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Abstract. Measuring semantic similarity of words is of crucial importance in 

Natural Language Processing. Although there are many different approaches for 

this task, there is still room for improvement. In contrast to many other methods 

that use web search engines or large lexical databases, we developed such 

methods that solely rely on large static corpora. They create a binary or numeri-

cal feature vector for each word making use of statistical information obtained 

from the corpora. These vectors contain features based on context words or 

grammatical relations extracted from the corpora and they employ diverse 

weighting schemes. After creating the feature vectors, word similarity is calcu-

lated using various vector similarity measures. Beside the individual methods, 

their combinations were also tested. Evaluated on both the Miller-Charles da-

taset and the TOEFL synonym questions, they achieve competitive results to 

recent methods. 
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1 Introduction 

For many Natural Language Processing (NLP) tasks, such as information extraction, 

spelling correction or word sense disambiguation, knowing the semantic similarity of 

words can be very helpful. Therefore, in the last approximately 20 years, much re-

search has been done on developing methods that can automatically compute the se-

mantic similarity of words. Most of the best performing methods employ web search 

engines (for example Google or Yahoo!) or large lexical databases (such as WordNet 

or Roget's Thesaurus) in order to compute word similarity. Although their application 

can be advantageous for many reasons, and systems using them tend to perform well, 

they also have many disadvantages. 

Using web search engines in NLP tasks can have many drawbacks, as noted by 

Kilgarriff [1] among others. First, the returned page hit counts are not exact counts 

and they change over time. Furthermore, queries can have no linguistic restrictions 

and punctuation cannot be used. Moreover, their use can be limited and time consum-

ing. Finally, they usually have a constraint on the number of pages returned per query. 

Employing large lexical databases induce other problems. Methods that can auto-

matically compute the semantic similarity of words are especially useful for uncom-
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mon words not included in lexical databases and thesauri. However, an algorithm that 

solely relies on lexical databases is not able to compute the similarity of such words, 

and therefore cannot be used in those cases when the most useful they would be. Fur-

thermore, as languages evolve over time and new words are created every day, these 

lexical databases should be revised constantly, which is a costly task. Moreover, every 

manually created database is prone to human errors: important words, word meanings 

(called synsets in WordNet) and relations can be missing from them. 

Summing up, there are situations, where the usage of web search engines or large 

lexical databases is not suitable or feasible because of the above mentioned problems. 

In those cases, such methods are needed that use neither web search engines nor lexi-

cal databases. Therefore, we constructed methods that solely rely on large static cor-

pora.1 They first process the used corpora and create a feature vector for each word 

using context words or grammatical relations as features and some weighting scheme. 

Then, they compute word similarity based on the similarity of these word vectors. 

Beside using the created methods by themselves, a number of combination of the 

different methods were also examined. Tested on two different datasets, namely the 

TOEFL synonym questions and the Miller-Charles word pairs, they give comparable 

results to other methods. 

The rest of the paper is structured as follows. We first give a short overview of the 

different kinds of existing methods used for computing semantic similarity in Section 

2. Then, in Section 3, we describe our methods in detail. Finally, in Sections 4 and 5, 

we demonstrate our results and draw conclusions from them. 

2 Related Methods 

The methods computing semantic similarity can use a variety of sources and can 

compute the semantic similarity of words differently. There exist methods that make 

use of large lexical databases, such as the WordNet or the Roget's Thesaurus. Others 

issue web search engine queries and process the results. Further, there are also nu-

merous methods that employ large static corpora to extract statistical information in 

order to solve the problem of semantic similarity. In this section, we would like to 

give a short overview of all these approaches. 

2.1 Methods Using Large Lexical Databases 

The methods using large lexical databases access the information stored in these data-

bases and compute word similarity based on the extracted information. Most of them 

use the WordNet, but others apply the Roget's Thesaurus. 

As an example, Jarmasz and Szpakowicz [2] defines the similarity of two words 

based on their distance in Roget's Thesaurus, i.e. the number of edges between them. 

                                                           
1  Although WordNet is used for obtaining the lemmas of words, it is not used for anything 

else. This could be substituted with other methods though. 



A bag-of-words method based on WordNet was proposed by Patwardhan and 

Pedersen [3]. For each input word it creates a feature vector from the words contained 

in their gloss and the words with distance 1 from that input word. The similarity of 

words is then defined as the cosine similarity of their vectors. 

Tsatsaronis et al. [4] also defines a similarity score using WordNet. To compute 

this, they consider the distance of words in WordNet, the depth of the nodes between 

them and the types of relations on the route between them (they use all the relation 

types that can be found in WordNet). They extended their measure, so that it is able to 

compare not only words, but also longer texts. 

2.2 Web Search-Based Methods 

There are also numerous methods that try to estimate the similarity of words by issu-

ing web search queries with the given words and then using the returned page hit 

counts and snippets. The most important of these are presented next. 

Higgins [5] first issues queries with the words to be compared independently. 

Then, he also issues queries in which the two words are next to each other. Finally, 

the similarity of these words is defined as their pointwise mutual information comput-

ed from the returned page hit counts. 

Sahami and Heilman [6] collect the snippets returned for input queries. For each 

snippet they create a vector with TF-IDF weighting. Then, the vectors are normalized 

and the centroids of the set of vectors returned for a query are computed. The similari-

ty of queries is computed as the inner product of the centroids associated with them. 

The method of Kulkarni and Caragea [7] is composed of two parts. The first part 

assigns to any input word a set of the most associated words with it, thus creating a 

concept cloud for each input word. Then, in the second part, these concept clouds are 

compared, and the semantic similarity of the words is determined by the similarity of 

their concept clouds. In both parts they issue web search queries. 

2.3 Methods Employing Large Static Corpora 

Methods in this category usually build a vector for each word based on their contexts 

found in the used static corpora and define word similarity as the similarity of their 

vectors. Although our methods are similar to those below, ours use new features, 

weighting schemes and vector similarity measures in addition to the existing ones.  

The method called Latent Semantic Analysis (LSA), introduced by Landauer and 

Dumais [8], is very similar to Latent Semantic Indexing (LSI). It first creates a matrix 

of words and chunks of text (e.g. sentences or paragraphs), where the cells contain the 

weight of the words regarding the chunks of text. Then, it applies Singular Value 

Decomposition (SVD) to compress this matrix. Finally, it computes the similarity of 

words based on the similarity of their vectors in this compressed matrix. 

The method of Lin [9] assigns a feature set to every input word, which contains 

those (grammatical relation, feature word)-pairs that co-occurred with the input word 

in a corpus. Similarity is then defined using the information content of the feature sets 

of the words as well as the information content of the intersection of their feature sets. 



The method proposed by Rapp [10] creates a numerical feature vector for words 

based on the contexts they have in a corpus. In these vectors those words are con-

tained, that occur within a 2 word window in the used corpus, and their score is based 

on word association measures such as pointwise mutual information. The matrix 

formed by these feature vectors is then compressed using SVD. Finally, the similarity 

of the words is computed as the similarity of their compressed feature vectors. 

Gabrilovich and Markovitch [11] maps input texts into weighted vectors over Wik-

ipedia articles, based on the similarity of the texts and the articles. Then, they com-

pute the similarity of input texts as the cosine similarity of their vectors. 

2.4 Combined Methods 

All methods of the three categories above have their advantages and disadvantages. 

Methods using lexical databases are usually exact for the words included in them but 

have poor coverage on specific professional domains. Using large static corpora pro-

vides a great opportunity for inspecting the distribution of neighboring words for any 

word, but they can still provide less than enough data for very rare words. By issuing 

web search queries there is enough information for almost every word, but such 

methods have the many disadvantages described in Section 1. Because of these differ-

ent characteristics, a number of researches tried to combine different types of methods 

in order to combine the best properties of them, thus creating new methods. 

Resnik [12] assigns a probability for each synset in WordNet, based on the proba-

bility of the occurrence of its words in a static corpus. The similarity of words is then 

given as the maximum information content of their least common subsumer synset. 

Lin [9] defined another measure, which is very similar to Resnik's [12]. The differ-

ence is that beside the information content of the least common subsumer of the input 

words, it employs the information content of the words' synsets too. 

The method of Turney et al. [13] is a combination of 4 different methods. One is 

the LSA [8], the second is a web search based method called PMI-IR, the third 

searches in an online thesaurus (Wordsmyth thesaurus online) and the last processes 

the snippets returned by web queries. These 4 methods were then combined in differ-

ent ways, such as with the product rule, to provide a final similarity measure. 

The hyperlink structure of the Wikipedia was utilized by Milne and Witten [14]. 

They employ the anchors found in the articles (links to other articles), and they repre-

sent each article with the set of its incoming and outgoing links. First, they identify 

candidate articles for each input word using the text of anchors in the article. Then, 

after resolving ambiguities using different approaches, they compute the similarity of 

the articles associated with the input words using the page hit counts of web queries. 

Agirre et al. [15] use a combination of two methods. The first assigns a vector to 

each word by running the PageRank algorithm on WordNet. The other uses statistical 

co-occurrence data from a corpus of 1.6 Terawords, and has 3 versions: a bag-of-

words approach, a version using a static context window and another using dependen-

cy relations. In both methods, word similarity is computed using a vector similarity 

measure. To combine the two main methods, they train an SVM.  



3 Our Methods 

The main idea behind our approach, as behind most other ones, is that semantically 

similar words behave similarly and occur in similar contexts. Therefore, our algo-

rithms first create a feature vector for each word based on statistical co-occurrence 

information gathered from corpora, which is followed by the comparison of word 

pairs using a vector similarity measurement. There are several variations of our meth-

od, using different features, vector types, weights and vector comparison measures. 

An earlier version of some of these methods was previously described in Dobó [16]. 

3.1 Feature Extraction 

For the task of extracting features from the used corpora we applied two main ap-

proaches. The first and simpler one is the bag-of-words approach. It finds each occur-

rence of the selected word in the used corpora, then includes every word in a window 

of 3 words within that occurrence in the feature vector. However, it is different from 

regular bag-of-words approaches, since (in case of using numerical feature vectors) in 

addition to the weighting scheme it uses, described in Section 3.3, it counts the occur-

rences of close words multiple times. Specifically, the frequency this method assigns 

to a feature word is based on the distance of the observed word and the feature word. 

Several different techniques were tested, the best was found to be using frequencies 

that scale quadratically with the distance (with a window size of 3, frequency 9 is 

assigned to distance 1, frequency 4 to distance 2 and frequency 1 to distance 3). 

Our other approach uses features based on grammatical relations obtained from the 

used corpora. Grammatical relations were extracted using the C&C CCG parser [17]. 

For each word, (grammatical relation, feature word)-pairs are included in the feature 

vector, where the feature words are those that are in a grammatical relation with the 

original word, similarly as in Lin [9]. Some example features are (subject-of, word), 

(object-of, word) and (preposition, word) among others. It is important to note that in 

this approach paraphrases, prepositions, patientive ambitransitive verbs and passive 

verbs were treated similarly as in Dobó [16] and in Dobó and Pulman [18]. 

Both approaches were tested using three corpora, namely the British National Cor-

pus (BNC), the Web 1T 5-gram Corpus (only the 4 and 5-grams), and the corpus of 

the English Wikipedia2. Since any corpus can be used to create the feature vectors, 

our methods can be easily adapted to different domains and languages if needed. 

3.2 Creating and Comparing the Feature Vectors 

For creating and comparing the feature vectors of words two main approaches were 

tested. First, the approach presented by Lin [9] (the one using static corpora and not 

using WordNet, presented in Section 2.3) was re-implemented with some modifica-

tions. This method uses binary feature vectors (i.e. feature sets), indicating whether a 

                                                           
2  Pre-processed using the wikipedia2text_rsm_mods toolkit by Rafael Mudge, available from 

http://blog.afterthedeadline.com/2009/12/04/generating-a-plain-text-corpus-from-wikipedia. 



feature has occurred with the given word, without weight. Then, to compute the simi-

larity of words, it compares these feature vectors using the similarity measure of Lin 

[9], which assigns a similarity score of 0 to 1 (inclusive) for a word pair. Although the 

base of this approach is the same as described in Lin [9], in order to improve its per-

formance there were some changes made in its implementation regarding the treat-

ment of paraphrases, patientive ambitransitive verbs and passive verbs, similarly as in 

Dobó [16] and in Dobó and Pulman [18]. 

The previous approach does not take into account the frequency with which a fea-

ture co-occurred with a word. But, this co-occurrence frequency also contains useful 

information, so it is logical to try to use that information too. Therefore another meth-

od was created that does not only store the features for a word in a set, rather it creates 

a weighted numerical vector from them. Then, the similarity of these vectors provides 

the similarity of words. The types of weights and the vector comparison measures 

used in this approach are described in Section 3.3 and 3.4, respectively. 

3.3 Weighting Inside the Numerical Feature Vectors 

Weighting can be used to assign importance to the features, and thus to consider dif-

ferent aspects of the features significant. Seven different weighting schemes were 

tested inside the numerical feature vectors. The description of these follows now. 

The simplest of them is the co-occurrence frequency of the (word, feature) pairs 

(freq). In this case, the importance of a feature is based on the number of times it co-

occurred with the word. 

The second weighting is a slightly modified version of the first one. Instead of the 

simple frequencies of the (word, feature) pairs, the logarithm of this frequency is 

stored, with a smoothing parameter of 1 (logfreq). This way, (word, feature) pairs 

with very high frequency cannot be overweighted. 

The problem of the first two weighting methods is that they assign an overly high 

importance to those features that occur very frequently in any context, such as the 

features (subject-of, be) or (object-of, have). It would be better to assign a low im-

portance to features like these, since they do not tell much information about the 

words they are connected to, and assign high importance to those features instead that 

are specific to the words. One such measure is the pointwise mutual information 

(pmi) [19], which measures association strength. This was chosen as the third type of 

weight. However, since it is unstable for very small counts [19], (word, feature) pairs 

with a frequency of at most 5 are discarded when using this weighting scheme. 

Another way for testing the strength of association is using the log-likelihood ratio 

[20], which was also employed as a weight in the numerical feature vectors (loglh).  

The fifth measure was a combination of two different measures. The first is the 

logarithm of the frequency of the (word, feature) pairs. But the problem is, as noted 

before, that it assigns a high value for the most common features that are not specific 

to any word. This is compensated by the second part, which is the logarithm of the 

number of words that occur with the given feature. Both logarithms use a smoothing 

parameter of 1. The combined measure is calculated as the quotient of the two parts: 
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where xyc  is the frequency of the co-occurrence of x and y, and )(yf  is the number 

of words, with which feature y occurs [9]. 

The sixth weight is also a combined measure. Its first part is again the logarithm of 

the frequency of the (word, feature) pairs. And its second part, which is the logarithm 

of the information content of the feature, is again used for compensation. In case of 

both logarithms, a smoothing parameter of 1 was used. The two parts are multiplied 

together to form the combined measure: 
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where xyc  is same as before and )(yI  is the information content of feature y [9]. 

The last implemented weighting measure is the entropy-based measured used by 

Rapp [10] (rapp).  

3.4 Similarity Measures for the Numerical Feature Vectors 

Two frequently used vector similarity measures were tested in the algorithms with 

numerical feature vectors. The first was the cosine similarity, which compares two 

vectors by computing the cosine of the angle between them [20]. The second was a 

generalization of the Dice coefficient. In its original form, it can only compute the 

similarity between Boolean vectors. In order to use it for numerical vectors, we used 

its generalization proposed by Lin [9]. Both similarity measures return a similarity 

value between -1 and +1 (inclusive). 

3.5 Determining the Part-of-Speech of the Input Words 

There are many words that can take more than one part-of-speech (POS). For exam-

ple, the words run and bank can be both nouns and verbs. When these types of words 

are used with different POSs, different features are relevant. Therefore, first the POS 

of the input words needs to be determined, and the feature vectors can only be created 

after this. The POS of these controversial words can be inferred from the other words 

contained in the same question. For our methods, we assumed that each input word is 

a verb, noun, adjective or adverb and each question contains words of the same POS. 

For a question the part-of-speech maximizing the following formula is chosen: 
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where p  can take any of the four possible POSs, q  denotes the question, w  runs 

through the words of q  and pwf ,  is the frequency of w  having p  part-of-speech. 



Table 1. Results on the Miller-Charles dataset (Spearman correlation). Notations: bnc/enwiki 

/web1t5gram denotes the corpus; bagofwords/parsed denotes the used feature types (bag-of-

words or grammatical relations); lin/num denotes the method (the one based on Lin [9] or  the 

one using numerical feature vectors); cos/dice denotes the similarity measure; freq/logfreq/pmi/ 

loglh/qw/pw/rapp denotes the weighting scheme; + denotes the combination of two methods. 

Method Result 

bnc-bagofwords-num-cos-qw+enwiki-parsed-num-cos-freq 0.773 

bnc-bagofwords-num-cos-qw+enwiki-parsed-num-cos-qw 0.750 

enwiki-bagofwords-num-cos-pmi+bnc-parsed-num-cos-qw 0.737 

enwiki-bagofwords-num-cos-pmi+enwiki-parsed-num-cos-pmi 0.729 

enwiki-parsed-num-cos-pmi 0.727 

bnc-parsed-num-cos-loglh+enwiki-parsed-num-cos-pmi 0.712 

enwiki-bagofwords-num-cos-pmi 0.684 

enwiki-parsed-num-dice-pmi 0.661 

web1t5gram-parsed-num-cos-loglh 0.631 

enwiki-bagofwords-num-cos-pmi+enwiki-parsed-lin 0.616 

bnc-parsed-lin 0.417 

3.6 Combination of the Individual Methods 

In order to combine the strengths of the different methods and achieve better results, 

not only the above described methods, but their combinations were also tested. When 

two methods were combined, the similarity score for each word pair was calculated 

separately. Afterwards, the logarithm of the scores (with a smoothing parameter of 1) 

were multiplied together to form the similarity score of the combined method. Taking 

the logarithm of the scores before multiplying them helps balancing the results: we 

consider a word pair having two moderate scores better than a word pair having a 

very low and a very high score. 

4 Results 

All the methods described in the previous section were tested on two different da-

tasets, namely the Miller-Charles word pairs (MC) and the TOEFL synonym ques-

tions. Both data sets were widely used in the evaluation of methods computing se-

mantic similarity by others. The first one contains 30 word pairs, for which a similari-

ty score between 0 to 4 was assigned by 38 undergraduate students. Since there were 

words in 2 word pairs that were not included in previous WordNet versions, in most 

research these pairs were omitted. Consequently, only the remaining 28 word pairs 

were used here as well. The other data set contains 80 synonym questions from the 

TOEFL language exam. In all of the questions, a question word is given with 4 alter-

natives, and the task is to determine the most similar word to the question word. 



Table 2. Results on the TOEFL questions (percent of correct answers) 

Method Result 

bnc-parsed-num-cos-loglh+enwiki-parsed-num-cos-pmi 88.75% 

enwiki-bagofwords-num-cos-pmi+enwiki-parsed-num-cos-pmi 87.50% 

enwiki-bagofwords-num-cos-pmi+bnc-parsed-num-cos-qw 86.25% 

enwiki-bagofwords-num-cos-pmi 83.75% 

enwiki-parsed-num-cos-pmi 82.50% 

enwiki-bagofwords-num-cos-pmi+enwiki-parsed-lin 81.25% 

enwiki-parsed-num-dice-pmi 78,75% 

bnc-bagofwords-num-cos-qw+enwiki-parsed-num-cos-qw 77.50% 

bnc-bagofwords-num-cos-qw+enwiki-parsed-num-cos-freq 72.50% 

bnc-parsed-lin 68.75% 

web1t5gram-parsed-num-cos-loglh 60.00% 

Table 3. Comparison with other results on the Miller-Charles dataset (Spearman correlation) 

Method Result Used data 

Human upper bound [12] 0.934  

Agirre et al. [15] 0.92 WordNet, corpus 

Patwardhan and Pedersen [3] 0.91 WordNet 

Jarmasz and Szpakowicz [2] 0.87 Roget's Thesaurus 

Tsatsaronis et al. [4] 0.856 WordNet 

Kulkarni and Caragea [7] 0.835 Web search 

Lin [9] 0.82 WordNet, corpus 

Resnik [12] 0.81 WordNet, corpus 

bnc-bagofwords-num-cos-qw+ 

enwiki-parsed-num-cos-freq 

0.773 corpus 

bnc-bagofwords-num-cos-qw+ 

enwiki-parsed-num-cos-qw 

0.750 corpus 

enwiki-bagofwords-num-cos-pmi+ 

bnc-parsed-num-cos-qw 

0.737 corpus 

enwiki-bagofwords-num-cos-pmi+ 

enwiki-parsed-num-cos-pmi 

0.729 corpus 

Gabrilovich and Markovitch [11] 0.72 corpus 

bnc-parsed-num-cos-loglh+ 

enwiki-parsed-num-cos-pmi 

0.712 corpus 

Milne and Witten [14] 0.70 Wikipedia links, Web search 

Sahami and Heilman [6] 0.618 Web search 



In case of the MC dataset, the average scores of the 38 students were used, and the 

evaluation was done by computing the Spearman correlation of these scores and the 

scores returned by our methods. When testing with the TOEFL questions, the evalua-

tion measure was the percentage of the correct answers given. 

The results of some selected methods are presented in Tables 1 and 2. It can be 

seen that the best performance was 0.773 on the MC dataset and 88.75% on the 

TOEFL questions, both achieved by a combined method. The best results of individu-

al methods (without combination) were 0.727 and 83.75%, respectively. The scores of 

the methods using numerical feature vectors were mostly higher than the scores of the 

approach based on Lin [9], and still better results were achieved by combining the 

different methods. The methods that achieved best performance considering both 

datasets were the bnc-parsed-num-cos-loglh+enwiki-parsed-num-cos-pmi (MC: 

0.712, TOEFL: 88.75%), the enwiki-bagofwords-num-cos-pmi+enwiki-parsed-num-

cos-pmi (MC: 0.729, TOEFL: 87.50%) and the enwiki-bagofwords-num-cos-

pmi+bnc-parsed-num-cos-qw (MC: 0.737, TOEFL: 86.25%). Comparison with other 

methods is shown in Tables 3 and 4, which shows that our methods had an average 

performance on the MC dataset, while one of our methods achieving the 3rd best 

score on the TOEFL questions. Most importantly, however, if we only take those 

methods into account that solely use static corpora, our methods perform 1st and 2nd 

best on the two datasets, respectively. 

5 Conclusion and Future Work 

In this article we have demonstrated methods computing the semantic similarity of 

words that compare favorably to other measures. They use statistical co-occurrence 

data extracted from static corpora to create feature vectors for the input words, and 

then define the similarity of the words as the similarity of their vectors. Several varia-

tions were created, using different features, vector types, weights and vector compari-

son measures, and combinations of our individual methods were also examined. 

All these methods were tested on two datasets, namely the Miller-Charles dataset 

(MC) and the TOEFL synonym questions. On the MC dataset our best method had an 

average performance (0.773), with many others achieving better results. On the other 

hand, our best accuracy of 88.75% on the TOEFL questions is 3rd best overall and is 

much higher than the score achieved by an average non-English US college applicant. 

When comparing our methods with only those methods that solely rely on static cor-

pora, according to our best knowledge they reach 1st and 2nd place on the two da-

tasets, respectively. 

Based on that, we think that our best methods could be successfully used for solv-

ing real-life problems too. The fact that they perform better on the TOEFL questions 

than on the MC dataset indicates that they are more suitable for selecting the most 

similar word for an input word from a list of candidates than giving an exact similari-

ty value for a pair of words. 

In the future, it would be worthy to test our methods with even larger corpora, as 

more data can result in better accuracy (for example, Agirre et al. [15] use a corpus of 



1.6 Terawords and run their algorithm on 2000 CPU cores). As any corpus can be 

used to extract co-occurrence information, our methods could easily be adapted to 

different languages (especially in case of the bag-of-words approach). Therefore, we 

would like to try our algorithms with languages other than English, too. Furthermore, 

as described in Section 2.4, methods that are a combination of different types of 

methods can combine the advantages of those methods combined. We therefore think 

that by creating a combined method whose one method is ours and the other meth-

od(s) is (are) using web search engines or large lexical databases, our results could be 

further improved. 

Table 4. Comparison with other results on the TOEFL questions (percent of correct answers) 

Method Result Used data 

Turney et al. [13] 97.5% Web search, thesaurus 

Rapp [10] 92.5% corpus  

bnc-parsed-num-cos-loglh+ 

enwiki-parsed-num-cos-pmi 

88.75% corpus 

enwiki-bagofwords-num-cos-pmi+ 

enwiki-parsed-num-cos-pmi 

87.50% corpus 

Tsatsaronis et al. [4] 87.5% WordNet 

enwiki-bagofwords-num-cos-pmi+ 

bnc-parsed-num-cos-qw 

86.25% corpus 

enwiki-bagofwords-num-cos-pmi 83.75% corpus 

Higgins [5] 81.3% Web search 

Jarmasz and Szpakowicz [2] 78.7% Roget's Thesaurus 

Average non-English US college  

applicant [8] 

64.5%  

Landauer and Dumais [8] 64.3% corpus 

Lin [9] 24.0% WordNet, corpus 

Resnik [12] 20.3% WordNet, corpus 
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