
Myth or Reality? Analyzing the Effect of Design

Patterns on Software Maintainability

Péter Hegedűs, Dénes Bán, Rudolf Ferenc, and Tibor Gyimóthy

University of Szeged, Department of Software Engineering
Árpád tér 2. H-6720 Szeged, Hungary

{hpeter,zealot,ferenc,gyimothy}@inf.u-szeged.hu

Abstract. Although the belief of utilizing design patterns to create bet-
ter quality software is fairly widespread, there is relatively little research
objectively indicating that their usage is indeed beneficial.

In this paper we try to reveal the connection between design patterns
and software maintainability. We analyzed more than 300 revisions of
JHotDraw, a Java GUI framework whose design relies heavily on some
well-known design patterns. We used our probabilistic quality model for
estimating the maintainability and we parsed the javadoc annotations of
the source code for gathering the pattern instances.

We found that every introduced pattern instance caused an improve-
ment in the different quality attributes. Moreover, the average design
pattern line density showed a very high, 0.89 Pearson correlation with
the estimated maintainability values. Although the amount of available
empirical data is still very small, these first results suggest that the usage
of design patterns do improve code maintainability.

Keywords: Design patterns, Software maintainability, Empirical
validation, OO design.

1 Introduction

Since their introduction by Gamma et al. [7], there has been a growing interest in
the use of design patterns. Object-Oriented (OO) design patterns represent well-
known solutions to common design problems in a given context. The common
belief is that applying design patterns results in a better OO design, therefore
they improve software quality as well [7, 16].

However, there is a little empirical evidence that design patterns really im-
prove code quality. Moreover, some studies suggest that the use of design patterns
not necessarily result in good design [13,20]. The problem of empirical validation
is that it is very hard to assess the effect of design patterns to high level quality
characteristics e.g.: maintainability, reusability, understandability, etc. There are
some approaches that manually evaluate the impact of certain design patterns
on different quality attributes [11].

We also try to reveal the connection between design patterns and software
quality but we focus on the maintainability of the source code. As many con-
crete maintainability models exist (e.g. [2, 4, 8]) we could choose a more direct

T.-h. Kim et al. (Eds.): ASEA/DRBC 2012, CCIS 340, pp. 138–145, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Analyzing the Effect of Design Patterns on Software Maintainability 139

approach for the empirical evaluation. To get absolute measure for the main-
tainability of a system we used our probabilistic quality model [2]. Our subject
system was JHotDraw 7, a Java GUI framework for technical and structured
Graphics (http://www.jhotdraw.org/). Its design relies heavily on some well-
known design patterns. Instead of using different design pattern mining tools
we parsed the javadoc entries of the system directly to get all the applied de-
sign patterns. We analyzed more than 300 revisions of JHotDraw, calculated the
maintainability values and mined the design pattern instances. We gathered this
empirical data with the following research questions in mind:

Research Question 1. Are there any traceable impacts of the application of
design patterns on software maintainability?

Research Question 2. What kind of relation exists between the design pattern
density and the maintainability of the software?

There are some promising results showing that applying design patterns im-
prove the different quality attributes according to our maintainability model. In
addition, the ratio of the source code lines taking part in some design patterns
in the system has a very high correlation with the maintainability in case of
JHotDraw. However, these results are only a small step towards the empirical
analysis of design patterns and software quality.

The rest of our paper is structured as follows. In Section 2 we highlight the
related work then in Section 3 we present our approach for analyzing the re-
lationship between design patterns and maintainability. Section 4 summarizes
the achieved empirical results. Next, Section 5 lists the possible threats to the
validity of our work. Finally, we conclude the paper in Section 6.

2 Related Work

Although the concept of utilizing design patterns in order to create better qual-
ity software is fairly widespread, there is relatively little research that would
objectively indicate that their usage is indeed beneficial.

Since design patterns and software metrics are both geared towards the same
goal - improving quality - Huston [10] attempts to prove their correlation by
representing the system’s classes in connection matrices and defining algorithms
for applying patterns and evaluating metrics. This approach shows promising
results but it is purely theoretical.

In an empirical study, - replicated in 2004 [18] and in 2011 [12] - Prechelt
et al. [15] gave groups identical maintenance tasks to perform on two different
versions - with and without design patterns - of four programs. Here, the impact
on maintainability was measured by completion time and correctness while this
article uses objective quality metrics and analyzes a more complex software.

In another case study, Vokáč [17] measured the defect frequency of pattern
classes versus other classes in an industrial C++ source for three years and con-
cluded that some patterns - Singleton, Observer - tend to indicate more complex
parts than others, e.g.: Factory. However, the used pattern mining method could

http://www.jhotdraw.org/


140 P. Hegedűs et al.

have introduced false positives or true negatives and the defects are also based
on subjective reports. In contrast, we rely on the official pattern documentation
of source code and the quality model published in [2].

Khomh and Guéhéneuc [11] used questionnaires to collect the opinions of 20
experts on how each design pattern helps or hinders them during maintenance.
They bring evidence that design patterns should be used with caution during
development because they may actually impede maintenance and evolution. An-
other experiment conducted by Ng et al. [14] decomposes maintenance tasks to
subtasks and examines the frequency of their use according to the deployed de-
sign patterns and whether these patterns are utilized during the change. They
statistically conclude that performing whichever task while taking existing pat-
terns into consideration yields less faulty code. Trying to evaluate the effective-
ness of patterns in software evolution, Hsueh et al. [9] defined their context and
their anticipated changes and then checked whether they held up to the expecta-
tions. Their conclusion is that although design patterns can be misused, they are
effective to some degree in either short or long term maintenance. Aversano et
al. [1] also investigate pattern evolution by tracking their modifications and how
many other, possibly unrelated modifications they cause. In this paper we do
not use questionnaires or evaluate design patterns manually, but rather measure
its impact on maintainability directly. Moreover, we focus on their impact on
the maintainability of the system as a whole and not only the evolution of the
code implementing design patterns.

3 Approach

For analyzing the relationship between design patterns and maintainability we
calculate the following measures for every revision of JHotDraw system:

• Mr - an absolute measure of maintainability for the revision r of the system.
We used our probabilistic quality model [2] to get this absolute measure.

• TLLOC - the total number of logical lines of code in the system (computed
by the Columbus toolset [6]).

• TNCL - the total number of classes in the system.

• PInr - the number of pattern instances in revision r of the system.
• PClr - the number of classes playing a role in any pattern instances in
revision r of the system.

• PLnr - the total number of logical lines of classes playing a role in any
pattern instances in revision r of the system.

• PDensr - the pattern line density of the system defined by the following
formula: PLnr

TLLOC

To answer our research questions we examine the tendency of Mr in comparison
to the pattern related metrics and changes in the number of pattern instances.
The pattern related metrics are calculated by our own tool that is able to process
the structured javadoc comments.



Analyzing the Effect of Design Patterns on Software Maintainability 141

3.1 Probabilistic Software Quality Model

Our probabilistic software quality model is based on the quality characteristics
defined by the ISO/IEC 9126 standard. The computation of the high level qual-
ity characteristics is based on a directed acyclic graph whose nodes correspond to
quality properties that can either be internal (low-level) or external (high-level).
Internal quality properties characterize the software product from an internal
(developer) view and are usually estimated by using source code metrics. Exter-
nal quality properties characterize the software product from an external (end
user) view and are usually aggregated somehow by using internal and other ex-
ternal quality properties. The edges of the graph represent dependencies between
an internal and an external or two external properties. The aim is to evaluate all
the external quality properties by performing an aggregation along the edges of
the graph, called Attribute Dependency Graph (ADG). We used the particular
ADG presented in [2] for assesing the maintainability of JHotDraw Java system.

3.2 Mining Design Patterns

Instead of applying one of the design pattern miner tools (e.g. [5,19]) we used a
more direct way for extracting pattern instances from different JHotDraw ver-
sions. Since every design pattern instance is documented in JHotDraw 7 we could
easily build a text parser application to collect all the patterns. This approach
guarantees that no false positive instances are included and no true negative
instances are left out from the empirical analysis. Finally we ran the parser on
all relevant revisions of JHotDraw7 to track the changes.

4 Results

We analyzed all the 779 revisions of the JHotDraw 7 subversion branch1 and
calculated the measures introduced in Section 3. The documentation of design
patterns is introduced in revision 522, therefore the empirical evaluation has
been performed on 258 revisions (between revision 522 and 779). Some basic
properties of the starting and ending revision of the analyzed JHotDraw system
can be seen in Table 1.

Table 1. Basic properties of JHotDraw 7 system

Revision Lines of Nr. of Nr. of Nr. of PInr PClr
(r) code packages classes methods TNCL

522 72472 54 630 6117 45 11.58%
779 81686 70 685 6573 54 13.28 %

To be able to answer our first research question we have analyzed those partic-
ular revisions where the number of design pattern instances has changed. After

1 https://jhotdraw.svn.sourceforge.net/svnroot/jhotdraw/trunk/jhotdraw7/

https://jhotdraw.svn.sourceforge.net/svnroot/jhotdraw/trunk/jhotdraw7/


142 P. Hegedűs et al.

filtering out the changes that does not introduce or remove real pattern instances
(e.g.: comments are added to an already existing pattern instance) five revisions
have remained.We also checked that these change sets do not contain a lot of source
code that is not related to patterns. It is important to be able to clearly distinguish
the effect of design pattern changes to maintainability. In all five cases more than
90% of the code changes are related to the pattern implementations. The tendency
of different quality attributes in these revisions can be seen in Table 2.

Table 2. The tendency of the quality attributes in case of design pattern changes

Revision Pattern Pattern Maintain- Test- Analyz- Stability Change-
(r) Line Density ability ability ability ability

(PDensr) (Mr)

531 +3 ↗ ↗ ↗ ↗ ↗ ↗
574 +1 ↗ ↗ ↗ ↗ ↗ ↗
609 –1 ↘ — — — — —
716 +1 ↘ ↗ ↗ ↗ ↗ ↗
758 +1 ↗ ↗ ↗ ↗ ↗ ↗

In four out of five cases there was growth in the pattern instance numbers.
In all four cases every ISO/IEC 9126 quality characteristic (including the main-
tainability) increased compared to the previous revision. This is true even for
revision 716 where the pattern line ratio decreased despite the addition of a de-
sign pattern. In case of revision 609 a Framework pattern has been removed but
the quality characteristics have remained unchanged. This is not so surprising
since this pattern (which is not part of the GoF patterns) consists of a simple
interface. Therefore its removal does not have any effect on the low level source
code metrics on what our maintainability model is based on.

As we have shown in one of our previous works [3] a system’s maintainability
does not improve during development without applying explicit refactorings.
Therefore, the application of design patterns can be seen as applying refactorings
on the source code. These results support the hypothesis that design patterns do
have a traceable impact on maintainability. In addition, our empirical analysis
on JHotDraw indicates that this impact is positive.

To shed light on the relationship between design pattern density and main-
tainability we performed a correlation analysis on pattern line density (PDensr)
and maintainability (Mr). We chose pattern line density instead of pattern in-
stance or pattern class density because it is the finest grained measure showing
the amount of source code related to any pattern instances. Figure 1 depicts the
tendencies of pattern line density and maintainability. It can be seen that the
two curves have a similar shape meaning that they move very much together.
The Pearson correlation analysis of the entire data set (from revision 522 to 779)
shows the same result, the pattern line density and maintainability has a 0.89
correlation. This result may indicate that there is a strong relation between the
rate of design patterns in the source code and the maintainability. However, this
is still a surmise and we cannot generalize the results without performing a large
number of additional empirical evaluations.



Analyzing the Effect of Design Patterns on Software Maintainability 143

Fig. 1. The tendencies of pattern line density and maintainability

5 Threats to Validity

Similarly to most of the works, our approach also has some threats to validity.
First of all, when dealing with design patterns, the accuracy of mining is always
a question. As there are no provably perfect pattern miner tools, we chose our
subject system to be a special one, having all design pattern instances docu-
mented by its authors. This way we can be sure that all (intentionally placed)
design patterns are recognized and no false positive instances are introduced. Of
course it is still possible that some pattern comments are missing or our text
parser introduces false instances. We reduced this effect by manually inspecting
the results of our text parser as well as the source code of JHotDraw.

Another threat to validity is using our previously published quality model
for calculating maintainability values. Although we have done some empirical
validation on our probabilistic quality model in our previous work, we cannot
state that the used maintainability model is fully validated. Moreover, as the
ISO/IEC 9126 standard is not defining the low-level metrics, the results can
vary depending on the quality model’s settings (chosen metrics and weights
given by professionals). These factors are possible threats to validity, but our
first results and continuous empirical validation of the maintainability model
proves its applicability and usefulness.

Finally, the small number of design pattern changes and the fact that less
than 300 revisions of one system have been evaluated threatens the generality
of results. It might be possible that the explored relationship between design
patterns and maintainability is just a byproduct of other factors. Our analysis
is only a first step towards the empirical analysis of this relation. Nonetheless,
these first results are already valuable and support the common belief that design
patterns do have a positive impact on maintainability.

6 Conclusions

In this paper we presented an empirical analysis of exploring the connection
between design patterns and software maintainability. We analyzed nearly 300



144 P. Hegedűs et al.

revisions of JHotDraw 7 and calculated the maintainability values with our prob-
abilistic quality model and mined the design pattern instances parsing the com-
ments in the source code. Examining the maintainability values where changes in
the number of pattern instances happened and by correlation analysis of design
pattern density and maintainability we were able to draw some conclusions.

Every ISO/IEC 9126 quality characteristics (including the maintainability) in-
creased with the number of pattern instances. Since there were no other changes
in the code it indicates that the quality attributes increased due to the intro-
duced patterns. Hence, we could observe a traceable positive impact of design
patterns to maintainability of the subject system.

Another interesting result is that the pattern line density and maintainability
values have a very similar tendency. The Pearson correlation analysis of the data
sets showed that there is a strong relation between the rate of design patterns
in the source code and its maintainability. These facts strengthen the common
assumption that using design patterns improve the maintainability of the source
code. However, these results should be handled with caution. We analyzed only
one system and a relatively few number of pattern instance changes. We are
far from drawing some general conclusions based on this; our work should be
considered as a first step towards the empirical validation of the relation between
design patterns and software maintainability.

Acknowledgements. This research was supported by the Hungarian national
grant GOP-1.1.1-11-2011-0049 and the European Union co-funded by the
European Social Fund, TÁMOP-4.2.2/B-10/1-2010-0012.

References

1. Aversano, L., Canfora, G., Cerulo, L., Del Grosso, C., Di Penta, M.: An Empir-
ical Study on the Evolution of Design Patterns. In: Proceedings of the 6th Joint
Meeting of the European Software Engineering Conference and the ACM SIG-
SOFT Symposium on the Foundations of Software Engineering, ESEC-FSE 2007,
pp. 385–394. ACM, New York (2007)

2. Bakota, T., Hegedűs, P., Körtvélyesi, P., Ferenc, R., Gyimóthy, T.: A Probabilistic
Software Quality Model. In: Proceedings of the 27th IEEE International Confer-
ence on Software Maintenance, ICSM 2011, pp. 368–377. IEEE Computer Society,
Williamsburg (2011)

3. Bakota, T., Hegedűs, P., Ladányi, G., Körtvélyesi, P., Ferenc, R., Gyimóthy, T.: A
Cost Model Based on Software Maintainability. In: Proceedings of the 28th IEEE
International Conference on Software Maintenance, ICSM 2012. IEEE Computer
Society, Williamsburg (2012)

4. Bansiya, J., Davis, C.: A Hierarchical Model for Object-Oriented Design Quality
Assessment. IEEE Transactions on Software Engineering 28, 4–17 (2002)

5. Dong, J., Lad, D.S., Zhao, Y.: DP-Miner: Design Pattern Discovery Using Matrix.
In: Proceedings of the 14th Annual IEEE International Conference and Workshops
on the Engineering of Computer-Based Systems, ECBS 2007, pp. 371–380. IEEE
Computer Society, Washington, DC (2007)



Analyzing the Effect of Design Patterns on Software Maintainability 145

6. Ferenc, R., Beszédes, Á., Tarkiainen, M., Gyimóthy, T.: Columbus – Reverse En-
gineering Tool and Schema for C++. In: Proceedings of the 18th International
Conference on Software Maintenance (ICSM 2002), pp. 172–181. IEEE Computer
Society (October 2002)

7. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Pub. Co. (1995)

8. Heitlager, I., Kuipers, T., Visser, J.: A Practical Model for Measuring Maintainabil-
ity. In: Proceedings of the 6th International Conference on Quality of Information
and Communications Technology, pp. 30–39 (2007)

9. Hsueh, N.L., Wen, L.C., Ting, D.H., Chu, W., Chang, C.H., Koong, C.S.: An Ap-
proach for Evaluating the Effectiveness of Design Patterns in Software Evolution.
In: IEEE 35th Annual Computer Software and Applications Conference Workshops
(COMPSACW), pp. 315–320 (July 2011)

10. Huston, B.: The Effects of Design Pattern Application on Metric Scores. Journal
of Systems and Software, 261–269 (2001)

11. Khomh, F., Guéhéneuc, Y.G.: Do Design Patterns Impact Software Quality Posi-
tively? In: Proceedings of the 12th European Conference on Software Maintenance
and Reengineering, CSMR 2008, pp. 274–278. IEEE Computer Society, Washing-
ton, DC (2008)

12. Krein, J., Pratt, L., Swenson, A., MacLean, A., Knutson, C., Eggett, D.: Design
Patterns in Software Maintenance: An Experiment Replication at Brigham Young
University. In: Second International Workshop on Replication in Empirical Soft-
ware Engineering Research (RESER 2011), pp. 25–34 (September 2011)

13. McNatt, W.B., Bieman, J.M.: Coupling of Design Patterns: Common Practices
and Their Benefits. In: Proceedings of the 25th International Computer Software
and Applications Conference on Invigorating Software Development, COMPSAC
2001, pp. 574–579. IEEE Computer Society, Washington, DC (2001)

14. Ng, T.H., Cheung, S.C., Chan, W.K., Yu, Y.T.: Do Maintainers Utilize Deployed
Design Patterns Effectively? In: Proceedings of the 29th International Conference
on Software Engineering, ICSE 2007, pp. 168–177. IEEE Computer Society, Wash-
ington, DC (2007)

15. Prechelt, L., Unger, B., Tichy, W., Brössler, P., Votta, L.: A Controlled Experiment
in Maintenance Comparing Design Patterns to Simpler Solutions. IEEE Transac-
tions on Software Engineering 27, 1134–1144 (2001)

16. Venners, B.: How to Use Design Patterns - A Conversation With Erich Gamma,
Part I (2005), http://www.artima.com/lejava/articles/gammadp.html

17. Vokáč, M.: Defect Frequency and Design Patterns: an Empirical Study of Industrial
Code. IEEE Transactions on Software Engineering 30(12), 904–917 (2004)

18. Vokáč, M., Tichy, W., Sjøberg, D.I.K., Arisholm, E., Aldrin, M.: A Controlled Ex-
periment Comparing the Maintainability of Programs Designed with and without
Design Patterns - A Replication in a Real Programming Environment. Empirical
Software Engineering 9(3), 149–195 (2004)

19. Wendehals, L.: Improving Design Pattern Instance Recognition by Dynamic Anal-
ysis. In: Proceedings of the ICSE 2003 Workshop on Dynamic Analysis (WODA),
Portland, USA (2003)

20. Wendorff, P.: Assessment of Design Patterns during Software Reengineering:
Lessons Learned from a Large Commercial Project. In: Proceedings of the Fifth
European Conference on Software Maintenance and Reengineering, CSMR 2001,
p. 77. IEEE Computer Society, Washington, DC (2001)

http://www.artima.com/lejava/articles/gammadp.html

	Lecture Notes in Computer Science
	Introduction
	Related Work
	Approach
	Probabilistic Software Quality Model
	Mining Design Patterns

	Results
	Threats to Validity
	Conclusions


