
The original publication is available at www.springerlink.com via

http://dx.doi.org/10.1007/978-3-642-35843-2_42.

Computing Semantic Similarity Using Large Static

Corpora

András Dobó, János Csirik

University of Szeged, Institute of Informatics, Szeged, Hungary

{dobo,csirik}@inf.u-szeged.hu

Abstract. Measuring semantic similarity of words is of crucial importance in

Natural Language Processing. Although there are many different approaches for

this task, there is still room for improvement. In contrast to many other methods

that use web search engines or large lexical databases, we developed such

methods that solely rely on large static corpora. They create a binary or numeri-

cal feature vector for each word making use of statistical information obtained

from the corpora. These vectors contain features based on context words or

grammatical relations extracted from the corpora and they employ diverse

weighting schemes. After creating the feature vectors, word similarity is calcu-

lated using various vector similarity measures. Beside the individual methods,

their combinations were also tested. Evaluated on both the Miller-Charles da-

taset and the TOEFL synonym questions, they achieve competitive results to

recent methods.

Keywords. semantic similarity, static corpora, co-occurrence statistics

1 Introduction

For many Natural Language Processing (NLP) tasks, such as information extraction,

spelling correction or word sense disambiguation, knowing the semantic similarity of

words can be very helpful. Therefore, in the last approximately 20 years, much re-

search has been done on developing methods that can automatically compute the se-

mantic similarity of words. Most of the best performing methods employ web search

engines (for example Google or Yahoo!) or large lexical databases (such as WordNet

or Roget's Thesaurus) in order to compute word similarity. Although their application

can be advantageous for many reasons, and systems using them tend to perform well,

they also have many disadvantages.

Using web search engines in NLP tasks can have many drawbacks, as noted by

Kilgarriff [1] among others. First, the returned page hit counts are not exact counts

and they change over time. Furthermore, queries can have no linguistic restrictions

and punctuation cannot be used. Moreover, their use can be limited and time consum-

ing. Finally, they usually have a constraint on the number of pages returned per query.

Employing large lexical databases induce other problems. Methods that can auto-

matically compute the semantic similarity of words are especially useful for uncom-

http://www.springerlink.com/
http://dx.doi.org/10.1007/978-3-642-35843-2_42

mon words not included in lexical databases and thesauri. However, an algorithm that

solely relies on lexical databases is not able to compute the similarity of such words,

and therefore cannot be used in those cases when the most useful they would be. Fur-

thermore, as languages evolve over time and new words are created every day, these

lexical databases should be revised constantly, which is a costly task. Moreover, every

manually created database is prone to human errors: important words, word meanings

(called synsets in WordNet) and relations can be missing from them.

Summing up, there are situations, where the usage of web search engines or large

lexical databases is not suitable or feasible because of the above mentioned problems.

In those cases, such methods are needed that use neither web search engines nor lexi-

cal databases. Therefore, we constructed methods that solely rely on large static cor-

pora.1 They first process the used corpora and create a feature vector for each word

using context words or grammatical relations as features and some weighting scheme.

Then, they compute word similarity based on the similarity of these word vectors.

Beside using the created methods by themselves, a number of combination of the

different methods were also examined. Tested on two different datasets, namely the

TOEFL synonym questions and the Miller-Charles word pairs, they give comparable

results to other methods.

The rest of the paper is structured as follows. We first give a short overview of the

different kinds of existing methods used for computing semantic similarity in Section

2. Then, in Section 3, we describe our methods in detail. Finally, in Sections 4 and 5,

we demonstrate our results and draw conclusions from them.

2 Related Methods

The methods computing semantic similarity can use a variety of sources and can

compute the semantic similarity of words differently. There exist methods that make

use of large lexical databases, such as the WordNet or the Roget's Thesaurus. Others

issue web search engine queries and process the results. Further, there are also nu-

merous methods that employ large static corpora to extract statistical information in

order to solve the problem of semantic similarity. In this section, we would like to

give a short overview of all these approaches.

2.1 Methods Using Large Lexical Databases

The methods using large lexical databases access the information stored in these data-

bases and compute word similarity based on the extracted information. Most of them

use the WordNet, but others apply the Roget's Thesaurus.

As an example, Jarmasz and Szpakowicz [2] defines the similarity of two words

based on their distance in Roget's Thesaurus, i.e. the number of edges between them.

1 Although WordNet is used for obtaining the lemmas of words, it is not used for anything

else. This could be substituted with other methods though.

A bag-of-words method based on WordNet was proposed by Patwardhan and

Pedersen [3]. For each input word it creates a feature vector from the words contained

in their gloss and the words with distance 1 from that input word. The similarity of

words is then defined as the cosine similarity of their vectors.

Tsatsaronis et al. [4] also defines a similarity score using WordNet. To compute

this, they consider the distance of words in WordNet, the depth of the nodes between

them and the types of relations on the route between them (they use all the relation

types that can be found in WordNet). They extended their measure, so that it is able to

compare not only words, but also longer texts.

2.2 Web Search-Based Methods

There are also numerous methods that try to estimate the similarity of words by issu-

ing web search queries with the given words and then using the returned page hit

counts and snippets. The most important of these are presented next.

Higgins [5] first issues queries with the words to be compared independently.

Then, he also issues queries in which the two words are next to each other. Finally,

the similarity of these words is defined as their pointwise mutual information comput-

ed from the returned page hit counts.

Sahami and Heilman [6] collect the snippets returned for input queries. For each

snippet they create a vector with TF-IDF weighting. Then, the vectors are normalized

and the centroids of the set of vectors returned for a query are computed. The similari-

ty of queries is computed as the inner product of the centroids associated with them.

The method of Kulkarni and Caragea [7] is composed of two parts. The first part

assigns to any input word a set of the most associated words with it, thus creating a

concept cloud for each input word. Then, in the second part, these concept clouds are

compared, and the semantic similarity of the words is determined by the similarity of

their concept clouds. In both parts they issue web search queries.

2.3 Methods Employing Large Static Corpora

Methods in this category usually build a vector for each word based on their contexts

found in the used static corpora and define word similarity as the similarity of their

vectors. Although our methods are similar to those below, ours use new features,

weighting schemes and vector similarity measures in addition to the existing ones.

The method called Latent Semantic Analysis (LSA), introduced by Landauer and

Dumais [8], is very similar to Latent Semantic Indexing (LSI). It first creates a matrix

of words and chunks of text (e.g. sentences or paragraphs), where the cells contain the

weight of the words regarding the chunks of text. Then, it applies Singular Value

Decomposition (SVD) to compress this matrix. Finally, it computes the similarity of

words based on the similarity of their vectors in this compressed matrix.

The method of Lin [9] assigns a feature set to every input word, which contains

those (grammatical relation, feature word)-pairs that co-occurred with the input word

in a corpus. Similarity is then defined using the information content of the feature sets

of the words as well as the information content of the intersection of their feature sets.

The method proposed by Rapp [10] creates a numerical feature vector for words

based on the contexts they have in a corpus. In these vectors those words are con-

tained, that occur within a 2 word window in the used corpus, and their score is based

on word association measures such as pointwise mutual information. The matrix

formed by these feature vectors is then compressed using SVD. Finally, the similarity

of the words is computed as the similarity of their compressed feature vectors.

Gabrilovich and Markovitch [11] maps input texts into weighted vectors over Wik-

ipedia articles, based on the similarity of the texts and the articles. Then, they com-

pute the similarity of input texts as the cosine similarity of their vectors.

2.4 Combined Methods

All methods of the three categories above have their advantages and disadvantages.

Methods using lexical databases are usually exact for the words included in them but

have poor coverage on specific professional domains. Using large static corpora pro-

vides a great opportunity for inspecting the distribution of neighboring words for any

word, but they can still provide less than enough data for very rare words. By issuing

web search queries there is enough information for almost every word, but such

methods have the many disadvantages described in Section 1. Because of these differ-

ent characteristics, a number of researches tried to combine different types of methods

in order to combine the best properties of them, thus creating new methods.

Resnik [12] assigns a probability for each synset in WordNet, based on the proba-

bility of the occurrence of its words in a static corpus. The similarity of words is then

given as the maximum information content of their least common subsumer synset.

Lin [9] defined another measure, which is very similar to Resnik's [12]. The differ-

ence is that beside the information content of the least common subsumer of the input

words, it employs the information content of the words' synsets too.

The method of Turney et al. [13] is a combination of 4 different methods. One is

the LSA [8], the second is a web search based method called PMI-IR, the third

searches in an online thesaurus (Wordsmyth thesaurus online) and the last processes

the snippets returned by web queries. These 4 methods were then combined in differ-

ent ways, such as with the product rule, to provide a final similarity measure.

The hyperlink structure of the Wikipedia was utilized by Milne and Witten [14].

They employ the anchors found in the articles (links to other articles), and they repre-

sent each article with the set of its incoming and outgoing links. First, they identify

candidate articles for each input word using the text of anchors in the article. Then,

after resolving ambiguities using different approaches, they compute the similarity of

the articles associated with the input words using the page hit counts of web queries.

Agirre et al. [15] use a combination of two methods. The first assigns a vector to

each word by running the PageRank algorithm on WordNet. The other uses statistical

co-occurrence data from a corpus of 1.6 Terawords, and has 3 versions: a bag-of-

words approach, a version using a static context window and another using dependen-

cy relations. In both methods, word similarity is computed using a vector similarity

measure. To combine the two main methods, they train an SVM.

3 Our Methods

The main idea behind our approach, as behind most other ones, is that semantically

similar words behave similarly and occur in similar contexts. Therefore, our algo-

rithms first create a feature vector for each word based on statistical co-occurrence

information gathered from corpora, which is followed by the comparison of word

pairs using a vector similarity measurement. There are several variations of our meth-

od, using different features, vector types, weights and vector comparison measures.

An earlier version of some of these methods was previously described in Dobó [16].

3.1 Feature Extraction

For the task of extracting features from the used corpora we applied two main ap-

proaches. The first and simpler one is the bag-of-words approach. It finds each occur-

rence of the selected word in the used corpora, then includes every word in a window

of 3 words within that occurrence in the feature vector. However, it is different from

regular bag-of-words approaches, since (in case of using numerical feature vectors) in

addition to the weighting scheme it uses, described in Section 3.3, it counts the occur-

rences of close words multiple times. Specifically, the frequency this method assigns

to a feature word is based on the distance of the observed word and the feature word.

Several different techniques were tested, the best was found to be using frequencies

that scale quadratically with the distance (with a window size of 3, frequency 9 is

assigned to distance 1, frequency 4 to distance 2 and frequency 1 to distance 3).

Our other approach uses features based on grammatical relations obtained from the

used corpora. Grammatical relations were extracted using the C&C CCG parser [17].

For each word, (grammatical relation, feature word)-pairs are included in the feature

vector, where the feature words are those that are in a grammatical relation with the

original word, similarly as in Lin [9]. Some example features are (subject-of, word),

(object-of, word) and (preposition, word) among others. It is important to note that in

this approach paraphrases, prepositions, patientive ambitransitive verbs and passive

verbs were treated similarly as in Dobó [16] and in Dobó and Pulman [18].

Both approaches were tested using three corpora, namely the British National Cor-

pus (BNC), the Web 1T 5-gram Corpus (only the 4 and 5-grams), and the corpus of

the English Wikipedia2. Since any corpus can be used to create the feature vectors,

our methods can be easily adapted to different domains and languages if needed.

3.2 Creating and Comparing the Feature Vectors

For creating and comparing the feature vectors of words two main approaches were

tested. First, the approach presented by Lin [9] (the one using static corpora and not

using WordNet, presented in Section 2.3) was re-implemented with some modifica-

tions. This method uses binary feature vectors (i.e. feature sets), indicating whether a

2 Pre-processed using the wikipedia2text_rsm_mods toolkit by Rafael Mudge, available from

http://blog.afterthedeadline.com/2009/12/04/generating-a-plain-text-corpus-from-wikipedia.

feature has occurred with the given word, without weight. Then, to compute the simi-

larity of words, it compares these feature vectors using the similarity measure of Lin

[9], which assigns a similarity score of 0 to 1 (inclusive) for a word pair. Although the

base of this approach is the same as described in Lin [9], in order to improve its per-

formance there were some changes made in its implementation regarding the treat-

ment of paraphrases, patientive ambitransitive verbs and passive verbs, similarly as in

Dobó [16] and in Dobó and Pulman [18].

The previous approach does not take into account the frequency with which a fea-

ture co-occurred with a word. But, this co-occurrence frequency also contains useful

information, so it is logical to try to use that information too. Therefore another meth-

od was created that does not only store the features for a word in a set, rather it creates

a weighted numerical vector from them. Then, the similarity of these vectors provides

the similarity of words. The types of weights and the vector comparison measures

used in this approach are described in Section 3.3 and 3.4, respectively.

3.3 Weighting Inside the Numerical Feature Vectors

Weighting can be used to assign importance to the features, and thus to consider dif-

ferent aspects of the features significant. Seven different weighting schemes were

tested inside the numerical feature vectors. The description of these follows now.

The simplest of them is the co-occurrence frequency of the (word, feature) pairs

(freq). In this case, the importance of a feature is based on the number of times it co-

occurred with the word.

The second weighting is a slightly modified version of the first one. Instead of the

simple frequencies of the (word, feature) pairs, the logarithm of this frequency is

stored, with a smoothing parameter of 1 (logfreq). This way, (word, feature) pairs

with very high frequency cannot be overweighted.

The problem of the first two weighting methods is that they assign an overly high

importance to those features that occur very frequently in any context, such as the

features (subject-of, be) or (object-of, have). It would be better to assign a low im-

portance to features like these, since they do not tell much information about the

words they are connected to, and assign high importance to those features instead that

are specific to the words. One such measure is the pointwise mutual information

(pmi) [19], which measures association strength. This was chosen as the third type of

weight. However, since it is unstable for very small counts [19], (word, feature) pairs

with a frequency of at most 5 are discarded when using this weighting scheme.

Another way for testing the strength of association is using the log-likelihood ratio

[20], which was also employed as a weight in the numerical feature vectors (loglh).

The fifth measure was a combination of two different measures. The first is the

logarithm of the frequency of the (word, feature) pairs. But the problem is, as noted

before, that it assigns a high value for the most common features that are not specific

to any word. This is compensated by the second part, which is the logarithm of the

number of words that occur with the given feature. Both logarithms use a smoothing

parameter of 1. The combined measure is calculated as the quotient of the two parts:

))(1ln(

)1ln(
),(

yf

c
yxqw

xy




 (1)

where xyc is the frequency of the co-occurrence of x and y, and)(yf is the number

of words, with which feature y occurs [9].

The sixth weight is also a combined measure. Its first part is again the logarithm of

the frequency of the (word, feature) pairs. And its second part, which is the logarithm

of the information content of the feature, is again used for compensation. In case of

both logarithms, a smoothing parameter of 1 was used. The two parts are multiplied

together to form the combined measure:

))(1ln()1ln(),(yIcyxpw xy  (2)

where xyc is same as before and)(yI is the information content of feature y [9].

The last implemented weighting measure is the entropy-based measured used by

Rapp [10] (rapp).

3.4 Similarity Measures for the Numerical Feature Vectors

Two frequently used vector similarity measures were tested in the algorithms with

numerical feature vectors. The first was the cosine similarity, which compares two

vectors by computing the cosine of the angle between them [20]. The second was a

generalization of the Dice coefficient. In its original form, it can only compute the

similarity between Boolean vectors. In order to use it for numerical vectors, we used

its generalization proposed by Lin [9]. Both similarity measures return a similarity

value between -1 and +1 (inclusive).

3.5 Determining the Part-of-Speech of the Input Words

There are many words that can take more than one part-of-speech (POS). For exam-

ple, the words run and bank can be both nouns and verbs. When these types of words

are used with different POSs, different features are relevant. Therefore, first the POS

of the input words needs to be determined, and the feature vectors can only be created

after this. The POS of these controversial words can be inferred from the other words

contained in the same question. For our methods, we assumed that each input word is

a verb, noun, adjective or adverb and each question contains words of the same POS.

For a question the part-of-speech maximizing the following formula is chosen:

 



qw

pw
p

fpos)0001.1ln(maxarg , (3)

where p can take any of the four possible POSs, q denotes the question, w runs

through the words of q and pwf , is the frequency of w having p part-of-speech.

Table 1. Results on the Miller-Charles dataset (Spearman correlation). Notations: bnc/enwiki

/web1t5gram denotes the corpus; bagofwords/parsed denotes the used feature types (bag-of-

words or grammatical relations); lin/num denotes the method (the one based on Lin [9] or the

one using numerical feature vectors); cos/dice denotes the similarity measure; freq/logfreq/pmi/

loglh/qw/pw/rapp denotes the weighting scheme; + denotes the combination of two methods.

Method Result

bnc-bagofwords-num-cos-qw+enwiki-parsed-num-cos-freq 0.773

bnc-bagofwords-num-cos-qw+enwiki-parsed-num-cos-qw 0.750

enwiki-bagofwords-num-cos-pmi+bnc-parsed-num-cos-qw 0.737

enwiki-bagofwords-num-cos-pmi+enwiki-parsed-num-cos-pmi 0.729

enwiki-parsed-num-cos-pmi 0.727

bnc-parsed-num-cos-loglh+enwiki-parsed-num-cos-pmi 0.712

enwiki-bagofwords-num-cos-pmi 0.684

enwiki-parsed-num-dice-pmi 0.661

web1t5gram-parsed-num-cos-loglh 0.631

enwiki-bagofwords-num-cos-pmi+enwiki-parsed-lin 0.616

bnc-parsed-lin 0.417

3.6 Combination of the Individual Methods

In order to combine the strengths of the different methods and achieve better results,

not only the above described methods, but their combinations were also tested. When

two methods were combined, the similarity score for each word pair was calculated

separately. Afterwards, the logarithm of the scores (with a smoothing parameter of 1)

were multiplied together to form the similarity score of the combined method. Taking

the logarithm of the scores before multiplying them helps balancing the results: we

consider a word pair having two moderate scores better than a word pair having a

very low and a very high score.

4 Results

All the methods described in the previous section were tested on two different da-

tasets, namely the Miller-Charles word pairs (MC) and the TOEFL synonym ques-

tions. Both data sets were widely used in the evaluation of methods computing se-

mantic similarity by others. The first one contains 30 word pairs, for which a similari-

ty score between 0 to 4 was assigned by 38 undergraduate students. Since there were

words in 2 word pairs that were not included in previous WordNet versions, in most

research these pairs were omitted. Consequently, only the remaining 28 word pairs

were used here as well. The other data set contains 80 synonym questions from the

TOEFL language exam. In all of the questions, a question word is given with 4 alter-

natives, and the task is to determine the most similar word to the question word.

Table 2. Results on the TOEFL questions (percent of correct answers)

Method Result

bnc-parsed-num-cos-loglh+enwiki-parsed-num-cos-pmi 88.75%

enwiki-bagofwords-num-cos-pmi+enwiki-parsed-num-cos-pmi 87.50%

enwiki-bagofwords-num-cos-pmi+bnc-parsed-num-cos-qw 86.25%

enwiki-bagofwords-num-cos-pmi 83.75%

enwiki-parsed-num-cos-pmi 82.50%

enwiki-bagofwords-num-cos-pmi+enwiki-parsed-lin 81.25%

enwiki-parsed-num-dice-pmi 78,75%

bnc-bagofwords-num-cos-qw+enwiki-parsed-num-cos-qw 77.50%

bnc-bagofwords-num-cos-qw+enwiki-parsed-num-cos-freq 72.50%

bnc-parsed-lin 68.75%

web1t5gram-parsed-num-cos-loglh 60.00%

Table 3. Comparison with other results on the Miller-Charles dataset (Spearman correlation)

Method Result Used data

Human upper bound [12] 0.934

Agirre et al. [15] 0.92 WordNet, corpus

Patwardhan and Pedersen [3] 0.91 WordNet

Jarmasz and Szpakowicz [2] 0.87 Roget's Thesaurus

Tsatsaronis et al. [4] 0.856 WordNet

Kulkarni and Caragea [7] 0.835 Web search

Lin [9] 0.82 WordNet, corpus

Resnik [12] 0.81 WordNet, corpus

bnc-bagofwords-num-cos-qw+

enwiki-parsed-num-cos-freq

0.773 corpus

bnc-bagofwords-num-cos-qw+

enwiki-parsed-num-cos-qw

0.750 corpus

enwiki-bagofwords-num-cos-pmi+

bnc-parsed-num-cos-qw

0.737 corpus

enwiki-bagofwords-num-cos-pmi+

enwiki-parsed-num-cos-pmi

0.729 corpus

Gabrilovich and Markovitch [11] 0.72 corpus

bnc-parsed-num-cos-loglh+

enwiki-parsed-num-cos-pmi

0.712 corpus

Milne and Witten [14] 0.70 Wikipedia links, Web search

Sahami and Heilman [6] 0.618 Web search

In case of the MC dataset, the average scores of the 38 students were used, and the

evaluation was done by computing the Spearman correlation of these scores and the

scores returned by our methods. When testing with the TOEFL questions, the evalua-

tion measure was the percentage of the correct answers given.

The results of some selected methods are presented in Tables 1 and 2. It can be

seen that the best performance was 0.773 on the MC dataset and 88.75% on the

TOEFL questions, both achieved by a combined method. The best results of individu-

al methods (without combination) were 0.727 and 83.75%, respectively. The scores of

the methods using numerical feature vectors were mostly higher than the scores of the

approach based on Lin [9], and still better results were achieved by combining the

different methods. The methods that achieved best performance considering both

datasets were the bnc-parsed-num-cos-loglh+enwiki-parsed-num-cos-pmi (MC:

0.712, TOEFL: 88.75%), the enwiki-bagofwords-num-cos-pmi+enwiki-parsed-num-

cos-pmi (MC: 0.729, TOEFL: 87.50%) and the enwiki-bagofwords-num-cos-

pmi+bnc-parsed-num-cos-qw (MC: 0.737, TOEFL: 86.25%). Comparison with other

methods is shown in Tables 3 and 4, which shows that our methods had an average

performance on the MC dataset, while one of our methods achieving the 3rd best

score on the TOEFL questions. Most importantly, however, if we only take those

methods into account that solely use static corpora, our methods perform 1st and 2nd

best on the two datasets, respectively.

5 Conclusion and Future Work

In this article we have demonstrated methods computing the semantic similarity of

words that compare favorably to other measures. They use statistical co-occurrence

data extracted from static corpora to create feature vectors for the input words, and

then define the similarity of the words as the similarity of their vectors. Several varia-

tions were created, using different features, vector types, weights and vector compari-

son measures, and combinations of our individual methods were also examined.

All these methods were tested on two datasets, namely the Miller-Charles dataset

(MC) and the TOEFL synonym questions. On the MC dataset our best method had an

average performance (0.773), with many others achieving better results. On the other

hand, our best accuracy of 88.75% on the TOEFL questions is 3rd best overall and is

much higher than the score achieved by an average non-English US college applicant.

When comparing our methods with only those methods that solely rely on static cor-

pora, according to our best knowledge they reach 1st and 2nd place on the two da-

tasets, respectively.

Based on that, we think that our best methods could be successfully used for solv-

ing real-life problems too. The fact that they perform better on the TOEFL questions

than on the MC dataset indicates that they are more suitable for selecting the most

similar word for an input word from a list of candidates than giving an exact similari-

ty value for a pair of words.

In the future, it would be worthy to test our methods with even larger corpora, as

more data can result in better accuracy (for example, Agirre et al. [15] use a corpus of

1.6 Terawords and run their algorithm on 2000 CPU cores). As any corpus can be

used to extract co-occurrence information, our methods could easily be adapted to

different languages (especially in case of the bag-of-words approach). Therefore, we

would like to try our algorithms with languages other than English, too. Furthermore,

as described in Section 2.4, methods that are a combination of different types of

methods can combine the advantages of those methods combined. We therefore think

that by creating a combined method whose one method is ours and the other meth-

od(s) is (are) using web search engines or large lexical databases, our results could be

further improved.

Table 4. Comparison with other results on the TOEFL questions (percent of correct answers)

Method Result Used data

Turney et al. [13] 97.5% Web search, thesaurus

Rapp [10] 92.5% corpus

bnc-parsed-num-cos-loglh+

enwiki-parsed-num-cos-pmi

88.75% corpus

enwiki-bagofwords-num-cos-pmi+

enwiki-parsed-num-cos-pmi

87.50% corpus

Tsatsaronis et al. [4] 87.5% WordNet

enwiki-bagofwords-num-cos-pmi+

bnc-parsed-num-cos-qw

86.25% corpus

enwiki-bagofwords-num-cos-pmi 83.75% corpus

Higgins [5] 81.3% Web search

Jarmasz and Szpakowicz [2] 78.7% Roget's Thesaurus

Average non-English US college

applicant [8]

64.5%

Landauer and Dumais [8] 64.3% corpus

Lin [9] 24.0% WordNet, corpus

Resnik [12] 20.3% WordNet, corpus

References

1. Kilgarriff, A.: Googleology is bad science. Computational Linguistics. 33, 147–151

(2007).

2. Jarmasz, M., Szpakowicz, S.: Roget’s Thesaurus and Semantic Similarity. In: 4th Confer-

ence on Recent Advances in Natural Language Processing. pp. 212–219. John Benjamins

Publishers, Amsterdam (2003).

3. Patwardhan, S., Pedersen, T.: Using WordNet-based Context Vectors to Estimate the Se-

mantic Relatedness of Concepts. In: 11th Conference of the European Chapter of the As-

sociation for Computational Linguistics. pp. 1–8. Association for Computational Linguis-

tics, Stroudsburg (2006).

4. Tsatsaronis, G., Varlamis, I., Vazirgiannis, M.: Text Relatedness Based on a Word The-

saurus. Journal of Artificial Intelligence Research. 37, 1–39 (2010).

5. Higgins, D.: Which Statistics Reflect Semantics? Rethinking Synonymy and Word Simi-

larity. In: Kepser, S. and Reis, M. (eds.) Linguistic Evidence: Empirical, Theoretical and

Computational Perspectives. pp. 265–284. Mouton de Gruyter, Berlin, New York (2005).

6. Sahami, M., Heilman, T.D.: A web-based kernel function for measuring the similarity of

short text snippets. In: 15th international conference on World Wide Web. pp. 377–386.

ACM Press, New York (2006).

7. Kulkarni, S., Caragea, D.: Computation of the Semantic Relatedness between Words using

Concept Clouds. In: International Conference on Knowledge Discovery and Information

Retrieval. pp. 183–188. INSTICC Press, Setubal (2009).

8. Landauer, T.K., Dumais, S.T.: A solution to Plato’s problem: The latent semantic analysis

theory of acquisition, induction and representation of knowledge. Psychological Review.

104, 211–240 (1997).

9. Lin, D.: An information-theoretic definition of similarity. In: 15th International Confer-

ence on Machine Learning. pp. 296–304. Morgan Kaufmann Publishers Inc., San Francis-

co (1998).

10. Rapp, R.: Word Sense Discovery Based on Sense Descriptor Dissimilarity. In: 9th Ma-

chine Translation Summit. pp. 315–322. Association for Machine Translation in the Amer-

icas, Stroudsburg (2003).

11. Gabrilovich, E., Markovitch, S.: Computing Semantic Relatedness using Wikipedia-based

Explicit Semantic Analysis. In: 20th International Joint Conference on Artificial Intelli-

gence. pp. 1606–1611. Morgan Kaufmann Publishers Inc., San Francisco (2007).

12. Resnik, P.: Using Information Content to Evaluate Semantic Similarity in a Taxonomy. In:

14th International Joint Conference on Artificial Intelligence. pp. 448–453. Morgan Kauf-

mann Publishers Inc., San Francisco (1995).

13. Turney, P.D., Littman, M.L., Bigham, J., Shnayder, V.: Combining Independent Modules

to Solve Multiple-choice Synonym and Analogy Problems. In: 4th Conference on Recent

Advances in Natural Language Processing. pp. 482–489. John Benjamins Publishers, Am-

sterdam (2003).

14. Milne, D., Witten, I.H.: An Effective, Low-Cost Measure of Semantic Relatedness Ob-

tained from Wikipedia Links. In: 23rd AAAI Conference on Artificial Intelligence. pp. 25–

30. AAAI Press, Menlo Park (2008).

15. Agirre, E., Alfonseca, E., Hall, K., Kravalova, J., Paşca, M., Soroa, A.: A study on similar-

ity and relatedness using distributional and WordNet-based approaches. In: 10th Annual

Conference of the North American Chapter of the Association for Computational Linguis-

tics - Human Language Technologies. pp. 19–27. Association for Computational Linguis-

tics, Stroudsburg (2009).

16. Dobó, A.: Angol szavak szinonimáinak automatikus keresése. National Scientific Confer-

ence of Students (OTDK). OTDT, Budapest (2011).

17. Clark, S., Curran, J.R.: Parsing the WSJ using CCG and log-linear models. In: 42nd Annu-

al Meeting on Association for Computational Linguistics. pp. 103–110. Association for

Computational Linguistics, Stroudsburg (2004).

18. Dobó, A., Pulman, S.G.: Interpreting noun compounds using paraphrases. Procesamiento

del Lenguaje Natural. 46, 59–66 (2011).

19. Church, K.W., Hanks, P.: Word association norms, mutual information, and lexicography.

Computational Linguistics. 16, 22–29 (1989).

20. Manning, C., Schütze, H.: Foundations of statistical natural language processing. MIT

Press, Cambridge (2000).

