! (Ebinger/Muscholl)

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Summary

even for words: general wMSO-formulas exceed recognizability

define class RMSO with  $\Phi$  restricted, if

- no occurrence of  $\forall X.\Psi$  and
- $\forall x.\Psi$  only with  $\llbracket \Psi \rrbracket = \sum_{i=1}^{n} k_i \mathbf{1}_{L_i}$  a *definable step function* ( $L_i$  definable languages)

#### Theorem

For  $\mathbb{M}(\Sigma, D)$  trace monoid &  $\mathbb{K}$  commutative semiring:  $S : \mathbb{M}(\Sigma, D) \to \mathbb{K}$  recognizable  $\iff S = \llbracket \Phi \rrbracket$  for restricted  $\Phi$ .

Adapt technique from trace languages: Translate edge relation E to < for words and vice versa! (Ebinger/Muscholl)

Then use result for words! (Droste/Gastin)

#### **Translation Lemma**

#### Lemma

For  $T: \mathbb{M} \to \mathbb{K}$ ,  $\varphi: \Sigma^* \to \mathbb{M}$  canonical epimorphism, and  $(\varphi^{-1}(T), w) := (T, \varphi(w))$  for  $w \in \Sigma^*$  are equivalent:

T definable in RMSO,

2 
$$S = \varphi^{-1}(T) : \Sigma^* \to \mathbb{K}$$
 RMSO-definable,

3 
$$S' = \varphi^{-1}(T)_{| \text{LNF}} : \Sigma^* \to \mathbb{K}$$
 RMSO-definable.

#### Proof idea of $(3) \implies (1)$ .

Let *S'* be defined by RMSO-formula  $\Phi$ . Replace x < y in  $\Phi$  by new FO-formula lex(x, y) for traces with  $(t, \sigma) \models lex(x, y) \iff \sigma(x) < \sigma(y)$  in LNF(*t*) and make lex(x, y) *unambiguous*! • proof details

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

### **Translation Lemma**

#### Lemma

For  $T : \mathbb{M} \to \mathbb{K}$ ,  $\varphi : \Sigma^* \to \mathbb{M}$  canonical epimorphism, and  $(\varphi^{-1}(T), w) := (T, \varphi(w))$  for  $w \in \Sigma^*$  are equivalent: T definable in RMSO,  $S = \varphi^{-1}(T) : \Sigma^* \to \mathbb{K}$  RMSO-definable,  $S' = \varphi^{-1}(T)_{|\text{LNF}} : \Sigma^* \to \mathbb{K}$  RMSO-definable.

#### Proof idea of (3) $\implies$ (1).

Let S' be defined by RMSO-formula  $\Phi$ . Replace x < y in  $\Phi$  by new FO-formula lex(x, y) for traces with  $(t, \sigma) \models lex(x, y) \iff \sigma(x) < \sigma(y)$  in LNF(t)and make lex(x, y) *unambiguous*!  $\blacktriangleright$  proof details

# Example: Height of a Trace

 $\mathbb{K} = (\mathbb{N} \cup \{-\infty\}, \max, +, -\infty, 0) \text{ and } H : \mathbb{M} \to \mathbb{K} : t \mapsto \text{height}(t)$ 

chain(X) =  $\forall x, y \in X. (x = y \lor (x, y) \in E^+ \lor (y, x) \in E^+)$ is an FO-formula ( $E^+$  FO over traces).

 $\implies \exists \mathsf{RFO}$ -formula  $\widehat{\mathsf{chain}(X)}$  defining  $\mathbf{1}_{L(\operatorname{chain}(X))}$ 

 $\operatorname{card}(X) = \forall x. ((x \in X \longrightarrow 1) \land (\neg x \in X \longrightarrow 0))$ has semantics |X| over  $\mathbb{K}$ .

 $\implies$  *H* defined by  $\Phi = \exists X.chain(X) \land card(X)$ 

 $\implies$   $H: \mathbb{M} \to \mathbb{K}$  recognizable

## Example: Height of a Trace

 $\mathbb{K} = (\mathbb{N} \cup \{-\infty\}, \max, +, -\infty, 0) \text{ and } H : \mathbb{M} \to \mathbb{K} : t \mapsto \text{height}(t)$ 

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

chain(X) =  $\forall x, y \in X$ .  $(x = y \lor (x, y) \in E^+ \lor (y, x) \in E^+)$ is an FO-formula ( $E^+$  FO over traces).

 $\implies \exists \mathsf{RFO}$ -formula  $\widehat{\mathsf{chain}(X)}$  defining  $\mathbf{1}_{L(\mathrm{chain}(X))}$ 

 $\operatorname{card}(X) = \forall x. ((x \in X \longrightarrow 1) \land (\neg x \in X \longrightarrow 0))$ has semantics |X| over  $\mathbb{K}$ .

 $\implies$  *H* defined by  $\Phi = \exists X.chain(X) \land card(X)$ 

 $\implies$   $H: \mathbb{M} \to \mathbb{K}$  recognizable

#### Example: Height of a Trace

 $\mathbb{K} = (\mathbb{N} \cup \{-\infty\}, \max, +, -\infty, 0) \text{ and } H : \mathbb{M} \to \mathbb{K} : t \mapsto \text{height}(t)$ 

chain(X) =  $\forall x, y \in X$ .  $(x = y \lor (x, y) \in E^+ \lor (y, x) \in E^+)$ is an FO-formula ( $E^+$  FO over traces).

 $\implies \exists \mathsf{RFO}$ -formula  $\widehat{\mathsf{chain}(X)}$  defining  $\mathbf{1}_{L(\mathrm{chain}(X))}$ 

 $\operatorname{card}(X) = \forall x. ((x \in X \longrightarrow 1) \land (\neg x \in X \longrightarrow 0))$ has semantics |X| over  $\mathbb{K}$ .

 $\implies$  *H* defined by  $\Phi = \exists X.chain(X) \land card(X)$ 

 $\implies$   $H: \mathbb{M} \to \mathbb{K}$  recognizable

### Example: Height of a Trace

 $\mathbb{K} = (\mathbb{N} \cup \{-\infty\}, \max, +, -\infty, 0) \text{ and } H : \mathbb{M} \to \mathbb{K} : t \mapsto \text{height}(t)$ 

chain(X) =  $\forall x, y \in X$ .  $(x = y \lor (x, y) \in E^+ \lor (y, x) \in E^+)$ is an FO-formula ( $E^+$  FO over traces).

 $\implies \exists \mathsf{RFO}$ -formula  $\widehat{\mathsf{chain}(X)}$  defining  $\mathbf{1}_{L(\mathrm{chain}(X))}$ 

 $\operatorname{card}(X) = \forall x. ((x \in X \longrightarrow 1) \land (\neg x \in X \longrightarrow 0))$ has semantics |X| over  $\mathbb{K}$ .

 $\implies$  *H* defined by  $\Phi = \exists X.chain(X) \land card(X)$ 

$$\implies$$
  $H: \mathbb{M} \to \mathbb{K}$  recognizable

| Introduction | Weights & Traces | Weighted Logics | Directed Acyclic Graphs | Summary |
|--------------|------------------|-----------------|-------------------------|---------|
| Outline      |                  |                 |                         |         |











#### Dags over Distributed Alphabets



dependence  $D_{\widetilde{\Sigma}} = \{(a, b) \mid a \& b \text{ share a process}\};$ 

- $\forall i \in Ag : l^{-1}(\Sigma_i)$  totally ordered
- $\forall (u, v), (u', v') \in \triangleleft$  with  $l(u)D_{\widetilde{\Sigma}}l(u')$  and  $l(v)D_{\widetilde{\Sigma}}l(v')$ :

#### Dags over Distributed Alphabets



<u>Unifying frame</u>: distributed alphabet  $\widetilde{\Sigma} = \bigcup_{i \in A_g} \Sigma_i$  and dependence  $D_{\widetilde{\Sigma}} = \{(a, b) \mid a \& b \text{ share a process}\};$ directed acyclic graph  $(V, \lhd, l)$  with  $l : V \to \widetilde{\Sigma}$  is a  $\widetilde{\Sigma}$ -dag if

- $\forall i \in Ag : l^{-1}(\Sigma_i)$  totally ordered
- $\forall (u, v), (u', v') \in \triangleleft$  with  $l(u)D_{\widetilde{\Sigma}}l(u')$  and  $l(v)D_{\widetilde{\Sigma}}l(v')$ :  $u \leq u' \iff v \leq v'$  (FIFO-property)

weight structure = commutative semiring  $\mathbb{K}$  $\Sigma_1 = \{a\}, \Sigma_2 = \{b, d\}, \Sigma_3 = \{c, e\}$ 

perform an action, new state and weight depending on immediate past,

determine immediate future by a type function  $(a, p_1) \rightarrow \{b\}$ ,

leaving the system with global weight

Multiply weights of a run!  $\rightarrow \mathbf{wgt}(G) = 72$  in  $\mathbb{N}$ 

ロ>
 (日)
 (日)

weight structure = commutative semiring  $\mathbb{K}$  $\Sigma_1 = \{a\}, \Sigma_2 = \{b, d\}, \Sigma_3 = \{c, e\}$ 

# perform an action, new state and weight depending on immediate past,

determine immediate future by a type function  $(a, p_1) \rightarrow \{b\}$ ,

leaving the system with global weight

Multiply weights of a run!  $\rightarrow \mathbf{wgt}(G) = 72 \text{ in } \mathbb{N}$ 



weight structure = commutative semiring  $\mathbb{K}$  $\Sigma_1 = \{a\}, \Sigma_2 = \{b, d\}, \Sigma_3 = \{c, e\}$ 

# perform an action, new state and weight depending on immediate past,

determine immediate future by a type function  $(a, p_1) \rightarrow \{b\}$ ,

leaving the system with global weight

Multiply weights of a run!  $\rightarrow$  wgt(G) = 72 in N



0 e/g3/2

 $\frac{0}{d|q_2|1}$ 

weight structure = commutative semiring  $\mathbb{K}$  $\Sigma_1 = \{a\}, \Sigma_2 = \{b, d\}, \Sigma_3 = \{c, e\}$ 

# perform an action, new state and weight depending on immediate past,

determine immediate future by a type function  $(a, p_1) \rightarrow \{b\}$ ,

leaving the system with global weight

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Multiply weights of a run!  $\rightarrow$  wgt(*G*) = 72 in  $\mathbb{N}$ 

weight structure = commutative semiring  $\mathbb{K}$  $\Sigma_1 = \{a\}, \Sigma_2 = \{b, d\}, \Sigma_3 = \{c, e\}$ 

# perform an action, new state and weight depending on immediate past,



leaving the system with global weight

Multiply weights of a run!  $\rightarrow$  wgt(G) = 72 in  $\mathbb{N}$ 

weight structure = commutative semiring  $\mathbb{K}$  $\Sigma_1 = \{a\}, \Sigma_2 = \{b, d\}, \Sigma_3 = \{c, e\}$ 

# perform an action, new state and weight depending on immediate past,

Summary



leaving the system with global weight

Multiply weights of a run!  $\rightarrow \mathbf{wgt}(G) = 72 \text{ in } \mathbb{N}$ 

weight structure = commutative semiring  $\mathbb{K}$  $\Sigma_1 = \{a\}, \Sigma_2 = \{b, d\}, \Sigma_3 = \{c, e\}$ 

# perform an action, new state and weight depending on immediate past,

Summary



determine immediate future by a type function  $(a, p_1) \rightarrow \{b\}$ ,

leaving the system with global weight

Multiply weights of a run!  $\rightarrow$  wgt(G) = 72 in  $\mathbb{N}$ 

weight structure = commutative semiring  $\mathbb{K}$  $\Sigma_1 = \{a\}, \Sigma_2 = \{b, d\}, \Sigma_3 = \{c, e\}$ 



perform an action, new state and weight depending on immediate past,

determine immediate future by a type function  $(a, p_1) \rightarrow \{b\}$ ,

leaving the system with global weight

Multiply weights of a run!  $\rightarrow$  wgt(G) = 72 in  $\mathbb{N}$ 

# Weighted ACAs over *S*-dags

weight structure = commutative semiring  $\mathbb{K}$  $\Sigma_1 = \{a\}, \Sigma_2 = \{b, d\}, \Sigma_3 = \{c, e\}$ 



perform an action, new state and weight depending on immediate past,

determine immediate future by a type function  $(a, p_1) \rightarrow \{b\}$ ,

 $\rightarrow$  wgt(G) = 72 in N

weight structure = commutative semiring  $\mathbb{K}$  $\Sigma_1 = \{a\}, \Sigma_2 = \{b, d\}, \Sigma_3 = \{c, e\}$ 



perform an action, new state and weight depending on immediate past,

determine immediate future by a type function  $(a, p_1) \rightarrow \{b\}$ ,

leaving the system with global weight

Multiply weights of a run!  $\rightarrow$  wgt(G) = 72 in N

weight structure = commutative semiring  $\mathbb{K}$  $\Sigma_1 = \{a\}, \Sigma_2 = \{b, d\}, \Sigma_3 = \{c, e\}$ 



perform an action, new state and weight depending on immediate past,

determine immediate future by a type function  $(a, p_1) \rightarrow \{b\}$ ,

leaving the system with global weight

Multiply weights of a run!  $\rightarrow \mathbf{wgt}(G) = 72 \text{ in } \mathbb{N}$ 

weight structure = commutative semiring  $\mathbb{K}$  $\Sigma_1 = \{a\}, \Sigma_2 = \{b, d\}, \Sigma_3 = \{c, e\}$ 



perform an action, new state and weight depending on immediate past,

determine immediate future by a type function  $(a, p_1) \rightarrow \{b\}$ ,

leaving the system with global weight

Multiply weights of a run!  $\rightarrow$  wgt(G) = 72 in N

## Logical Characterization

Define a *reduced weighted MSO-logic* (RMSO) similar to those for traces.

Theorem (B. Bollig & I.M. 2006)

For a commutative semiring  $\mathbb{K}$  and  $S : \mathbb{DAG}(\widetilde{\Sigma}) \to \mathbb{K}$  are equivalent:

• S = ||A|| for some wACA with types A,

S is RMSO-definable.

(direct proof with rather tricky constructions)

generalizations & applications for: traces, message sequence charts (MSCs).

lossy-channel systems, probabilistic asynchronous automata

## Logical Characterization

Define a *reduced weighted MSO-logic* (RMSO) similar to those for traces.

Theorem (B. Bollig & I.M. 2006)

For a commutative semiring  $\mathbb{K}$  and  $S : \mathbb{DAG}(\widetilde{\Sigma}) \to \mathbb{K}$  are equivalent:

• S = ||A|| for some wACA with types A,

S is RMSO-definable.

(direct proof with rather tricky constructions)

generalizations & applications for: traces, message sequence charts (MSCs), probabilistic lossy-channel systems, probabilistic asynchronous automata



- gave logical characterization of recognizable trace series
- avoided to repeat the whole proof, used a translation to word series and an unambiguity result instead

FO

- moreover, a characterization of the FO-fragment
- more general unifying frame by wACA for  $\widetilde{\Sigma}$ -dags

#### Outloc

- What class is defined by wMSO?
- find other weighted logics (temporal logics)
- case studies and practical relevance of quantitative aspects of concurrency
  - message sequence charts (international telecommunication standard)
  - probabilistic lossy-channel systems



- gave logical characterization of recognizable trace series
- avoided to repeat the whole proof, used a translation to word series and an unambiguity result instead
- moreover, a characterization of the FO-fragment

- → FO
- more general unifying frame by wACA for  $\widetilde{\Sigma}\text{-dags}$

#### Outlook

- What class is defined by wMSO?
- find other weighted logics (temporal logics)
- case studies and practical relevance of quantitative aspects of concurrency
  - message sequence charts (international telecommunication standard)
  - probabilistic lossy-channel systems

## Translation Lemma – Proof Details

#### Proof (cont.)

lex(x, y) is an FO-formula. (for dependence graphs transitive closure is FO-definable)

#### Critical:

- weighted semantics of lex(x, y) should be 1 or 0
- $\exists$  RFO-formula lex(x, y) with weighted semantics  $\mathbf{1}_{L(lex(x,y))}$ ?  $\frown$  unambiguity unambiguity

Then we proceed and obtain an RMSO-formula  $\tilde{\Phi}$  with

 $[\![ \tilde{\Phi} ]\!](t,\sigma) = [\![ \Phi ]\!](\mathrm{LNF}(t),\sigma).$ 

$$\implies ilde{\Phi} ext{ defines } T: \mathbb{M} o \mathbb{K}$$
 .

return

### Translation Lemma – Proof Details

#### Proof (cont.)

lex(x, y) is an FO-formula.

(for dependence graphs transitive closure is FO-definable)

#### Critical:

- weighted semantics of lex(x, y) should be 1 or 0
- $\exists$  RFO-formula lex(x, y) with weighted semantics  $\mathbf{1}_{L(lex(x,y))}$ ?  $\frown$  unambiguity • unambiguity

Then we proceed and obtain an RMSO-formula  $ilde{\Phi}$  with

$$[\![\,\tilde{\Phi}\,]\!](t,\sigma) = [\![\,\Phi\,]\!](\mathrm{LNF}(t),\sigma).$$

$$\implies ilde{\Phi}$$
 defines  $T: \mathbb{M} \to \mathbb{K}$  .

return

## Translation Lemma – Proof Details

#### Proof (cont.)

lex(x, y) is an FO-formula. (for dependence graphs transitive closure is FO-definable)

#### Critical:

- weighted semantics of lex(x, y) should be 1 or 0
- $\exists$  RFO-formula lex(x, y) with weighted semantics  $\mathbf{1}_{L(lex(x,y))}$ ?  $\frown$  unambiguity  $\frown$  unambiguity

Then we proceed and obtain an RMSO-formula  $\tilde{\Phi}$  with

$$[\![\,\tilde{\Phi}\,]\!](t,\sigma) = [\![\,\Phi\,]\!](\mathrm{LNF}(t),\sigma).$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□▶ ◆○◆

$$\implies ilde{\Phi}$$
 defines  $T: \mathbb{M} o \mathbb{K}$  .

## Unambiguity of FO-languages

C = class of finite relational structures Let C have a *simply definable linear order*, i.e.,  $\exists$  propositional  $\Omega(x, y)$  defining a linear order on the elements of every  $t \in C$ .

#### \_emma

Let  $L = L(\Phi) \subseteq C$  for  $\Phi \in FO$ . Then both  $\mathbf{1}_L$  and  $\mathbf{1}_{\overline{L}}$  are definable in RFO.

#### Corollary

L FO-definable trace language  $\implies 1_L$  RFO-definable.

$$\Omega(x,y) = \bigvee_{(a,b)\in \prec} \left( P_a(x) \land P_b(y) \right) \lor \bigvee_{a\in\Sigma} \left( P_a(x) \land P_a(y) \land \neg E(y,x) \right)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□▶ ◆○◆

### Unambiguity of FO-languages

C = class of finite relational structures Let C have a *simply definable linear order*, i.e.,  $\exists$  propositional  $\Omega(x, y)$  defining a linear order on the elements of every  $t \in C$ .

#### Lemma

Let  $L = L(\Phi) \subseteq C$  for  $\Phi \in FO$ . Then both  $\mathbf{1}_L$  and  $\mathbf{1}_{\overline{L}}$  are definable in RFO.

#### Corollary

L FO-definable trace language  $\implies 1_L$  RFO-definable.

$$\Omega(x,y) = \bigvee_{(a,b)\in\prec} \left( P_a(x) \land P_b(y) \right) \lor \bigvee_{a\in\Sigma} \left( P_a(x) \land P_a(y) \land \neg E(y,x) \right)$$

## Unambiguity of FO-languages

C = class of finite relational structures Let C have a *simply definable linear order*, i.e.,  $\exists$  propositional  $\Omega(x, y)$  defining a linear order on the elements of every  $t \in C$ .

#### Lemma

Let  $L = L(\Phi) \subseteq C$  for  $\Phi \in FO$ . Then both  $\mathbf{1}_L$  and  $\mathbf{1}_{\overline{L}}$  are definable in RFO.

#### Corollary

L FO-definable trace language  $\implies$  1<sub>L</sub> RFO-definable.

$$\Omega(x,y) = \bigvee_{(a,b)\in\prec} \left( P_a(x) \land P_b(y) \right) \lor \bigvee_{a\in\Sigma} \left( P_a(x) \land P_a(y) \land \neg E(y,x) \right)$$

## FO-definable Trace Series

#### Theorem

 $\mathbb{K}$  commutative & weakly bi-aperiodic semiring. For  $T : \mathbb{M} \to \mathbb{K}$  are equivalent:

- T is RFO-definable,
- T is FO-definable,
- T is aperiodic,
- T is weakly aperiodic.

 $\mathbb{K}$  weakly bi-aperiodic if  $(K, \oplus, 0)$  and  $(K, \circ, 1)$  weakly aperiodic,

 $S = (\lambda, \mu, \gamma)$  aperiodic if  $\mu(M)$  aperiodic,

 $S = (\lambda, \mu, \gamma) \text{ weakly aperiodic if} \\ \exists n \ge 0 \ \forall u, v, w \in M \ (S, uv^n w) = (S, uv^{n+1} w)$ 

summary

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□▶ ◆○◆

### FO-definable Trace Series

#### Theorem

 $\mathbb{K}$  commutative & weakly bi-aperiodic semiring. For  $T : \mathbb{M} \to \mathbb{K}$  are equivalent:

- T is RFO-definable,
- T is FO-definable,
- T is aperiodic,
- T is weakly aperiodic.

K weakly bi-aperiodic if  $(K, \oplus, \mathbb{O})$  and  $(K, \circ, \mathbb{1})$  weakly aperiodic,

$$S = (\lambda, \mu, \gamma)$$
 aperiodic if  $\mu(M)$  aperiodic,

 $S = (\lambda, \mu, \gamma)$  weakly aperiodic if  $\exists n \ge 0 \ \forall u, v, w \in M \ (S, uv^n w) = (S, uv^{n+1}w)$ 

summary

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□▶ ◆○◆