
Efficient Gossip Algorithms for
Machine Learning

PhD Thesis

Gábor Danner
Supervisor: Márk Jelasity, PhD

Doctoral School of Computer Science

Department of Computer Algorithms and Artificial Intelligence

Faculty of Science and Informatics

University of Szeged

Szeged
2022

Acknowledgments

First of all, I would like to thank my supervisor, Dr. Márk Jelasity, for guiding and
supporting my research and providing the opportunity to work on fascinating topics.

Next, I would like to thank my colleagues who helped me to discover interesting
areas of science and helped give birth to new ideas during our discussions. In alpha-
betical order, they are Dr. Árpád Berta, Dr. István Hegedűs and Dr. Róbert Ormándi.
I would also like to thank David P. Curley for correcting this thesis from a linguistic
point of view.

Last but not least, I would like to thank my family and friends for supporting me
all this time.

This research work was supported by the Hungarian Government and the Eu-
ropean Regional Development Fund under the grant number GINOP-2.3.2-15-2016-
00037 (“Internet of Living Things”), by the Hungarian Ministry of Human Capaci-
ties (grant 20391-3/2018/FEKUSTRAT), by grant TUDFO/47138-1/2019-ITM of the
Ministry for Innovation and Technology, Hungary, and by the University of Szeged
Open Access Fund (Grant Number 4411).

i

ii

Contents

1 Introduction 5

2 Background 9
2.1 Machine Learning Basics . 9
2.2 System Model . 10
2.3 Gossip Learning . 11
2.4 Smartphone Trace . 12

3 Gossip Learning with Privacy Preservation 13
3.1 Related Work . 14
3.2 Adversarial Model . 16
3.3 Our Solution . 16

3.3.1 Mini-batch Tree Topology . 16
3.3.2 Calculating the Gradient . 17
3.3.3 Working with Vectors . 19
3.3.4 Practical Considerations and Optimizations 20
3.3.5 Variants . 21

3.4 Analysis . 22
3.4.1 Security . 22
3.4.2 Complexity . 23

3.5 Compressing the Gradient . 23
3.6 Experimental Evaluation . 26

3.6.1 Time Consumption . 27
3.6.2 Simulating Tree Building . 30
3.6.3 Machine Learning Results . 31

3.7 Conclusion . 32

4 Comparison of Federated and Gossip Learning 35
4.1 Gossip Learning . 36

4.1.1 Random Sampling and Model Partitioning 38
4.2 Federated Learning . 39
4.3 Experimental Setup . 41

iii

4.3.1 Datasets . 41
4.3.2 System Model . 43
4.3.3 Hyperparameters . 44

4.4 Experimental Results . 45
4.4.1 Basic Design Choices . 48
4.4.2 Small Scale . 52
4.4.3 Large Scale . 54

4.5 Related Work . 55
4.6 Conclusions . 56

5 Gossip Learning with Adaptive Flow Control 59
5.1 Background . 61

5.1.1 Gossip Learning . 61
5.1.2 Push Gossip . 62
5.1.3 Chaotic Asynchronous Power Iteration 62

5.2 Token Account Algorithms . 63
5.2.1 Token Account Framework . 63
5.2.2 Applications within the Framework 65
5.2.3 Partitioned Token Gossip Learning 66
5.2.4 Implementations of the Framework 67
5.2.5 A Note on Rate Limitation Properties 69

5.3 Experimental Analysis of Token Account 70
5.3.1 Experimental Setup . 70
5.3.2 Experimental Results . 74
5.3.3 A Note on the Number of Tokens 76

5.4 Experimental Analysis of Partitioned Token Account 77
5.4.1 Experimental Setup . 78
5.4.2 Partitioning . 78
5.4.3 Small Scale . 80
5.4.4 Large Scale . 80

5.5 Related Work . 83
5.6 Discussion and Conclusions . 83

6 Gossip Learning Using Compressed Averaging 85
6.1 Background . 86

6.1.1 System Model . 86
6.1.2 Codec Basics . 87

6.2 Proposed Algorithms . 88
6.2.1 Pivot Codec . 88
6.2.2 Robust Push-Pull Averaging . 89
6.2.3 Compressed Push-Pull Averaging 91

iv

6.2.4 Flow Compensation . 92
6.2.5 Compressed Push-Pull Learning 93

6.3 Experiments for Average Consensus . 94
6.3.1 Experimental Setup . 95
6.3.2 Results . 95

6.4 Machine Learning Experiments . 98
6.4.1 Datasets . 99
6.4.2 Transfer Learning . 99
6.4.3 Metaparameters . 100
6.4.4 Results . 102

6.5 Conclusions . 103

Bibliography 109

Summary 119

Összefoglalás 125

v

List of Figures

2.1 Online session length histogram (left) and device churn (right). 12

3.1 Classification accuracy of the compressed gradient update on the data
sets with various batch sizes. 25

3.2 Distribution of effective mini-batch sizes for scenario of 10,000 fea-
tures. The histograms use a logarithmic scale. 30

3.3 Classification accuracy of the compressed gradient update on the data
sets based on trace-based simulation. We vary key size (1024 or 2048)
and maximum tree size (19 or 67). 32

4.1 The error of partitioned gossip learning with S = 10 and N = 100 on
the Pendigits dataset as a function of η and λ after 10 cycles (left) and
after 1000 cycles (right). 46

4.2 The error of partitioned gossip learning with S = 10 and N = 4140 on
the Spambase dataset as a function of η and λ after 1000 cycles. 46

4.3 Federated learning, 100 nodes, long transfer time, no failures, differ-
ent aggregation algorithms and upstream subsampling probabilities
and with sdown = 1. 47

4.4 Federated learning with 100 nodes, no-failure scenario, with different
subsampling strategies and s = 0.1. The “local” plot shows the average
of the models that the clients store; otherwise the master’s model has
been evaluated. 49

4.5 Federated learning and gossip learning with 100 nodes (left) and with
one node for each sample (right), no-failure scenario, with different
subsampling probabilities. Stochastic Gradient Descent (SGD) is im-
plemented by gossip learning with no merging (received model re-
places current model). 50

4.6 Federated learning and gossip learning over the smartphone trace with
long (left) and short (right) transfer time, in the 100-node scenario. . . 51

4.7 Federated learning and gossip learning with 100 nodes, no-failure sce-
nario, with single class assignment. 53

1

2 List of Figures

4.8 Selected experiments in the large scale scenario. ’Biased’ indicates sin-
gle class assignment, ’trace’ indicates the smartphone trace scenario.
. 54

5.1 Token account strategies in the failure-free scenario for gossip learning
(top row), push gossip (middle row) and chaotic iteration (bottom row). 71

5.2 Token account strategies in the smartphone trace scenario for gossip
learning (top row) and push gossip (bottom row). 73

5.3 Token account strategies in the failure free scenario and N = 500, 000

for gossip learning (top row) and push gossip (bottom row). 75
5.4 Average number of tokens (gossip learning, failure free scenario). . . . 77
5.5 Gossip learning with one node for each example, bursty transfer, sub-

sampling probability s = 0.1, no-failure (left) and smartphone trace
with long transfer time (right). Variants with and without model par-
titioning are indicated by P and NP, respectively. 79

5.6 Federated learning and gossip learning with 100 nodes (left) and with
one node for each sample (right), no-failure scenario, in the bursty
transfer scenario. 81

5.7 Selected experiments in the large scale scenario. Continuous transfer
(left) and bursty transfer (right). ’Biased’ indicates single class assign-
ment, ’trace’ indicates the smartphone trace scenario. 82

6.1 Comparison of codecs in push-pull with no message drop (left) and
a 5% message drop (right) with short cycles (top) and long cycles
(bottom). The parameters of all of the codecs have been optimized. . . 96

6.2 The effect of parameters H and neighborhood size k on the pivot
codec, with no message drop (left) and a 5% message drop (right). . . 97

6.3 Comparison of codecs in synchronized average consensus. The param-
eters of all of the codecs are optimized. 97

6.4 Comparison of codecs with network size N = 500,000 (left) and with-
out the flow compensation technique (with N = 5,000, right). 98

6.5 Results over the HAR and MNIST datasets without and with churn. . . 101

List of Tables

1.1 Correspondence between the chapters and the publications of the au-
thor. • and ◦ indicate the core and the related publications, respectively. 7

3.1 The used parameter setups, the time consumption of the protocol, and
the ratio of good trees. 28

4.1 Data set properties . 42
4.2 Hyperparameters . 45

6.1 Data set properties . 99

3

4 List of Tables

Chapter 1

Introduction

In recent times, smart devices have become part of our daily lives. Their widespread
presence offers numerous applications that make use of data mining. Usually, the
data is collected at a central location for processing. However, this is becoming
increasingly problematic due to the growing privacy concerns of the public and the
policy-makers. This has motivated the need for collaborative methods that do not
need the collection of sensitive data.

Google proposed federated learning to address this problem. Although this is
still a centralized approach, the data remains on the device. It works in a similar
way to the parameter server architecture. The server periodically sends the current
model to the nodes. They perform an update step using the local data and upload
it to the server for aggregation. Compression techniques can be employed to reduce
communication costs.

In contrast, we proposed gossip learning, which is fully distributed. The nodes
communicate directly, exchanging their models. The lack of need for a central server
makes this an attractive approach for startups and communities with limited re-
sources. It can assist the creation of non-profit intelligent smartphone services. It is
suitable for other platforms as well, like smart metering and the Internet of Things.
Its performance is comparable to that of federated learning in several scenarios.

To improve upon existing gossip learning methods, we introduce a number of
techniques that also have applications beyond this. Our research touches upon
many topics including secure multiparty computation, communication flow control
in decentralized systems, and efficient average consensus algorithms using stateful
encoder-decoder pairs.

The goal of secure multiparty computation (MPC) is to compute a function of the
private inputs of the parties in such a way that, at the end of the computation, no
party knows anything except what can be determined from the result and its own
input. Secure sum computation is an important application of secure MPC. However,
in our dynamic and unreliable application domain, known MPC algorithms are not

5

6 Introduction

scalable or not robust enough. We introduce a quick method to securely compute
the sum over a subset of participants, and use it in the calculation of mini-batches in
decentralized learning.

Many decentralized algorithms allow both proactive and reactive implementa-
tions regarding flow control. Examples include gossip protocols for broadcasting and
decentralized computing, as well as chaotic matrix iteration algorithms. In proactive
systems, nodes communicate at a fixed rate in regular intervals, while in reactive sys-
tems they communicate in response to certain events such as the arrival of fresh data.
Although reactive algorithms tend to stabilize/converge/self-heal much faster, they
have serious drawbacks: they may cause uncontrolled bursts in bandwidth consump-
tion, and they may also cause starvation when the number of messages circulating
in the system becomes too low. Proactive algorithms do not have these problems,
but nodes waste a lot of time sitting on fresh information. We propose an adaptive
method that combines the advantages of the two approaches.

Mean estimation, also known as average consensus, is an important computa-
tional primitive in decentralized systems, for example, in the context of machine
learning. When the average of large vectors has to be computed, as in distributed
data mining applications, reducing the communication cost becomes a key design
goal. One way of reducing communication cost is to add dynamic stateful encoders
and decoders to traditional mean estimation protocols. In this approach, each ele-
ment of a vector message is encoded in a few bits (often only one bit) and decoded by
the recipient node. However, due to this encoding and decoding mechanism, these
protocols are much more sensitive to benign failure such as message drop and mes-
sage delay. Properties such as mass conservation are harder to guarantee. Hence,
known approaches are formulated under strong assumptions such as reliable com-
munication, atomic non-overlapping transactions or even full synchrony. We propose
an efficient algorithm that does not need such assumptions.

This thesis is structured as follows. In Chapter 2, we give an overview of the
background.

In Chapter 3, we focus on privacy and security issues. We propose a light-weight
protocol to quickly and securely compute the sum query over a subset of participants
assuming a semi-honest adversary. During the computation the participants learn no
individual values. We apply this protocol to efficiently calculate the sum of gradi-
ents as part of a fully distributed minibatch stochastic gradient descent algorithm.
The protocol achieves scalability and robustness by exploiting the fact that in this
application domain a “quick and dirty” sum computation is acceptable. We utilize
the Paillier homomorphic cryptosystem as part of our solution combined with ex-
treme lossy gradient compression to make the cost of the cryptographic algorithms
affordable. We demonstrate both theoretically and experimentally that the protocol
is indeed practically viable.

7

Table 1.1: Correspondence between the chapters and the publications of the author. •
and ◦ indicate the core and the related publications, respectively.

Chapter 3 Chapter 4 Chapter 5 Chapter 6
DAIS 2015 [21] •
SCN 2018 [19] •
DAIS 2019 [40] •
JPDC 2021 [41] • •
ECML 2019 [39] ◦
ICDCS 2018 [23] •
Euro-Par 2018 [22] •
DICG 2020 [20] •

In Chapter 4, we present a systematic comparison of gossip learning and federated
learning. We examine the aggregated cost for several algorithm-variants in various
simulation scenarios. These experimental scenarios include different network sizes
and different distributions of the training data over the devices.

In Chapter 5, we propose a family of adaptive flow control protocols that apply
rate limiting inspired by the token bucket algorithm, but they also include proactive
communication to prevent starvation. With the help of our traffic shaping service,
some applications approach the speed of the reactive implementation, while main-
taining strong guarantees regarding the total communication cost and burstiness. We
perform simulation experiments in different scenarios.

In Chapter 6, we propose a communication efficient algorithm for mean estima-
tion that supports known codecs even when transactions overlap and the nodes are
not synchronized. The algorithm is based on push-pull averaging, with novel fea-
tures to support fault tolerance and compression. As an independent contribution,
we also propose a novel codec, called the pivot codec. We demonstrate experimen-
tally that our algorithm improves the performance of existing codecs and the novel
pivot codec dominates the competing codecs in the scenarios we studied. We also ex-
amine its application in decentralized machine learning. In addition, we also rely on
transfer learning for extra compression. This means that we train a relatively small
model on top of a high quality pre-trained feature set that is fixed. We demonstrate
these contributions via an experimental analysis.

Lastly, in chapters 7 and 8, we give summaries of our contributions in English and
Hungarian, respectively.

8 Introduction

Chapter 2

Background

In this chapter, we present an introduction to concepts and techniques that are nec-
essary to understand our contributions. First, we give a concise summary of the
relevant machine learning concepts. Then, we describe the system model we use.
After that, we give a short overview of gossip learning. Finally, we discuss the smart
phone trace we used to model node availability.

2.1 Machine Learning Basics

We are concerned with the classification problem, where we are given a data set
D = {(x1, y1), . . . , (xn, yn)} of n examples. An example (x, y) consists of a feature
vector x ∈ Rd and the corresponding class label y ∈ C, where d is the dimension of
the problem and C is the set of class labels.

The problem is to find the parameters w of a function fw : Rd → C that can
correctly classify as many examples as possible in D, as well as outside D, drawn
from the same distribution (this latter property is called generalization). Expressed
formally, we wish to minimize an objective function J(w) in w:

w∗ = arg min
w
J(w) = arg min

w

1

n

n∑
i=1

`(fw(xi), yi) +
λ

2
‖w‖2, (2.1)

where `() is the loss function (the error of the prediction), ‖w‖2 is the regularization
term, and λ is the regularization coefficient.

Stochastic gradient descent (SGD) [12] is a popular approach for finding w∗.
Here, we start with some initial weight vector w0, and we apply the following update
rule repeatedly:

wt+1 = wt − ηt(λwt +
∂`(fw(xi), yi)

∂w
(wt)). (2.2)

Here, ηt is called the learning rate. This update rule requires a single example (xi, yi),

9

10 Background

and for each update we can choose a random example. A popular way to accelerate
the convergence is the use of mini-batches, that is, to update the model with the
gradient of the sum of the loss functions of a few training examples (instead of only
one) in each iteration. This allows for fast distributed implementations as well [36].

In this thesis we primarily use logistic regression as our machine learning model,
where the specific form of the objective function is given by

J(w, b) =
λ

2
‖w‖2 − 1

n

n∑
i=1

[
yi ln f(w,b)(xi) + (1− yi) ln(1− f(w,b)(xi))

]
, (2.3)

where yi ∈ {0, 1} and

f(w,b)(xi) = P (yi = 1|xi, w, b) =
1

1 + e(wT xi+b)
. (2.4)

Note that P (yi = 0|xi, w, b) = 1 − P (yi = 1|xi, w, b). In fact, the loss function above
is the log-likelihood of the data under this probabilistic model. The parameter b is
called the bias of the model. This is often incorporated into w, in which case x is
extended with a corresponding component that is always 1. This way, the update
rule can be written as

wt+1 = wt − ηt(λwt − (fwt(xi)− yi)xi). (2.5)

While our methods can be applied to solve any model-fitting optimization prob-
lem, we evaluated them only with linear models. This might seem restrictive, how-
ever, the practical applicability of such simple models are greatly extended if one uses
them in the context of transfer learning [76]. The idea is that arbitrarily complex pre-
trained machine learning models are used as feature extractors, over which a simple
(often linear) model is trained over a given new dataset. In linguistic applications,
this is becoming a very popular approach, often using BERT [27] as the pre-trained
model. This can approximate the performance of training the entire complex model
over the new dataset, while using far fewer resources.

2.2 System Model

We model our system as a large set of nodes that communicate via message pass-
ing. The protocols we discuss send very large messages, so the delay of successfully
delivered messages is determined by the message size and the available network
bandwidth (as opposed to network latency). Unless stated otherwise, we evaluate
our protocols by assuming a reliable transfer protocol, which implies that we do not
consider message drop failure. However, the protocols themselves do not require this

2.3 Gossip Learning 11

Algorithm 2.1 Gossip Learning Framework

1: (x, y)← local training example
2: currentModel← init()
3: loop
4: wait(∆)
5: p← selectPeer()
6: send currentModel to p
7: end loop
8: procedure ONMODEL(m)
9: m← merge(m, currentModel)

10: m← update(m,x, y)
11: currentModel← m
12: end procedure

assumption. Nodes are allowed to leave the network at any time and node failures
are also permitted. We do not require time to be synchronized over the nodes but we
do assume the existence of a local clock.

At every point in time each node is assumed to have a set of neighbors, typically
a small subset of the nodes. We assume that the failure of a neighbor is detected by
the node. The neighbor set can change over time, but nodes can send messages only
to their current neighbors. The set of neighbors might be a uniform random sample
from the network or it might be defined by any fixed overlay network, depending on
the application. When sending a message, nodes access their neighbors via a peer
sampling service. In this thesis we treat this service as a black box, noting that many
implementations are available [45, 71] that might depend on the given networking
environment and the application requirements as well.

2.3 Gossip Learning

Gossip Learning is a machine learning approach over fully distributed data without
central control [65]. Here, we present the simplest variant. We assume that the data
set is horizontally distributed over a set of nodes, with each node storing a training
example (x, y). The task is to collectively find a machine learning model in such a
way that emulates the case when the data set is stored centrally.

The basic idea is that in the network many models perform random walks and
are updated at every node using the local example. More precisely, every node ex-
ecutes Algorithm 2.1. First, the node initializes its local model. The model is then
periodically sent to another node in the network. When a node receives a model, it
merges it into its own, updates it by its locally stored training example using the SGD
update rule, and then stores the updated model as its new local model. The most

12 Background

 1

 10

 100

 1000

 10000

 100000

 1x10
6

48 0 5 10 15 20 25 30 35 40 45

fr
eq

u
en

cy

Hours

-20

 0

 20

 40

 60

 80

48 0 5 10 15 20 25 30 35 40 45

P
er

ce
n
ta

g
e

(%
)

Hours

ever been online
online rate
new up
new down

Figure 2.1: Online session length histogram (left) and device churn (right).

trivial implementation of MERGE is to simply pick the newly received model, but it is
usually better to take the average of the model parameters. Note that the rounds are
not synchronized, although all the nodes use the same period ∆.

2.4 Smartphone Trace

We used a trace collected by STUNner, a locally developed, openly available smart-
phone application [6]. In short, the app monitors and collects information about the
battery level, charging status, bandwidth, and NAT type.

The trace contains time series spanning varying lengths of time, originating from
1191 different users. Based on the UTC hour of day, we split the data into 2-day seg-
ments (with a one-day overlap), resulting in 40,658 segments altogether. Using this,
we can simulate a virtual 48-hour period by assigning a randomly selected segment
to each simulated node. The sampling of the segments is done without replacement.
When the pool of segments runs out (which happens when we need more nodes than
there are segments) we re-initialize the pool with the original set of segments and
continue the sampling without replacement.

To make our algorithms phone and user friendly, we consider a device to be online
(available) when it has been on a charger and connected to the Internet (with a
bandwidth of at least 1 Mbit/s) for at least a minute, therefore we do not use battery
power at all.

The main properties of the trace are shown in Figure 2.1. The plot on the right
illustrates churn by showing what percentage of the nodes left, or joined the network
(at least once) in any given hour. Notice that at any given moment about 20% of the
nodes are online. The mean online session length is 81.37 minutes.

Chapter 3

Gossip Learning with Privacy
Preservation

Data mining over personal data harvested from mobile devices is a very sensitive
problem due to the strong requirements of privacy preservation and security. Re-
cently, the federated learning approach was proposed to solve this problem by not
collecting the data in the first place but instead processing the data in place and
creating the final models in the cloud based on the models created locally [50, 58].

We go one step further and propose a solution that does not utilize centralized
resources at all. The main motivation for a fully distributed solution in our cloud-
based era is to preserve privacy by avoiding the central collection of any personal
data, even in pre-processed form. Another advantage of distributed processing is
that this way we can make full use of all the local personal data, which is impossible
in cloud-based or private centralized data silos that store only specific subsets of the
data. The key issue here of course is to offer decentralized algorithms that are com-
petitive with approaches like federated learning in terms of time and communication
complexity, and that provide increased levels of privacy and security.

Previously, we proposed numerous distributed machine learning algorithms in a
framework called gossip learning. In this framework models perform random walks
over the network and are trained using stochastic gradient descent [65] (see Sec-
tion 2.3). This involves an update step in which nodes use their local data to im-
prove each model they receive, and then forward the updated model along the next
step of the random walk. Assuming the random walk is secure—which in itself is a
research problem on its own, see e.g. [46]—it is hard for an adversary to obtain the
two versions of the model right before and right after the local update step at any
given node. This provides reasonable protection against uncovering private data.

However, this method is susceptible to collusion. If the nodes before and after
an update in the random walk collude they can recover private data. In this chapter
we address this problem, and improve gossip learning so that it can tolerate a much

13

14 Gossip Learning with Privacy Preservation

higher proportion of honest but curious (or semi-honest) adversaries. The key idea
behind the approach is that in each step of the random walk we form a group of
peers that securely compute the sum of their gradients, and the model update step
is performed using this aggregated gradient. In machine learning this is called mini-
batch learning, which—apart from increasing the resistance to collusion—is known
to often speed up the learning algorithm as well (see, for example, [25]).

It might seem attractive to run a secure multiparty computation (MPC) algorithm
within the mini-batch to compute the sum of the gradients. The goal of MPC is to
compute a function of the private inputs of the parties in such a way that at the end of
the computation, no party knows anything except what can be determined from the
result and its own input [88]. Secure sum computation is an important application
of secure MPC [18].

However, we do not only require our algorithm to be secure but also fast, light-
weight, and robust, since the participating nodes may go offline at any time [6] and
they might have limited resources. One key observation is that for the mini-batch
algorithm we do not need a precise sum; in fact, the sum over any group that is
large enough to protect privacy will do. At the same time, it is unlikely that all the
nodes will stay online until the end of the computation. We propose a protocol that—
using a binomial tree topology and Paillier homomorphic encryption—can produce a
“quick and dirty” partial sum even in the event of failures, has adjustable capability
of resisting collusion, and can be completed in logarithmic time.

We also put a great emphasis on demonstrating that the proposed protocol is
practically viable. This is a non-trivial question because homomorphic cryptosystems
can quickly become very expensive when applied along with large-enough key-sizes
(such as 2048 bit keys), especially considering that in machine learning the gradi-
ents can be rather large. To achieve practical viability, we propose an extreme lossy
compression, where we discretize floating point gradient values to as few as two bits.
We demonstrate experimentally that this does not affect learning accuracy yet allows
for an affordable cryptography cost. Our simulations are based on a real smartphone
trace we collected [6], described in Section 2.4.

3.1 Related Work

There are many approaches that have goals similar to ours, that is, to perform com-
putations over a large and highly distributed database or network in a secure and
privacy preserving way. Our work touches upon several fields of research including
machine learning, distributed systems and algorithms, secure multiparty computa-
tion and privacy. Our contribution lies in the intersection of these areas. Here we
focus only on related work that is directly relevant to our present contributions.

Algorithms exist for completely generic secure computations, Saia and Zamani

3.1 Related Work 15

give a comprehensive overview with a focus on scalability [72]. However, due to
their focus on generic computations, these approaches are relatively complex and in
the context of our application they still do not scale well enough, and do not tolerate
dynamic membership either.

Approaches targeted at specific problems are more promising. Clifton et al. pro-
pose, among other things, an algorithm to compute a sum [18]. This algorithm
requires linear time in the network size and it does not tolerate node failure either.
Bickson et al. focus on a class of computations over graphs, where the computation
is performed in an iterative manner through a series of local updates [7]. They in-
troduce a secure algorithm to compute local sums over neighboring nodes based on
secret sharing. Unfortunately, this model of computation does not cover our problem
as we want to compute mini-batches of a size independent of the size of the direct
neighborhood, and the proposed approach does not scale well in that sense. Be-
sides, the robustness of the method is not satisfactory either [61]. Han et al. address
stochastic gradient search explicitly [37]. However, they assume that the parties in-
volved have large portions of the database, so their solution is not applicable in our
scenario.

Bonawitz et al. [11] address a similar problem setting where the goal is to com-
pute a secure sum in an efficient and robust manner. They also assume a semi-honest
adversarial model (with a limited set of potentially malicious behaviors by a server).
However, their solution requires a server and an all-to-all broadcast primitive even in
the most efficient version of their protocol. Our solution requires a linear number of
messages only.

The algorithm of Ahmad and Khokhar is similar to ours [1], as they also use a tree
to aggregate values using homomorphic encryption. However, in their solution all
the nodes have the same public key and the private key is distributed over a subset
of elite nodes using secret sharing. The problem with this approach in our mini-
batch gradient descent application is that for each mini-batch a new key set has to be
generated for the group, which requires frequent access to a trusted server, otherwise
the method is highly vulnerable in the key generation phase. In our solution, all the
nodes have their own public/private key pair and no keys have to be shared at any
point in time. Besides, these key pairs may remain the same in every mini-batch the
given node participates in without compromising our security guarantees.

We need to mention the area of differential privacy [30], which is concerned with
the the problem that the (perhaps securely computed) output itself might contain
information about individual records. The approach is that a carefully designed noise
term is added to the output. Gradient search has been addressed in this framework
(for example, [68]). In our distributed setup, this noise term can be computed in a
distributed and secure way [31].

16 Gossip Learning with Privacy Preservation

3.2 Adversarial Model

We assume that the adversaries are honest but curious (or semi-honest). That is,
nodes corrupted by an adversary will follow the protocol but the adversary can see
the internal state of the node. The goal of the adversary is to learn about the private
data of other nodes (note that the adversary can obviously see the private data on the
node it observes directly). Wiretapping is allowed, since all the sensitive messages in
our protocol are encrypted.

We assume a static adversarial model, which means that the corrupted nodes are
picked a priori, independently of the state of the protocol or the network. As of the
number of corrupted nodes, we will consider the threshold model, in which at most a
given number of nodes are corrupted, as well as a probabilistic model, in which any
node can be corrupted with a given constant probability [57].

We also assume that adversaries are not able to manipulate the set of neighbors.
In each application domain this assumption translates to different requirements. For
example, if an overlay service is used to maintain the neighbors then this service has
to be secure itself.

3.3 Our Solution

Our approach here is based on the GOLF framework, outlined in Section 2.3, replac-
ing the local update step with a mini-batch approach: at each step, when a node re-
ceives a model to update, it coordinates the distributed computation of a mini-batch
gradient and then uses this gradient to update the model. Based on the assumptions
in Sections 2.2 and 3.2 we now present our algorithm for computing a mini-batch
gradient.

3.3.1 Mini-batch Tree Topology

The very first step for computing a mini-batch gradient is to create a temporary group
of random nodes that form the mini-batch. In our decentralized environment we do
this by building a rooted overlay tree. The basic version of our algorithm will require
the overlay tree not only to be rooted at the node computing the gradient but also to
be trunked.

Definition 1 (trunked tree). Any rooted tree is 1-trunked. For k > 1, a rooted tree
is k-trunked if the root has exactly one child node, and the corresponding subtree is a
(k − 1)-trunked tree.

Let N denote the intended size of the mini-batch group. We assume that N is
significantly less than the network size. Let S be a parameter that determines the

3.3 Our Solution 17

desired security level (N ≥ S ≥ 2). We can now state that we require an S-trunked
tree rooted at the node that is being visited by gossip learning. As we will see later,
this is to prevent a malicious root to collect too much information.

Apart from the trunk, the tree can be arbitrary, however, we propose a binomial
tree as a preferable choice. If every node already in the tree spawns a new child node
in periodic rounds (starting from a single root node) then the result is a binomial
tree. It is not possible to construct a tree of a given size faster, since in the case of
a binomial tree each node keeps working continuously so the efficiency is maximal.
Of course we assumed here that child nodes can be added only sequentially at a
given node. However, if we also assume that all the nodes have the same up- and
download bandwidth cap then adding nodes in parallel will be proportionally slower
thus parallelism provides no advantage as long as we utilize the maximal available
bandwidth. The same up- and download bandwidth requirement is naturally satisfied
in our application domain because we assume that the protocol is allowed to use only
a fixed, relatively small amount of bandwidth (such as 1 Mbps) and low bandwidth
connections are excluded from the set of possible overlay connections.

Another advantage of binomial trees is that we can use the links in reverse order
of construction for uploading and aggregating data along the tree. This way, we get
a data aggregation schedule that is similarly efficient and also collision-free in the
sense that each node communicates with at most one node at a given time.

The tree overlay network we have described so far can be constructed over a
random overlay network by first building the trunk (which takes a random walk of
S − 1 steps) and then recursively constructing a binomial tree of depth D, resulting
in an S-trunked tree of size 2D + S − 1 and total depth d = D + S − 1. Every child
node is chosen randomly from those neighbors of the node that are both online and
not in the tree already. No attention needs to be paid to reliability. We generate the
tree quickly and use it only once quickly. Normally, some subtrees will be lost in the
process because of churn but our algorithm is designed to tolerate this. The effect
of certain parameters, such as the binomial tree parameter and node failures, will be
discussed later in the evaluation.

3.3.2 Calculating the Gradient

The sum we want to calculate is over vectors of real numbers. Without loss of gener-
ality, we discuss the one-dimensional case from now on for simplicity. Homomorphic
encryption works over integers, to be precise, over the set of residue classes Zn for
some large n. For this reason we need to discretize the real interval that includes
all possible sums we might calculate, and we need to map the resulting discrete in-
tervals to residue classes in ZM where M defines the granularity of the resolution of
the discretization. This mapping is natural, we do not go into details here. Since the

18 Gossip Learning with Privacy Preservation

gradient of the loss function for most learning algorithms is bounded, this is not a
practical limitation. Also, in Section 3.5 we evaluate the effect of discretization on
learning performance and we show that even an extreme compression (discretizing
the gradient down to two bits) is tolerable due to the high robustness of the mini-
batch gradient method itself.

In a nutshell, the basic idea of the algorithm is to divide the local value at each
node into S shares, encrypt these with asymmetric additively homomorphic encryp-
tion (such as the Paillier cryptosystem), and send them to the root via the chain of
ancestors. Although the shares travel together, they are encrypted with the public
keys of different ancestors. Along the route, the arrays of shares are aggregated, and
periodically re-encrypted. Finally, the root calculates the sum.

The algorithm consists of three procedures, shown in Algorithm 3.1. These are
run locally on the individual nodes. Procedure INIT is called once after the node be-
comes part of the tree. Here, the function call ANCESTOR(i) returns the descriptor
of the ith ancestor on the path towards the root. The descriptor contains the neces-
sary public keys as well. During tree building this information can be given to each
node so the nodes can look up the keys of their ancestors locally. For the purposes
of the ANCESTOR function, the parent of the root is defined to be itself. Function
ENCRYPT(x, y) encrypts the integer x with the public key of node y using an asymmet-
ric additively homomorphic cryptosystem.

Procedure ONMESSAGERECEIVED is called whenever a message is received by the
node. A message contains an array of dimension S that contains shares encoded
for the S closest ancestors to the sender child. The first element (msg[1]) is thus
encrypted for the current node, so it can decrypt it. The rest of the shares are shifted
down by one position and added (with homomorphic encryption) to the local array
of shares to be sent (operation a⊕ b performs the homomorphic addition of the two
encrypted integers a and b to get the encrypted form of the sum of these integers).
Note that the ith element (1 ≤ i ≤ S − 1) of the array SHARES is encrypted with the
public key of the ith ancestor of the current node and is used to aggregate a share
of the sum of the subtree except the local value of the current node. The Sth share
is aggregated in variable KNOWNSHARE unencrypted. The value of share[S] is not
modified in this method, it will be initialized using KNOWNSHARE after all the child
nodes that are alive have responded.

After all the shares have been processed, procedure ONNOMOREMESSAGESEXPECTED

is called. This happens when the node has received a message from all of its children,
or when the remaining children are considered to be dead by a failure detector. The
timeout used here has to take into account the depth of the given subtree and the
maximal delay of a message. In the case of leaf nodes, this procedure is called
right after INIT. When calling ONNOMOREMESSAGESEXPECTED, we know that the ith
element (1 ≤ i ≤ S−1) of the array SHARES already contains the ith share of the sum

3.3 Our Solution 19

of the subtree rooted at the current node (except the local value of the current node)
encrypted with the public key of the ith ancestor of the current node. We also know
that KNOWNSHARE contains the Sth share of the same sum unencrypted.

Now, if the current node is the root then the elements of the received array are
decrypted and summed. The root can decrypt all the elements because it is the parent
of itself, so all the elements are encrypted for the root when the message reaches it.
Here, DECRYPT(x) decrypts x using the private key of the current node. Function
PUBLISH(x) announces x, the output of the algorithm, that is, the final unencrypted
sum.

If the current node is not the root then the local value has to be added, and the
Sth element of the array has to be filled. First, the local value is split into S shares
according to the S-out-of-S secret-sharing scheme discussed in [57]: S− 1 out of the
S shares are uniformly distributed random integers between 0 and M − 1. The last
share is the difference between the local value and the sum of the random numbers
(mod M). This way, the sum of shares equals the local value (mod M). Also, the
sum of any non-empty proper subset of these shares is uniformly distributed, there-
fore nothing can be learned about the local value without knowing all the shares.
Function RANDOM(x) returns a uniformly distributed random integer in the range
[0, x− 1].

The shares calculated this way are then encrypted and added to the corresponding
shares, and finally the remaining Sth share is encrypted with the public key of the
Sth ancestor and put into the end of the array. This array—that now contains the
S shares of the sum of the full sub-tree including the current node—is sent to the
parent.

3.3.3 Working with Vectors

We now describe how to efficiently extend our method to vectors of discrete num-
bers, by packaging multiple elements into a single block of encrypted data. Let us
first calculate the number of bits that are required to represent one vector element.
Assume that the elements of the input vectors are in the range [0,m]. This means
that the elements of the output vector fall in range [0, Nm], where N is the mini-
batch (tree) size. That is, M = Nm + 1. After applying the secret-sharing scheme
on an input vector, the elements of the resulting shares also fall in the range [0, Nm]

due to the S-out-of-S secret-sharing scheme we apply.
However, when working with homomorphic cryptography, we keep adding en-

crypted shares together without performing the modulo operation that is required
for the correct decoding in our S-out-of-S secret-sharing scheme and for keeping the
values in the range [0, Nm]. Thus, we need a larger range to accommodate the sum
of at most N shares giving us the range of [0, N2m]. This means that dlog2(1 +N2m)e

20 Gossip Learning with Privacy Preservation

bits are required per element.
Using this many bits, we can simply concatenate the elements of a share together

to form a single bit vector before encryption. Homomorphic addition will result in
the corresponding elements being added together. After decryption, the vector can be
restored by splitting the bit vector, and element-wise modulo can be performed. This
method can be trivially extended to arrays of blocks of a desired size, by packaging
the elements into multiple blocks.

3.3.4 Practical Considerations and Optimizations

We stress again that if during the algorithm a child node never responds then its
subtree will be essentially missing (will have a sum of zero) but other than that the
algorithm will terminate normally. This is acceptable in our application, because for a
mini-batch we simply need the sum of any number of gradients, this will not threaten
the convergence of the gradient descent algorithm.

The pseudocode discussed above describes a simple and basic version of our algo-
rithm that allows for optimizations to speed up execution. Execution time is impor-
tant because a shorter execution time allows less time for nodes to fail, in addition,
the machine learning algorithm will execute faster as well. A simple optimization is,
for example, if, as part of their initialization, all the nodes instantly start encrypting
the S − 1 shares of their local data with the public keys of its S − 1 closest ancestors.

Another optimization is the parallelization of encryption and sending. Note that
encrypting data typically takes much longer than sending it; we will evaluate this
in more detail later on. Here, when calculating the message to send to the parent,
the node immediately sends the first encoded share to the parent (that is, the share
that the parent can decrypt) so that the parent can start working on the decryption.
The node then sends all the remaining shares except the Sth share, while calculating
its own encryption of the Sth share. Finally, when the encryption is ready, the node
sends the Sth share as well.

Also, consider that due to the binomial tree structure, all the leaves are created at
about the same time, so they will start to send their message to the parent at about
the same time resulting in a more or less round-based aggregation protocol. This
makes the time complexity of one such aggregation round in which the aggregation
moves up one level (starting from the leaves) E + T + L, where E is the encryp-
tion/decryption time of a share, T is the transmission time of an encrypted share,
and L is the network latency (assuming E + T > ST and that the cost of homo-
morphic addition is negligible). Note that the actual algorithm does not rely on the
existence of synchronized aggregation rounds, in fact, in realistic environments these
rounds often overlap if, for example, a node finishes sooner due to losing its children.
The rounds are merely an emergent property in reliable environments, a side-effect

3.3 Our Solution 21

of using binomial trees as our tree topology.
Another possibility for optimization is based on the observation that shares that

would be encrypted with the public keys of the ancestors of the root do not need to
be encrypted at all, therefore the root in fact performs only a single decryption.

3.3.5 Variants

Apart from optimizations, one can consider slightly modified versions of the algo-
rithm that can be useful for trading off security and robustness or that allow for a
minimal involvement of a central server.

The first variation—that we will actually utilize during our evaluation in Sec-
tion 3.6—is setting a lower bound on the size of the subtree that we accept. Indeed,
we have to be careful when publishing a sum based on too few participants. Let us
denote by R the minimal required number of actual participants (S ≤ R ≤ N). Let
the nodes pad their messages with an (unencrypted) integer n indicating the number
of nodes its data is based on. When the node exactly S − 1 steps away from the root
(thus in the trunk) is about to send its message, it checks whether n + S − 1 ≥ R

holds (since the remaining nodes towards the root have no children except the one
on this path). If not, it sends a failure message instead. The nodes fewer than S − 1

steps away from the root transmit a failure message if they receive one, or if they fail
to receive any messages. This way, no nodes can decode the sum of a set that is not
large enough.

On a different issue: one can ask the question whether the trunk is needed, as
the protocol can be executed on any tree unmodified. However, having no trunk
makes it easier to steal information about subtrees close to the root. If the tree
is well-balanced and the probability of failure is small, these subtrees can be large
enough for the stolen partial sums to not pose a practical privacy problem in certain
applications. The advantages include a simpler topology, a faster running time, and
increased robustness.

Another option is to replace the top S − 1 nodes with a central server. To be
more precise, we can have a server simulate the top S − 1 nodes with the local
values of these nodes set to zero. This server acts as the root of a 2-trunked tree.
From a security point of view, if the server is corrupted by a semi-honest adversary,
we have the same situation when the top S − 1 nodes are corrupted by the same
adversary. As we have shown in Section 3.4.1, one needs to corrupt at least S nodes
in a chain to gain any extra advantage, so on its own the server is not able to obtain
extra information other than the global sum. Also, the server does not need more
computational capacity or bandwidth than the other nodes. This variation can be
combined with the size propagation technique described above. Here, the child of
the server can check whether n ≥ R holds.

22 Gossip Learning with Privacy Preservation

3.4 Analysis

We first consider the level of security that our solution provides, and we also charac-
terize the complexity of the algorithm.

3.4.1 Security

To steal information, that is, to learn the sum over a subtree, the adversary needs to
catch and decrypt all the S shares of the corresponding message that was sent by the
root of the subtree in question. Recall that if the adversary decrypts less than S shares
from any message, it still has only a uniform random value due to our construction.
To be more precise, to completely decrypt a message sent to node c1, the adversary
needs to corrupt c1 and all its S − 1 closest ancestors, denoted by c2, .., cS, so he can
obtain the necessary private keys.

The only situation when the shares of a message are not encrypted with the public
keys of S different nodes—and hence when less than S nodes are sufficient to be
corrupted—is when the distance of the sender from the root is less than S. In this
case, the sender node is located in the trunk of the tree. However, decrypting such a
message does not yield any more information than what can be calculated from the
(public) result of the protocol and the local values (gradients) of the nodes needed
to be corrupted for the decryption. This is because in the trunk the sender of the
message in question is surely the only child of the first corrupted node, and the
message represents the sum of the local values of all the nodes, except for the ones
needed to be corrupted. To put it in a different way, corrupting less than S nodes
never gives more leverage than learning the private data of the corrupted nodes only.

Therefore, the only way to steal extra information (other than the local values
of the corrupted nodes) is to form a continuous chain of corrupted nodes c1, .., cS
towards the root, where ci+1 is the parent of ci. This makes it possible to steal the
partial sums of the subtrees rooted at the children of c1. For this reason we now focus
only on the N − S vulnerable subtrees not rooted in the trunk.

As a consequence, a threshold adversary cannot steal information if he corrupts at
most S − 1 nodes. A probabilistic adversary that corrupts each node with probability
p can steal the exact partial sum of a given subtree whose root is not corrupted with
probability pS.

Even if the sum of a given subtree is not stolen, some information can be learned
about it by stealing the sums of other subtrees. However, this information is limited,
as demonstrated by the following theorem.

Theorem 1. The private value of a node that is not corrupted cannot be exactly deter-
mined by the adversary as long as at least one of the S closest ancestors of the node is
not corrupted.

3.5 Compressing the Gradient 23

Proof. Let us denote by t the target node, and by u the closest ancestor of t that is not
corrupted. The message sent by t cannot be decrypted by the adversary, because one
of its shares is encrypted to u (because u is one of the S closest ancestors of t). The
same holds for all the nodes between t and u. Therefore the smallest subtree that
contains t and whose sum can be stolen also contains u. Due to the nested nature
of subtrees, bigger subtrees that contains t also contains u as well. Also, any subtree
that contains u also contains t (since t is the descendant of u). Therefore u and t

cannot be separated. Even if every other node is corrupted in the subtree whose sum
is stolen, only the sum of the private values of u and t can be determined.

Therefore pS is also an upper bound on the probability of stealing the exact private
value of a given node that is not corrupted.

3.4.2 Complexity

In a tree with a maximal branching factor of B each node sends only one message,
and receives at most B. The length of a message (which is an array of S encrypted
integers) is O(SC), where C is the length of the encrypted form of an integer. Let us
now elaborate on C. First, as stated before, the sum is represented on O(logM) bits,
where M is a design choice defining the precision of the fixed point representation
of the real values. Let us assume for now that we use the Paillier cryptosystem [66].
In this case, we need to set the parameters of our cryptosystem in such a way that
the largest number it can represent is no less than n = min(BSM,NM), which is the
upper bound of any share being computed by the algorithm (assuming B ≥ 2). In the
Paillier cryptosystem the ciphertext for this parameter setting has an upper bound of
O(n2) for a single share. Since

S log n2 = S log min(BSM,NM)2 ≤ 2(S2 logB + S logM), (3.1)

the number of bits required is O(S2 logB + S logM).
The computational complexity is O(BSE) per node, where E is the cost of en-

cryption, decryption, or homomorphic addition. All these three operations boil down
to one or two exponentiations in modular arithmetic in the Paillier cryptosystem.
Note that this is independent of N .

The time complexity of the protocol is proportional to the depth of the tree. If the
tree is balanced, this results in S +O(logN) steps altogether.

3.5 Compressing the Gradient

As mentioned in Section 3.3.2, it is essential that we compress the gradient because
in a realistic machine learning problem there are at least a few hundred parameters,

24 Gossip Learning with Privacy Preservation

often a lot more. Encoding and decoding this many floating point numbers with
full precision can be prohibitively expensive for our protocol, especially on a mobile
device. For this reason, we evaluated the effect of gradient compression on the per-
formance of gradient descent learning. Similar techniques have been used before in
a slightly different context [50].

Let us first introduce the exact algorithms and learning tasks we used for this
evaluation. As for the learning tasks, we used two data sets. The first is the Spambase
binary classification data set from the UCI repository[55], which consists of 4601
records with 57 features. Each of these records belongs to an email that was classified
either as spam or as a regular email. The features that represent a piece of email
are based on, for example, word and character frequencies or the length of capital
letter sequences within the email. 39.4% of the records are positive examples. 10%
of the records were reserved for testing. The second dataset we used was based
on Reuters articles.1 It contains 1000 positive and 1000 negative examples, with
600 additional examples used for testing. The examples have 9947 features. The
dataset contains Reuters articles and the task is to decide whether a given document
is about “corporate acquisitions” or not. The documents are represented by word
stam feature vectors, where each feature corresponds to the occurence of a word.
Hence, the representation is very high-dimensional and sparse (that is, each vector
contains mostly zeros).

We tested two machine learning algorithms. The first is logistic regression [9].
Based on Equation 2.5 and using ηt = η/(t + 1) and λ = 1/η, we used the L2-
regularized logistic regression online update rule

w ← t

t+ 1
w +

η

t+ 1
(fw(x)− y)x (3.2)

where w is the weight vector of the model, t is the number of samples seen by the
model (not including the new one), x is the feature vector of the training example,
y is the correct label (1 or 0), fw(x) is the prediction of the model (probability of
the label being 1), and η is the learning parameter. We generalize this rule to mini-
batches of size E as follows:

w ← t

t+ E
w +

η

t+ E

E∑
i=1

(fw(xi)− yi)xi (3.3)

where (fw(xi) − yi)xi is supposed to be calculated by the individual nodes, and
summed using Algorithm 3.1. After the update, t is increased by E instead of 1.
η was set to 105. The second algorithm was linear SVM [75]. The setup is very

1http://download.joachims.org/svm_light/examples/example1.tar.gz

http://download.joachims.org/svm_light/examples/example1.tar.gz

3.5 Compressing the Gradient 25

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000

A
cc

u
ra

cy

used training examples

LogReg on Reuters data set

SGD
C-SGD

BGD (E=10)
C-BGD (E=10)

BGD (E=50)
C-BGD (E=50)
BGD (E=100)

C-BGD (E=100)
 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000

A
cc

u
ra

cy

used training examples

SVM on Reuters data set

SGD
C-SGD

BGD (E=10)
C-BGD (E=10)

BGD (E=50)
C-BGD (E=50)
BGD (E=100)

C-BGD (E=100)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000

A
cc

u
ra

cy

used training examples

LogReg on Spambase data set

SGD
C-SGD

BGD (E=10)
C-BGD (E=10)

BGD (E=50)
C-BGD (E=50)
BGD (E=100)

C-BGD (E=100)
 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000

A
cc

u
ra

cy

used training examples

SVM on Spambase data set

SGD
C-SGD

BGD (E=10)
C-BGD (E=10)

BGD (E=50)
C-BGD (E=50)
BGD (E=100)

C-BGD (E=100)

Figure 3.1: Classification accuracy of the compressed gradient update on the data sets
with various batch sizes.

similar to that of logistic regression, only the batch update rule we used is

w ← t

t+ E
w +

η

t+ E

E∑
i=1

[yiw
Txi < 1]yixi, (3.4)

where [·] is the Iverson bracket notation (1 if its parameter is true, otherwise 0). Here
y is the correct label as before, however, now y ∈ {−1,+1}.

The compression method we used was the following. All the individual gradients
within the mini-batch were computed using a 32-bit floating point representation.
These gradients were then quantized by mapping each attribute to one of only three
possible values: 1, 0 and -1. This mapping was achieved by stochastic quantiza-
tion. The quantized value requires only 2 bits to encode, a dramatic compression
compared to the original floating point representation of 32 bits. In fact, since we
have only three levels, theoretically only a trit is needed for the encoding. We exploit
this fact when summing the gradients: the upper bound of the sum of trits (rep-
resented on two bits) is lower than the sum of two-bit values. These compressed
gradients were then used in equations (3.3) and (3.4) where no further compression

26 Gossip Learning with Privacy Preservation

is applied.
We ran experiments with all the four possible combinations of learning algorithms

and datasets, using four different batch sizes: E = 1, 10, 50, and 100. The results
are shown in Figure 3.1. The figure shows how the classification accuracy evolves
as a function of the number of training examples seen. Accuracy is the proportion
of correctly classified instances, that is, the sum of the number of the true positive
and the true negative test examples divided by the size of the test set. The databases
are well-balanced with respect to the class labels, making this metric adequate. The
compressed versions are indicated by the “C-” prefix. It is clear that in these experi-
ments there is virtually no difference between the compressed and original versions.
This result is quite striking, and is probably explained by the fact that mini-batch
gradients still contain a lot of noise compared to the full gradient even if they are
computed exactly.

In the following, we assume that gradient attributes can be safely encoded in two
bits only.

3.6 Experimental Evaluation

In this section, our goal is to demonstrate that the decentralized secure mini-batch
gradient search we proposed is practically viable, that is, the running time in a real
system with realistic parameters is acceptable and that the learning algorithm offers
good performance under realistic failure conditions.

Recall that the solution we proposed consists of three components. The first is
the overlay tree building algorithm, which defines the mini-batches. The second is
the secure sum computation algorithm, which assumes that an overlay tree is given.
The third is the applied machine learning algorithm. These three components are
modular, different solutions for any of these components can be combined.

We exploit this modularity in our experimental evaluation. First, for each scenario
we determine the time that is needed to encrypt and decrypt the messages defined
by our secure sum protocol based on the Paillier cryptosystem. We then plug these
values into a simulation of the tree building and aggregation protocols under realistic
network and failure conditions. The end result of this simulation is a series of mini-
batch sizes that are defined by the effective tree-sizes we observe, along with a time-
stamp for each mini-batch that depends on the simulated duration of the secure mini-
batch gradient computation. Finally, we use these series of mini-batch sizes as well
as their timing to assess the performance of the machine learning algorithm in our
system. This is possible, because the only important factor for machine learning is
the effective size of the tree in each step. We assume that each tree defines a uniform
random subset, which is a good approximation if the underlying overlay network is
random.

3.6 Experimental Evaluation 27

To model the network required for simulating the tree building protocol, we used
a real trace of smartphone user behavior [6]. The rest of the parameters defining the
computational cost and network utilization were set based on realistic examples. We
used PeerSim [59] for our simulations.

3.6.1 Time Consumption

As mentioned above, we first describe the time consumption of the most important
operations in our protocol. In order to do that, we carefully have to consider the size
of each message that is transmitted and the time needed for encrypting and decrypt-
ing these messages. We performed these calculations in a number of scenarios with
different parameters that represent interesting use cases. The different scenarios as
well as the corresponding message sizes and the amount of time needed to complete
a number of different tasks are shown in Table 3.1. In the following we explain these
scenarios and the computed values within these scenarios in detail.

For all the trees that we would like to build we fix S = 4, as indicated in the first
column. This is our security parameter, introduced in Section 3.3.1. The value of
S = 4 represents a good tradeoff between efficiency and the offered level of security.
The binomial tree parameter D (the number of rounds used to build the tree) was set
to 4 or 6, giving us the maximum tree sizes of 19 and 67, computed by the formula
N = 2D + S − 1, which was explained in detail in Section 3.3.1. The motivation
for these settings is that our preliminary experiments with our machine learning
application indicated that increasing the mini-batch size beyond 67 is not beneficial.
The lower value of 19 is motivated by the fact that smaller trees do not offer a
sufficient level of privacy, since the sum is computed based on too few nodes. Also,
in a very small tree, the trunk represents a considerable proportion of the tree which
limits the possibilities for parallelization, hence the efficiency is not ideal.

The number of features in the learning problem was modeled to be 100 or 10,000.
This setting accommodates the number of features in our datasets that are 57 for the
Spambase dataset and 9947 for the Reuters dataset (see Section 3.5). Note that we
rounded the number up to the closest power of 10 so that we have a 100 times scaling
factor, which makes comparison more intuitive.

Based on the tree size N and the quantization parameter m we can compute
the number of bits (b) needed to represent a share of one element of the secret-
shared gradient vector. As explained in Section 3.3.3 in detail, the formula is given
by b = dlog2(1 + N2m)e. We used m = 2 based on our results on compressing the
gradient vector in Section 3.5. The next column shows the key size (or block size) n, a
parameter for the Paillier cryptosystem that defines the level of security. We examine
the common values 1024 and 2048. Note that 2048 is currently recommended for

28 Gossip Learning with Privacy Preservation

Table 3.1: The used parameter setups, the time consumption of the protocol, and the
ratio of good trees.

Pa
ra

m
et

er
se

tu
ps

Ti
m

e
co

ns
um

pt
io

n
(s

ec
on

ds
)

R
es

ul
ts

S
nu

m
be

r
of

fe
at

ur
es

(f
)

D
m

ax
tr

ee
si

ze
(N

)

bi
ts

pe
r

fe
at

ur
e

(b
)

ke
y

si
ze (n
)

bl
oc

ks
pe

r
sh

ar
e

df
b n
e

m
es

sa
ge

si
ze

to
pa

re
nt

S
2
n
df

b n
e

en
cr

yp
t

/
de

cr
yp

t
a

bl
oc

k

se
nd

pl
ai

n-
te

xt
m

od
el

en
cr

yp
t

S
−
1

sh
ar

es

on
e

ag
gr

e-
ga

ti
on

ro
un

d

ov
er

al
l

ti
m

e
of

m
in

i-
ba

tc
h

ra
ti

o
of go
od

tr
ee

s

4

10
2

4
19

10
10

24
1

81
92

0.
04

1
0.

10
3

0.
12

3
0.

14
3

1.
84

7
0.

99
9

20
48

1
16

38
4

0.
30

0
0.

10
3

0.
90

0
0.

40
4

4.
45

1
0.

99
7

6
67

14
10

24
2

16
38

4
0.

04
1

0.
10

3
0.

24
6

0.
18

6
2.

85
0

0.
99

7

20
48

1
16

38
4

0.
30

0
0.

10
3

0.
90

0
0.

40
4

5.
46

6
0.

99
6

10
4

4
19

10
10

24
99

81
10

08
0.

04
1

0.
42

0
12

.1
77

4.
36

2
45

.6
49

0.
96

9

20
48

50
81

92
00

0.
30

0
0.

42
0

45
.0

00
15

.3
05

15
5.

07
4

0.
90

4

6
67

14
10

24
13

7
11

22
30

4
0.

04
1

0.
42

0
16

.8
51

5.
99

8
74

.6
09

0.
95

1

20
48

69
11

30
49

6
0.

30
0

0.
42

0
62

.1
00

21
.0

83
25

5.
62

4
0.

85
0

3.6 Experimental Evaluation 29

sufficient security2.
Based on the parameters we already defined, we can now compute the number

of blocks to be encoded per gradient share: dfb
n
e. Finally, let us compute the message

size to be sent by a node in the tree to its parent. According to the protocol, this
message is composed of the S encrypted shares of the compressed gradient. The size
of the message is S2ndfb

n
e bits. This is due to the fact that the size of an encrypted

block is 2n, and we need dfb
n
e blocks per share.

We have now computed almost all the values necessary to determine the time
consumption of some important operations of the protocol. The last bit of infor-
mation required for that is the time consumption of encoding a single block. The
Paillier encryption and decryption time of a block is experimentally measured using
an unoptimized Java implementation based on BigIntegers on a real Android device
(Samsung SM-T280). This can be considered a worst case scenario because the im-
plementation we used has a lot of room for optimization and the device itself is not
an up-to-date model. Both the encryption and decryption take 0.041 s with a 1024
bit key and 0.300 s with a 2048 bit key.

Sending the model in plaintext from the parent to the child is required when
building the tree. We assume single precision floating-point arithmetic (32 bits) so
the sizes of the linear models are 3,200 bit and 320,000 bit for 100 and 10,000
features, respectively. The actual sending time is given by the 1 Mbps bandwidth
we allow between online nodes and assuming a 100 ms latency. After receiving the
model in plaintext the node instantly starts encrypting S − 1 shares as discussed in
Section 3.3.4. This takes S − 1 times the encryption time of all the required blocks.
The computed values are shown in Table 3.1.

The next column shows the time of one aggregation round, that is, the time
needed for a child node to propagate information up to the parent. In Section 3.3.4
we described a number of variants of the protocol that involve different optimiza-
tions compared to the basic variant. Here, we assume the variant, in which children
in the tree start encrypting their share while they simultaneously upload the other
S−1 shares to their parents. In all our scenarios uploading S−1 shares is faster than
encrypting one share. This means that the time needed for one aggregation round is
the time of encoding one share plus the time of uploading this share (which consists
of transmission time and network latency). The column indicating the time needed
for one aggregation round shows this value for each parameter setting.

The column that corresponds to the overall mini-batch time sums up all the re-
quired times for completing the mini-batch, assuming the network is error free. This
involves sending the plaintext model to the children down the tree during tree build-
ing as well as the aggregation rounds up to the root. These operations are performed
for each level of the tree; note that the depth of the whole tree is D+S−1. The time

2https://www.keylength.com/

https://www.keylength.com/

30 Gossip Learning with Privacy Preservation

 0.0001

 0.001

 0.01

 0.1

 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

R
a
te

Batch size

n=1024

n=2048

 0.0001

 0.001

 0.01

 0.1

 1

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

R
a
te

Batch size

n=1024

n=2048

Figure 3.2: Distribution of effective mini-batch sizes for scenario of 10,000 features.
The histograms use a logarithmic scale.

of encoding S − 1 shares also needs to be added because the leaves must first com-
plete this encoding before starting the first aggregation round. If nodes can fail, in
an actual run these times may be slightly longer because of the delay introduced by
the failure detector, but they may also be slightly shorter, due to a smaller tree. Our
simulations account for these effects. Note that we ignored the time consumption of
the single gradient update step that has to be performed as well at every node. This
is because the encryption operation is orders of magnitude slower than the gradient
update.

3.6.2 Simulating Tree Building

All of our experiments were run on top of the churn trace described in Section 2.4,
except that we used one-day segments. However, the first 10 seconds of each online
session are considered offline because extremely short online sessions would intro-
duce unreliability. This technique can also be explicitly implemented as part of our
protocol: a node should simply wait 10 seconds before joining the network.

The network size was 100,000. The membership overlay network was imple-

3.6 Experimental Evaluation 31

mented by independently assigning 100 randomly selected outgoing neighbors to
each node and then dropping the directionality of the links. This network forms the
basis of tree building, the tree neighbors are selected from these nodes. We assume
that each node maintains an active TCP connection with its neighbors as suggested
in [71]. If a node fails, its neighbors will detect this only with a one second delay.
The neighbor set is constant in our simulations; that is, when a neighbor fails it re-
mains on the list and it is reconnected when it comes back online. The size of our
neighbor set was large enough for the overlay network to remain connected.

Initially a random online node is picked from the network at time 0:00 and we
simulate building the first tree using that node as root. This simulation involves
building the tree and propagating the aggregated gradient up to the root, simulated
based on the time consumption of these operations described previously. When this is
completed, we pick a new random node that is online at the time of finishing the first
mini-batch and simulate a new mini-batch round. We repeat this procedure until the
end of the simulated day. With this methodology, we record the effective mini-batch
sizes (which determines the number of gradients the sum of which the root actually
received) and we examine the distribution of these effective mini-batch sizes.

The empirical distributions of the effective mini-batch sizes for the case of 10,000
features are shown in Figure 3.2. In every scenario we simulated a sample of at
least 15,000 tree building attempts. The figure shows the histograms based on these
samples. The histograms use a logarithmic scale to better illustrate the structure
of the distribution. However, note that most of the probability mass belongs to the
largest effective sizes. For 100 features almost all the trees are complete due to the
very quick building times (not shown). The relatively high probability mass for tree
sizes 1, 2 and 3 are due to the vulnerability of the trunk.

In our experiments, we used the variant of the protocol that limits the effective
tree size from below as explained in Section 3.3.5. We accepted a mini-batch for
gradient update only if its size was greater than or equal to bN

2
c. The reason is that

smaller trees represent reduced privacy. We call such trees a “good tree”. The last
column of Table 3.1 contains the probability of getting a good tree. Clearly, only a
very small proportion of tree building attempts are unsuccessful.

3.6.3 Machine Learning Results

We now present our results with the actual learning tasks. The setup for the learning
problems is identical to that presented in Section 3.5. The only difference is that now
the batch sizes used in each update step are variable and depend on the effective
batch size that is obtained in our tree building simulation based on the smartphone
trace (assuming one example per node), and the time needed to complete a given
mini-batch is also given by the output of the simulation. The results are shown in

32 Gossip Learning with Privacy Preservation

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100 1000 10000

A
cc

u
ra

cy

Time in Seconds

LogReg on Reuters data set

SGD
C-GD (19, 1024)
C-GD (67, 1024)
C-GD (19, 2048)
C-GD (67, 2048)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100 1000 10000

A
cc

u
ra

cy

Time in Seconds

SVM on Reuters data set

SGD
C-GD (19, 1024)
C-GD (67, 1024)
C-GD (19, 2048)
C-GD (67, 2048)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000

A
cc

u
ra

cy

Time in Seconds

LogReg on Spambase data set

SGD
C-GD (19, 1024)
C-GD (67, 1024)
C-GD (19, 2048)
C-GD (67, 2048)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000

A
cc

u
ra

cy

Time in Seconds

SVM on Spambase data set

SGD
C-GD (19, 1024)
C-GD (67, 1024)
C-GD (19, 2048)
C-GD (67, 2048)

Figure 3.3: Classification accuracy of the compressed gradient update on the data sets
based on trace-based simulation. We vary key size (1024 or 2048) and maximum tree
size (19 or 67).

Figure 3.3. Note that the horizontal axis of the plots now shows the time, covering
one full day. It is clear that the main factor for convergence speed is the encryption
key size, with 2048 being significantly slower than 1024. This could be expected
based on Table 3.1 as well. We can see that our example learning tasks can converge
within one day, which is adequate for many practically interesting learning problems.

3.7 Conclusion

We proposed a secure sum protocol to prevent the collusion attack in gossip learning.
The main idea is that instead of SGD we implement a mini-batch method and the sum
within the mini-batch is calculated using our novel secure algorithm. We can achieve
high levels of robustness and good scalability in our tree building protocol through
exploiting the fact that the mini-batch gradient algorithm does not require the sum
to be precise. The algorithm runs in logarithmic time and it is designed to calculate
a partial sum in case of node failures. It can tolerate collusion unless there are S

3.7 Conclusion 33

consecutive colluding nodes on any path to the root of the aggregation tree, where
S is a free parameter. The algorithm is completely local therefore it has the same
time-complexity independently of the network size.

We evaluated the protocol in realistic simulations where we took into account the
time needed for encryption and message transmission, and we used a real smart-
phone trace to simulate churn. We demonstrated on a number of learning tasks
that the approach is indeed practically viable even with a key size of 2048. We also
demonstrated that the gradients can be compressed by an order of magnitude with-
out sacrificing prediction accuracy.

Contribution

In this chapter, the contributions of the author were: a scalable and robust secure
sum protocol that is able to securely compute a partial sum even in the event of
failures and limited collusion of nodes; a proof about its capability of preventing the
collusion attack; and a decentralized mini-batch gradient descent method based on
the building of a k-trunked binomial overlay tree and the above protocol. Árpád Berta
performed the detailed empirical evaluation of the proposed overlay tree building
using a smartphone churn trace.

34 Gossip Learning with Privacy Preservation

Algorithm 3.1 Robust secure sum

procedure INIT

shares← new array[1..S]
for i← 1 to S do

shares[i]← Encrypt(0, Ancestor(i))
end for
knownShare← 0

end procedure

procedure ONMESSAGERECEIVED(msg)
for i← 1 to S − 1 do

shares[i]← shares[i] ⊕ msg[i+ 1]
end for
knownShare← knownShare + Decrypt(msg[1])

end procedure

procedure ONNOMOREMESSAGESEXPECTED

if IAmTheRoot() then
for i← 1 to S − 1 do

knownShare← knownShare + Decrypt(shares[i])
end for
Publish((knownShare + localValue) modM)

else
randSum← 0
for i← 1 to S − 1 do

rand← Random(M)
randSum← randSum + rand
shares[i]← shares[i] ⊕ Encrypt(rand, Ancestor(i))

end for
knownShare← knownShare + localValue − randSum
shares[S]← Encrypt(knownShare modM , Ancestor(S))
SendToParent(shares)

end if
end procedure

Chapter 4

Comparison of Federated and Gossip
Learning

Performing data mining over data collected by edge devices, most importantly, mo-
bile phones, is of great interest [82]. Collecting such data at a central location has
become more and more problematic in the past few years due to novel data protec-
tion rules [32] and in general due to the increasing public awareness of issues related
to data handling. For this reason, there is an increasing interest in methods that leave
the raw data on the device and process it using distributed aggregation.

Google introduced federated learning to answer this challenge [50, 58]. This ap-
proach is very similar to the well-known parameter server architecture for distributed
learning [24] where worker nodes store the raw data. The parameter server main-
tains the current model and regularly distributes it to the workers who in turn cal-
culate a gradient update and send it back to the server. The server then applies all
the updates to the central model. This is repeated until the model converges. In
federated learning, this framework is optimized so as to minimize communication
between the server and the workers. For this reason, the local update calculation
is more thorough, and compression techniques can be applied when uploading the
updates to the server.

In addition to federated learning, gossip learning has been proposed to address the
same challenge [38, 65]. This approach is fully decentralized, no parameter server
is necessary. Here, nodes exchange and aggregate models directly. The advantages
of gossip learning are obvious: since no infrastructure is required, and there is no
single point of failure, gossip learning enjoys a significantly cheaper scalability and
better robustness. A key question, however, is how the two approaches compare in
terms of performance. This is the question we address in this chapter.

We compare the two approaches in terms of convergence time and model qual-
ity, assuming that both approaches utilize the same amount of communication re-
sources in the same scenarios. In other words, we are interested in the question of

35

36 Comparison of Federated and Gossip Learning

whether—by communicating the same number of bits in the same time-window–the
two approaches can achieve the same model quality. We train linear models using
stochastic gradient descent (SGD) based on the logistic regression loss function.

Our experimental methodology involves several scenarios, including smartphone
churn traces collected by the application Stunner [6]. We also vary the network size.
In addition, we evaluate different assumptions about the label distribution; that is,
whether a given worker has a biased or unbiased subset of the training samples.

To make the comparison as fair as possible, we ensure that the two approaches
differ mainly in their communication patterns. However, the computation of the
local update is identical in both approaches. Also, we apply subsampling to reduce
communication in both approaches, as introduced in [50] for federated learning.
Here, we adapt the same technique for gossip learning.

We note that both approaches offer mechanisms for explicit privacy protection,
apart from the basic feature of not collecting data. In federated learning, Bonawitz et
al. [11] describe a secure aggregation protocol, whereas for gossip learning one can
apply the methods described in [19]. Here, we are concerned only with the efficiency
of the different communication patterns and do not compare security mechanisms.

The result of our comparison is that gossip learning is in general comparable to
the centrally coordinated federated learning approach. This result is rather counter-
intuitive and suggests that decentralized algorithms should be treated as first class
citizens in the area of distributed machine learning overall, considering the additional
advantages of decentralization.

The outline is as follows. In sections 4.1 and 4.2 we describe gossip learning and
federated learning, respectively. We describe our novel algorithms as well, including
the the model partitioning technique, and a number of minor design decisions that
allow all the evaluated algorithms to use shared components. In Section 4.3, we
present our experimental setup that includes the datasets used, as well as our system
model. We also discuss the problem of choosing hyperparameters. In Section 4.4,
we describe our experimental results for a range of scenarios with many algorithm
variants. In Section 4.5, we present related work, then in Section 4.6 we draw our
conclusions.

4.1 Gossip Learning

We discussed the basic notions of gossip learning in Section 2.3. Here, we describe
the variant with sampling capability.

Each node k runs Algorithm 4.1. First, the node initializes its local model (wk, bk)

and its age tk. A subset of the model parameters (along with the model age) is
then periodically sent to another node in the network. When a node receives such a
parameter sample, it merges it into its own model and then it performs a local update

4.1 Gossip Learning 37

Algorithm 4.1 Gossip Learning with Sampling

1: (tk, wk, bk)← (0,0, 0)
2: loop
3: wait(∆g)
4: p← selectPeer()
5: send sample(tk, wk, bk) to p
6: end loop
7:
8: procedure ONRECEIVEMODEL(tr, wr, br)
9: (tk, wk, bk)← merge((tk, wk, bk), (tr, wr, br))

10: (tk, wk, bk)← update((tk, wk, bk), Dk)
11: end procedure

step. Note that the rounds are not synchronized, although all the nodes use the same
period ∆g. Any received messages are processed immediately. Different variants of
the algorithm can be produced with different implementations of the methods called
SAMPLE, MERGE, and UPDATE. In the simplest case, SAMPLE sends the entire model (no
sampling), MERGE computes the average, and UPDATE performs a mini-batch update
based on the local data. Below in Section 4.1.1 we shall define more sophisticated
implementations.

The node selection in line 4 is supported by a so-called peer sampling service.
Applications can utilize a peer sampling service implementation to obtain random
samples from the set of participating nodes. The implementations of this service
might be based on several different approaches that include random walks [78],
gossip [45], or even static overlay networks that are created at random and repaired
when necessary [71]. We will assume a static, connected, random overlay network
from now on.

In the following, we shall describe optimizations of the original gossip learning
algorithm. Stated briefly, the basic ideas behind them are the following:

Sampling: Instead of sending the full model to the neighbor, a node can send only
a subset of the parameters. This technique is often used as a compression
mechanism to save bandwidth.

Model partitioning: Related to sampling, instead of a random subset, it is also pos-
sible to define a fixed partitioning of the model parameters and to send one of
these subsets as a sample.

Let us now discuss these techniques in turn.

38 Comparison of Federated and Gossip Learning

Algorithm 4.2 Partitioned Model Merge

1: S : the number of partitions
2: procedure MERGE((t, w, b), (tr, wr, br))
3: j ← index of received partition . j = i mod S, for any coordinate i within

the sample
4: for coordinate i is included in sample do
5: w[i]← (t[j] · w[i] + tr[j] · wr[i])/(t[j] + tr[j])
6: end for
7: b← (t[S] · b+ tr[S] · br)/(t[S] + tr[S])
8: t← max(t, tr) . element-wise maximum, where tr is defined
9: return (t, w, b)

10: end procedure

4.1.1 Random Sampling and Model Partitioning

As for the method SAMPLE, we will use two different implementations. The first im-
plementation, SAMPLERANDOM(t, w, b, s) returns a uniform random subset of the pa-
rameters, where s ∈ (0, 1] defines the size of the sample. To be precise, the size of the
sample is given by s · d (randomly rounded), where d is the dimension of the vector
w.

The other implementation is based on a partitioning of the model parameters.
Let us elaborate on the idea of model partitioning here. The model is formed by
the vector w and the bias value b. We partition only w. We define S ≥ 1 parti-
tions by assigning a given vector index i to the partition index (i mod S). When
sampling is based on this partitioning, we return a given partition. More precisely,
SAMPLEPARTITION(t, w, b, j), where 0 ≤ j < S is a partition index, returns partition
j. The bias b is always included in each sample, in both implementations of method
SAMPLE.

It is important to stress that the random sampling method SAMPLERANDOM should
be applied without model partitioning (that is, when S = 1). It is possible to define a
combination of partition-based and random sampling, where we could sample from
a given partition, but we do not explore this possibility here.

Upon receiving a model, the node merges it with its local model, and updates it
using its local data set Dk. Method MERGE is used to combine the local model with
the incoming one. The most usual way to implement MERGE is to take the average of
the parameter vectors [65]. This has some theoretical justification as well, at least in
the case of linear models and when there is only one round of communication [89].

If there is no partitioning (S = 1) then the implementation shown as Algo-
rithm 4.2 computes the average weighted by model age. This implementation can
handle subsampled input as well, as we consider only those parameters that are ac-
tually included in the sample. When partitioning is applied (that is, when S > 1),

4.2 Federated Learning 39

Algorithm 4.3 Partitioned Model Update Rule

1: S : the number of partitions
2: d : the dimension of w
3: procedure UPDATE((t, w, b), D)
4: for all batch B ⊆ D do . D is split into batches
5: t← t+ |B| · 1 . increase all ages by |B|
6: for i ∈ {1, ..., d} do

7: h[i]← − η

t[i mod S]

∑
(x,y)∈B

(
∂`(fw,b(x), y)

∂w[i]
(w[i]) + λw[i])

8: end for

9: g ← − η

t[S]

∑
(x,y)∈B

(
∂`(fw,b(x), y)

∂b
(b) + λb)

10: w ← w + h
11: b← b+ g
12: end for
13: return (t, w, b)
14: end procedure

each partition of the parameter vector has its own age parameter. This means that
every model now has a vector of age values t of length S + 1 where the ages of the
partitions are t[0], . . . , t[S − 1] and the age of the bias is t[S].

Method UPDATE is shown in Algorithm 4.3. This implementation requires a full
model as input, but it does take into account the partitioning of the model in that all
the partitions have their own dynamic learning rate that is determined by the age of
the partition.

4.2 Federated Learning

Federated learning is not a specific algorithm, but more of a design framework for
edge computing. We discuss federated learning based on the algorithms presented
in [50, 58]. While we keep the key design elements, our presentation contains small
adjustments and modifications to accommodate our contributions, and allow gossip
learning and federated learning to share a number of key methods.

The pseudocode of the federated learning algorithm is shown in algorithms 4.4
(master) and 4.5 (worker). The master periodically sends the current model w to all
the workers asynchronously in parallel and collects the answers from the workers. In
this version of the algorithm, communication is compressed by sampling the param-
eter vectors. The rate of sampling might be different in the case of downstream mes-
sages (line 4 of Algorithm 4.4) and upstream messages (line 11 of Algorithm 4.5).
We require that sup ≤ sdown. Although this is not reflected in the pseudocode for

40 Comparison of Federated and Gossip Learning

Algorithm 4.4 Federated Learning Master

1: (t, w, b)← init()
2: loop
3: for every node k in parallel do . non-blocking (in separate threads)
4: send sample(t, w, b, sdown) to k
5: receive (nk, hk, gk) from k . nk: #examples at k; hk: sampled model

gradient; gk: bias gradient
6: end for
7: wait(∆f) . the round length
8: n← 1

|K|
∑

k∈K nk . K: nodes that returned a model in this round
9: t← t+ n

10: h←aggregate({hk : k ∈ K})
11: w ← w + h
12: g ← 1

|K|
∑

k∈K gk
13: b← b+ g
14: end loop

presentation clarity, the sample produced in line 11 of Algorithm 4.5 is allowed to
include only indices that are also included in the received model. For example, if
sup = sdown then the worker selects exactly those indices that were received in the
incoming sample.

Any answers from workers arriving with a delay larger than ∆f are simply dis-
carded. After ∆f time units have elapsed, the master aggregates the received gradi-
ents and updates the model. We also send and maintain the model age t (based on
the average number of examples used for training) in a similar fashion, to make it
possible to use dynamic learning rates in the local learning algorithm.

We note that, while in this version of the algorithm the master sends the model
to every worker, it is possible to use a more fine-grained method to select a subset
of workers that get the model in a given round. For example, if the workers have
a very limited budget of communication, it might be better to avoid talking to each
worker in each round. In fact, we will study such a scenario during our experimental
evaluation, but we did not want to include this option in the pseudocode for the sake
of clarity.

These algorithms are very generic, the key characteristics of federated learning ly-
ing in the details of the update method (line 9 of Algorithm 4.5) and the aggregation
mechanism (line 10 of Algorithm 4.4). The update method is typically implemented
via a minibatch gradient descent algorithm that operates on the local data, initial-
ized with the received model w. The implementation we use here is identical to that
of gossip learning, as given in Algorithm 4.3. Note that here we do not partition
the model (that is, S = 1). As for sampling, we use SAMPLERANDOM as described in
Section 4.1.1.

4.3 Experimental Setup 41

Algorithm 4.5 Federated Learning Worker

1: (tk, wk, bk)← init() . the local model at the worker
2:
3: procedure ONRECEIVEMODEL(t, w, b) . w: sampled model
4: tk ← t
5: for w[i] ∈ w do . coordinate i is defined in w
6: wk[i]← w[i]
7: end for
8: bk ← b
9: (tk, wk, bk)← update((tk, wk, bk), Dk) . Dk: the local database of examples

10: (n, h, g)← (tk − t, wk − w, bk − b) . n: the number of local examples, h: the
gradient update

11: send sample(n, h, g, sup) to master
12: end procedure

Method AGGREGATE is used in Algorithm 4.4. Its function is to aggregate the re-
ceived sampled gradients. Possible implementations are shown in Algorithm 4.6.
Both implementations are unbiased estimates of the average gradient. This also im-
plies that when there is no actual sampling (that is, we have s = 1) then simply
the average of the gradients is computed by both methods. The improved version
averages each coordinate separately; that is, it takes the average of only those coor-
dinates that are included in the sample. This is a more accurate estimate of the true
average of the given coordinate. However, in order to get an unbiased estimate, we
have to divide by the probability that there is at least one gradient in which the given
coordinate is included. This probability equals 1− (1− s)|H|. Note that this probabil-
ity is independent of the coordinate i, so its effect can be thought of correcting the
learning rate, especially when |H| is small.

4.3 Experimental Setup

4.3.1 Datasets

We used three datasets taken from the UCI machine learning repository [28] to
test the performance of our algorithms. The first is the Spambase (SPAM E-mail
Database) dataset containing a collection of emails. Here, the task is to decide
whether an email is spam or not. The emails are represented by high level features,
mostly word or character frequencies. The second dataset is Pendigits (Pen-Based
Recognition of Handwritten Digits), which contains downsampled images of 4 × 4

pixels of digits from 0 to 9. The third is the HAR (Human Activity Recognition Using
Smartphones) [2] dataset, where human activities (walking, walking upstairs, walk-

42 Comparison of Federated and Gossip Learning

Algorithm 4.6 Variants of the aggregate function

1: procedure AGGREGATE(H)
2: h′ ← 0
3: for i ∈ {1, ..., d} do
4: h′[i]← 1

s|H|
∑

h∈H:h[i]∈h h[i] . s ∈ (0, 1]: sampling rate used to create H
5: end for
6: return h′

7: end procedure
8:
9: procedure AGGREGATEIMPROVED(H)

10: h′ ← 0
11: for i ∈ {1, ..., d} do
12: Hi ← {h : h ∈ H ∧ h[i] ∈ h}
13: h′[i]← 1

|Hi|(1−(1−s)|H|)

∑
h∈Hi

h[i] . skipped if |Hi| = 0

14: end for
15: return h′

16: end procedure

Table 4.1: Data set properties

Spambase Pendigits HAR
Training set size 4140 7494 7352
Test set size 461 3498 2947
Number of features 57 16 561
Number of classes 2 10 6
Class-label distribution ≈ 6:4 ≈ uniform ≈ uniform

ing downstairs, sitting, standing and laying) were monitored by smartphone sensors
(accelerometer, gyroscope and angular velocity). High level features were extracted
from these measurement series.

The main properties, such as size or number of features, are listed in Table 4.1.
In our experiments we standardized the feature values; that is, we shifted and scaled
them so as to have a mean of 0 and a variance of 1. Note that the standardization
can be approximated by the nodes in the network locally if the approximations of
the statistics of the features are fixed and known, which can be ensured in a fixed
application.

In our simulation experiments, each example in the training data was assigned
to one node when the number of nodes was 100. This means that, for example,
with the HAR dataset each node gets 73.5 examples on average. The examples were
assigned evenly, that is, the number of examples at the nodes differed by at most one
due to the number of samples not being divisible by 100. When the network size

4.3 Experimental Setup 43

equaled the database size, we mapped the examples to the nodes so that each node
had exactly one example. We also experimented with a third scenario that combines
the above two settings. That is, the number of examples per node was the same as
in the 100 node scenario, but the network size was the same as the database size.
To achieve this, we replicated the examples, that is, each example was assigned to
multiple nodes.

In the scenarios where a node had more than one example, we considered two
different class label distributions. The first one is uniform assignment, which means
that we assigned the examples to nodes at random independently of the class label.
The second one is single class assignment when each node has examples just from a
single class. Here, the different class labels are assigned uniformly to the nodes, and
then the examples with a given label are assigned to one of the nodes with the same
label, uniformly. These two assignment strategies represent the two extremes in any
real application. In a realistic setting the class labels will likely be biased but much
less so than in the case of the single class assignment scenario.

4.3.2 System Model

In our simulation experiments, we used a fixed random k-out overlay network, with
k = 20. That is, each node had k = 20 fixed random neighbors. As described
previously, the network size was either 100 or the same as the database size. In
the churn-free scenario, every node stayed online for the whole experiment. The
churn scenario is based on a real trace gathered from smartphones (as described in
Section 2.4, but with 1-day segments). We assumed that a message is successfully
delivered if and only if both the sender and the receiver remains online during the
transfer. We also assume that the nodes are able to detect which of their neighbors
are online at any given time with a delay that is negligible compared to the transfer
time of a model. Nodes retain their state while being offline.

We assumed that the server has unlimited bandwidth. In practice, unlimited
bandwidth is achieved using elastic cloud infrastructure, which obviously has a non-
trivial cost in a very large system. Gossip learning has no additional cost at all related
to scaling. Hence, ignoring the cost of the cloud infrastructure clearly favors feder-
ated learning in our study, so this assumption should be kept in mind.

We assumed that the worker nodes have identical upload and download band-
widths. This needs explanation, because in federated learning studies, downstream
communication is considered free, citing the fact that the available upload band-
width is normally much lower than the download bandwidth. But this distinction
is only relevant if all the nodes are allowed to use their full bandwidth completely
dedicated to federated learning continuously. This is a highly unlikely scenario, given
that federated learning will not be the only application on most devices. It is much

44 Comparison of Federated and Gossip Learning

more likely that there will be a cap on the bandwidth usage, in which light the dif-
ference between upstream and downstream bandwidth fades. For the same reason,
we also assumed that all the worker nodes have the same bandwidth because the
bandwidth cap mentioned above can be expected to be significantly lower than the
average available bandwidth, so this cap could be assumed to be uniform.

One could, of course, set a higher cap on downstream traffic. Our study is also
relevant in this scenario, for two reasons. First, the actual bandwidth values make no
qualitative difference if the network is reliable (there is no churn), they result only
in the scaling of time. That is, scaling our results accordingly provides the required
measurements. Second, in unreliable networks, a higher downstream bandwidth
would result in a similar scaling of time. In addition, it would result in better con-
vergence as well, since the downstream messages could be delivered with a strictly
higher probability.

In the churn scenario, we need to fix the amount of time necessary to transfer a
full model. (If the nodes are reliable then the transfer time is completely irrelevant,
since the dynamics of convergence are identical apart from scaling time.) The trans-
fer time of a full model was assumed to be 60·60·24/1000 = 86.4 seconds, irrespective
of the dataset used, in the long transfer time scenario, and 8.64 seconds in the short
transfer time scenario. This allowed us to simulate around 1,000 and 10,000 itera-
tions over the course of 24 hours, respectively. Note that the actual models in our
simulation are relatively small linear models, so they would normally require only
a fraction of a second to be transferred. Still, we pretend here that our models are
very large. This is because if the transfer times are very short, the network hardly
changes during the learning process, so in effect we learn over a static subset of the
nodes. Long transfer times, however, make the problem more challenging because
many transfers will fail, as in the case of very large machine learning models such as
deep neural networks.

4.3.3 Hyperparameters

The goal was to make sure that the protocols communicate as much as they can
under the given bandwidth constraint. The gossip cycle length ∆g is thus exactly the
transfer time of a full model; that is, all the nodes send messages continuously. The
cycle length ∆f of federated learning is the round-trip time, that is, the sum of the
upload and download transfer times. When compression is used, the transfer time
is proportionally less as defined by the compression rate, and this is also reflected in
the cycle length settings.The two algorithms transfer the same number of bits overall
in the network during the same amount of time.

As for subsampling, we explore the sampling probability values s ∈ {1, 0.5, 0.25, 0.1}.
In federated learning, both the upstream and the downstream messages can be sam-

4.4 Experimental Results 45

Table 4.2: Hyperparameters

Spambase Pendigits HAR
Parameter η 103 104 102

Parameter λ 10−3 10−4 10−2

pled using a different rate, denoted by sup and sdown, respectively. The setting we use
in our experiments is sdown = sup. However, we shall also show runs where we fix
sdown = 1 and experiment with upstream sampling only. When the subsampling is
based on partitioning, the number of partitions S defines the sampling probability,
which equals 1/S. On the plots s = 1/S will be used even in the partitioned case to
indicate the compression rate.

We train a logistic regression model. For the datasets that have more than two
classes (Pendigits, HAR), we embedded the model in a one-vs-all meta-classifier. The
learning algorithm used was stochastic gradient descent. The learning rate η and
the regularization coefficient λ used in our experiments are shown in Table 4.2. We
used grid search to optimize these parameters in various scenarios, and found these
values relatively robust. However, one should bear in mind that including additional
hyperparameters in the search, such as the number of iterations (which we simply
fixed here), could result in a different outcome.

Although we fixed the parameters shown in Table 4.2 in all the scenarios, it is
interesting to have a more fine-grained look at the behavior of these hyperparame-
ters. This sheds some light on possible heuristics to pick the right parameter values.
All the examples here are measurements with gossip learning with model partition-
ing and S = 10. With a network size N = 100, over the Pendigits dataset, after 10
gossip cycles, the optimal hyperparameters are η = 102 and λ = 10−2, as shown in
Figure 4.1. However, after 100 cycles, the optimal values are η = 103 and λ = 10−3,
and after 1000 cycles, η = 104 and λ = 10−4. We often observed similar trends also
with other algorithms and datasets. Notice that settings where ηλ = 1 (points on
the diagonal of the grid) are often a good choice; however, there are exceptions. For
instance, when we have only one example per node, over the Spambase dataset, this
is not the case, as shown in Figure 4.2. As we can see, here, the points above the
diagonal tend to be somewhat better. Also note that settings with ηλ > 1 (points
below the diagonal) tend to perform very poorly.

4.4 Experimental Results

We ran the simulations using PeerSim [59]. As for the hardware requirements for
reproducing our results, we used a server with 8 2 GHz CPUs with 8 cores each,

46 Comparison of Federated and Gossip Learning

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6

-l
o

g
 λ

log η

10 cycles

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6
-l

o
g

 λ

log η

1000 cycles

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

Figure 4.1: The error of partitioned gossip learning with S = 10 and N = 100 on the
Pendigits dataset as a function of η and λ after 10 cycles (left) and after 1000 cycles
(right).

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6

-l
o
g
 λ

log η

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

Figure 4.2: The error of partitioned gossip learning with S = 10 and N = 4140 on the
Spambase dataset as a function of η and λ after 1000 cycles.

4.4 Experimental Results 47

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0 2 4 6 8 10

0
-1

 E
rr

o
r

Models transferred per node

Spambase Dataset

aggregateImproved, sup=0.25
aggregateImproved, sup=0.10

aggregate, sup=0.25
aggregate, sup=0.10

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 2 4 6 8 10

0
-1

 E
rr

o
r

Models transferred per node

Pendigits Dataset

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2 4 6 8 10

0
-1

 E
rr

o
r

Models transferred per node

HAR Dataset

Figure 4.3: Federated learning, 100 nodes, long transfer time, no failures, different
aggregation algorithms and upstream subsampling probabilities and with sdown = 1.

48 Comparison of Federated and Gossip Learning

for a total of 64 cores. The server had 512 GB RAM. With this configuration, the
experiments we include in this chapter can be completed within a month.

We measure learning performance with the help of the 0-1 error, which gives the
proportion of the misclassified examples in the test set. In the case of gossip learning,
the loss is defined as the average loss over the online nodes. This means that we
compute the 0-1 error of all the local models stored at the nodes over the same test
set, and we report the average. In federated learning we evaluate the central model
at the master. Note that this is often more optimistic than evaluating the average
of the online nodes. For example, if the downstream communication is compressed
(that is, sdown < 1), the local models will always be more outdated than the central
one, because the nodes will not receive the complete model.

The presented measurements are averages of 5 runs with different random seeds.
The only exceptions are the measurements with our gossip algorithms in the sce-
narios over the HAR dataset when the network size was the database size. These
scenarios are costly to simulate so we show a single run.

The 0-1 error is measured as a function of the total amount of bits communicated
anywhere in the system normalized by the number of online nodes. We use the size
of a full machine learning model as the unit of the transferred information.

4.4.1 Basic Design Choices

First, we compare the two aggregation algorithms for subsampled models in Algo-
rithm 4.6 (Figure 4.3) in the no-failure scenario. The results suggest that AGGRE-
GATEIMPROVED has a slight advantage, although the performance depends on the
database. In the following we will apply AGGREGATEIMPROVED as our implementation
of the method AGGREGATE.

Another design choice that we study is the subsampling (that is, compression)
strategy for federated learning. Recall that we have a choice to subsample only the
model that is sent by the client to the master or we can subsample in both directions.
Note that if we subsample in both directions, then we can achieve a much higher
compression rate, but the convergence will be slower. Overall, however, it is possible
that, as a function of the total number of bits communicated, it is still preferable to
compress in both directions. Note that subsampling just the model from the master
to the client is meaningless because that way the client will send mostly outdated
parameters that the master has already received in previous rounds.

Figure 4.4 compares the two meaningful strategies for the case of s = 0.1. Sub-
sampling in both directions is clearly the better choice. However, it also has a down-
side, because in this case the clients no longer receive the full model from the master
so they cannot use the best possible model locally. To illustrate this problem, we
include the average performance of the models stored locally. Depending on the ap-

4.4 Experimental Results 49

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 2 4 6 8

Spambase Dataset

Models transferred per node

10 100 1000

Spambase Dataset

Models transferred per node

FL, sup=0.10
FL, sdonw-up=0.10

FL, sdown-up=0.10 local

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8

PenDigits Dataset

Models transferred per node

0
-1

 E
rr

o
r

10 100 1000

PenDigits Dataset

Models transferred per node

FL, sup=0.10
FL, sdonw-up=0.10

FL, sdown-up=0.10 local

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8

HAR Dataset

Models transferred per node

0
-1

 E
rr

o
r

10 100 1000

HAR Dataset

Models transferred per node

FL, sup=0.10
FL, sdonw-up=0.10

FL, sdown-up=0.10 local

Figure 4.4: Federated learning with 100 nodes, no-failure scenario, with different sub-
sampling strategies and s = 0.1. The “local” plot shows the average of the models that
the clients store; otherwise the master’s model has been evaluated.

50 Comparison of Federated and Gossip Learning

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 2 4 6 8

Spambase Dataset

Models transferred per node

10 100 1000

Spambase Dataset

Models transferred per node

GL, s=1.00
GL, s=0.50
GL, s=0.25
GL, s=0.10
FL, s=1.00
FL, s=0.10

SGD

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 2 4 6 8

Spambase Dataset

Models transferred per node

10 100 1000

Spambase Dataset

Models transferred per node

GL, s=1.00
GL, s=0.10
FL, s=1.00
FL, s=0.10

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8

PenDigits Dataset

Models transferred per node

0
-1

 E
rr

o
r

10 100 1000

PenDigits Dataset

Models transferred per node

GL, s=1.00
GL, s=0.50
GL, s=0.25
GL, s=0.10
FL, s=1.00
FL, s=0.10

SGD

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8

PenDigits Dataset

Models transferred per node

0
-1

 E
rr

o
r

10 100 1000

PenDigits Dataset

Models transferred per node

GL, s=1.00
GL, s=0.10
FL, s=1.00
FL, s=0.10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8

HAR Dataset

Models transferred per node

0
-1

 E
rr

o
r

10 100 1000

HAR Dataset

Models transferred per node

GL, s=1.00
GL, s=0.50
GL, s=0.25
GL, s=0.10
FL, s=1.00
FL, s=0.10

SGD

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8

HAR Dataset

Models transferred per node

0
-1

 E
rr

o
r

10 100 1000

HAR Dataset

Models transferred per node

GL, s=1.00
GL, s=0.10
FL, s=1.00
FL, s=0.10

Figure 4.5: Federated learning and gossip learning with 100 nodes (left) and with one
node for each sample (right), no-failure scenario, with different subsampling probabil-
ities. Stochastic Gradient Descent (SGD) is implemented by gossip learning with no
merging (received model replaces current model).

4.4 Experimental Results 51

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 2 4 6 8

Spambase Dataset

Models transferred per online node

10 100 1000

Spambase Dataset

Models transferred per online node

GL, s=1.00 long
GL, s=0.10 long
FL, s=1.00 long
FL, s=0.10 long

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 2 4 6 8

Spambase Dataset

Models transferred per online node

10 100 1000 10000

Spambase Dataset

Models transferred per online node

GL, s=1.00 short
GL, s=0.10 short
FL, s=1.00 short
FL, s=0.10 short

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8

PenDigits Dataset

Models transferred per online node

0
-1

 E
rr

o
r

10 100 1000

PenDigits Dataset

Models transferred per online node

GL, s=1.00 long
GL, s=0.10 long
FL, s=1.00 long
FL, s=0.10 long

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8

PenDigits Dataset

Models transferred per online node

0
-1

 E
rr

o
r

10 100 1000 10000

PenDigits Dataset

Models transferred per online node

GL, s=1.00 short
GL, s=0.10 short
FL, s=1.00 short
FL, s=0.10 short

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8

HAR Dataset

Models transferred per online node

0
-1

 E
rr

o
r

10 100 1000

HAR Dataset

Models transferred per online node

GL, s=1.00 long
GL, s=0.10 long
FL, s=1.00 long
FL, s=0.10 long

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8

HAR Dataset

Models transferred per online node

0
-1

 E
rr

o
r

10 100 1000 10000

HAR Dataset

Models transferred per online node

GL, s=1.00 short
GL, s=0.10 short
FL, s=1.00 short
FL, s=0.10 short

Figure 4.6: Federated learning and gossip learning over the smartphone trace with long
(left) and short (right) transfer time, in the 100-node scenario.

52 Comparison of Federated and Gossip Learning

plication, this may or may not be a problem. Nevertheless, from now on, we will
apply subsampling in both directions in the remaining experiments.

4.4.2 Small Scale

Next, we study the case when each example was assigned to a single node. A com-
parison of the different algorithms and subsampling probabilities is shown in Fig-
ure 4.5. The stochastic gradient descent (SGD) method is also shown, which was
implemented by gossip learning with no merging, where the received model replaces
the current model at the nodes. Clearly, the methods that use merge are all better
than SGD. Also, it is quite apparent that subsampling helps both federated learning
and gossip learning.

Most importantly, in the 100-node setup (left column of Figure 4.5), gossip learn-
ing is competitive with federated learning in the case of high compression rates (that
is, low sampling probabilities). This was not expected, as gossip learning is fully
decentralized, so the aggregation is clearly delayed compared to federated learning.
Indeed, with no compression, federated learning performs better.

Figure 4.5 (right) also shows the extreme scenario, when each node has only one
example, and the size of the network equals the dataset size. This is a much more
difficult scenario for both gossip and federated learning. Also, federated learning is
expected to perform relatively better, because of the more aggressive central aggre-
gation of the relatively little local information. Still, gossip learning is in the same
ballpark in terms of performance. In terms of long range convergence (recall that
our scenarios cover approximately a time of one day), all the methods achieve good
results.

Figure 4.6 contains our results over the smartphone trace churn model. Here, all
the experiments shown correspond to a period of 24 hours, so the horizontal axis has
a temporal interpretation as well. The choice of a long or short transfer time makes
almost no difference (apart from the fact that the shorter transfer time obviously
corresponds to a proportionally faster convergence). Also, interestingly, churn only
leads to a minor increase in the variance of the 0-1 error but otherwise we have a
stable convergence. It is also worth pointing out that federated learning and gossip
learning shows a practically identical performance under high compression rates.
Again, gossip learning is clearly competitive with federated learning.

Figure 4.7 contains the results of our experiments with the single class assign-
ment scenario, as described in Section 4.3.1. In this extreme scenario, the advantage
of federated learning is more apparent, although in the long run gossip learning also
achieves good results. Interestingly, in this case the different compression rates do
not have any clear preference order. For example, on the Pendigits database (con-
taining 10 classes) the compressed variant is inferior, while on HAR (with 6 classes)

4.4 Experimental Results 53

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 2 4 6 8

Spambase Dataset

Models transferred per node

10 100 1000

Spambase Dataset

Models transferred per node

GL, s=1.00
GL, s=0.10
FL, s=1.00
FL, s=0.10

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8

PenDigits Dataset

Models transferred per node

0
-1

 E
rr

o
r

10 100 1000

PenDigits Dataset

Models transferred per node

GL, s=1.00
GL, s=0.10
FL, s=1.00
FL, s=0.10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8

HAR Dataset

Models transferred per node

0
-1

 E
rr

o
r

10 100 1000

HAR Dataset

Models transferred per node

GL, s=1.00
GL, s=0.10
FL, s=1.00
FL, s=0.10

Figure 4.7: Federated learning and gossip learning with 100 nodes, no-failure scenario,
with single class assignment.

54 Comparison of Federated and Gossip Learning

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 2 4 6 8

Spambase Dataset

Models transferred per online node

10 100 1000

Spambase Dataset

Models transferred per online node

GL, s=0.10
GL, s=0.10 biased

GL, s=0.10 trace
FL, s=0.10

FL, s=0.10 biased
FL, s=0.10 trace

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8

PenDigits Dataset

Models transferred per online node

0
-1

 E
rr

o
r

10 100 1000

PenDigits Dataset

Models transferred per online node

GL, s=0.10
GL, s=0.10 biased

GL, s=0.10 trace
FL, s=0.10

FL, s=0.10 biased
FL, s=0.10 trace

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8

HAR Dataset

Models transferred per online node

0
-1

 E
rr

o
r

10 100 1000

HAR Dataset

Models transferred per online node

GL, s=0.10
GL, s=0.10 biased

GL, s=0.10 trace
FL, s=0.10

FL, s=0.10 biased
FL, s=0.10 trace

Figure 4.8: Selected experiments in the large scale scenario. ’Biased’ indicates single
class assignment, ’trace’ indicates the smartphone trace scenario.

the compressed variant appears to be preferable.
Let us also point out the similarity between the results in Figure 4.7 and Figure 4.5

(right). Indeed, the scenario where each node has one sample is by definition also a
single class assignment scenario.

4.4.3 Large Scale

Here, we experiment with the scenario where the number of examples per node was
the same as in the 100-node scenario, but the network size equaled the size of the
database. To achieve this, we replicated the examples; that is, each example was
assigned to multiple nodes (see Section 4.3.1). We call this the large scale scenario.

The results are shown in Figure 4.8. We can see that here the best gossip variants
are competitive with the best federated learning variants. The most important feature
of this large scale scenario seems to be whether the label distribution is biased (single
label assignment) or not (random assignment). The single class assignment (biased)
scenario results in a slower convergence for both approaches. However, compared
with previous experiments, increasing the size of the network in itself does not slow

4.5 Related Work 55

the protocols down.

4.5 Related Work

The literature on machine learning and, in general, optimization based on decentral-
ized consensus is vast [74]. Our contribution here is a comparison of the efficiency
of decentralized and centralized solutions that are based on keeping the data local.
Hence, we focus on studies that target the same problem. Savazzi et al. [73] study a
number of gossip based decentralized learning methods in the context of industrial
IoT applications. They focus on the case where the data distribution is not identical
over the nodes. They do not consider compression techniques or other algorithmic
enhancements.

Hu et al. [42] introduce a segmentation mechanism similar to ours, but their
motivation is different. Their focus is on saturating the bandwidth of all the nodes
using P2P connections that have a relatively smaller bandwidth, which means they
propose that the nodes should communicate to several peers simultaneously. Sending
only a part of the model appears to be beneficial in this scenario. In our case, we
focused on convergence speed as a function of overall communication.

Blot et al. [10] compare a number of aggregation schemes for the decentralized
aggregation of gradients, including a gossip version based on the weighted push-sum
communication scheme [48]. Although the authors do not cite federated learning
or gossip learning as such, their theoretical analysis and new algorithm variants are
relevant and merit further study.

Lalitha et al. [51] study the scenario where each node can see only a subset of
parameters and the task is to learn a Bayesian model collaboratively without a server.
The study is mainly theoretical, an experimental evaluation being done with just two
nodes, as an illustration.

Jameel et al. [43] focus on the communication topology, and attempt to design
an optimal topology that is both fast and communication efficient. They propose
a superpeer topology where superpeers form a ring and they all have a number of
ordinary peers connected to them.

Lian et al. [54] and Tang et al. [80] introduce gossip algorithms and compare
them with the centralized variant. Koloskova et al. [49] improve these algorithms
by supporting arbitrary gradient compression. The main contribution in these stud-
ies is a theoretical analysis of the synchronized implementation. Their assumptions
on the network bandwidth are different from ours. They assume that the server is
not unlimited in its bandwidth usage, and they characterize convergence as a func-
tion of the number of synchronization epochs. In our study, due to our edge com-
puting motivation, we focused on convergence as a function of system-wide overall
communication in various scenarios including realistic node churn. We performed

56 Comparison of Federated and Gossip Learning

asynchronous measurements along with optimization techniques.
Giaretta and Girdzijauskas [35] present a detailed analysis of the applicability

of gossip learning, but without considering federated learning. Their work includes
scenarios that we have not discussed here including the effect of topology, and the
correlation of communication speed and data distribution.

Ben-Hun and Hoefler [5] very briefly consider gossip alternatives and claim that
they have performance issues.

4.6 Conclusions

Here, we compared federated learning and gossip learning to see to what extent
doing away with central components—as gossip learning does—harms performance.
The first hurdle was designing the experiments. One has to be careful what system
model is chosen and what constraints and performance measures are applied. For
example, the best algorithm will be very different when we grant a fixed overall
communication budget to the system overall but allow for slow execution, or when
we give a fixed amount of time and allow for utilizing all the available bandwidth at
all the nodes.

Our choice was to allow the nodes to communicate within a configurable band-
width cap that is uniform over the network, except the master node. Within this
model, we were interested in the speed of convergence after a given amount of over-
all communication.

We observed several interesting phenomena in our various scenarios. In the ran-
dom class assignment case (when nodes have a random subset of the learning ex-
amples) gossip learning is clearly competitive with federated learning. In the single
class assignment scenario, federated learning converges faster, since it can mix infor-
mation more efficiently. This includes the case where every node has only a single
example, as it is a special case of single class assignment. However, gossip learn-
ing is able to converge as well in a practically realistic time frame. Here, we think
that gossip learning could be improved by applying more sophisticated peer sampling
methods that are optimized to increase the efficiency of mixing different updates, or
by applying a different learning rule, based on momentum methods, for example,
Adam [3].

In our experimental setup we opted for putting the same cap on both upstream
and downstream traffic in federated learning, as motivated in Section 4.3.2. But even
if one removes this assumption and considers downstream traffic completely free, the
downstream-compressed federated learning variant will converge only twice as fast,
which is a relatively modest difference. Note that in gossip learning there is only
peer-to-peer traffic, so there is only one cap.

What is more, we have only examined subsampling as a compression technique.

4.6 Conclusions 57

There are more sophisticated compression techniques available [22] that could po-
tentially be applied in both federated and gossip learning.

Contribution

In this chapter, the contributions of the author were: the partition-based sampling
technique; the design and development of churn-related modules of the simulator;
participation in the design of the improved aggregation algorithm for federated learn-
ing; participation in the planning of experiments; and the optimization of hyperpa-
rameters.

58 Comparison of Federated and Gossip Learning

Chapter 5

Gossip Learning with Adaptive Flow
Control

Token bucket and leaky bucket algorithms and their variants have long been used
for traffic shaping in packet switched networks. These algorithms control the rate
at which packets are sent from or forwarded by a networked device. The primary
motivation for applying such methods is to prevent large bursts of traffic to protect
the network and also to enforce quality-of-service contracts by controlling the rate of
traffic.

In the application layer, decentralized applications are also confronted by the is-
sue of traffic shaping. However, since applications have many other key characteris-
tics to worry about, such as performance and fault tolerance, traffic shaping methods
have not received much emphasis. Take gossip-based broadcast, for example. The
conventional approach is to simply adopt a proactive design pattern where nodes gos-
sip periodically in regular intervals [26]. This solves the traffic shaping problem (we
have a constant rate) so we can focus on other design decisions that are related to
performance and fault tolerance.

In this chapter, we challenge this design philosophy. Our main message is that
fine details of traffic shaping actually have a profound effect on many key global ap-
plication characteristics that seem unrelated to traffic shaping at first. For example,
as we will show in detail, when gossip-based broadcast is implemented using our to-
ken account algorithm instead of the periodic, round-based communication pattern,
convergence becomes dramatically faster, approaching the speed of flooding, without
sacrificing the rate limiting feature (as flooding does).

The techniques discussed here are applicable in many decentralized asynchronous
message passing applications where the main goal is to reach a target global state
quickly and cheaply. These applications include gossip-based algorithms, asynchronous
(chaotic) numeric algorithms, and distributed data mining as well. The common
characteristics of these applications include nodes receiving messages, updating their

59

60 Gossip Learning with Adaptive Flow Control

state based on these messages, and sending messages as a function of their state.

In such applications, there is typically a large degree of freedom regarding the
number and the scheduling of the outgoing messages. Unlike in the networking
layer, where messages are simply forwarded, here the messages that are received
and sent might be decoupled. The current practice does not exploit this design space
fully; traffic shaping and its side-effects have not been given enough attention. There
are two kinds of popular approaches, namely proactive and reactive. In a proactive
approach, each node sends messages periodically, based on the information accumu-
lated in the previous round. The rounds of the nodes in the system may or may not be
synchronized. In a reactive approach, nodes immediately send messages whenever
their state changes (typically after receiving a message).

In the proactive approach, time is often wasted, since nodes frequently sit on new
information, doing nothing until the next round comes. However, traffic shaping is
optimal due to the constant rate. In the reactive approach, information is spread
much faster initially; however, the amount of traffic and its burstiness is out of con-
trol, which might harm the network as well as the application itself. Our goal here
is to propose techniques that inherit the best properties of both approaches while
avoiding their drawbacks.

We achieve this by generalizing the token bucket algorithm, introducing a family
of token account algorithms. In a nutshell, at each node, these algorithms grant
one token to the node in regular periods, and spend a token when the node sends a
message. The details of when to send messages, how many, and how exactly to limit
the number of accumulated tokens are captured with two functions: the proactive
and reactive functions. This design space includes the purely proactive and reactive
protocols and a spectrum of algorithms in between.

It should be mentioned that, unlike token bucket algorithms, our token account
protocols are targeted to serve the application layer where they fulfill many functions
at once, all of which are equally important: rate limiting, speeding up convergence and
fault tolerance. The speedup effect is due to the reactive behavior that reduces the
idle time, during which nodes sit on new information. Fault tolerance is due to the
proactive behavior that maintains a certain level of messaging activity even when
messages are lost due to faults or due to the semantics of the application.

Our contribution here is twofold. First, we introduce the token account service
along with three different implementations. The parameters of these implementa-
tions allow us to span the design space between proactive and reactive algorithms.
We evaluate the proposed token account protocols using three applications (gossip
learning, push gossip and chaotic power iteration) in simulation. Second, we adapt
this framework to partitioned gossip learning, and evalute it in multiple machine
learning scenarios, using federated learning as a baseline.

5.1 Background 61

Algorithm 5.1 Push gossip
1: update← null
2: loop
3: wait(∆)
4: p← selectPeer()
5: send update to p
6: end loop
7: procedure ONUPDATE(m)
8: if m is fresher than update then
9: update← m

10: end if
11: end procedure

5.1 Background

For our system model, see Section 2.2. Here, we describe the three applications we
selected to test our token account service: gossip learning, gossip-based broadcasting
and chaotic power iteration. These applications are all based on local message pass-
ing and their goal is to converge to a desirable state through an iterative process as
quickly and as cheaply as possible. Yet, they have a rather diverse set of requirements
that allow us to demonstrate the broad applicability of our algorithms and to better
cover their advantages and limitations. We first present the most common, proactive
implementation of the demonstrator applications, and later on we shall reformulate
them over the token account API (Algorithm 5.3).

5.1.1 Gossip Learning

Our first demonstrator application that can take advantage of our token account
service is gossip learning [65]. The basic idea is that in the network many mod-
els perform random walks and are updated at every node using the local example.
For now, we will use the version described in Section 2.3, but instead of performing
actual model merging, we pick the better-trained model (in terms of model age).
While model merging is often beneficial, it may be highly non-trivial in the case of
non-parametric machine learning models. Furthermore, abstaining from merging
enables us to evaluate the token account framework independently from specific ma-
chine learning tasks, since the model performance will approximately be a function
of model age. Later, in Section 5.2.3 we will use model merging with a new token
account variant.

62 Gossip Learning with Adaptive Flow Control

5.1.2 Push Gossip

Our second example application is the classical push gossip protocol [26], as shown
in Algorithm 5.1.

In this simple setup, we assume that every node stores a single update, and when-
ever a new, fresher update arrives, it replaces the old one. Furthermore, all the nodes
periodically push the update they know about to a neighboring node. Here, we do
not consider any stopping criteria as we assume that updates arrive frequently and
continuously.

Although the push-pull variant is superior to push according to a number of per-
formance metrics, and it could also be used alongside our token account service,
we chose push for the sake of simplicity. This is because pull variants have benefits
mainly in the final phase of convergence, which (as confirmed by our preliminary
experiments) is not actually observed in our setup here due to the continuous stream
of new updates.

5.1.3 Chaotic Asynchronous Power Iteration

Our third example is power iteration. Given a square matrix A, vector x is an eigen-
vector of A with eigenvalue λ, if Ax = λx. Vector x is a dominant eigenvector if there
are no other eigenvectors with an eigenvalue larger than |λ| in absolute value. In this
case λ is a dominant eigenvalue and |λ| is the spectral radius of A.

We concentrate of the abstract problem of calculating the dominant eigenvector
of a weighted neighborhood matrix of some large network, in a decentralized way,
when the elements of the vector are held by individual network nodes, one vector
element per node. The matrix A is defined by physical or overlay links between the
network nodes. More precisely, A contains the weights assigned to these links: let
matrix element Aij be the weight of the link from node j to node i. If there is no link
from j to i then Aij = 0.

In [56], Lubachevsky and Mitra present a chaotic asynchronous family of mes-
sage passing algorithms to calculate the dominant eigenvector of a non-negative
irreducible matrix, that has a spectral radius of one. Algorithm 5.2 shows an in-
stantiation of this framework, that we will apply here.

In the algorithm, the values xi represent the elements of the vector that converge
to the dominant eigenvector. The values bki are buffered incoming weighted values
from incoming neighbors in the graph. These values are not necessarily up-to-date,
however, as shown in [56], the only assumption about message failure is that there is
a finite upper bound on the age of these values. The age of value bki is defined by the
time that elapsed since k sent the last update successfully received by i. This bound
can be very large, so delays and message drop are tolerated to a very large extent.

5.2 Token Account Algorithms 63

Algorithm 5.2 Asynchronous iteration executed at node i
1: bki ← any positive value for all k
2: loop
3: wait(∆)
4: xi ←

∑
k∈in-neighbors

i

Aikbki

5: p← selectPeer()
6: send weight xi to p
7: end loop
8: procedure ONWEIGHT(m)
9: k ← m.sender

10: bki ← m.x
11: end procedure

5.2 Token Account Algorithms

The example algorithms presented so far were fully proactive, sending messages in
regular time intervals. This provides excellent load balancing, but slows down con-
vergence. We could consider the naive reactive variants of these algorithms, where,
instead of a regular timer, every message received would trigger message sending
immediately. This would result in a faster convergence but the uncontrolled commu-
nication load would lead to large bursts of traffic. In our framework we introduce
an abstraction that allows for a fine control over the tradeoff between these two
approaches.

One idea to achieve this tradeoff is to apply the token bucket algorithm. In this
algorithm, a token is assigned to the node in regular intervals of length ∆. The
application works in purely reactive mode, spending one token per message. If no
tokens are available, no sending is allowed (so sending is either skipped or blocked,
depending on the application semantics). Our approach is similar in spirit, but it
offers a fine control over the proactive and reactive characteristics of the application
and it also allows for application specific adaptation in a natural manner. This allows
us to achieve almost optimal speedup while preventing uncontrolled flooding and
providing fault tolerance as well.

5.2.1 Token Account Framework

In our framework, each node has an account, which can hold a non-negative integer
number of tokens. We introduce two functions that will control the proactive and
reactive behavior of the node as a function of the number of tokens.

The proactive function PROACTIVE(a) returns the probability of sending a proactive
message as a function of the account balance a. We require that the proactive func-
tion should be monotone non-decreasing in a, that is, a higher balance should not

64 Gossip Learning with Adaptive Flow Control

Algorithm 5.3 Token account
1: a← initial number of tokens
2: loop
3: wait(∆)
4: do with probability proactive(a)
5: p← selectPeer()
6: m← createMessage()
7: send m to p
8: else
9: a← a+ 1

10: end do
11: end loop
12: procedure ONMESSAGE(m)
13: u← updateState(m)
14: x← randRound(reactive(a, u))
15: a← a− x
16: for i← 1 to x do
17: p← selectPeer()
18: m← createMessage()
19: send m to p
20: end for
21: end procedure

result in a lower probability of sending a proactive message.
The reactive function REACTIVE(a, u) returns the number of messages that the node

will send as a reaction to an incoming message, as a function of the account balance
a and the usefulness of the received message u. Clearly, the higher the balance the
more messages we might want to send so the function should be monotone non-
decreasing in a. The usefulness u expresses the notion that some messages are more
important than others in most applications. For example, in the broadcast applica-
tion, the received message is useful if and only if it contains new information for
the node. Currently we assume that u is either 1 or 0 (the message is either useful
or not). Finer grading is possible in the future. The function should be monotone
non-decreasing in u as well, that is, more useful messages should not result in fewer
reactive messages being sent. Also, the value returned is at most a (we do not allow
overspending).

The purely proactive strategy is a special case given by PROACTIVE(a) ≡ 1 and
REACTIVE(a, u) ≡ 0. With relaxing the non-negativity constraint of the balance, the
purely reactive strategy can be expressed as well as PROACTIVE(a) ≡ 0 and REACTIVE(a, u)
≡ k (or REACTIVE(a, u) ≡ uk) for a constant k ≥ 1.

The pseudo-code for the token account algorithm is shown in Algorithm 5.3. In
each round, the node either sends a message to a peer, or saves the token for later

5.2 Token Account Algorithms 65

use; the former occurs with probability PROACTIVE(a). When receiving a message, the
application-specific code updates the state of the node using method UPDATESTATE()
that also returns the usefulness of the received message. Next, the reactive func-
tion returns the number of messages to be sent and the same number of tokens are
removed from the account. The return value r of the reactive function is probabilisti-
cally rounded by sampling brc+ ξ where ξ is a random variable with the distribution
ξ ∼ Bernoulli(r − brc).

The framework can be instantiated by implementing the proactive and reactive
functions. We will discuss our proposed implementations in Section 5.2.4. First,
however, we turn to the implementation of our three application examples within
the framework.

5.2.2 Applications within the Framework

To implement our applications in the framework we have to provide the application
specific implementations of two methods: CREATEMESSAGE() that is responsible for
constructing a message to be sent based on the current state, and UPDATESTATE(m)
that is responsible for updating the current state based on the new message that
has been received. This includes defining the usefulness of the received message m
because UPDATESTATE(m) has to return this information.

The implementation of CREATEMESSAGE() is simple in all three cases: we just copy
the current state. In the gossip learning application, the state consists of a machine
learning model with a counter (age) that keeps track of how many times the given
model was updated. In the push gossip application the state consist of an update
with a timestamp. In chaotic iteration the state is the value xi at node i.

In our three applications, the implementations of UPDATESTATE(m) are given by
ONMODEL, ONUPDATE and ONWEIGHT, respectively. In addition, we have to return
usefulness, as we explain below. In gossip learning, usefulness is 0 if the current
model of the node is older (in terms of the number of visited nodes) than the received
model, and 1 otherwise. In the former case, the state is unchanged, while in the
latter case, the received model is trained on the local data and stored as the new
state. Note that in our simulations, regarding this basic version of gossip learning,
we did not implement any actual machine learning tasks, but just simulated the age
of the models as this forms the basis of our performance metric.

In the broadcast application, usefulness is 1 if and only if the received message
contains a newer update than the locally stored update at the node. In our simu-
lations, we considered the following scenario: new updates are regularly injected
into random online nodes of the network. A newer update makes older updates
obsolete, that is, only the freshest update known by the given node is stored and
propagated. Our performance metric is the difference between the average times-

66 Gossip Learning with Adaptive Flow Control

Algorithm 5.4 Partitioned Token Gossip Learning

1: (t, w, b)← (0,0, 0)
2: a← 0
3: loop
4: wait(∆g)
5: j ← selectPart() . select a random partition
6: do with probability proactive(a[j])
7: p← selectPeer()
8: send samplePartition(t, w, b, j) to p
9: else

10: a[j]← a[j] + 1 . we did not spend the token so it accumulates
11: end do
12: end loop
13:
14: procedure ONRECEIVEMODEL(tr, wr, br, j)
15: (t, w, b)← merge((t, w, b), (tr, wr, br))
16: (t, w, b)← update((t, w, b), D)
17: x← randRound(reactive(a[j],1))
18: a[j]← a[j]− x . we spend x tokens
19: for i← 1 to x do
20: p← selectPeer()
21: send samplePartition(t, w, b, j) to p
22: end for
23: end procedure

tamp of the freshest update known by each node and the timestamp of the freshest
update in the whole network.

In the chaotic iteration application, usefulness is 1 if and only if the received
message causes a change in the local state. Our convergence metric is the angle
(or cosine distance) between the approximation of the eigenvector and the actual
eigenvector that should converge to zero.

5.2.3 Partitioned Token Gossip Learning

In Section 4.1, we introduced gossip learning with sampling. Using the partitioned
sampling, merge and update methods described there, we propose partitioned token
gossip learning, shown in Algorithm 5.4.

The token account algorithm allows chains of messages to form that travel fast
in the network like a “hot potato”. Therefore, it is vital that we use SAMPLEPARTITION

as an implementation of sampling. Our preliminary experiments showed that ran-
dom sampling (SAMPLERAND) is not effective along with the token account technique.
This is because if we sample independently at each hop, we work strongly against

5.2 Token Account Algorithms 67

the formation of long “hot potato” message chains that represent any fixed model
parameter. This is a key insight, and this is why the partitioned approach is expected
to work better. It allows for hot potato message chains to form based on a single
partition. In other words, we can have the benefits of sampling-based compression
and hot potato message passing at the same time.

Accordingly, each partition j now has its own token account a[j] that stores the
number of available tokens. With this modification of the token account framework,
each partition will perform random walks independently, using its own communica-
tion budget. Of course, the model update is not independent; it is the same as in
partitioned gossip learning. We also track the age of each partition, as discussed pre-
viously in connection with the merge and update functions. We will argue that even
the proactive gossip learning can benefit from using partitions, although to a lesser
extent.

Since we apply merging, the state is always changed, hence we use u = 1 on
line 17.

If the number of partitions is S = 1, then we get a special case of the algorithm
without any compression (that is, no sampling), namely we always send the entire
model.

Also, let us mention that the methods SELECTPART and SELECTPEER were imple-
mented using sampling without replacement; when the pool of available options
becomes empty, it is re-initialized. This is slightly better than sampling with replace-
ment, because it results in a lower variance.

5.2.4 Implementations of the Framework

Let us turn to the instantiations of the framework. In order to implement the frame-
work, one has to provide the two functions PROACTIVE(a) and REACTIVE(a,u) taking
into account the constraints we described previously. We have already described the
implementation of the purely proactive solution within the framework as an example.
Here we propose three additional implementations.

Simple token account

The first implementation is called simple token account. This implementation serves
as a baseline, and it is similar to the token bucket algorithm although there are
important differences as well. We introduce a parameter C ≥ 0 that controls the
capacity of the token account. That is, the maximal number of tokens will be C.
Using this parameter, we define

PROACTIVE(a) =

{
1 if a ≥ C

0 otherwise,
(5.1)

68 Gossip Learning with Adaptive Flow Control

REACTIVE(a, u) =

{
1 if a > 0

0 otherwise.
(5.2)

Note that when C = 0 we have the purely proactive protocol as a special case. The
reactive part is identical to that of the token bucket algorithm, however, this im-
plementation also shows proactive behavior but only when the account is full. The
account typically fills up with tokens when too few messages are arriving relative
to the allowed communication rate. This in turn happens most often when, due to
failures, fewer and fewer messages are circulating in the network. The default proac-
tive behavior helps maintain a certain level of communication rate naturally even
under high message drop rates, which is impossible in a purely reactive implementa-
tion. Of course, the effect of this error correction strongly depends on the application
semantics.

Generalized token account

Our second implementation is called generalized token account. Here, our goal is to
design a reactive function that is able to increase the number of messages sent when
the number of tokens is high. In addition, we want to send twice as many messages
in response to useful messages. To achieve this goal, the proactive function should
be the same as the one in (5.1) and we propose the following reactive function:

REACTIVE(a, u) =

{
b(A− 1 + a)/Ac if u = 1

b(A− 1 + a)/(2A)c otherwise,
(5.3)

where parameter A is a positive integer and it controls what proportion of the avail-
able tokens we wish to use. Let us first consider the case when the incoming message
was useful (u = 1). Here, the reactive function is designed so that when A = 1 we
use all the available tokens. Increasing A decreases the returned value. When A ≥ a,
the function returns 1. This also implies that the maximal meaningful value for A
is A = C in which case the reactive function will be equivalent to equation (5.2).
Now, let us consider the case when u = 0. Here, we simply divide the returned value
by two. This also means that, due to rounding the output down to an integer, the
function will return 0 when A ≥ a. In other words, when the tokens are scarce, we
do not waste them for reacting to messages that are not useful.

Randomized token account

So far all the strategies had the simple proactive function in equation (5.1). In the
randomized token account implementation we propose a more fine-grained handling
of proactive messages, while we will treat reactive messages in a similar way to the

5.2 Token Account Algorithms 69

generalized token account implementation. In addition, instead of rounding it down
to an integer, the reactive function will use the value of a similar formula as the
expected value of a discrete distribution, from which a sample is returned.

Let us first discuss the proactive function given by

PROACTIVE(a) =

0 if a < A− 1
a− A+ 1

C − A+ 1
if a ∈ [A− 1, C]

1 otherwise.

(5.4)

Parameters A and C have the same semantics as in previous implementations: C

controls the capacity of the account, A controls the rate of spending the tokens.
The actual formula might seem slightly ad-hoc, but it is derived from a few simple
requirements. First, we wish the function to return 1 when a ≥ C as in all previous
implementations. Second, we wish to add some proactive behavior even when a < C,
so the returned value was chosen to be linear starting from a = A − 1 until a = C.
The starting point of this linear segment was chosen to be A − 1 because if a < A

then the reactive function (to be discussed below) will be able to send less than one
messages on average (in other words, we are not guaranteed to be able to respond
to important messages) so in that range we wish to maintain the purely reactive
behavior.

The reactive function is given by

REACTIVE(a, u) =

{
a/A if u = 1

0 otherwise.
(5.5)

Note that this time we apply no rounding, so the returned value might be less than
1. As shown in Algorithm 5.3, a randomized rounding is performed on this value to
get an integer.

5.2.5 A Note on Rate Limitation Properties

The algorithm variants above have rather different reactive functions, some of them
allowing for spending the full account at once. This means that the largest possible
burst of traffic is defined by the largest possible account balance. Let us take a closer
look at the maximum possible size of the account balance. For an arbitrary imple-
mentation of the token balance framework, let C be the smallest number for which
PROACTIVE(C)= 1 holds. If there is no such C, it means the balance of the account
might in principle grow indefinitely, which is not a desirable property, since we wish
to limit the size of bursts. In our implementations we have such a C, in fact, it is
an explicit parameter. Due to the definition of C, any additional tokens are guaran-

70 Gossip Learning with Adaptive Flow Control

teed to be spent immediately when the account has at least C tokens. We call C the
token capacity of the token strategy, that is, the maximal number of tokens that can
be accumulated. This also gives an upper bound on the number of messages that a
node may send within a period of time t: a node cannot send more than dt/∆e + C

messages, where ∆ is the length of a proactive round.

5.3 Experimental Analysis of Token Account

The overall goal of our experiments is to examine the speedup of our token account
solutions relative to the baseline proactive implementations, while keeping the same
overall communication rate. In order to evaluate our protocols, we ran simulation
experiments using the PeerSim simulation environment [59]. The evaluation of par-
titioned token gossip learning merits its own set of experiments, discussed in Sec-
tion 5.4.

5.3.1 Experimental Setup

The protocols we test consist of the combination of our three applications (gossip
learning, push gossip, and chaotic iteration) and our three proposed instantiations of
the token account framework: simple token account, generalized token account and
randomized token account. These applications and implementations are described in
sections 5.1 and 5.2 in detail. The token account protocols have two parameters: A
and C. In our experiments we explore this parameter space.

The baseline proactive protocol is given as a special case of simple token account
with C = 0; this variant is also included in our experiments. Note that the other
extreme of the spectrum, namely the pure reactive strategy, is not included as a
baseline, since it is obviously not a viable strategy. Without any rate control, our ap-
plications would generate a continuous burst and use up all the available bandwidth.

The number of initial tokens assigned to the nodes before the start of the experi-
ment is zero. The communication topology (that is, the overlay network) was a fixed
20-out network (each node had 20 out neighbors that did not change through the
experiment) and the network size was N = 5, 000 or N = 500, 000. The fixed 20
neighbors were drawn independently and uniformly at random. This is perhaps the
simplest practical approximation of uniform peer sampling suitable for the applica-
tions we study here. It can be implemented by maintaining 20 TCP connections for
the lifetime of the application. The value 20 allows for a robust connected network
while the cost of managing the connections to all the 20 neighbors is still practi-
cally affordable. The chaotic iteration experiment uses a different topology as we
describe later; this is because the 20-out network mixes too well and power iteration
converges too fast over this topology.

5.3 Experimental Analysis of Token Account 71

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45

re
la

ti
v
e
 a

v
e
ra

g
e
 m

o
d
e
l
a
g
e

hours

simple

C:80
C:20
C:10
C:5
C:2
C:1

proactive

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45

re
la

ti
v
e
 a

v
e
ra

g
e
 m

o
d
e
l
a
g
e

hours

generalized

A:10,C:10
A:10,C:20
A:20,C:40
A:5,C:10

A:10,C:40
A:40,C:80

A:1,C:5
A:1,C:1

A:1,C:10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45

re
la

ti
v
e
 a

v
e
ra

g
e
 m

o
d
e
l
a
g
e

hours

randomized

A:10,C:20
A:5,C:10

A:20,C:40
A:10,C:40
A:40,C:80

A:1,C:5
A:10,C:10
A:1,C:10
A:1,C:1

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30 35 40 45

a
v
e
ra

g
e
 d

e
la

y

hours

simple

proactive
C:1
C:2
C:5

C:10
C:20
C:80

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30 35 40 45

a
v
e
ra

g
e
 d

e
la

y

hours

generalized

A:1,C:1
A:10,C:10
A:5,C:10

A:20,C:40
A:10,C:20
A:10,C:40
A:40,C:80

A:1,C:5
A:1,C:10

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30 35 40 45

a
v
e
ra

g
e
 d

e
la

y

hours

randomized

A:1,C:1
A:10,C:10
A:5,C:10

A:10,C:20
A:1,C:5

A:20,C:40
A:40,C:80
A:10,C:40
A:1,C:10

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 0 5 10 15 20 25 30 35 40 45

a
n
g
le

 i
n
 r

a
d
ia

n
s

hours

simple

C:1
proactive

C:2
C:80

C:5
C:20
C:10

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 0 5 10 15 20 25 30 35 40 45

a
n
g
le

 i
n
 r

a
d
ia

n
s

hours

generalized

A:10,C:40
A:1,C:10

A:1,C:5
A:40,C:80

A:1,C:1
A:5,C:10

A:20,C:40
A:10,C:20
A:10,C:10

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 0 5 10 15 20 25 30 35 40 45
a
n
g
le

 i
n
 r

a
d
ia

n
s

hours

randomized

A:1,C:10
A:1,C:5
A:1,C:1

A:40,C:80
A:10,C:10

A:5,C:10
A:10,C:20
A:10,C:40
A:20,C:40

Figure 5.1: Token account strategies in the failure-free scenario for gossip learning (top
row), push gossip (middle row) and chaotic iteration (bottom row).

As for timing, we simulate a virtual two-day period, with ∆ = 172.80 s, allowing
for 1000 periods during the two-day interval. This is a long period so we allow
only a very low utilization of the available bandwidth in all the applications, which is
consistent with the requirements in the domains we target. In all the applications, we
assume the transfer time for one message to be 1.728 s, a hundredth of the proactive
period. Again, the point here is that we wish to simulate a scenario where low
bandwidth utilization is required, because in such a scenario it is much harder to
achieve a convergence speed competitive with that of the purely reactive solution
that utilizes all the bandwidth.

Regarding the failure patterns, we simulate the protocols in two scenarios. In the
first scenario the communication and the nodes are reliable. In the second scenario,
we simulate the protocols over a smartphone trace that captures realistic failure and
accessibility patterns. In both cases, the same random 20-out network is used as
the communication overlay, as described above. We used the trace described in Sec-
tion 2.4.

Let us now describe the specific settings for each application.

72 Gossip Learning with Adaptive Flow Control

Gossip learning setup

Our goal is to study the speed of convergence. In the case of gossip learning, the
learning speed depends on how many nodes a given machine learning model can
visit in a given amount of time. (We assume that each node in the network has
only one training example.) The maximal number of visited nodes at time t (let us
denote this by n∗(t)) is achieved by the pure reactive strategy, where no model is ever
delayed at any of the nodes. Since the transfer time for one model was assumed to
be 1.728 s, at any point in time t we have n∗(t) = t/1.728. Our performance metric is
defined as the relative number of visited nodes compared to this ideal number. More
precisely, let ni(t)(≤ n∗(t)) denote the number of nodes that the model at node i has
visited up to time t. Our performance metric at time t is

1

N

N∑
i=1

ni(t)

n∗(t)
=

1

Nn∗(t)

N∑
i=1

ni(t), (5.6)

where N is the size of the network. This describes the relative speed of our proto-
cols compared to the maximal speed. Note that no actual machine learning task is
necessary for this metric.

Push gossip setup

In the case of push gossip, the spreading of a single update is relatively difficult to
evaluate. For this reason, we inject new updates in regular time intervals at randomly
selected nodes in the network. The period of inserting new updates is 17.28 s, that
is, we insert 10 updates in every proactive period. Updates have a timestamp so
every node can replace a locally stored update by a newer one. Our performance
metric at time t is based on the average time lag experienced by the nodes relative
to the freshest update available anywhere in the network at time t. For the sake of
simplifying our notation, let us assume that at time t the freshest update is the t-th
update, and let node i store the ti-th update (ti ≤ t). Our performance metric for
push gossip is

1

N

N∑
i=1

(t− ti) = t− 1

N

N∑
i=1

ti. (5.7)

In the churn scenario, nodes that come back online first send a single initial pull
request to a random online neighbor. If this neighbor has tokens, a message is sent
back with the latest update (burning a token). Otherwise, no answer is given so the
pull request is unsuccessful.

5.3 Experimental Analysis of Token Account 73

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45

re
la

ti
v
e
 a

v
e
ra

g
e
 m

o
d
e
l
a
g
e

hours

simple

C:80
C:20
C:10
C:5
C:2
C:1

proactive

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45

re
la

ti
v
e
 a

v
e
ra

g
e
 m

o
d
e
l
a
g
e

hours

generalized

A:10,C:10
A:5,C:10

A:10,C:20
A:20,C:40
A:40,C:80
A:10,C:40

A:1,C:5
A:1,C:10
A:1,C:1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45

re
la

ti
v
e
 a

v
e
ra

g
e
 m

o
d
e
l
a
g
e

hours

randomized

A:10,C:20
A:20,C:40
A:5,C:10

A:40,C:80
A:10,C:40
A:10,C:10

A:1,C:5
A:1,C:10
A:1,C:1

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30 35 40 45

a
v
e
ra

g
e
 d

e
la

y

hours

simple

proactive
C:1
C:2
C:5

C:10
C:20
C:80

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30 35 40 45

a
v
e
ra

g
e
 d

e
la

y

hours

generalized

A:1,C:1
A:1,C:5

A:1,C:10
A:10,C:10
A:10,C:20
A:5,C:10

A:10,C:40
A:40,C:80
A:20,C:40

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30 35 40 45

a
v
e
ra

g
e
 d

e
la

y

hours

randomized

A:1,C:1
A:10,C:10

A:1,C:5
A:1,C:10

A:10,C:20
A:5,C:10

A:20,C:40
A:40,C:80
A:10,C:40

Figure 5.2: Token account strategies in the smartphone trace scenario for gossip learn-
ing (top row) and push gossip (bottom row).

Chaotic iteration setup

In this application the overlay network not only defines the communication channels
but it defines the computational task as well, since we are calculating the eigenvec-
tor of the normalized adjacency matrix itself. The 20-out matrix used in the other
applications is not suitable because it converges very fast due to the good mixing
properties of the network, which hides the effects of the different protocols. Here,
we use an overlay network based on the Watts-Strogatz model in order to be able to
control (slow down) the speed of convergence [83]. The network is based on a ring
in which every node is connected to its closest 4 neighbors. In addition, we rewire
every link to a random target with a probability of 0.01. The network size remains
N = 5000.

The performance metric used in this application is simply the convergence rate
of power iteration to the correct eigenvector expressed as the angle of the current
approximation and the correct eigenvector. An angle of zero means a perfect solution.
In the case of power iteration, there is no natural optimally fast protocol since the
convergence speed also depends on the choice of the neighbors. Here, we simply
present the convergence as a function of time for the different parameter settings,
which still allows for a clear comparison among the different options.

74 Gossip Learning with Adaptive Flow Control

5.3.2 Experimental Results

We first explored the parameter space of the protocols. The parameter space included
all the combinations defined by A = 1, 2, 5, 10, 15, 20, 40 and C −A = 0, 1, 2, 5, 10, 15,
20, 40, 80 (note that we have to have A ≤ C). Based on these runs a representative
selection is shown in Figure 5.1 for our three applications in the failure-free scenario.
We performed 10 independent runs for every parameter combination, and the aver-
age of these runs is shown in the plots. On the plots showing push gossip we applied
smoothing based on averaging measurements over 15 minute periods.

Note that in general it makes little sense to set C much larger than A, since a small
A means an aggressive reactive message strategy (we spend most of our tokens),
while a large C represents a very low probability of sending proactive messages.
This combination results in a very poor error correction ability: if the number of
messages in circulation decreases due to faults or due to the application semantics,
we cannot replace them efficiently with proactive messages. This is because the
aggressive reactive strategy quickly uses up all the tokens, but it takes a very long
time until the account is full again (and so proactive messages can be sent).

The main conclusion from this exploration is that, relative to our purely proactive
baseline, all the parameter combinations result in a very significant performance
improvement in the case of gossip learning and push gossip, and we can also improve
chaotic iteration significantly with most parameter combinations.

In the case of push gossip most of the parameter settings result in an almost
identical performance, except two settings that are inferior. Clearly, in the broadcast
example, it makes sense to be more aggressive in the reactive function and spread
the fresh information to multiple nodes when possible; with A = C, only at most
one reactive message is sent. Gossip learning is more sensitive to the parameter
setting. Here, the key appears to be setting a large enough C, which allows us
to accommodate the maximal variance in the number of random walks forwarded
within a round. Fortunately, settings as low as C = 20 already provide close to
optimal performance while still offering good rate limiting as well. Note also that
larger values of C have a handicap in our experiments since we initialize the accounts
to have zero tokens. In the long run, this disadvantage disappears.

It is interesting to note that some settings, such as A = 10, C = 10, behave quite
differently in different applications. This setting is among the worst in push gossip
for reasons mentioned above but it is the best in gossip learning and chaotic iteration.
At the same time, A = 10, C = 20 is among the best in all three applications.

For the gossip learning application the results have an interesting implication. In
this case, machine learning models walk nearly without any delay but the overall
communication in the system is not more than in the proactive case. This is possible
only if the number of models that walk in the network is less than that in the proac-
tive case. In other words, the token account service has a side-effect of reducing the

5.3 Experimental Analysis of Token Account 75

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45

re
la

ti
v
e
 a

v
e
ra

g
e
 m

o
d
e
l
a
g
e

hours

simple

C:20
C:10
C:80
C:5
C:2
C:1

proactive

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45

re
la

ti
v
e
 a

v
e
ra

g
e
 m

o
d
e
l
a
g
e

hours

generalized

A:1,C:5
A:5,C:10

A:10,C:10
A:10,C:20
A:10,C:40
A:20,C:40
A:40,C:80
A:1,C:10
A:1,C:1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45

re
la

ti
v
e
 a

v
e
ra

g
e
 m

o
d
e
l
a
g
e

hours

randomized

A:1,C:10
A:1,C:5

A:5,C:10
A:10,C:40
A:10,C:20
A:20,C:40
A:40,C:80
A:10,C:10

A:1,C:1

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30 35 40 45

a
v
e
ra

g
e
 d

e
la

y

hours

simple

proactive
C:1
C:2
C:5

C:10
C:20
C:80

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30 35 40 45

a
v
e
ra

g
e
 d

e
la

y

hours

generalized

A:1,C:1
A:10,C:10
A:5,C:10

A:40,C:80
A:20,C:40
A:10,C:20
A:10,C:40

A:1,C:5
A:1,C:10

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30 35 40 45

a
v
e
ra

g
e
 d

e
la

y

hours

randomized

A:1,C:1
A:10,C:10
A:5,C:10

A:10,C:20
A:20,C:40

A:1,C:5
A:40,C:80
A:10,C:40
A:1,C:10

Figure 5.3: Token account strategies in the failure free scenario and N = 500, 000 for
gossip learning (top row) and push gossip (bottom row).

number of models at the cost of speeding them up at the same time. In fact, we can
observe an emergent evolutionary process in which random walks fight for band-
width and only those survive that happen to reach a given node the soonest after the
node received a token.

We performed the same exploration over the smartphone trace as well. Figure 5.2
illustrates the same parameter combinations as shown in the failure-free case. Note
that nodes only receive tokens when online (and thus have a chance of actually
spending it) and only the online nodes were considered when computing our perfor-
mance metrics. The chaotic iteration application is not shown here, because in such
an extremely dynamic setting with aggressive churn it is not possible to define con-
vergence for this application and so our performance metric is not applicable. Apart
from the apparent diurnal pattern due to the variation of node availability, the results
are rather consistent with those in the failure-free scenario. Relative to the proactive
strategy we achieve very significant improvements, of course, with the same overall
communication cost as in the proactive strategy.

To illustrate the scalability of the protocols, we ran them over a network of size
N = 500, 000 in the failure free scenario. The results are shown in Figure 5.3. Com-
paring with the plots in Figure 5.1, it is clear that in the case of push gossip the
protocols are still very robust to the parameter settings, since all the settings that al-
low for an exponential spreading of new updates (that is, where C > A) still have an
almost identical performance. Of course, the average delay increases somewhat, but
this is due to the larger diameter of the network: a logarithmic increase is expected
even with flooding (the reactive variant) with increasing network size (note that our

76 Gossip Learning with Adaptive Flow Control

overlay network has a logarithmic diameter).
In the case of gossip learning, we can see that some of the best variants perform

very similarly over different network sizes, with two notable exceptions: A = 1, C =

5, and A = 1, C = 10. These variants were among the worst in the small network
but they are among the best in the large network. Note that these variants are the
most aggressive reactive variants, they replicate the good random walks burning all
the available tokens locally. The reason for the dramatic difference is that—due to
finite size effects—in the small network all the random walks get stalled periodically,
effectively rendering the dynamics similar to that of the proactive protocol. In the
large network there are proportionally more random walks and at every point in time
a few of these walks can still make progress and later also replicate to replace those
walks that were less lucky.

Nevertheless, even for gossip learning, there are robust parameter choices, for
example, A = 5, C = 10. This parameter setting is also suitable for push gossip in all
the settings we examined.

As a final note, let us compare the performance of our different algorithm vari-
ants. Even SIMPLE represents a significant improvement over the proactive approach,
but GENERALIZED and RANDOMIZED outperform it robustly. Considering the best param-
eter settings, GENERALIZED has a slight advantage over RANDOMIZED in the push gossip
application, and the reverse is true in gossip learning.

5.3.3 A Note on the Number of Tokens

Although we have a strong experimental focus, for completeness we present a short
analytical derivation of the average number of tokens in the system. This property
is interesting as the dynamics of the system depends on the available tokens. We
assume a failure-free scenario. We use our previous notations, but here let a(t) denote
the average number of tokens over the nodes at time t and let w(t) be the average
number of messages sent (or, equivalently, received) by a node until time t. Now, we
can write the mean-field model

da

dt
=

1

∆
− dw

dt
(5.8)

d2w

dt2
=

dw

dt
(reactive(a, u)− 1) +

1

∆
proactive(a) (5.9)

The first equation states that a is increased by the constant rate of generated
tokens (one per each cycle of length ∆) and decreased by the number of tokens used
up. The second equation states that the change of the message sending rate is given
by the number of reactive messages triggered by the incoming messages (also taking
into account the fact that the one incoming message is “replaced” by the reactively
generated messages triggered by it) and the number of proactive messages that are

5.4 Experimental Analysis of Partitioned Token Account 77

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25 30 35 40 45

a
v
e
ra

g
e
 t

o
ke

n
 c

o
u
n
t

hours

randomized

A:40,C:80
A:20,C:40
A:10,C:40
A:10,C:20
A:10,C:10

A:5,C:10
A:1,C:10

A:1,C:5
A:1,C:1

Figure 5.4: Average number of tokens (gossip learning, failure free scenario).

sent once in every cycle.
Now, assuming the equilibrium state when da/dt = 0 and d2w/dt2 = 0, solving

the resulting equations gives us

1 = reactive(a, u) + proactive(a). (5.10)

This can be solved for a for a fixed u. For the most promising version: randomized
token account, solving the equation gives us a = A · C/(C + 1) for u = 1 (this means
a ≈ A). The assumption u = 1 is acceptable for gossip learning where most incoming
messages are better than the locally stored random walk. Indeed, our validation runs
(Figure 5.4) show a very good agreement with the predicted value.

5.4 Experimental Analysis of Partitioned Token Account

Here, we evalute partitioned token gossip learning in actual machine learning scenar-
ios, using proactive gossip learning and federated learning (described in Section 4.2)
as baselines.

Unlike the continuous transfer scenario examined in Chapter 4, here, we study
the bursty transfer setup where all the nodes communicate only during a given per-
centage of the time. Without any modification, the behavior of federated and gossip
learning is quite similar to their behavior in the continuous transfer scenario. Al-
though gossip algorithms work slightly better due to the reduced number of parallel
transfers, the bursty transfer scenario offers a possibility to implement specialized
techniques that take advantage of bursty transfer explicitly.

In the case of gossip learning, we introduced the token account flow control tech-
nique, as described above.

In the case of federated learning, one such technique is when the master commu-
nicates only with a subset of the workers in each round, selecting a different subset

78 Gossip Learning with Adaptive Flow Control

each time. This way, although the workers communicate in a bursty fashion, the
global model still evolves relatively fast.

5.4.1 Experimental Setup

The experimental setup is the same as in Section 4.3, with the differences noted
below.

We use 2-day segments from the smartphone trace, but we use only the second
24-hour period for learning; the first day is used for achieving a token distribution
that reflects an ongoing application. This warm-up period can represent a previous,
unrelated learning task executed on the same platform, or the sending of empty
messages; it does not count towards the communication costs. For fair comparison,
we use the same period for learning also in the case of algorithms that do not use
tokens.

The cycle length parameters ∆g and ∆f were set in a different way. We assume
that we transfer data only during a given percentage of the time, say, 1% of the
time. Let δ denote the transfer time and let p ∈ (0, 1] be the proportion of the time
we use for transfer. Here, we set the gossip cycle length ∆g = δ/p. To implement
the bursty model in federated learning, we have many choices for the cycle length
depending on how many nodes the master wants to contact in a single cycle. If we
set ∆f = (δup + δdown)/p (where δup and δdown are the upload and download transfer
times, respectively), then the master should contact all the nodes as before so the
only effect is the slowdown of the algorithm. If we set a shorter cycle length then
the master will contact only a subset of the nodes to achieve the required proportion
of p overall. We will examine this latter case when the cycle length is set so that 1%
of the nodes are contacted in a cycle: ∆f = δup + δdown, where we need p = 1/100

to hold as well. This way, the master communicates continuously while the nodes
communicate in bursts. When compression is used, δup and δdown might differ.

On average, the two algorithms still transfer the same number of bits overall in
the network during the same amount of time. Furthermore, continuous transfer is
the special case of bursty transfer with p = 1.

For gossip learning, we used the randomized token account implementation with
parameters A = 10 and C = 20, based on our results in Section 5.3.2.

5.4.2 Partitioning

Model partitioning is especially helpful for token gossip learning, however, this tech-
nique has other advantages as well. To verify this, we compared partitioned and non-
partitioned variants in several scenarios (Figure 5.5). We show the scenario where
the effect in question is the clearest. Clearly, the partitioned implementations con-

5.4 Experimental Analysis of Partitioned Token Account 79

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 2 4 6 8

Spambase Dataset

Models transferred per node

10 100 1000

Spambase Dataset

Models transferred per node

GL, s=0.10 P
GL, s=0.10 NP

GL, s=0.10 token P
GL, s=0.10 token NP

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 2 4 6 8

Spambase Dataset

Models transferred per online node

10 100 1000

Spambase Dataset

Models transferred per online node

GL, s=0.10 P
GL, s=0.10 NP

GL, s=0.10 token P
GL, s=0.10 token NP

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8

PenDigits Dataset

Models transferred per node

0
-1

 E
rr

o
r

10 100 1000

PenDigits Dataset

Models transferred per node

GL, s=0.10 P
GL, s=0.10 NP

GL, s=0.10 token P
GL, s=0.10 token NP

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8

PenDigits Dataset

Models transferred per online node

0
-1

 E
rr

o
r

10 100 1000

PenDigits Dataset

Models transferred per online node

GL, s=0.10 P
GL, s=0.10 NP

GL, s=0.10 token P
GL, s=0.10 token NP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8

HAR Dataset

Models transferred per node

0
-1

 E
rr

o
r

10 100 1000

HAR Dataset

Models transferred per node

GL, s=0.10 P
GL, s=0.10 NP

GL, s=0.10 token P
GL, s=0.10 token NP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8

HAR Dataset

Models transferred per online node

0
-1

 E
rr

o
r

10 100 1000

HAR Dataset

Models transferred per online node

GL, s=0.10 P
GL, s=0.10 NP

GL, s=0.10 token P
GL, s=0.10 token NP

Figure 5.5: Gossip learning with one node for each example, bursty transfer, subsam-
pling probability s = 0.1, no-failure (left) and smartphone trace with long transfer
time (right). Variants with and without model partitioning are indicated by P and NP,
respectively.

80 Gossip Learning with Adaptive Flow Control

sistently outperform the non-partitioned ones, although in the no-failure scenario,
classical gossip learning appears to suffer a temporary setback during convergence.
Note that this is a case where the hyperparameters are not exactly optimal, as we
explained in Section 4.3.3 (Figure 4.2).

The improved performance in the partitioned case is due to the more fine-grained
handling of the age parameter. Recall that in the partitioned implementation, all the
partitions have their own age and are updated accordingly. In the smartphone trace
scenario, this feature is especially useful, since when a node comes back online af-
ter an offline period, its model is outdated. During the first merge operation on the
model, only those parameters will get an updated age parameter that were actually
updated, that is, those that are included in the merged partition. Without partition-
ing, only a random subset of the parameters will be merged, but the entire model
will get a new age value. This is a problem because in the next merge operation that
they are included in, the weight of these old parameters will be too large. Because of
this, from now on, all the experiments are carried out with model partitioning, and
this fact will not be explicitly indicated.

5.4.3 Small Scale

Figure 5.6 shows the performance in the bursty transfer scenario. Clearly, the con-
vergence of each algorithm becomes faster than in the continuous communication
case (Figure 4.5). This suggests that it is better to allow for short but high bandwidth
bursts as opposed to long but low bandwidth continuous communication. We can
also observe that token gossip converges faster than regular gossip in most cases.
Also, the best gossip variant is, again, competitive with the federated learning algo-
rithm.

5.4.4 Large Scale

In the large scale scenario, the number of examples per node was the same as in the
100-node scenario, but the network size equaled the size of the database. The results
are shown in Figure 5.7. (For easier comparison, we also include the plots of the
continuous transfer scenario from the previous chapter.)

The first observation we can make is that in the bursty transfer scenario faster
convergence can be achieved. This is due to the algorithms that exploit burstiness.

We can see that the best gossip variants are still competitive with the best feder-
ated learning variants.

5.4 Experimental Analysis of Partitioned Token Account 81

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 2 4 6 8

Spambase Dataset

Models transferred per node

10 100 1000

Spambase Dataset

Models transferred per node

GL, s=1.00
GL, s=1.00 token

GL, s=0.10
GL, s=0.10 token

FL, s=1.00
FL, s=0.10 local

FL, s=0.10

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 2 4 6 8

Spambase Dataset

Models transferred per node

10 100 1000

Spambase Dataset

Models transferred per node

GL, s=1.00
GL, s=1.00 token

GL, s=0.10
GL, s=0.10 token

FL, s=1.00
FL, s=0.10

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8

PenDigits Dataset

Models transferred per node

0
-1

 E
rr

o
r

10 100 1000

PenDigits Dataset

Models transferred per node

GL, s=1.00
GL, s=1.00 token

GL, s=0.10
GL, s=0.10 token

FL, s=1.00
FL, s=0.10 local

FL, s=0.10

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8

PenDigits Dataset

Models transferred per node

0
-1

 E
rr

o
r

10 100 1000

PenDigits Dataset

Models transferred per node

GL, s=1.00
GL, s=1.00 token

GL, s=0.10
GL, s=0.10 token

FL, s=1.00
FL, s=0.10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8

HAR Dataset

Models transferred per node

0
-1

 E
rr

o
r

10 100 1000

HAR Dataset

Models transferred per node

GL, s=1.00
GL, s=1.00 token

GL, s=0.10
GL, s=0.10 token

FL, s=1.00
FL, s=0.10 local

FL, s=0.10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8

HAR Dataset

Models transferred per node

0
-1

 E
rr

o
r

10 100 1000

HAR Dataset

Models transferred per node

GL, s=1.00
GL, s=1.00 token

GL, s=0.10
GL, s=0.10 token

FL, s=1.00
FL, s=0.10

Figure 5.6: Federated learning and gossip learning with 100 nodes (left) and with one
node for each sample (right), no-failure scenario, in the bursty transfer scenario.

82 Gossip Learning with Adaptive Flow Control

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 2 4 6 8

Spambase Dataset

Models transferred per online node

10 100 1000

Spambase Dataset

Models transferred per online node

GL, s=0.10
GL, s=0.10 biased

GL, s=0.10 trace
FL, s=0.10

FL, s=0.10 biased
FL, s=0.10 trace

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 2 4 6 8

Spambase Dataset

Models transferred per online node

10 100 1000

Spambase Dataset

Models transferred per online node

GL, s=0.10 token
GL, s=0.10 token biased

GL, s=0.10 token trace
FL, s=0.10

FL, s=0.10 biased
FL, s=0.10 trace

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8

PenDigits Dataset

Models transferred per online node

0
-1

 E
rr

o
r

10 100 1000

PenDigits Dataset

Models transferred per online node

GL, s=0.10
GL, s=0.10 biased

GL, s=0.10 trace
FL, s=0.10

FL, s=0.10 biased
FL, s=0.10 trace

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8

PenDigits Dataset

Models transferred per online node

0
-1

 E
rr

o
r

10 100 1000

PenDigits Dataset

Models transferred per online node

GL, s=0.10 token
GL, s=0.10 token biased

GL, s=0.10 token trace
FL, s=0.10

FL, s=0.10 biased
FL, s=0.10 trace

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8

HAR Dataset

Models transferred per online node

0
-1

 E
rr

o
r

10 100 1000

HAR Dataset

Models transferred per online node

GL, s=0.10
GL, s=0.10 biased

GL, s=0.10 trace
FL, s=0.10

FL, s=0.10 biased
FL, s=0.10 trace

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8

HAR Dataset

Models transferred per online node

0
-1

 E
rr

o
r

10 100 1000

HAR Dataset

Models transferred per online node

GL, s=0.10 token
GL, s=0.10 token biased

GL, s=0.10 token trace
FL, s=0.10

FL, s=0.10 biased
FL, s=0.10 trace

Figure 5.7: Selected experiments in the large scale scenario. Continuous transfer (left)
and bursty transfer (right). ’Biased’ indicates single class assignment, ’trace’ indicates
the smartphone trace scenario.

5.5 Related Work 83

5.5 Related Work

Raghavan et al. [67] used a gossip protocol to implement a distributed token bucket
limiter, where the goal was to control the global aggregate traffic through the coop-
eration of individual rate limiters. This is orthogonal to our work, because we wish
to control the local traffic at all the individual nodes, while at the same time we
wish to optimize a global application-specific performance measure, such as speed of
convergence.

Rodrigues et al. [70] used token buckets as part of their adaptive broadcast solu-
tion. There, the emission rates were adaptive and the token bucket was used to con-
trol the input rate, that is, the rate at which a node accepts new events to broadcast.
The gossip protocol itself was purely proactive, thus the efficiency of the broadcast
under a fixed cost (the focus of our work) was not addressed. Frey et al. [33] ap-
plied token bucket rate limiting over the upload links to evaluate the effect of limited
bandwidth, but other options for rate limiting were not investigated.

Wolff et al. [84] present a distributed data mining approach based on a decentral-
ized algorithm to test whether the Euclidean norm of the average of vectors is within
a threshold. They apply a leaky bucket algorithm for rate limiting, which makes their
system periodic (thus, proactive). Here, a significant improvement in convergence
speed could be expected using simple token bucket algorithms instead, and further
optimization using our various token account algorithms may be possible.

Another application area is decentralized replication schemes where the domi-
nant approach used to be reactive (for example, replicate when the number of repli-
cas is below a threshold). First, Sit et al. [77] proposed a fully proactive scheme to
deal with bursts, and this was followed by several hybrid proactive/reactive systems.
For example, Duminuco et al. [29] proposed an adaptive version of the proactive
scheme as well as a hybrid scheme that switches to purely reactive operation when
the availability of data is critically low. Controlling the available repair-budget with
the help of a token account method is a promising approach in this area as well.

5.6 Discussion and Conclusions

In this chapter, we introduced the token account service that serves as a commu-
nication layer for a large class of decentralized applications. This class includes
asynchronous decentralized message passing applications such as gossip broadcast,
gossip-based machine learning, and chaotic iteration methods. Any decentralized
protocol might benefit from the service that is based on some form of periodic proac-
tive local communication.

The main motivation was that we wanted to combine the advantages of proac-
tive and reactive communication models. The reactive communication model has a

84 Gossip Learning with Adaptive Flow Control

crucial advantage: it often results in very fast convergence in several different appli-
cations. This is because nodes react immediately to new information, there is no idle
time. However, since the number of messages is not controlled explicitly, they can
generate too many or too few messages. Too many messages may be generated due
to cascading instantaneous reactions to propagating new information. But too few
messages can also be generated since messages are sent only in response to other
messages. If some of the messages are never delivered due to failures or due to ap-
plication specific filters, the overall amount of communication can decrease and the
system might even arrive at a complete standstill.

The proactive communication model controls the number of messages explicitly,
but it often results in an inferior convergence speed due to sitting on new information
until the next round starts.

Token account algorithms were demonstrated here to maintain a very tight con-
trol over the number of messages we send, yet they were also shown to achieve a
very significant speedup relative to a purely proactive implementation. In the case of
gossip learning, we saw that the token account algorithm approximates the speed of
a “hot potato” random walk, when the walk wastes no time at any of the nodes. In
the case of the push gossip application, the delay of receiving the freshest update is
one third of that of the proactive implementation. We achieved a significant speedup
even in the case of chaotic iteration.

To evaluate this token-based flow control technique with the mergeable version
of gossip learning, we performed machine learning over three different datasets. We
also introduced a partitioned variant of the token account algorithm, to properly
make use of sampling-based compression. Our results confirmed that the token-
based flow control approach outperforms proactive gossip learning. Furthermore, it
could achieve a performance comparable to federated learning in the random label
assignment scenarios.

However, to achieve these results, the compression mechanism must be based on
partitioning, as opposed to simple subsampling. The reason is that this way, the dif-
ferent partitions can form “hot potato” chains separately, whereas with subsampling,
these chains cannot form because sampling picks different weights in every step.

In general, our results indicate that it is better to allow nodes to communicate
in bursts (maximal bandwidth for a short time) than set a low bandwidth cap while
allowing for continuous communication.

Contribution

In this chapter, the contributions of the author were: the design and evaluation of the
token account algorithm; the analytical derivation of the average number of tokens
in the system; and the design of the partitioned token gossip learning algorithm.

Chapter 6

Gossip Learning Using Compressed
Averaging

Mean estimation has been studied in decentralized computing for a long time [13,
44, 48, 86]. The applications of these algorithms include data fusion in sensor net-
works [87], distributed control [63] and distributed data mining [81]. A very in-
teresting potential new application is federated learning, where a deep neural net-
work (DNN) model is trained on each node and these models are then averaged
centrally [58]. This average computation could be decentralized, allowing for fully
decentralized solutions, such as gossip learning [64], that are promising candidates
to support applications for the common good [15]. The reason is that these solu-
tions can be deployed without any investment at all, relying only on user devices
and no additional infrastructure, without any pressure to make a profit. However,
since DNNs may contain millions of floating-point parameters all of which have to
be averaged simultaneously, optimizing the utilized bandwidth during decentralized
averaging becomes the central problem.

Many approaches have been proposed for bandwidth-efficient average calcula-
tion. For example, floating point numbers can be compressed to a few bits using
different quantization methods and these quantized values can then be averaged by
a server [50, 79]. This is a synchronized and centralized solution, and the approach
also introduces an estimation error. Quantization has been studied also in decen-
tralized gossip protocols where the communicated values are quantized onto a fixed
discrete range (see, for example, [90]). Here, an approximation error is introduced
again, even in reliable networks, and message exchanges cannot overlap in time be-
tween any pairs of nodes.

In control theory, more sophisticated dynamic quantization approaches have been
proposed that can provide exact convergence at least in reliable systems by compen-
sating for the quantization error. An example is the work of Li et al. [53]. Here, full
synchronization and reliability are assumed, and the quantization range is scaled by

85

86 Gossip Learning Using Compressed Averaging

a fixed scaling function. Dynamic quantization has also been proposed in the context
of linear control in general, again, in a synchronized model [34]. Carli et al. [17]
adopt the compensating idea in [53] and compare it with other static (non-adaptive)
quantization techniques. The same authors also study adaptive quantization; that
is, dynamically changing the sensitivity of the quantizer [16] (originally proposed
in [14]), which is feasible over a fixed communication overlay. The system model in
these studies assumes reliability and atomic communication as well.

A rather different kind of method involves compressing a stream of floating point
values using prediction and leading zero count compression [69]. Although this
method could be adapted to our application scenario with some modifications, in
this chapter we focus only on the quantization-based compression methods.

Our contributions include a modified push-pull averaging algorithm and a novel
codec. These two contributions are orthogonal: the codec can be used along with any
algorithm and the push-pull algorithm can use any codec. The novel codec, called
pivot codec, encodes every floating point value onto a single bit and it can adapt dy-
namically to the range of the encoded values. The novel push-pull protocol is robust
against message drop failure, it does not require the synchronization of the clocks of
the nodes, and it includes a smoothing feature based on recorded link-flows that im-
proves the performance of our compression codec. Furthermore, we propose a novel
variant of gossip learning that uses this codec-based compression to achieve a higher
communication efficiency than previous methods based on subsampling. Koloskova
et al. have a similar focus but they apply only simple stateless quantization [49].

We evaluate our contributions in simulation. We compare our solutions with the
competing codecs and algorithms from related work and show that we can improve
both robustness and the compression rate significantly. Among our machine learning
experiments we also include a transfer learning scenario, thereby demonstrating that
it is feasible to adapt pre-existing deep neural network models to another domain
by training only their last layer, which makes them accessible for gossip learning
applications.

6.1 Background

6.1.1 System Model

Our system model is similar to that described in Section 2.2. However, our protocols
assume that the neighbor set is stable, and the delay of most (but not necessarily all)
of the messages that are delivered is less than an upper bound. This upper bound is
at least half of the gossip period, or more, depending on the overlay network.

In the context of the problem of average consesus, we do not consider node fail-
ure, but assume that messages can be lost and their order of delivery is not guaran-

6.1 Background 87

teed.

6.1.2 Codec Basics

Central to our algorithms is the concept of encoding and decoding messages over
a given directed link using a codec. A codec consists of an encoder and a decoder
placed at the origin and the target of the link, respectively. We assume that the link
is used to send a series of real valued messages during the execution of the protocol.
We follow the notations used in [60]. First of all, the compression (or encoding) is
based on quantization, that is, mapping real values to a typically small discrete space
(an alphabet) denoted by S. The decoding maps an element of alphabet S back to a
real value.

Codecs may also have state. This state might contain, for example, information
about the current granularity or scale of the encoding, the previous value transmitted
and elapsed time. The state space will be denoted by Ξ. Every codec implementation
defines its own state space Ξ (if the implementation is stateful). Both the encoder
and the decoder are assumed to share the same state space.

We now introduce a notation for the mapping functions mentioned above. Let
Q : Ξ × IR → S denote the encoder (or quantizer) function that maps a given real
value to a quantized encoding based on the current local state of the encoder. Let
K : Ξ × S → IR denote the decoding function that maps the encoded value back to
a real value based on the current local state of the decoder. Finally, let F : Ξ × S →
Ξ define the state transition function that determines the dynamics of the state of
the encoder and the decoder. Note that in a given codec both the encoder and the
decoder uses the same F . These three mappings are always executed in tandem, that
is, an encoded message is decoded and then the state transition is computed.

Although the encoder and the decoder are two remote agents that communicate
over a limited link, the algorithms we discuss will ensure that both of them maintain
an identical state. In this sense, we can talk about the state of the codec. To achieve
this, first we have to initialize the state using the same value ξ0. Second, if the en-
coder and the decoder have identical states at some point in time, then an identical
state can be maintained also after the next transmission, because the encoder can
simulate the decoder locally, thus they can both execute the state transition function
with identical inputs. Note that here we assumed that communication is reliable. If
this is not the case, the algorithms using the codec must handle unreliability appro-
priately so as to maintain the identical states.

88 Gossip Learning Using Compressed Averaging

6.2 Proposed Algorithms

We first discuss our novel codec and then present the modified push-pull averag-
ing protocol in several steps, addressing its robustness, compression, and smoothing
features. Finally, we adapt this protocol for machine learning.

6.2.1 Pivot Codec

Here we describe our codec implementation that we coined the pivot codec, for rea-
sons that will be explained below. The main goal in our implementation was aggres-
sive compression, so we put only a single bit on the wire for each encoded value.
This means Spivot = {0, 1}.

The intuition behind the design is that we treat the encoder and the decoder as
two agents, such that the encoder stores a constant value and the decoder has to
guess this value based on a series of encoded messages. Obviously, in real applica-
tions the encoded value is rarely constant. However, the design is still efficient if
the encoded values do not change much between two transmissions. In fact, this as-
sumption holds in many applications, including decentralized mean approximation,
which allows for an efficient compression. Many competing codecs, especially sim-
ple quantization techniques, do not make any assumptions about the correlation of
subsequent encoded values, hence they are unable to take advantage of the strong
positive correlation that is present in many applications.

The codec is stateful. The state is defined by a triple (x̂, d, slast) ∈ Ξpivot = IR×IR×
Spivot. Here, x̂ is the approximation of the pivotal value, namely the actual (constant
or slowly changing) real value stored by the encoder agent. The remaining values
are d, the signed step size, and slast, the last encoded value that was transmitted. The
encoding function is given by

Qpivot((x̂, d, slast), x) =

{
1, if |x̂+ d− x| < |x̂− x|
0, otherwise,

(6.1)

where x is the value to be encoded. In other words, the encoded value is 1 if and
only if adding the current step size to the approximation makes the approximation
better. Accordingly, the decoding function

Kpivot((x̂, d, slast), s) =

{
x̂+ d, if s = 1

x̂, otherwise
(6.2)

will add the step size to the current approximation if and only if a 1 is received.
Note that this design ensures that the approximation never gets worse. It can only
get better or stay unchanged, assuming the encoded value is a constant. Note that

6.2 Proposed Algorithms 89

both the encoder and the decoder share the same state. This is possible because the
encoder can simulate the decoder locally, thus both the encoder and the decoder can
compute the same state transition function given by

Fpivot((x̂, d, slast), s) =

(x̂+ d, 2d, s), if s = 1 ∧ slast = 1

(x̂+ d, d, s), if s = 1 ∧ slast = 0

(x̂,−d/2, s), otherwise.

(6.3)

Here, if d is added for the second time, we double it (assuming that the direction
is good) and if we have s = 0 then we halve the step size and reverse its direction,
assuming that adding d overshot the target. The step size is left unchanged after its
first successful application (middle line).

In order for the encoder and the decoder to share their state, they also have to
be initialized identically. The initial state ξ0 might use prior knowledge, for example,
prior information about the expected mean and the variance of the data are good
starting points for x̂ and d, respectively, but a generic value like ξ0 = (0, 1, 0) can also
be used.

6.2.2 Robust Push-Pull Averaging

As a first step towards the compressed algorithm, here we propose a variant of push-
pull averaging (Algorithm 6.1) that is robust to message loss and delay and that
also allows for the application of codecs later on. The algorithm is local, hence the
scope of the variables is limited to the current node. We assume that the links are
directed. This means that if both A → B and B → A exist, they are independent
links. Over a given directed link there is a series of attempted push-pull exchanges
with push messages flowing along the link and the answers (pull messages) moving
in the opposite direction. The algorithm ensures that both ends of each link will
eventually agree on the flow over the link. This will ensure a sum preservation (also
called mass conservation) property which we prove below.

The algorithm is similar to traditional push-pull averaging in that the nodes ex-
change their values first. However, as a generalization the new value will not be the
average of the two values, but instead a difference δ is computed at both sides using a
“greediness” parameter H ∈ (0, 1], where δ can be viewed as the amount of material
being transferred by the given push-pull exchange. Note that both sides can com-
pute the same δ (with opposite signs) independently as they both know the two raw
values and they have the same parameter H. Here, H = 1 results in the traditional
variant, and smaller values allow for stabilizing convergence when the push-pull ex-
changes are not atomic, in which case—despite sum-preservation—convergence is
not guaranteed.

90 Gossip Learning Using Compressed Averaging

As for ensuring sum preservation, we assign an increasing unique ID to all push-
pull exchanges. Using these IDs we simply drop out-of-order push messages. Drop-
ping push messages has no effect on the update counters and the local approxima-
tions so no further repair action is needed. When the pull message arrives in time,
the update is performed, and since the sender of the pull message (say, node B) has
already performed the same identical update (using the same δ), the state of the net-
work is consistent. If, however, the pull message was dropped or delayed then the
update performed by node B has to be rolled back. This is done when B receives the
next push message and learns (with the help of the update counters) that its previous
pull message had not been received in time. The update can be rolled back using δ,
which ensures that the sum in the network is preserved.

After this intuitive explanation, let us describe the sum-preservation property in
formal terms. For this, let us assume that there exists a time t after which there are
no failures (message drop or delay). We will show that after time t the sum of the
approximations will eventually be the same as the original sum of local values.

Definition 2. We say that, over link A → B, a successful transaction with ID j is
completed when node A receives a pull message with id = j from node B before sending
the next push message with id = j + 1 to B.

Let jk be the ID of the kth successful transaction over link A→ B, and let j0 = 0.
For any variable v of Algorithm 6.1, let vX denote the value of variable v at node X.

Theorem 2. For any index K ≥ 0, right after processing the pull message from B

to A of a successful transaction jK (or for K = 0 right after initialization), A and
B agree on the total amount of mass transferred over the link A → B, furthermore,
uAB,out = uBA,in = K holds.

Proof. The theorem trivially holds for K = 0. Assume that the theorem holds for
K = k− 1. We show that it holds for K = k as well. First of all, line 29 is executed if
and only if the transaction is successful. Then, uAB,out is incremented by 1, therefore
uAB,out = k indeed holds right after the kth successful transaction. As for uBA,in, the
inductive assumption states that uBA,in = k − 1 right after the (k − 1)-th successful
transaction. After this point, there will be a series of incoming push messages that
are not out of order with IDs i1, . . . , in such that jk−1 < i1 < · · · < in = jk, where jk
is the ID of the kth successful transaction. These incoming messages are assumed to
be processed sequentially. In all of these push messages we will have u = k − 1. It
follows that after processing i1 we will have uBA,in = k and after processing each new
message i2, . . . , in we will still have uBA,in = k. This means we have uAB,out = uBA,in = k

right after the successful transaction jk.
Let us turn to the transferred mass, and show that after the kth successful trans-

action A and B will add or remove, respectively, the same δ mass from their current

6.2 Proposed Algorithms 91

approximations. This is analogous to our previous reasoning about the counters
uAB,out and uBA,in, exploiting the observation that only at most one update has to be
rolled back between consecutive updates (which can be done due to recording δBA,in)
until the correct update occurs. Also, due to recording sAB both A and B can compute
the same δ despite the delay at A between sending the push message and updating
after receiving the pull message.

Corollary 1. After time t push-pull exchanges become atomic transactions so after a
new push message is sent on each link, each pair of nodes will agree on the transferred
amount of mass, resulting in global mass conservation. Also, the algorithm will become
equivalent to the atomic push-pull averaging (for H = 1), for which convergence has
also been shown [44].

Note that if the message delay is much longer than the gossip period ∆ then
progress becomes almost impossible, because sending a new push message over a
link will often happen sooner than the arrival of the pull message (the reply to the
previous push message), so the pull message will be dropped. Therefore, the gossip
period should be longer than the average delay. In particular, if the gossip period is
at least twice as large as the maximal message delay then no pull messages will be
dropped due to delay.

Transactions over different links are allowed to overlap in time. When this hap-
pens, it is possible that the variance of the values will temporarily increase, although
the sum of the values will remain constant. In networks where transactions overlap
to a great degree, it is advisable to set the parameter H to a lower value to increase
stability.

6.2.3 Compressed Push-Pull Averaging

Here, we describe the compressed variant of push-pull averaging, as shown in Algo-
rithm 6.2. Although the algorithm is very similar to Algorithm 6.1, we still present
the full pseudocode for clarity. Let us first ignore all the f variables. The algorithm
is still correct without keeping track of the f values, these are needed to achieve a
smoothing effect that we explain later on. Without the f values, the algorithm is
best understood as a compressed variant of Algorithm 6.1 where values are encoded
before sending and decoded after reception. There are some small but important
additional details that we explain shortly.

In the messages, the value of x is compressed, but the u and id values are not.
This is not an issue, however, because our main motivation is the application scenario
where x is a large vector of real numbers. The amortized cost of transmitting two
uncompressed integers can safely be ignored.

The algorithm works with any codec that is given by the definition of the state
space Ξ, the alphabet S, and the functions Q, F and K, as described previously. We

92 Gossip Learning Using Compressed Averaging

maintain a codec for every link and for every direction. That is, for every directed link
(j, i) there is a codec for the direction j → i as well as j ← i. For the j → i direction,
node j stores the codec state (used for encoding push messages) in ξi,out,loc and for
the j ← i direction the codec (used for decoding pull messages) is stored in ξi,out,rem
at node j. In this notation, “out” means that the given codecs are associated with the
outgoing link. The states for the incoming links are stored in a similar fashion.

Recall that codecs must have identical states at both ends of the link and this
state is used for encoding and decoding as well. For example, the codec state ξi,out,loc
at node j for the direction j → i should be the same as ξj,in,rem at node i. This
requirement is implemented similarly to the calculation of δ in Algorithm 6.1. The
codec state transitions, too, are calculated at both ends of each link independently,
but based on shared information, so both nodes can follow the same state transition
path, assuming also that the states have the same initial value ξ0. This state transition
is computed right after computing δ, in line 36.

Apart from δ, here we also need the previous codec states for rolling the last
update back if a pull message was dropped or delayed. To this end, the codec states
are backed up (line 21) and are rolled back when needed (line 18).

When calculating δ, we must take into account the fact that encoding and decod-
ing typically introduces an error. Therefore, in order to make sure that both nodes
compute the same δ, both nodes have to simulate the decoder at the other node,
and work with the decoded value instead of the exact value that was sent (line 35).
Fortunately, this can be done, since the state of the decoder at the other node can
be tracked locally, as explained previously. However, since we are no longer working
with the exact values, there is no guarantee that every update will actually reduce
variance over the network, so it is advisable to set H to a value less than one.

6.2.4 Flow Compensation

So far we have ignored the f variables in Algorithm 6.2. The purpose of these vari-
ables is to make compression more efficient by making the transmitted values over
the same link more similar to each other. This way, good stateful adaptive codecs can
adjust their parameters to the right range achieving better compression.

The f values capture the flow over the given link. This approach was inspired by
flow-based approaches to averaging to achieve robustness to message loss [47, 62].
However, our goal here is not to achieve robustness, but rather to reduce fluctuations
in the transmitted values. The algorithm accumulates these flows for each link in
both directions. In addition, the flow value is added to the transmitted value. This
has a smoothing effect, because if a large δ value was computed over some link (that
is, the value of x changed by a large amount), then the sum of x and the flow will
still stay very similar the next time the link is used. The beneficial effect of this on

6.2 Proposed Algorithms 93

compression will be demonstrated in our experimental study.
Clearly, both nodes can still compute the same δ locally, because the flow value is

also known at both ends of a link, only the sign will differ. Hence we can apply the
formula in line 35.

6.2.5 Compressed Push-Pull Learning

For the basics of machine learning, see Section 2.1. We will refer to the machine
learning model update step as training, to avoid confusion with the averaging update.

Our compressed push-pull learning algorithm is based on the compressed push-
pull averaging protocol. The nodes perodically train their model (given by the pa-
rameter vector w) on the local data, as well as perform distributed averaging of the
models (weighted by the model age t, which is the number of examples the model
was trained on).

When used without model training, the algorithm falls back to computing the
average of the initial w vectors weighted by their respective initial t values. This
is achieved by simultaneously computing the average of tw and that of t, since the
quotient of these is the weighted average of w.

The pseudocode is shown in algorithms 6.3 and 6.4. Models are encoded before
sending and decoded after being received. During a push-pull transaction, the nodes
exchange their encoded models, then, based on the decoded models, a difference
vector δ is computed on both sides that represents for each parameter the amount
of mass being transferred in the push-pull exchange. Both nodes compute the same
δ (with opposite signs), because they use only the information that was exchanged,
ignoring the current, uncompressed local model w. The difference is scaled by H/2,
where H ∈ (0, 1] is the same greediness parameter discussed earlier. After decoding
the models, the codec states are updated.

The techniques used for compression and ensuring sum preservation are largly
unchanged. One difference worth mentioning, though, is that we omitted the flow
compensation component, because it had a negative influence on the machine learn-
ing performance. We speculate that the training and averaging steps tend to have
opposing effects on the model parameters at a given node, therefore an adaptive
codec can make a better guess at the current value if it ignores the already trans-
ferred mass.

Recall that we are averaging tw (and t as well) across the network. During com-
pression, however, we encode w instead of tw. This is because tw will surely not
converge, but w might, which is beneficial for adaptive codecs. Since t is transmit-
ted, the remote node can still compute an estimate for tw. In the messages, only the
model w is compressed. When w is a large vector, the amortized cost of transmitting
the other variables is negligible.

94 Gossip Learning Using Compressed Averaging

The algorithm works with any codec that is given by the definition of the state
space Ξ, the alphabet S, and the functions Q, F and K, as described previously. We
apply these functions on the model parameter vector: the operation is performed
elementwise, each parameter having its own codec state.

6.3 Experiments for Average Consensus

We evaluate our average consensus algorithms in simulation using PeerSim [59].
Apart from the modified push-pull protocol presented here, we experiment with the
synchronized version of average consensus, the most well-known algorithm in related
work in connection with quantized communication. In addition, we study a set of
codecs and combine these with the two algorithms (synchronized iteration and our
push-pull gossip). This way, both the codecs and the algorithms can be compared, as
well as their different combinations.

Synchronized average consensus is described, for example, in [13]. The idea in a
nutshell is that—assuming the values of the nodes are stored in a vector x(t) at time
t—if the adjacency matrix A of the nodes is invertible and doubly stochastic then the
iteration x(t + 1) = Ax(t) will converge to a vector in which all the elements are
equal to the average of the original values. The distributed implementation of such
an iteration requires strong synchronization. Quantized and compressed solutions
in related work focus on such approaches, as well as slightly more relaxed versions
where the adjacency matrix can be different in each iteration, but the different itera-
tions can never overlap.

The codecs we test include simple floating point quantization (F16, F32) assuming
a floating point representation of 16 and 32 bits (half and single precision, respec-
tively). Here, the codec is stateless, and decoding is the identity mapping. Encoding
involves finding the numerically closest floating point value.

We also include the zoom in - zoom out codec (Zoom) of Carli et al. [16]. We
cannot present this codec in full detail due to lack of space, but the basic idea is
that an m-level quantization is applied such that there is a quantizer mapping to
m − 2 equidistant points within the [−1, 1] interval and the values -1 and 1 are also
possible levels used for mapping values that are outside the interval. The codec
state also includes a dynamically changing scaling factor that scales this interval
according to the values being transferred. This codec resembles the pivot codec
we proposed, and to the best of our knowledge this is the state of the art dynamic
adaptive codec. Note that the minimal number of quantization levels (or alphabet
size) is 3, when m = 3. The codec has two additional parameters: zin ∈ (0, 1) and
zout > 1. The first determines the zoom-in factor and the second is the zoom-out
factor. We fix the setting zout = 2 based on the recommendation of the authors and
our own preliminary results.

6.3 Experiments for Average Consensus 95

6.3.1 Experimental Setup

The network size is N = 5,000, and the results are the average of 5 runs. We also
simulated a select subset of algorithms with N = 500,000 (single run) in order to
demonstrate scalability. The overlay network is defined by a k-out network, where
k = 5 or k = 20. In the case of synchronized average consensus, we transform this
network into a doubly stochastic adjacency matrix A by dropping directionality and
setting the weights on the links using the well-known Metropolis-Hastings algorithm:
Aij = 1/(1+max(di, dj)), where di is the degree of node i. Loop edges are also added
with weight Aii = 1−

∑
j 6=iAij.

The initial distribution of values is given by the worst case scenario when one
node has a value of 1, and all the other nodes have 0. This way, the true average
is 1/N (where N is the network size). Our performance metric is the mean squared
distance from the true average. We study the mean squared error as a function of
the number of bits that are transferred by an average node to average a single value.
Recall that we assume that many values are averaged simultaneously (we work with
a large vector) so network latency can be ignored. This means that the number of
transmitted bits can be converted into wall-clock time if one fixes a common band-
width value for all the nodes.

We examine the value of the parameter H (see Algorithm 6.1) using a range
depending on the actual codec (we determined the optimal value for each scenario
and experimented with neighboring values). We also vary the cycle length ∆. We
experiment with short and long cycles. When using short cycles, the round-trip time
of a message is assumed to be 98% of the cycle length. With long cycles, the round
trip time is assumed to be only 2% of the cycle length. The motivation of looking
at these two extreme scenarios is that in the latter case messages overlap to a much
lesser extent than in the former case. Thus, we wish to demonstrate that our solutions
are robust to short cycles. As for failures, we simulate message drop failure, where
the message drop rate is either 0% or 5%.

6.3.2 Results

Figure 6.1 gives a comparison of the performance of different codecs when using our
push-pull algorithm. The parameters were optimized for every codec using a grid
search in the space H ∈ {20, 2−1, . . . , 2−4}, k ∈ {5, 20}, zin ∈ {0.35, 0.4, . . . , 0.85}
and m ∈ {4, 8, 16}. In all the four scenarios shown on the plots, the best parameter
settings were H = 1/2 and k = 5 for the pivot codec and H = 1/4, k = 5, m = 4,
and zin = 0.55 for the zooming codec. For the floating point codecs, H = 1/2 and
H = 1 were the best for short and long cycles, respectively, and k = 20 was the best
without message drop. With message drop, the floating point codecs are more stable
with k = 5 but they converge slightly faster with k = 20, especially with short cycles.

96 Gossip Learning Using Compressed Averaging

10
-30

10
-25

10
-20

10
-15

10
-10

10
-5

 500 1000 1500 2000

m
ea

n
 s

q
u

ar
ed

 e
rr

o
r

bits transferred per node

F32
F16
zoom
pivot

10
-30

10
-25

10
-20

10
-15

10
-10

10
-5

 500 1000 1500 2000

m
ea

n
 s

q
u

ar
ed

 e
rr

o
r

bits transferred per node

F32, k=20
F32, k=5
F16, k=20
F16, k=5
zoom
pivot

10
-30

10
-25

10
-20

10
-15

10
-10

10
-5

 500 1000 1500 2000

m
ea

n
 s

q
u

ar
ed

 e
rr

o
r

bits transferred per node

F32
F16
zoom
pivot

10
-30

10
-25

10
-20

10
-15

10
-10

10
-5

 500 1000 1500 2000

m
ea

n
 s

q
u

ar
ed

 e
rr

o
r

bits transferred per node

F32, k=20
F32, k=5
F16, k=20
F16, k=5
zoom
pivot

Figure 6.1: Comparison of codecs in push-pull with no message drop (left) and a 5%
message drop (right) with short cycles (top) and long cycles (bottom). The parameters
of all of the codecs have been optimized.

The pivot codec clearly dominates the other alternatives.
The difference between k = 5 and k = 20 is that in the former case more trans-

actions are performed over a given fixed link. In the case of the stateless codecs,
this means that k = 5 results in a more stable convergence because errors are cor-
rected faster, but with k = 20 the correlation between consecutive updates over a
fixed link are lower which results in a faster initial convergence. In the case of the
pivot codec, Figure 6.2 illustrates the effect of parameters H and k. It is clear that
the algorithm is robust to H, however, parameter k has a significant effect. Unlike
the stateless codecs, the pivot codec benefits from a somewhat larger correlation be-
tween updates as well as the higher frequency of the updates over a link since these
allow for a better prediction of the value at the other end of the link. The zooming
codec has a similar behavior (not shown), and we predict that every adaptive codec
prefers smaller neighborhoods.

Figure 6.3 presents a similar comparison using the synchronized average consen-
sus algorithm. Note that here, the long and short cycle variants behave identically.
Again, the parameters were optimized for every codec and the best parameter set-

6.3 Experiments for Average Consensus 97

10
-30

10
-25

10
-20

10
-15

10
-10

10
-5

 500 1000 1500 2000

m
ea

n
 s

q
u

ar
ed

 e
rr

o
r

bits transferred per node

H=1, k=20
H=1/2, k=20
H=1/4, k=20
H=1, k=5
H=1/2, k=5
H=1/4, k=5

10
-30

10
-25

10
-20

10
-15

10
-10

10
-5

 500 1000 1500 2000

m
ea

n
 s

q
u

ar
ed

 e
rr

o
r

bits transferred per node

H=1, k=20
H=1/2, k=20
H=1/4, k=20
H=1, k=5
H=1/2, k=5
H=1/4, k=5

Figure 6.2: The effect of parameters H and neighborhood size k on the pivot codec,
with no message drop (left) and a 5% message drop (right).

10
-30

10
-25

10
-20

10
-15

10
-10

10
-5

 500 1000 1500 2000

m
ea

n
 s

q
u

ar
ed

 e
rr

o
r

bits transferred per node

F32
F16
zoom
pivot

Figure 6.3: Comparison of codecs in synchronized average consensus. The parameters
of all of the codecs are optimized.

tings were H = 1/2 and k = 5 for the pivot codec, H = 1 and k = 5 for the floating
point codecs, and H = 1, k = 5, m = 8, and zin = 0.45 for the zooming codec.
Again, the pivot codec dominates the other alternatives. Furthermore, note that, for
the pivot codec, the optimal parameters are the same as those in the case of the
push-pull algorithm. This suggests that these parameters are robust.

Figures 6.1 and 6.3 allow us to compare the push-pull algorithm with the syn-
chronized algorithm. It is clear that all the codecs perform better with push-pull than
with the synchronized algorithm. This implies that the push-pull algorithm is a better
choice for compression, independently of the selected codec.

Figure 6.4 contains two remaining observations. First, it demonstrates that the
mean squared error of push-pull gossip does not depend on network size as the re-
sults withN = 500,000 (left plot) are very similar to those withN = 5,000 (Figure 6.1,
top left). This is not surprising as this is predicted by theory when no compression is

98 Gossip Learning Using Compressed Averaging

10
-30

10
-25

10
-20

10
-15

10
-10

10
-5

 500 1000 1500 2000

m
ea

n
 s

q
u

ar
ed

 e
rr

o
r

bits transferred per node

F32
F16
zoom
pivot

10
-30

10
-25

10
-20

10
-15

10
-10

10
-5

 500 1000 1500 2000

m
ea

n
 s

q
u

ar
ed

 e
rr

o
r

bits transferred per node

F32
F16
zoom
pivot

Figure 6.4: Comparison of codecs with network size N = 500,000 (left) and without
the flow compensation technique (with N = 5,000, right).

applied [44].

Second, Figure 6.4 (right) shows the effect of the flow compensation technique
introduced in Algorithm 6.2, where we used the f variables to smooth the stream of
values over each link. As before, we optimized the parameters for all the codecs. The
optimal parameter value for the pivot codec turned out to be H = 1/8 and k = 5.
This means that if we drastically reduce H, thus smoothing the transactions much
more aggressively with this alternative technique, the pivot codec still dominates the
other codecs. However, we are not able to get the same compression rate we could
achieve with flow compensation (Figure 6.1) so the flow compensation technique is
a valuable addition to the protocol. The other codecs have the same optimal parame-
ters as with flow compensation. Note that the zooming codec also benefits from flow
compensation, although to a lesser extent. We also observed that the zooming codec
is very sensitive to zin in this case, small deviations from the optimal value result in
a dramatic performance loss (not shown).

6.4 Machine Learning Experiments

Now, we shall describe our experimental setup and our results for compressed push-
pull learning. We used partitioned token gossip learning as our baseline (see Sec-
tion 5.2.3).

In our experiments we modeled the churn of the nodes using the trace described
in Section 2.4. For a successful message transfer, both sides must stay online for the
duration of the transfer. When choosing a random neighbor, only online nodes were
considered.

6.4 Machine Learning Experiments 99

Table 6.1: Data set properties

HAR MNIST FMNIST
Training size 7352 60000 60000
Test size 2947 10000 10000
#features 561 784 784
#classes 6 10 10
Label distribution ≈ uniform ≈ uniform ≈ uniform

6.4.1 Datasets

We used two different datesets to evaluate our algorithm, and a third dataset used
for our transfer learning approach, as we describe in the next section. The main
properties are shown in Table 6.1. The HAR (Human Activity Recognition Using
Smartphones) database [2, 4] contains records that represent movements from 6
different classes (walking, walking upstairs, walking downstairs, sitting, standing,
laying). The data was collected from the smart phones of 30 different people, using
the accelerometer, gyroscope and angular velocity sensors. High level features were
extracted based on the frequency domain.

The other dataset we used for evaluation is MNIST [52]. It contains images of
handwritten digits with dimension 28 × 28, each pixel from the range [0, 255]. The
Fashion-MNIST [85] dataset was used for transfer learning. It has the same parame-
ters but it contains images of clothes and accessories instead of numbers.

6.4.2 Transfer Learning

In the case of our image recognition task, MNIST, we did not learn over the raw data
directly but instead performed transfer learning [76], as we explain here. The idea
is that we build a complex convolutional neural network (CNN) model offline over
Fashion-MNIST and, before learning begins in the P2P network, all the nodes receive
this pre-trained network. The nodes then use features extracted by this network to
build a simple linear model over a different problem, namely MNIST. This way, we
can learn (or, rather, fine-tune) a complex model with relatively little communication.

The CNN model for Fashion-MNIST had a LeNet-5-like architecture [52]. The
layers were the following:

• 2D convolution (6× 5× 5),

• 2D max-pooling (2× 2),

• 2D convolution (16× 5× 5),

• 2D max-pooling (2× 2),

100 Gossip Learning Using Compressed Averaging

• dense layer with 120 units,

• dense layer with 84 units,

• classification layer with 10 units.

All the units in the layers use the relu activation function. After the training pro-
cess, we removed the dense layers from the network. The last layer of this reduced
model was used as the feature set for the MNIST dataset [76]. Fashion-MNIST has
a more complex structure and represents images rich in detail, so the convolutional
layers have to extract features that are potentially useful for other tasks as well. The
extracted feature space has 400 dimensions as opposed to the original 784 features.

When training a linear model using these new 400 features over MNIST, the ac-
curacy (the ratio of correct classifications over the test set) is 0.9785. When training
the full CNN model over the raw MNIST dataset, the model can achieve an accuracy
of 0.9890. At the same time, a linear model on the raw MNIST dataset just gives
an accuracy of 0.9261. This clearly shows that transfer learning offers a significant
advantage.

We reduced the number of features from 400 using Gaussian Random Projec-
tion [8]. With 128 features, the linear model has an accuracy of 0.9579. 78 features
(about the 10% of the feature size of the original space) give us an accuracy of 0.9330.
In our evaluation, we used the smallest feature space of 78 features.

6.4.3 Metaparameters

We used a fixed random k-out graph as the overlay network, with k = 5 or k = 20.
The network size was 100. The training dataset was standardized (shifted and scaled
so as to have a mean of 0 and variance of 1), and each example was assigned to one
of these nodes.

For learning, we used logistic regression embedded in a one-vs-all meta-classifier,
with a constant learning rate η = 10−2 unless stated otherwise. We initialized both
algorithms so that (w, t) = train(0, 0, D); that is, there is an initial training step.

We used the randomized token strategy (see Section 5.2.4) for the partitioned
token gossip learning, with parameters A = 10, B = 20. The models were divided
into 10 partitions, that is, a message contained (on average) 10% of the parameters.
To make the baseline stronger, we assume, for the purposes of message size, that it
encodes real numbers to a 16-bit floating point format. However, in the case of the
baseline we do not actually perform the encoding; hence its performance will be an
upper bound on any possible 16-bit floating point format, such as IEEE Half-precision
Floating Point Format or Brain Floating Point Format. This means the baseline en-
codes a parameter to 1.6 bits per message on average.

6.4 Machine Learning Experiments 101

 0.05

 0.1

 0.15

 0.2

 0.25

 0

HAR Dataset

Time (hours)
 24 0.1 1 10

HAR Dataset

Time (hours)

Token k=5, η=10
-3

Token k=20, η=10
-3

Token k=5
Token k=20
Push-Pull k=5
Push-Pull k=20

 0.05

 0.1

 0.15

 0.2

 0.25

 0

HAR Dataset, churn

Time (hours)
 24 0.1 1 10

HAR Dataset, churn

Time (hours)

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0

MNIST Dataset

Time (hours)
 24 0.1 1 10

MNIST Dataset

Time (hours)

Token k=5, η=10
-3

Token k=20, η=10
-3

Token k=5
Token k=20
Push-Pull k=5
Push-Pull k=20

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0

MNIST Dataset, churn

Time (hours)
 24 0.1 1 10

MNIST Dataset, churn

Time (hours)

Figure 6.5: Results over the HAR and MNIST datasets without and with churn.

102 Gossip Learning Using Compressed Averaging

In the compressed push-pull learning experiments we used the greediness param-
eter H = 0.5 and the pivot codec, that encodes to a single bit. (Note that this means
2 bits of communication per parameter per cycle, since there are two messages per
cycle on average.) We initialized its stepsize d to 10η. Our preliminary experiments
suggested that this is a good setting in the case of constant learning rate and stan-
dardized datasets.

The length of the experiments was two simulated days. However, in the first
24 hours no training occurs, only dummy messages are sent; this period is used to
“warm up” the token account algorithm to attain dynamics that reflect a continued
use of the protocol. For example, when it is used as part of a decentralized machine
learning platform that runs different learning tasks continuously. Only the second 24
hours are shown in the plots.

The cycle length of the baseline was set so that it could perform 10,000 cycles in
24 hours. We set the cycle length of the push-pull algorithm so that on average, the
two algorithms transfer the same number of bits during the same amount of time;
this resulted in 8,000 cycles.

The message transfer time of the baseline was set to one-hundredth of its cycle
length, since such bursty communication benefits the token account algorithms. We
set the transfer time for the push-pull algorithm to reflect the same bandwidth.

6.4.4 Results

The average 0-1 error over the online nodes on the test set as a function of time (or,
equivalently, communication cost) is shown in Fig. 6.5. Note that the first part of the
horizontal axis is linear, and the second part is logarithmic. Each plot is the average
of 5 runs with different random seeds. The plots are noisy in the churn scenario, due
to offline nodes with relatively poor models going online.

In the examined scenarios, compressed push-pull learning clearly outperformed
token gossip learning, despite the latter’s benefits of lossless 16-bit compression and
multiple learning rates. This can be seen by comparing how quickly the algorithms
reach a certain level of error. In the no-churn scenario, on the HAR dataset, a 10%
error is achieved by our novel algorithm in less than half, and a 6% error in less than
one-ninth of the time needed by token gossip learning. On the MNIST dataset, a 10%
error is achieved in less than one-fourth, and a 8% error in less than one-fifth of the
time needed by token gossip learning.

Now, let us examine the effects of the out-degree k. Usually, a smaller k is worse,
because it increases the mixing time of the graph. However, a bigger k results in
less frequent communication over a given link; in the case of compressed push-pull
with an adaptive codec, this makes the codec adapt slower, which can outweigh the
mixing time. (In other words, more codecs require more communication to adapt.)

6.5 Conclusions 103

Still, an even more significant factor arises in the churn scenario: with k = 5, it is
not uncommon that a node is unable to find an online neighbor, making k = 20 the
better choice even for the adaptive codec.

It is interesting to note that in the very early part of the simulation, the com-
pressed push-pull with k = 20 performs better in the presence of churn than in its
absence. This is because on this small timescale, node status is relatively stable, so
the main effect of churn is the reduced set of online neighbors, approximating the
effects of a smaller k, which helps the pivot codec.

6.5 Conclusions

In this chapter we presented several contributions: a novel push-pull averaging algo-
rithm that supports compression of communication, its variant adapted to machine
learning, and a novel codec (called pivot codec) for implementing compression. The
push-pull algorithms can be used with any codec and the pivot codec can be used
with any distributed algorithm that supports codecs.

The original features of the push-pull averaging algorithm include a mechanism
to tolerate message drop failure, and a technique to support overlapping transactions
with different neighbors. We also added a mechanism that we called flow compensa-
tion, which makes the stream of values over a given link smoother to improve com-
pression. Another smoothing technique is a greediness parameter H that controls the
magnitude of each transaction. We extended this algorithm with weighted average
calculation, and made adjustments to adapt and optimize it for machine learning.

The pivot codec that we introduced is based on the intuition that in decentralized
aggregation algorithms the values sent over a link are often correlated so compress-
ing the stream is in fact similar to trying to guess a constant value on the other side
of an overlay link.

We demonstrated experimentally that the novel codec is superior in the scenarios
we studied in terms of the compression rate. We also demonstrated that the flow
compensation mechanism indeed improves performance, although the pivot codec
dominates the other codecs from related work even without the flow compensation
mechanism. We saw that the push-pull protocol is highly robust to overlapping trans-
actions as well, and in general outperforms the synchronized iteration algorithm in-
dependently of the codec used.

We also evaluated the codec-based push-pull learning algorithm, and found that
the method is competitive in the scenarios we studied. We also obtained considerable
extra compression with the help of transfer learning, where, instead of the 784 raw
MNIST features, we used only 78 features (extracted by a Fashion-MNIST model)
and the linear model over this compressed feature set still allowed us to outperform
the linear model that used the original 784 raw features.

104 Gossip Learning Using Compressed Averaging

Contribution

In this chapter, the contributions of the author were: the design and evaluation of
the compressed push-pull averaging algorithm and the pivot codec; and the design
of the compressed push-pull learning algorithm.

6.5 Conclusions 105

Algorithm 6.1 Robust push-pull averaging
1: x is the local approximation of the average, initially the local value to be aver-

aged.
2: ui,in and ui,out record the number of times the local value was updated as a result

of an incoming push or pull message from i, respectively.
3: si is the value that was sent in the last push message to i.
4: δi,out, δi,in are the last push, or pull transfers to i, respectively.
5: idi is the current unique ID created when sending the latest push message to i,

initially 0.
6: idmax,i is the maximal unique ID received in any push message from i, initially
−∞.

7:
8: procedure ONNEXTCYCLE . called every ∆ time units
9: i← randomOutNeighbor()

10: si ← x
11: idi ← idi + 1
12: send push message (ui,out, si, idi) to node i
13: end procedure
14:
15: procedure ONPUSHMESSAGE(u, s, id, i) . received from node i
16: if idmax,i < id then
17: idmax,i ← id
18: if u < ui,in then . last pull has not arrived, roll back corresponding

update
19: x← x+ δi,in
20: ui,in ← ui,in − 1
21: end if
22: send pull message (x, id) to node i
23: update(i, in, x, s)
24: end if
25: end procedure
26:
27: procedure ONPULLMESSAGE(s, id, i) . received from node i
28: if idi = id then
29: update(i, out, si, s)
30: end if
31: end procedure
32:
33: procedure UPDATE(i, d, sloc, srem)
34: ui,d ← ui,d + 1
35: δi,d ← H · 1

2
(sloc − srem)

36: x← x− δi,d
37: end procedure

106 Gossip Learning Using Compressed Averaging

Algorithm 6.2 Compressed push-pull averaging with smoothing
1: ξi,in,loc, ξi,in,rem, ξi,out,loc, ξi,out,rem ∈ Ξ are the states of the codecs for the local node

and remote node i, initially ξ0.
2: fi,in, fi,out are the amounts of mass transferred so far to i, initially 0.
3: ξi,in′,loc, ξi,in′,rem, and fi,in′ are the previous values of ξi,in,loc, ξi,in,rem, and fi,in, ini-

tially ξ0, ξ0, and 0, respectively.
4:
5: procedure ONNEXTCYCLE . called every ∆ time units
6: i← randomOutNeighbor()
7: si ← Q(ξi,out,loc, x+ fi,out)
8: idi ← idi + 1
9: send push message (ui,out, si, idi) to node i

10: end procedure
11:
12: procedure ONPUSHMESSAGE(u, s, id, i) . received from node i
13: if idmax,i < id then
14: idmax,i ← id
15: if u < ui,in then . last pull has not arrived, roll back corresponding

update
16: x← x+ δi,in
17: ui,in ← ui,in − 1
18: (ξi,in,loc, ξi,in,rem, fi,in)← (ξi,in′,loc, ξi,in′,rem, fi,in′)
19: end if
20: spull ← Q(ξi,in,loc, x+ fi,in)
21: (ξi,in′,loc, ξi,in′,rem, fi,in′)← (ξi,in,loc, ξi,in,rem, fi,in)
22: send pull message (spull, id) to node i
23: update(i, in, spull, s)
24: end if
25: end procedure
26:
27: procedure ONPULLMESSAGE(s, id, i) . received from node i
28: if idi = id then
29: update(i, out, si, s)
30: end if
31: end procedure
32:
33: procedure UPDATE(i, d, sloc, srem)
34: ui,d ← ui,d + 1
35: δi,d ← H · 1

2
(K(ξi,d,loc, sloc)−K(ξi,d,rem, srem)− 2fi,d)

36: (ξi,d,loc, ξi,d,rem, fi,d)← (F (ξi,d,loc, sloc), F (ξi,d,rem, srem), fi,d + δi,d)
37: x← x− δi,d
38: end procedure

6.5 Conclusions 107

Algorithm 6.3 Compressed push-pull learning (Part 1)
1: w is the local model.
2: t is the age of the local model.
3: D is the local data set.
4: ui,in and ui,out record the number of times the local model was updated as a result

of an incoming push or pull message from i, respectively.
5: si and ŝi are the encoded model and model age that were sent in the last push

message to i.
6: δi,out, δi,in are the last push, or pull parameter transfers to i, respectively.
7: δ̂i,out, δ̂i,in are the last push, or pull age transfers to i, respectively.
8: idi is the current unique ID created when sending the latest push message to i,

initially 0.
9: idmax,i is the maximal unique ID received in any push message from i, initially
−∞.

10: ξi,in,loc, ξi,in,rem, ξi,out,loc, ξi,out,rem ∈ Ξ are the states of the codecs for the local node
and remote node i, with initial values of ξ0.

11: ξi,in′,loc and ξi,in′,rem are the previous values of ξi,in,loc and ξi,in,rem, with initial
values of ξ0.

12:
13: procedure ONNEXTCYCLE . Called every ∆ time units
14: (w, t)← train(w, t,D)
15: i← randomOutNeighbor()
16: si ← Q(ξi,out,loc, w) . Model encoded and saved
17: ŝi ← t
18: idi ← idi + 1
19: send push message (ui,out, si, ŝi, idi) to node i
20: end procedure

108 Gossip Learning Using Compressed Averaging

Algorithm 6.4 Compressed push-pull learning (Part 2)
21: procedure ONPUSHMESSAGE(u, s, ŝ, id, i) . Received from node i
22: if idmax,i < id then . This is not an old, out-of-order message
23: idmax,i ← id
24: if u < ui,in then . Last pull has not arrived, reverse corresponding update
25: w ← (t · w + δi,in)/(t+ δ̂i,in)

26: t← t+ δ̂i,in
27: ui,in ← ui,in − 1
28: (ξi,in,loc, ξi,in,rem)← (ξi,in′,loc, ξi,in′,rem) . Previous codec states are

restored
29: end if
30: spull ← Q(ξi,in,loc, w)
31: (ξi,in′,loc, ξi,in′,rem)← (ξi,in,loc, ξi,in,rem) . Codec states are backed up before

update
32: send pull message (spull, t, id) to node i
33: update(i, in, spull, t, s, ŝ)
34: end if
35: end procedure
36:
37: procedure ONPULLMESSAGE(s, ŝ, id, i) . Received from node i
38: if idi = id then . This is the answer for the last push message, not an old one
39: update(i, out, si, ŝi, s, ŝ) . The node uses the same data it sent, not the

current local model
40: end if
41: end procedure
42:
43: procedure UPDATE(i, d, sloc, ŝloc, srem, ŝrem)
44: ui,d ← ui,d + 1
45: δi,d ← H · 1

2
(ŝloc ·K(ξi,d,loc, sloc)− ŝrem ·K(ξi,d,rem, srem)) . Models are decoded

and weighted by age
46: δ̂i,d ← H · 1

2
(ŝloc − ŝrem)

47: (ξi,d,loc, ξi,d,rem)← (F (ξi,d,loc, sloc), F (ξi,d,rem, srem)) . Codec states are updated
48: w ← (t · w − δi,d)/(t− δ̂i,d) . The updates operate on tw, not w, hence the

conversions
49: t← t− δ̂i,d . Notice that this new t is used above
50: end procedure

Bibliography

[1] Waseem Ahmad and Ashfaq Khokhar. Secure aggregation in large scale over-
lay networks. In IEEE Global Telecommunications Conference (GLOBECOM ’06),
2006.

[2] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, and Jorge Luis
Reyes-Ortiz. A public domain dataset for human activity recognition using
smartphones. In Esann, volume 3, page 3, 2013.

[3] Jimmy Ba and Diederik Kingma. Adam: A method for stochastic optimization.
In 3rd Intl. Conf. on Learning Representations (ICLR), 2015.

[4] K. Bache and M. Lichman. UCI machine learning repository, 2013.

[5] Tal Ben-Nun and Torsten Hoefler. Demystifying parallel and distributed deep
learning: An in-depth concurrency analysis. ACM Comput. Surv., 52(4), August
2019.

[6] Árpád Berta, Vilmos Bilicki, and Márk Jelasity. Defining and understanding
smartphone churn over the internet: a measurement study. In Proceedings of
the 14th IEEE International Conference on Peer-to-Peer Computing (P2P 2014).
IEEE, 2014.

[7] Danny Bickson, Tzachy Reinman, Danny Dolev, and Benny Pinkas. Peer-to-peer
secure multi-party numerical computation facing malicious adversaries. Peer-
to-Peer Networking and Applications, 3(2):129–144, 2010.

[8] Ella Bingham and Heikki Mannila. Random projection in dimensionality reduc-
tion: applications to image and text data. In Proceedings of the seventh ACM
SIGKDD international conference on Knowledge discovery and data mining, pages
245–250, 2001.

[9] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer,
2006.

109

110 Bibliography

[10] Michael Blot, David Picard, Nicolas Thome, and Matthieu Cord. Distributed op-
timization for deep learning with gossip exchange. Neurocomputing, 330:287–
296, 2019.

[11] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan
McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical
secure aggregation for federated learning on user-held data. In NIPS Workshop
on Private Multi-Party Machine Learning, 2016.

[12] Léon Bottou. Stochastic gradient descent tricks. In Grégoire Montavon,
Geneviève B. Orr, and Klaus-Robert Müller, editors, Neural Networks: Tricks
of the Trade, volume 7700 of Lecture Notes in Computer Science, pages 421–436.
Springer Berlin Heidelberg, 2012.

[13] Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. Randomized
gossip algorithms. IEEE Transactions on Information Theory, 52(6):2508–2530,
2006.

[14] R. W. Brockett and D. Liberzon. Quantized feedback stabilization of linear
systems. IEEE Transactions on Automatic Control, 45(7):1279–1289, 2000.

[15] S. Buckingham Shum, K. Aberer, A. Schmidt, S. Bishop, P. Lukowicz, S. Ander-
son, Y. Charalabidis, J. Domingue, S. Freitas, I. Dunwell, B. Edmonds, F. Grey,
M. Haklay, M. Jelasity, A. Karpǐstšenko, J. Kohlhammer, J. Lewis, J. Pitt, R. Sum-
ner, and D. Helbing. Towards a global participatory platform. The European
Physical Journal Special Topics, 214(1):109–152, 2012.

[16] Ruggero Carli, Francesco Bullo, and Sandro Zampieri. Quantized average con-
sensus via dynamic coding/decoding schemes. Intl. Journal of Robust and Non-
linear Control, 20(2):156–175, 2010.

[17] Ruggero Carli, Fabio Fagnani, Paolo Frasca, and Sandro Zampieri. Gossip con-
sensus algorithms via quantized communication. Automatica, 46(1):70–80,
2010.

[18] Chris Clifton, Murat Kantarcioglu, Jaideep Vaidya, Xiaodong Lin, and Michael Y.
Zhu. Tools for privacy preserving distributed data mining. SIGKDD Explor.
Newsl., 4(2):28–34, December 2002.

[19] Gábor Danner, Árpád Berta, István Hegedűs, and Márk Jelasity. Robust fully
distributed mini-batch gradient descent with privacy preservation. Security and
Communication Networks, 2018:6728020, 2018.

Bibliography 111

[20] Gábor Danner, István Hegedűs, and Márk Jelasity. Decentralized machine learn-
ing using compressed push-pull averaging. In Proceedings of the 1st Interna-
tional Workshop on Distributed Infrastructure for Common Good, pages 31–36,
2020.

[21] Gábor Danner and Márk Jelasity. Fully distributed privacy preserving mini-
batch gradient descent learning. In Alysson Bessani and Sara Bouchenak, edi-
tors, Proceedings of the 15th IFIP International Conference on Distributed Appli-
cations and Interoperable Systems (DAIS 2015), volume 9038 of Lecture Notes in
Computer Science, pages 30–44. Springer International Publishing, 2015.

[22] Gábor Danner and Márk Jelasity. Robust decentralized mean estimation with
limited communication. In Marco Aldinucci, Luca Padovani, and Massimo
Torquati, editors, Euro-Par 2018, volume 11014 of Lecture Notes in Computer
Science, pages 447–461. Springer International Publishing, 2018.

[23] Gábor Danner and Márk Jelasity. Token account algorithms: The best of the
proactive and reactive worlds. In Proceedings of The 38th International Con-
ference on Distributed Computing Systems (ICDCS 2018), pages 885–895. IEEE
Computer Society, 2018.

[24] Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V.
Le, Mark Z. Mao, Marc’Aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang,
and Andrew Y. Ng. Large scale distributed deep networks. In Proceedings of the
25th International Conference on Neural Information Processing Systems - Volume
1, NIPS’12, pages 1223–1231, USA, 2012. Curran Associates Inc.

[25] Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao. Optimal dis-
tributed online prediction using mini-batches. J. Mach. Learn. Res., 13(1):165–
202, January 2012.

[26] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker,
Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic algorithms for repli-
cated database maintenance. In Proceedings of the 6th Annual ACM Sympo-
sium on Principles of Distributed Computing (PODC’87), pages 1–12, Vancouver,
British Columbia, Canada, August 1987. ACM Press.

[27] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of deep bidirectional transformers for language understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics.

112 Bibliography

[28] Dheeru Dua and Casey Graff. UCI machine learning repository, 2019.

[29] Alessandro Duminuco, Ernst Biersack, and Taoufik En-Najjary. Proactive repli-
cation in distributed storage systems using machine availability estimation. In
Proceedings of the 2007 ACM CoNEXT Conference, CoNEXT ’07, pages 27:1–
27:12, New York, NY, USA, 2007. ACM.

[30] Cynthia Dwork. A firm foundation for private data analysis. Commun. ACM,
54(1):86–95, January 2011.

[31] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and
Moni Naor. Our data, ourselves: Privacy via distributed noise generation. In
Serge Vaudenay, editor, Advances in Cryptology - EUROCRYPT 2006, volume
4004 of Lecture Notes in Computer Science, pages 486–503. Springer Berlin Hei-
delberg, 2006.

[32] European Commission. General data protection regulation (GDPR), 2018.

[33] Davide Frey, Rachid Guerraoui, Anne-Marie Kermarrec, and Maxime Monod.
Boosting gossip for live streaming. In 2010 IEEE Tenth International Conference
on Peer-to-Peer Computing (P2P), pages 1–10. IEEE, August 2010.

[34] M. Fu and L. Xie. Finite-level quantized feedback control for linear systems.
IEEE Transactions on Automatic Control, 54(5):1165–1170, 2009.

[35] Lodovico Giaretta and Šarūnas Girdzijauskas. Gossip learning: Off the beaten
path. In 2019 IEEE International Conference on Big Data (Big Data), pages 1117–
1124, December 2019.

[36] Kevin Gimpel, Dipanjan Das, and Noah A. Smith. Distributed asynchronous
online learning for natural language processing. In Proceedings of the Four-
teenth Conference on Computational Natural Language Learning (CoNLL’10),
pages 213–222, Stroudsburg, PA, USA, 2010. Association for Computational
Linguistics.

[37] Shuguo Han, Wee Keong Ng, Li Wan, and Vincent C. S. Lee. Privacy-preserving
gradient-descent methods. IEEE Transactions on Knowledge and Data Engineer-
ing, 22(6):884–899, 2010.

[38] István Hegedűs, Árpád Berta, Levente Kocsis, András A. Benczúr, and Márk Je-
lasity. Robust decentralized low-rank matrix decomposition. ACM Transactions
on Intelligent Systems and Technology, 7(4):62:1–62:24, May 2016.

Bibliography 113

[39] István Hegedűs, Gábor Danner, and Márk Jelasity. Decentralized recommen-
dation based on matrix factorization: A comparison of gossip and federated
learning. In Joint European Conference on Machine Learning and Knowledge Dis-
covery in Databases, pages 317–332. Springer, 2019.

[40] István Hegedűs, Gábor Danner, and Márk Jelasity. Gossip learning as a decen-
tralized alternative to federated learning. In José Pereira and Laura Ricci, ed-
itors, Proceedings of the 19th IFIP International Conference on Distributed Appli-
cations and Interoperable Systems (DAIS 2019), volume 11534 of Lecture Notes
in Computer Science, pages 74–90. Springer International Publishing, 2019.

[41] István Hegedűs, Gábor Danner, and Márk Jelasity. Decentralized learning
works: An empirical comparison of gossip learning and federated learning.
Journal of Parallel and Distributed Computing, 148:109–124, 2021.

[42] Chenghao Hu, Jingyan Jiang, and Zhi Wang. Decentralized federated learning:
A segmented gossip approach. In The 1st International Workshop on Federated
Machine Learning for User Privacy and Data Confidentiality (IJCAI Workshop),
2019.

[43] Mohsan Jameel, Josif Grabocka, Mofassir ul Islam Arif, and Lars Schmidt-
Thieme. Ring-star: A sparse topology for faster model averaging in decentral-
ized parallel SGD. In Decentralized Machine Learning at the Edge (ECML PKDD
2019 Workshop), 2019.

[44] Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu. Gossip-based aggre-
gation in large dynamic networks. ACM Transactions on Computer Systems,
23(3):219–252, August 2005.

[45] Márk Jelasity, Spyros Voulgaris, Rachid Guerraoui, Anne-Marie Kermarrec, and
Maarten van Steen. Gossip-based peer sampling. ACM Transactions on Com-
puter Systems, 25(3):8, August 2007.

[46] Gian Paolo Jesi, Alberto Montresor, and Maarten van Steen. Secure peer sam-
pling. Computer Networks, 54(12):2086–2098, 2010.

[47] Paulo Jesus, Carlos Baquero, and Paulo Sérgio Almeida. Fault-tolerant aggrega-
tion for dynamic networks. In Proc. 29th IEEE Symposium on Reliable Distributed
Systems (SRDS), pages 37–43, 2010.

[48] David Kempe, Alin Dobra, and Johannes Gehrke. Gossip-based computation
of aggregate information. In Proc. 44th Annual IEEE Symp. on Foundations of
Comp. Sci. (FOCS’03), pages 482–491. IEEE Computer Society, 2003.

114 Bibliography

[49] Anastasia Koloskova, Sebastian Stich, and Martin Jaggi. Decentralized stochas-
tic optimization and gossip algorithms with compressed communication. In
Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Ma-
chine Learning Research, pages 3478–3487, Long Beach, California, USA, 09–15
Jun 2019. PMLR.

[50] Jakub Konecný, H. Brendan McMahan, Felix X. Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. Federated learning: Strategies for
improving communication efficiency. In Private Multi-Party Machine Learning
(NIPS 2016 Workshop), 2016.

[51] Anusha Lalitha, Shubhanshu Shekhar, Tara Javidi, and Farinaz Koushanfar.
Fully decentralized federated learning. In Bayesian Deep Learning (NIPS 2018
Workshop), 2018.

[52] Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proc. of the IEEE, 86(11):2278–2324,
November 1998.

[53] T. Li, M. Fu, L. Xie, and J. F. Zhang. Distributed consensus with limited com-
munication data rate. IEEE Transactions on Automatic Control, 56(2):279–292,
2011.

[54] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu.
Can decentralized algorithms outperform centralized algorithms? a case study
for decentralized parallel stochastic gradient descent. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, ed-
itors, Advances in Neural Information Processing Systems 30, pages 5330–5340.
Curran Associates, Inc., 2017.

[55] M. Lichman. UCI machine learning repository, 2013.

[56] Boris Lubachevsky and Debasis Mitra. A chaotic asynchronous algorithm for
computing the fixed point of a nonnegative matrix of unit radius. Journal of the
ACM, 33(1):130–150, January 1986.

[57] Ueli Maurer. Secure multi-party computation made simple. Discrete Applied
Mathematics, 154(2):370–381, 2006.

[58] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. Communication-efficient learning of deep networks
from decentralized data. In Aarti Singh and Jerry Zhu, editors, Proceedings

Bibliography 115

of the 20th International Conference on Artificial Intelligence and Statistics, vol-
ume 54 of Proceedings of Machine Learning Research, pages 1273–1282, Fort
Lauderdale, FL, USA, 20–22 Apr 2017. PMLR.

[59] Alberto Montresor and Márk Jelasity. Peersim: A scalable P2P simulator. In
Proc. 9th IEEE Intl. Conf. Peer-to-Peer Computing (P2P 2009), pages 99–100,
Seattle, Washington, USA, September 2009. IEEE. extended abstract.

[60] G. N. Nair, F. Fagnani, S. Zampieri, and R. J. Evans. Feedback control under
data rate constraints: An overview. Proc. IEEE, 95(1):108–137, 2007.

[61] Juan A. M. Naranjo, Leocadio G. Casado, and Márk Jelasity. Asynchronous
privacy-preserving iterative computation on peer-to-peer networks. Computing,
94(8–10):763–782, 2012.

[62] Gerhard Niederbrucker and Wilfried N. Gansterer. Robust gossip-based aggre-
gation: A practical point of view. In Proc. Fifteenth Workshop on Algorithm
Engineering and Experiments (ALENEX), pages 133–147, 2013.

[63] R. Olfati-Saber, J. A. Fax, and R. M. Murray. Consensus and cooperation in
networked multi-agent systems. Proc. IEEE, 95(1):215–233, 2007.

[64] Róbert Ormándi, István Hegedűs, and Márk Jelasity. Gossip learning with linear
models on fully distributed data. Concurrency and Computation: Practice and
Experience, 25(4):556–571, 2013.

[65] Róbert Ormándi, István Hegedűs, and Márk Jelasity. Gossip learning with linear
models on fully distributed data. Concurrency and Computation: Practice and
Experience, 25(4):556–571, 2013.

[66] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Jacques Stern, editor, Advances in Cryptology – EUROCRYPT ’99,
volume 1592 of Lecture Notes in Computer Science, pages 223–238. Springer
Berlin Heidelberg, 1999.

[67] Barath Raghavan, Kashi Vishwanath, Sriram Ramabhadran, Kenneth Yocum,
and Alex C. Snoeren. Cloud control with distributed rate limiting. In Proceedings
of the 2007 Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, SIGCOMM ’07, pages 337–348, New York, NY,
USA, 2007. ACM.

[68] Arun Rajkumar and Shivani Agarwal. A differentially private stochastic gradient
descent algorithm for multiparty classification. JMLR Workshop and Conference
Proceedings, 22:933–941, 2012. Proceedings of AISTATS’12.

116 Bibliography

[69] P. Ratanaworabhan, Jian Ke, and M. Burtscher. Fast lossless compression of
scientific floating-point data. In Data Compression Conf. (DCC’06), pages 133–
142, 2006.

[70] Luis Rodrigues, Sidath Handurukande, José Pereira, Rachid Guerraoui, and
Anne-Marie Kermarrec. Adaptive gossip-based broadcast. In International Con-
ference on Dependable Systems and Networks (DSN-2003), pages 47–56, June
2003.

[71] Roberto Roverso, Jim Dowling, and Márk Jelasity. Through the wormhole:
Low cost, fresh peer sampling for the internet. In Proceedings of the 13th IEEE
International Conference on Peer-to-Peer Computing (P2P 2013). IEEE, 2013.

[72] Jared Saia and Mahdi Zamani. Recent results in scalable multi-party computa-
tion. In 41st International Conference on Current Trends in Theory and Practice
of Computer Science (SOFSEM’15), volume 8939 of LNCS. Springer, 2015.

[73] S. Savazzi, M. Nicoli, and V. Rampa. Federated learning with cooperating de-
vices: A consensus approach for massive iot networks. IEEE Internet of Things
Journal, 2020.

[74] Ali Sayed. Adaptation, learning, and optimization over networks. Found. Trends
Mach. Learn., 7(4-5):311–801, July 2014.

[75] Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter. Pega-
sos: primal estimated sub-gradient solver for SVM. Mathematical Programming
B, 2010.

[76] H. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura, and
R. M. Summers. Deep convolutional neural networks for computer-aided de-
tection: Cnn architectures, dataset characteristics and transfer learning. IEEE
Transactions on Medical Imaging, 35(5):1285–1298, 2016.

[77] Emil Sit, Andreas Haeberlen, Frank Dabek, Byung-Gon Chun, Hakim Weath-
erspoon, Robert Morris, M Frans Kaashoek, and John Kubiatowicz. Proactive
replication for data durability. In The 5th International Workshop on Peer-to-Peer
Systems (IPTPS’06), 2006.

[78] Daniel Stutzbach, Reza Rejaie, Nick Duffield, Subhabrata Sen, and Walter Will-
inger. On unbiased sampling for unstructured peer-to-peer networks. IEEE/ACM
Transactions on Networking, 17(2):377–390, April 2009.

[79] Ananda Theertha Suresh, Felix X. Yu, Sanjiv Kumar, and H. Brendan McMahan.
Distributed mean estimation with limited communication. In Proc. 34th Intl.
Conf. Machine Learning, (ICML), pages 3329–3337, 2017.

Bibliography 117

[80] Hanlin Tang, Xiangru Lian, Ming Yan, Ce Zhang, and Ji Liu. D2: Decentral-
ized training over decentralized data. In Jennifer Dy and Andreas Krause, edi-
tors, Proceedings of the 35th International Conference on Machine Learning, vol-
ume 80 of Proceedings of Machine Learning Research, pages 4848–4856, Stock-
holmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR.

[81] Robbert van Renesse, Kenneth P. Birman, and Werner Vogels. Astrolabe: A ro-
bust and scalable technology for distributed system monitoring, management,
and data mining. ACM Transactions on Computer Systems, 21(2):164–206,
2003.

[82] Ji Wang, Bokai Cao, Philip S. Yu, Lichao Sun, Weidong Bao, and Xiaomin Zhu.
Deep learning towards mobile applications. In IEEE 38th International Confer-
ence on Distributed Computing Systems (ICDCS), pages 1385–1393, July 2018.

[83] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ’small-world’
networks. Nature, 393:440–442, 1998.

[84] Ran Wolff, Kanishka Bhaduri, and Hillol Kargupta. Local l2-thresholding based
data mining in peer-to-peer systems. In Proceedings of the Sixth SIAM Interna-
tional Conference on Data Mining, April 20-22, 2006, Bethesda, MD, USA, pages
430–441. SIAM, 2006.

[85] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms, 2017.

[86] Lin Xiao and Stephen Boyd. Fast linear iterations for distributed averaging.
Systems & Control Letters, 53(1):65–78, 2004.

[87] Lin Xiao, Stephen Boyd, and Sanjay Lall. A scheme for robust distributed sensor
fusion based on average consensus. In IPSN’05: Proc. 4th Intl. Symp. on Inf. Proc.
in Sensor Networks, page 9, 2005.

[88] Andrew C. Yao. Protocols for secure computations. In Proceedings of the 23rd
Annual Symposium on Foundations of Computer Science (FOCS), pages 160–164,
1982.

[89] Yuchen Zhang, John C. Duchi, and Martin J. Wainwright. Communication-
efficient algorithms for statistical optimization. J. Mach. Learn. Res.,
14(1):3321–3363, January 2013.

[90] M. Zhu and S. Martinez. On the convergence time of asynchronous dis-
tributed quantized averaging algorithms. IEEE Transactions on Automatic Con-
trol, 56(2):386–390, 2011.

118 Bibliography

Summary

Gossip learning is a fully distributed machine learning framework, where nodes com-
municate directly, exchanging their models. In this thesis we introduced a number of
techniques to improve gossip learning. Here, we give a summary of each of the four
major parts of the dissertation.

Gossip Learning with Privacy Preservation

In gossip learning, colluding nodes may obtain information about the training exam-
ple of another node if they see the model right before and after it is updated by the
node.

In Chapter 3, we proposed a secure mini-batch gradient method to improve the
privacy of the users. We assumed a semi-honest adversary: the corrupted nodes still
follow the protocol but the adversary can see the internal state of such nodes. Our
solution is to replace the local update step with a distributed mini-batch approach.
For each step of the random walk, when a node receives a model to update, it co-
ordinates the distributed computation of a mini-batch gradient and then uses this
gradient to update the model.

The first step for computing a mini-batch gradient is to create a temporary group
of random nodes that form the mini-batch; we do this by building a rooted overlay
tree. We proposed the building of a binomial tree for optimal performance, with a
“trunk” that is needed for improved security.

Then, we can use our novel secure sum algorithm to aggregate the gradients of
the participants. It builds upon a secret sharing scheme where a secret value is split
into multiple shares such that all the shares are needed to obtain any information.
The basic idea of the algorithm is to divide the local value at each node into shares,
encrypt these with asymmetric additively homomorphic encryption (e.g. via the Pail-
lier cryptosystem), and send them to the root via the chain of ancestors. Although the
shares travel together, they are encrypted with the public keys of different ancestors.
Along the route, the arrays of shares are aggregated, and periodically re-encrypted.
Finally, the root calculates the sum.

We can achieve high levels of robustness and good scalability by exploiting the

119

120 Summary

fact that the mini-batch gradient algorithm does not require the sum to be precise.
The algorithm is designed to calculate a partial sum in the event of node failures.

We evaluated the protocol in realistic simulations using a smartphone trace to
simulate churn. We demonstrated on a number of learning tasks that the approach
is indeed practically viable.

The contributions of the author are:

• A scalable and robust secure sum protocol that is able to securely compute a
partial sum even in the event of failures and limited collusion of nodes;

• A proof about its capability of preventing the collusion attack;

• A decentralized mini-batch gradient descent method based on the building of a
k-trunked binomial overlay tree and the above protocol.

Comparison of Federated and Gossip Learning

In federated learning, the workers perform machine learning over their own data and
the master merely aggregates the resulting models without seeing any raw data, not
unlike the parameter server approach. Gossip learning is a decentralized alternative
to federated learning that does not require an aggregation server or any central com-
ponent. The natural hypothesis is that gossip learning is strictly less efficient than
federated learning due to it relying on a more basic infrastructure: only message
passing and no cloud resources.

In Chapter 4, we questioned this hypothesis. We presented a thorough compari-
son of the two approaches. The experimental scenarios included a real churn trace
collected over mobile phones, different network sizes and different distributions of
the training data over the devices. Also, we applied subsampling to reduce com-
munication in both approaches; that is, we sent only random subsets of the model
parameters. Here, we introduced a new subsampling technique for gossip learning
based on partitioned models where each partition has its own age parameter. Instead
of sampling parameters independently, one of the partitions is chosen. This way, dur-
ing model merging, the model parameters can be averaged with appropriate weights
without increasing communication costs.

We compared federated and gossip learning in terms of convergence time and
model quality, assuming that both approaches utilize the same amount of communi-
cation resources in the same scenarios. We also performed a systematic hyperparam-
eter analysis. Surprisingly, the best gossip variants performed comparably with the
best federated learning variants overall, thus providing a fully decentralized alterna-
tive to federated learning.

Summary 121

The contributions of the author are:

• The partition-based sampling technique;

• The design and development of churn-related modules of the simulator;

• Participation in the design of the improved aggregation algorithm for federated
learning;

• Participation in the planning of experiments;

• The optimization of hyperparameters.

Gossip Learning with Adaptive Flow Control

Many decentralized algorithms allow both proactive and reactive implementations.
Examples include gossip protocols for broadcasting and decentralized computing, as
well as chaotic matrix iteration algorithms. In proactive systems, nodes communi-
cate at a fixed rate in regular intervals, while in reactive systems they communicate
in response to certain events such as the arrival of fresh data. Although reactive algo-
rithms tend to stabilize/converge/self-heal much faster, they have serious drawbacks:
they may overload the network, and they may also cause starvation when the num-
ber of messages circulating in the system becomes too low. Proactive algorithms do
not have these problems, but nodes waste a lot of time sitting on fresh information.

In Chapter 5, we proposed the token account framework, a novel family of adap-
tive protocols that apply rate limiting inspired by the token bucket algorithm to pre-
vent uncontrolled bursts, but they also include proactive communication to prevent
starvation. With the help of our traffic shaping service, some applications approach
the speed of the reactive implementation, while maintaining strong guarantees re-
garding the total communication cost and burstiness. In a nutshell, these algorithms
grant a token to each node in regular periods, and sending a message costs a token.
A token can be spent immediately (proactive operation), or later, when a message is
received (reactive operation). The more tokens a node has, the more eager it is to
spend them, possibly sending multiple reactive messages at once. When there are too
few messages circulating, the token accounts start to fill up, encouraging an increase
in network activity. We performed simulation experiments in different scenarios in-
cluding a real smartphone availability trace. Our results suggest up to a fourfold
speedup in a broadcast application, and an order of magnitude speedup in the case
of gossip learning, when compared to the purely proactive implementation.

To evaluate this token-based flow control technique with the mergeable version
of gossip learning, we performed machine learning over three different datasets. We
also introduced a partitioned variant of the token account algorithm, to properly

122 Summary

make use of sampling-based compression. Here, each partition has its own token ac-
count. Our results confirmed that the token-based flow control approach outperforms
proactive gossip learning. Furthermore, it can achieve a performance comparable to
federated learning when the distribution of training examples is unbiased. However,
to achieve these results, the compression mechanism must be based on partition-
ing, as opposed to simple subsampling. The reason is that this way, the different
partitions can form “hot potato” chains separately, whereas with subsampling, these
chains cannot form because sampling picks different weights for each step of the
random walk.

The contributions of the author are:

• The design and evaluation of the token account algorithm;

• An analytical derivation of the average number of tokens in the system;

• The design of the partitioned token gossip learning algorithm.

Gossip Learning Using Compressed Averaging

Mean estimation, also known as average consensus, is an important computational
primitive in decentralized systems. When the average of large vectors has to be
computed, as in distributed data mining applications, reducing the communication
cost becomes a key design goal. One way of reducing the communication cost is to
add dynamic stateful encoder-decoder pairs (codecs) to traditional mean estimation
protocols. In this approach, each element of a vector message is encoded in a few
bits and decoded by the recipient node. However, due to this encoding and decod-
ing mechanism, these protocols are much more sensitive to benign failure such as
message drop and message delay. Properties such as mass conservation are harder
to guarantee. Hence, known approaches are formulated under strong assumptions
such as reliable communication, atomic non-overlapping transactions or even full
synchrony.

In Chapter 6, we proposed a communication efficient algorithm that supports
codecs even if transactions overlap and the nodes are not synchronized. The algo-
rithm is based on push-pull averaging, with novel features to support fault tolerance
and compression. With the help of simple counters, it is able to detect whether the
transferred amount (and the codec state) became inconsistent across the link due
to message loss, and rolls back the state to a consistent one. As an independent
contribution, we also proposed a novel adaptive codec, called the pivot codec. We
demonstrated experimentally that our algorithm improves the performance of exist-
ing codecs and the novel pivot codec dominates the competing codecs in the scenarios
we studied.

Summary 123

Furthermore, we proposed a novel variant of gossip learning that uses this codec-
based compression to achieve a higher communication efficiency than previous meth-
ods could based on subsampling. The algorithm periodically trains the local model
and performs the weighted averaging of the models in the network. Among our ma-
chine learning experiments we also included a transfer learning scenario. This means
that we trained a relatively small model on top of a high quality pre-trained feature
set that is fixed.

The contributions of the author are:

• The design and evaluation of the compressed push-pull averaging algorithm;

• The design and evaluation of the pivot codec;

• The design of the compressed push-pull learning algorithm.

124 Summary

Összefoglalás

A pletyka alapú tanulás egy teljesen elosztott gépi tanulási keretrendszer, ahol a
hálózatra kötött eszközök (csomópontok) központi szerver használata nélkül, köz-
vetlenül egymással kommunikálnak, tovább́ıtva egymásnak gépi tanuló modelljeiket.
Ezen disszertációban számos új módszert mutattunk be, melyek hatékonyabbá vagy
biztonságosabbá teszik a pletyka tanulást.

Pletyka alapú tanulás adatvédelemmel

A pletyka alapú tanulás során a hálózatban véletlen sétákat tesznek meg a mod-
ellek, és minden lépésben a helyi adatokon tańıtjuk őket. Egymással összejátszó
csomópontok adatokat szerezhetnek meg egy másik csomópontról, ha az ott végzett
tańıtás előtti és utáni modellváltozat is a birtokukban van.

A 3. fejezetben javaslunk egy biztonságos mini-batch gradiens módszert a fel-
használók adatvédelmének előseǵıtése érdekében. Az általunk használt ellenfél-
modellben feltesszük, hogy az összejátszó csomópontok csak megfigyelnek, azaz
nem módośıtják az algoritmus működését. A módszerünkben a véletlen séta minden
lépésében elvégzünk egy elosztott mini-batch számı́tást, és az összegzett gradiensek
alapján végezzük el a tańıtást.

Ezen számı́táshoz először létre kell hozni egy véletlen csomópontokból álló idei-
glenes csoportot. Ehhez a kezdeményező csomópontból, mint gyökérből kiindulva
egy fa topológiájú fedőhálót éṕıtünk. Egy “törzzsel” rendelkező binomiális fa éṕıtését
javasoljuk a hatékonyság és biztonság elérése érdekében.

Ezután az új biztonságos összegző algoritmusunkkal ki tudjuk számolni a gradi-
ensek összegét. Ehhez felhasználunk egy titokfelosztási módszert, amellyel egy titkos
számértéket úgy tudunk több részre bontani, hogy csak az összes rész birtokában
lehessen információhoz jutni az eredeti értékről. Az algoritmusunk alapötlete az,
hogy minden csomópont a gradiensét ezzel a módszerrel több részre bontja, ezeket
egy asszimetrikus addit́ıvan homomorfikus titkośıtási rendszerrel betitkośıtja, és el-
küldi a gyökérbe a szülők láncolatán keresztül. Ezek a részek együtt haladnak a
hálózatban, de különböző ősök publikus kulcsával vannak titkośıtva. Az út során
a különböző gradiensekből származó részeket aggregáljuk és újrakódoljuk. Végül a

125

126 Összefoglalás

gyökér kiszámı́tja az összeget.
A mini-batch gradiens algoritmusnak nincs szüksége pontos összegre, és ezt ki-

használva magas hibatűrést és skálázódást tudunk elérni. Ha egyes csomópontok
leszakadnak, az algoritmus egy részösszeget számı́t ki.

Kiértékeltük az algoritmust realisztikus szimulációkban, okostelefonok hálózati
elérhetőségének méréséből származó idősorokat is felhasználva. Több gépi tanulási
feladaton is megmutattuk, hogy a módszer megvalóśıtható.

A szerző hozzájárulásai:

• egy skálázható és robusztus biztonságos összegző protokoll, amely hibák és bi-
zonyos fokú összejátszás esetén is képes részösszeg biztonságos kiszámı́tására;

• ezen protokollról szóló bizonýıtás;

• egy k hosszú törzzsel rendelkező binomiális fa éṕıtésén, és a fenti összegző
protokollon alapuló decentralizált mini-batch módszer.

A federated learning és a pletyka tanulás összehasonĺıtása

A federated learning egy mester-szolga architektúrát használ: a szolgák (csomópon-
tok) gépi tanulást végeznek a saját adatukon, a mester (szerver) pedig a tőlük kapott
modelleket kiátlagolja és visszaküldi. A pletyka alapú tanulás egy decentralizált alter-
nat́ıvát ḱınál, mivel nem igényel szervert vagy egyéb központi komponenst. Adódik
a természetes feltevés, hogy a pletyka tanulás szigorúan kevésbé hatékony, mint a
federated learning, mivel nem vesz igénybe felhő erőforrásokat.

A 4. fejezetben megkérdőjeleztük ezt a feltevést. Bemutattuk a két megközeĺıtés
alapos összehasonĺıtását. Szimulációs ḱısérletinkben megvizsgáltunk különböző mé-
retű hálózatokat és a tańıtópéldák különböző megoszlását a csomópontok között,
továbbá okostelefonok hálózati elérhetőségének méréséből származó idősorokat is
alkalmaztunk. Mindkét megközeĺıtésben paraméter-mintavételezést is alkalmaztunk
az adatforgalom csökkentésére; vagyis a modell paramétereinek csak véletlenszerű
részhalmazait küldtük el. Egy új, particionált modelleken alapuló mintavételezési
technikát vezettünk be a pletyka tanulás számára, ahol minden part́ıció saját életkor
paraméterrel rendelkezik. A paraméterek független mintavételezése helyett az egyik
part́ıció kerül kiválasztásra. Így a modellösszeolvasztás során a modell paraméterei
a megfelelő súlyokkal átlagolhatók a kommunikációs költségek növekedése nélkül.

Összehasonĺıtottuk a federated és a pletyka tanulást a konvergenciaidő és a mod-
ell minősége szempontjából, feltételezve, hogy mindkét megközeĺıtés ugyanannyi
kommunikációs erőforrást használhat ugyanabban a forgatókönyvben. Továbbá szisz-
tematikus hiperparaméter elemzést is végeztünk. Meglepő módon a pletyka tanulás

Összefoglalás 127

legjobb változatai összességében összehasonĺıthatóan teljeśıtettek a federated learn-
ing legjobb variánsaival, ezáltal egy teljesen decentralizált alternat́ıvát biztośıtva.

A szerző hozzájárulásai:

• a paraméter-mintavételezéses tömöŕıtés egy új, part́ıciói-alapú változata;

• új churn-kezelő peersim modulok tervezése és implementálása;

• részvétel a federated learning-ben használható paraméter-szelekciós aggregáció
kidolgozásában;

• részvétel a ḱısérletek megtervezésében;

• a meta-paraméterek optimalizálása.

Pletyka alapú tanulás adapt́ıv áramlásvezérléssel

Sok decentralizált algoritmus esetén lehetőség van mind a proakt́ıv, mind a reakt́ıv
megvalóśıtásra. A példák közé tartoznak decentralizált számı́tás és broadcast ple-
tykaprotokollok, valamint kaotikus mátrix iterációs algoritmusok. A proakt́ıv rendsz-
erekben a csomópontok rögźıtett ütemben, rendszeres időközönként kommunikálnak,
mı́g a reakt́ıv rendszerek bizonyos eseményekre, például friss adatok érkezésére re-
agálva teszik ezt. Bár a reakt́ıv algoritmusok jellemzően sokkal gyorsabban stabi-
lizálódnak/konvergálnak/öngyógyulnak, mégis komoly hátrányai vannak: egyrészt
túlterhelhetik a hálózatot, másrészt a rendszerben keringő üzenetek száma túl alac-
sonyra is csökkenhet. A proakt́ıv algoritmusoknak nincsenek ilyen problémái, de a
csomópontok sok időt elpazarolnak friss információkon ülve.

Az 5. fejezetben bemutattuk a token számla keretrendszert, olyan adapt́ıv pro-
tokollok egy új családját, amelyek forgalomkorlátozást alkalmaznak a kontrollálatlan
forgalomgenerálás megakadályozására, de az üzenetek kihalásának megelőzésére
irányuló proakt́ıv kommunikációt is végeznek. Forgalomformáló szolgáltatásunk se-
ǵıtségével egyes alkalmazások megközeĺıtik a reakt́ıv implementáció sebességét, mi-
közben szilárd garanciákat tartunk fenn a kommunikáció összköltségére vonatkozóan.
Dióhéjban, ezek az algoritmusok minden csomópontnak adnak egy tokent rend-
szeres időközönként, és egy üzenet elküldése egy tokenbe kerül. A token annak
megkapáskor azonnal elkölthető (proakt́ıv üzenetküldés), vagy később, amikor üze-
net érkezik (reakt́ıv üzenetküldés). Minél több tokennel rendelkezik egy csomópont,
annál kevésbé spórol velük, akár több reakt́ıv üzenetet is küldhet egyszerre. Ha túl
kevés üzenet kering, a token számlák elkezdenek megtelni, ami a hálózati aktivitás
növelését ösztönzi. Szimulációs ḱısérleteket végeztünk különböző forgatókönyvekben,

128 Összefoglalás

valódi okostelefon-elérhetőségi idősorokat is felhasználva. Eredményeink akár négy-
szeres gyorsulást is mutatnak egy broadcast alkalmazásban, és nagyságrendi gyor-
sulást pletykatanulás esetén a tisztán proakt́ıv megvalóśıtáshoz képest.

Hogy kiértékeljük ezen token-alapú áramlásvezérlési technikát a pletykatanulás
modell-összeolvasztást is alkalmazó változatával, gépi tanulást végeztünk három kü-
lönböző adatbázison. Bevezettük a token számla algoritmus egy particionált változa-
tát is, hogy ki tudja használni a mintavételezésen alapuló tömöŕıtés előnyeit. Ebben
a változatban minden part́ıciónak saját token számlája van. Eredményeink mege-
rőśıtették, hogy a token-alapú áramlásvezérlésen alapuló megközeĺıtés felülmúlja a
proakt́ıv pletykatanulást. Ezenḱıvül a federated learning teljeśıtményével összeha-
sonĺıtható teljeśıtményt is elérhet, ha a tańıtópéldák ćımke szerinti eloszlása egyen-
letes. Azonban ezen eredmények eléréséhez a tömöŕıtési mechanizmusnak parti-
cionáláson kell alapulnia. Ennek az az oka, hogy ı́gy az egyes part́ıciók önálló “forró
krumpli” üzenetláncokat generálhatnak, mı́g az egyszerű mintavételezéses tömöŕıtés
esetén ezek a láncok nem tudnak kialakulni, mert az különböző paramétereket választ
a véletlen séta minden lépésében.

A szerző hozzájárulásai:

• a fedőhálózaton történő véletlen séták számát dinamikus egyensúlyban tartó (a
hálózati csomagok forgalmának limitálására használt token bucket algoritmust
általánośıtó) algoritmus és kiértékelése;

• a token-szám eloszlás elméleti vizsgálata;

• az algoritmus alkalmazása gépi tanulásra, kombinálása paraméter-mintavéte-
lezéses tömöŕıtéssel.

Tömöŕıtett átlagoláson alapuló pletyka tanulás

A decentralizált átlagszámı́tás fontos számı́tási primit́ıv decentralizált rendszerekben.
Amikor a nagy vektorok átlagát kell kiszámı́tani, mint például elosztott adatbányászati
alkalmazások esetén, a kommunikációs költségek csökkentése kulcsfontosságú ter-
vezési céllá válik. Ennek egyik módja az, hogy dinamikus kódoló-dekódoló párokkal
(kodekekkel) bőv́ıtjük a hagyományos átlagszámı́tó protokollokat. Ebben a megköze-
ĺıtésben az üzenet (vektor) minden elemét néhány bitben kódolja a küldő csomópont,
amit dekódol a fogadó csomópont. Ennek a kódolási és dekódolási mechanizmusnak
köszönhetően azonban ezek a protokollok sokkal érzékenyebbek a hibákra, például
az üzenet elvesztésére vagy késleltetésére. Az olyan tulajdonságokat, mint a tömeg-
megmaradás, nehezebb garantálni. Ezért az ismert megközeĺıtéseket olyan erős fel-
tevéseket használnak, mint a megb́ızható kommunikáció, atomi, nem-átfedő tranza-
kciók vagy akár teljes szinkronizáció.

Összefoglalás 129

A 6. fejezetben javasoltunk egy kommunikációban hatékony algoritmust, amely
akkor is támogatja a kodekeket, ha a tranzakciók átfedhetnek, és a csomópontok
nincsenek szinkronizálva. Az algoritmus push-pull átlagoláson alapul, új hibatűrést
és a tömöŕıtést támogató megoldásokkal kiegésźıtve. Egyszerű számlálók seǵıtségével
képes észlelni, hogy az átküldött össztömeg (és a kodek állapota) üzenetvesztés mi-
att inkonzisztenssé vált-e a két végpont között, és visszagörgeti az állapotot egy
konzisztensre. Ezenfelül egy új adapt́ıv kodeket is javasoltunk, a pivot kodeket.
Ḱısérletileg megmutattuk, hogy az algoritmusunk jav́ıtja a meglévő kodekek telje-
śıtményét, az új pivot kodek felülmúlta a versengő kodekeket a vizsgálatainkban.

Ezenḱıvül a pletykatanulás egy új változatát javasoltuk, amely ezt a kodek alapú
tömöŕıtést használja, hogy nagyobb kommunikációs hatékonyságot érjen el, mint a
korábbi, mintavételezésen alapuló módszerek. Az algoritmus adott időközönként
tańıtja a helyi modellt, és eközben a modellek súlyozott átlagolását végzi a hálózatban.
Gépi tanulási ḱısérleteink során transzfertanulást is alkalmaztunk. Ez azt jelenti,
hogy egy viszonylag kis modellt tańıtottunk egy rögźıtett, jó minőségű, előre be-
tańıtott neuronhálóból nyert jellemzőkészlet fölött.

A szerző hozzájárulásai:

• egy csökkentett kommunikációs igényű, robusztus decentralizált átlagoló algo-
ritmus;

• a pivot kodek;

• az előbbieken alapuló gossip learning algoritmus.

	Introduction
	Background
	Machine Learning Basics
	System Model
	Gossip Learning
	Smartphone Trace

	Gossip Learning with Privacy Preservation
	Related Work
	Adversarial Model
	Our Solution
	Mini-batch Tree Topology
	Calculating the Gradient
	Working with Vectors
	Practical Considerations and Optimizations
	Variants

	Analysis
	Security
	Complexity

	Compressing the Gradient
	Experimental Evaluation
	Time Consumption
	Simulating Tree Building
	Machine Learning Results

	Conclusion

	Comparison of Federated and Gossip Learning
	Gossip Learning
	Random Sampling and Model Partitioning

	Federated Learning
	Experimental Setup
	Datasets
	System Model
	Hyperparameters

	Experimental Results
	Basic Design Choices
	Small Scale
	Large Scale

	Related Work
	Conclusions

	Gossip Learning with Adaptive Flow Control
	Background
	Gossip Learning
	Push Gossip
	Chaotic Asynchronous Power Iteration

	Token Account Algorithms
	Token Account Framework
	Applications within the Framework
	Partitioned Token Gossip Learning
	Implementations of the Framework
	A Note on Rate Limitation Properties

	Experimental Analysis of Token Account
	Experimental Setup
	Experimental Results
	A Note on the Number of Tokens

	Experimental Analysis of Partitioned Token Account
	Experimental Setup
	Partitioning
	Small Scale
	Large Scale

	Related Work
	Discussion and Conclusions

	Gossip Learning Using Compressed Averaging
	Background
	System Model
	Codec Basics

	Proposed Algorithms
	Pivot Codec
	Robust Push-Pull Averaging
	Compressed Push-Pull Averaging
	Flow Compensation
	Compressed Push-Pull Learning

	Experiments for Average Consensus
	Experimental Setup
	Results

	Machine Learning Experiments
	Datasets
	Transfer Learning
	Metaparameters
	Results

	Conclusions

	Bibliography
	Summary
	Összefoglalás

