
A Semi-Automatic Usability Evaluation

Framework

Kornél Muhi1, Gábor Sz®ke1, Lajos Jen® Fülöp1, Rudolf Ferenc1, and Ágoston
Berger2

1 University of Szeged
Department of Software Engineering
Árpád tér 2. H-6720 Szeged, Hungary

{mkornel,kancsuki,flajos,ferenc}@inf.u-szeged.hu
2 MONGUZ Ltd.

Nemestakács u. 12/A H-6722 Szeged, Hungary
aberger@monguz.hu

Abstract. Most of the software maintenance costs come from usability
bugs reported after the release and deployment. A usability bug is really
subjective, hence there is a large communication overhead between the
end user and the developer. Moreover, the reputation of the software
development company could be decreased as well. Therefore, proactively
testing and maintaining software systems from a usability point of view
is unambiguously bene�cial.
In this paper we propose a research prototype, the Usability Evaluation
Framework. The development of the framework is driven by well-de�ned
requirements. It is built upon a usability model, it calculates usability
metrics, it integrates questionnaires and it also ensures several meaning-
ful reports. We have successfully applied the framework to evaluate and
to improve the usability of two industrial software systems.

1 Introduction

A popular belief about software maintenance is that it primarily involves de-
velopment of new features, testing, and �xing of programming bugs (e.g. a null
pointer exception). Although, some researchers show that a signi�cant part of
software bugs are related to some kind of usability problems of the investigated
applications. For example, Landauer [10] reports an interesting distribution of
software bugs:

"About 80 percent of software life cycle costs occur not during develop-

ment but during the maintenance period. In turn, 80 percent of these

maintenance costs are a result of problems users have with what the sys-

tem does, not programming bugs."

There are some prevalent methods to evaluate and test usability. Usability
testing in labs is really useful because it can recover serious usability bugs. Al-
beit, it is expensive and time consuming because real users have to leave their

2 Authors Suppressed Due to Excessive Length

current tasks and they have to go the usability lab. It also requires experienced
moderators and human factor experts, otherwise they probably face commu-
nication problems with the users. Namely, a usability lab is a simulation of a
real production environment thus some usability bugs could be missed. Another
really promising direction is remote usability testing but some of the usability
bugs still could be missed.

Therefore, usability testing should be supported by tools that can be applied
in production environments as well. Several usability testing tools are available,
but these work only on one �eld, typically on web pages. To the best of our
knowledge, there is no general solution available that supports the usability
evaluation of arbitrary software applications, i.e. independently from program-
ming language, operating system, and other factors (e.g. desktop, mobile and
web applications).

In this paper, we present a research prototype, the Usability Evaluation
Framework (UEF) that supports usability testing and usability maintenance
in real production environments and can be applied on arbitrary software ap-
plication as well. We have two goals with the framework. We want to develop
a completely general framework that is widely applicable, and we want to test
and improve the usability of two industrial software systems.

The paper is organized as follows. In the next two sections we describe the
related work and elicit the requirements for the framework. In Section 4 we
introduce the key component of the framework, the general usability model.
Next, we show the details of the framework in Section 5. Section 6 shows our
results about applying the framework in case of two industrial software systems.
Finally, the last two sections present the evaluation of the framework and the
conclusions.

2 Related work

In our previous short paper [15] we described and introduced our general software
quality model and framework with the underlying principles and methodology.
UEF was just brie�y introduced as one of the applications of this general softare
quality framework, in less than a half page, so that paper did not introduced a
lot of important details and results.

There are some very good and popular solutions available like Google Ana-
lytics [5] and TrackerBird [17]. These solutions collect data about user behaviour
that can be used broadly, e.g. to derive usability problems [7]. Although, these
solutions work on speci�c �elds. For example, TrackerBird works on .NET ap-
plications while Google Analytics works on web pages.

Au et. al. [2] describes the aspects of usability testing, especially in case of
mobile applications. They examined some systems and the results show that it
is recommended to use an automated usability testing framework. This helps
the developer to test the system more often, even in the early stages of the
development, when the changes are cheaper. They also developed and presented
an automated usability testing framework.

A Semi-Automatic Usability Evaluation Framework 3

Ivory et. al. [9] compare and evaluate usability testing approaches. The au-
thors suggest making a uni�ed usability testing system, because the current
approaches are giving very di�erent results. The evaluation also shows that the
current usability testing techniques use poor automation.

Harty et. al. [6] is about the automation of the usability testing of web-
based applications. The authors describe why is it so hard to do usability and
accessibility testing. They conclude that there are a lot of academic attempts for
usability testing, but most of them are not usable in an industrial environment.

Several other papers [14] [8] [1] [4] [13] also deal with usability evaluation. To
sum up, usability testing and evaluation is typically executed in a staging (test-
ing) environment, and constrained to a special application �eld or domain. For
example web log analyzers cannot be employed in case of desktop applications,
.NET speci�c analyzers cannot be applied in case of Java applications, and so
on.

3 Requirements

The following requirements are set up based on (i) the investigation of related
work and (ii) after several discussions with professionals from the industry and
our university.

Support production environments: Usability testing and evaluation are
typically executed in a usability lab, where a moderator controls and observes
the representative users. Several usability bugs can be detected with this tech-
nique but the laboratory circumstances also determine missed usability bugs.
Therefore, the usability evaluation shall be performed in real-life production en-

vironments.
Detection of patterns: The usability evaluation shall reveal typical and

frequent sequences of user interactions, i.e. patterns. For example, such detected
frequent sequences could be optimized and handled with more attention.

Detection of usability bugs: The usability evaluation shall provide tangi-
ble usability bugs. For example, it can be a frequent and complex user interaction
sequence that could be re-engineered as a much usable and straightforward wiz-
ard; it can be a complex form that is really di�cult to be �lled out, therefore it
is time-consuming for the users to work with, and so on.

Transparency: The usability evaluation shall be transparent and not a�ect
the daily operational work of the users. If users su�er from any kind of interrup-
tion or disturbing factor (e.g. video analysis) then unacceptable extra costs are
generated from a business point of view.

Automatic: The usability evaluation shall be automatized as much as pos-
sible, especially in users point of view. The rationale behind this requirement is
to reduce extra costs generated by unnecessary manual work.

Wide applicability: The usability evaluation shall be as general as possible.
It should be domain independent, i.e. it should be applied arbitrary in di�erent
application domains, e.g. in case of �nancial applications, ERP applications, of-
�ce applications and so on. It should be applicable in di�erent kind of operating

4 Authors Suppressed Due to Excessive Length

systems (e.g. Windows, Linux, etc.). Furthermore, it should be applicable in dif-
ferent environments (e.g. in case of desktop, web or mobile applications). Finally,
the usability evaluation should be applicable in di�erent kind of programming
languages as well (e.g. Java, C++, C#, etc.).

4 Usability model

A well de�ned data model (shown on Figure 1) is the key to our approach,
and the basis of the other components of the UEF framework. The model is
developed through several iterations. In each iteration, the model is evaluated
and then improved based on the previously shown requirements. In this section,
we introduce the �nal model in detail.

-action : String

-name : String

-type : String

-startDate : Date

-endDate : Date

-amountOfData : String

Event

-userId : String

-group : String

-registrationDate : Date

User

-locationId : String

-name : String

-type : String

-isStart : Boolean

-isEnd : Boolean

-isInner : Boolean

Location

*

1

source

*
1

target LocationInstance

-name : String

-version : String

System

*

1

-moduleId : String

-name : String

Module

1
*-libraryId : String

-date : Date

Deployment

1 1

1..*

1..*

-name : String

Function
1

*

*

1

start

*
1

end

1

*

FunctionInstance

*

1

end

*

1

start

0..1

0..1
nextEvent

* 1

-value : Integer

MetricInstance

-name : String

-group : String

Metric

*1

1

*

-instanceId : String

Instance

1

*

1
*

-name : String

-occurrences : Integer

-variability : Real

Pattern

PatternElement

1

*

1

*

firstPatternElement

0..1

0..1

nextPatternElement

-questionCode : String

-questionText : String

Question

-optionCode : String

Option

-text : String

TextOption

-number : Integer

NumberOption

*

1

LocationOptionFunctionOption

Answer

AnswerOption

*

1

1
*

0..1*

PatternOption

-value : String

AnswerValue

*

1

1

*
referencesPattern

1

**

1

Fig. 1. The usability model

System nodes are denoted by non �lled nodes with continuous borders in
Figure 1. The software vendors usually deploy a customized build of the appli-
cation to the customers to match their special needs. Based on this observation,
the Deployment entity has a central role in the model, and it contains the Sys-
tem entity. Furthermore, it contains only those Module entities that the users

A Semi-Automatic Usability Evaluation Framework 5

have actually in the current deployment. Deployment also contains the registered
Users.

Low level nodes are denoted by non �lled nodes with dashed borders in
Figure 1. Whenever a user clicks on a button in the application or presses a key on
the keyboard, an event will be generated. Such activities are represented by the
Event entity. It stores the event's creation and completion date, the name, the
type, the executed action, and (optionally) the size of the processed data of the
executed action. Besides storing such basic event data it is also required to store
the source and target locations too. The source indicates where the event has
been triggered (usually a menu item or window). The target represents the result
of the event. Source and target information are represented through Location

and LocationInstance. The Location entity represents the abstraction of a certain
location with it's name, type and other information. LocationInstance represents
a concrete instance of a Location. For example, in several applications it is
possible to open multiple windows. Such windows have to be handled together
in some point of view, and that is the reason behind Location. While in other
aspects, we have to be able to distinguish them, and that is the reason behind
LocationInstance. An event is generated by a user, hence User contains the
corresponding Events in the model. The events are stored chronologically, which
is represented by the nextEvent relation.

Derived nodes are typically based on low level nodes, and denoted by �lled
nodes with continuous borders in Figure 1. A functionality of the system can be
described by a sequence of events between two locations. The model represents
such functionalities with the Function entity. The FunctionInstance entity is a
concrete instance of the referenced Function. It points to two LocationInstances
according to the Location types de�ned by the Function. Metric represents the
calculated properties of functions and locations. The MetricInstance entities
assign concrete values to an instance (FunctionInstance or LocationInstance)
based on the referenced metric. Because the metric entities are the same in case
of every deployment, it is enough to store them just once.

Frequent user interaction sequences (i.e. patterns of user actions) are also rep-
resented in the model. A pattern consists of two parts: a main entity (Pattern),
which represents the sequence's generated name, occurrence and variability; and
PatternElements which links together the sequence's pieces. A pattern entity
points to it's �rst element, and then a PatternElement refers the next element
recursively.

Survey nodes are denoted by �lled nodes with dashed borders in Figure 1.
The model is also capable of storing data for generating online questionnaire,
and for representing the results of the questionnaire. A survey usually contains
a few Questions which have more Options. The user has to pick one or more of
these options. An Option can be any kind of a �eld: a simple text (TextOption),
a number (NumberOption) or a reference �eld to a function (FunctionOption) or
location (LocationOption). The last two come in handy when we want to ask the
users about the investigated system and about the automatically detected infor-
mation (i.e. automatically calculated information can be related with subjective

6 Authors Suppressed Due to Excessive Length

user opinions). Answer stores the options picked by the user (AnswerOption).
The AnswerValue is introduced to store comments and justi�cations about the
answers. Patterns can also be referenced in the survey (PatternOption).

5 Framework

In the followings, we shortly introduce the architecture of the framework that is
also based on the requirements (see Figure 2). The arrows and numbers represent
the working steps in chronological order.

Fig. 2. Architecture of the UEF framework

The �rst step is to record user interactions that shall be performed by the in-
vestigated application. The second step is the generation of the framework input
�les by the investigated application. These two steps ensure that the frame-
work and its services are completely independent from any kind of technological
platform (e.g. operating system, programming language, etc.).

The framework has two kinds of input �les. Con�g XML describes meta infor-
mation about the system, e.g. registered users, available modules and available
locations (windows, menu panels, etc.), see Figure 3. Based on these metadata,
Log XML provides the concrete usage data (see Figure 4). The development of
these XML formats is heavily in�uenced by the usability model.

The validator component checks the log�les according to prede�ned syntac-
tic and semantic rules. Then, the logged data are uploaded into the persistence
framework for further processing. The schema of the persistence layer is con-
�gured with the usability data model. The model represents several information
related to usability: events performed by the users, locations touched by the
users, and so on (see Section 4).

The metrics calculator module can calculate several numeric or textual prop-
erties. This module can be extended, calculation of new metrics requires only a
new metric calculator plugin to be developed.

A Semi-Automatic Usability Evaluation Framework 7

1<deployment libraryId="library1" date="2011-11-30"
2 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
3 xsi:noNamespaceSchemaLocation="extformat.xsd">
4 <system name="Big Library" version="1.0.0"
5 deploymentDate="2005-01-01">
6 <module id="module01" name="reader"/>
7 <module id="module02" name="operator"/>
8 </system>
9 <locations>
10 <location locationId="renting.books" name="Select books to
11 rent" type="window" module="operator"/>
12 <location locationId="renting.reader" name="Data of the
13 reader" type="window" module="operator"/>
14 <location locationId="renting.summary" name="Summary about
15 the rent" type="window" module="operator"/>
16 <location locationId="renting.help" name="Renting books help"
17 type="help" module="operator"/>
18 <location locationId="renting.fault" name="Renting books
19 error" type="error" module="operator"/>
20 </locations>
21 <functions>
22 <function name="Rent a book" startLocationId="renting.books"
23 endLocationId="renting.summary"/>
24 </functions>
25 <users>
26 <user id="1" group="administrator"
27 registrationDate="2011-11-30"/>
28 <user id="2" group="operator" registrationDate="2011-11-30"/>
29 </users>
30</deployment>

Fig. 3. Example for the con�guration descriptor

To process the user events stored in the persistence framework, a pattern
detection module has been developed based on the very e�cient su�x array
method [12]. This method has been widely applied and adopted in several �elds
of computer science, for example it is employed by software clone detection
algorithms as well [3]. In case of UEF, all user interaction is stored and ordered
in an array, and then, based on the su�x array method, the patterns of user
interactions are detected.

Survey adapter module is capable of generating con�guration �les which
can be imported into the LimeSurvey open source survey engine [11]. These
surveys can be �lled out by the users of the subject systems, and the results can
be uploaded back into the persistence system. Questions can be easily added,
modi�ed and removed in the framework. These surveys collect subjetive opinions
and can contain questions regarding the results of the current data analysis.

8 Authors Suppressed Due to Excessive Length

1<log xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
2 xsi:noNamespaceSchemaLocation="logformat.xsd"
3 libraryId="library1" date="2011-11-30">
4 <events>
5 <event action="rent" name="" type="button"
6 startDate="2011-11-27T08:03:47.103"
7 endDate="2011-11-27T08:03:47.103">
8 <source locationId="main" instanceId="1"/>
9 <target locationId="renting.books" instanceId="2"/>
10 <user id="1"/>
11 </event>
12 <event action="rent.reader" name="" type="button"
13 startDate="2011-11-27T08:03:52.163"
14 endDate="2011-11-27T08:03:52.163">
15 <source locationId="renting.books" instanceId="2"/>
16 <target locationId="renting.reader" instanceId="3"/>
17 <user id="1"/>
18 </event>
19 <event action="rent.summary" name="" type="button"
20 startDate="2011-11-27T08:04:00.271"
21 endDate="2011-11-27T08:04:00.271">
22 <source locationId="renting.reader" instanceId="3"/>
23 <target locationId="renting.summary" instanceId="4"/>
24 <user id="1"/>
25 </event>
26 </events>
27</log>

Fig. 4. Example for the events log descriptor

Based on the collected information (metrics, patterns and surveys) the UEF
framework generates an HTML report (see UEF homepage [18]). Then the report
can be employed by the developers to improve the usability of the investigated
application.

We have implemented a prototype of the UEF architecture in Java.

6 Proof of concept

Integrated collection management systems (ICMS) manage the business work�ow
of libraries and cultural institutes. Monguz Ltd. is one of the leading software
development companies in Hungary in the �eld of ICMS. This company wanted
to evaluate and to improve the usability of two ICMS systems. The usability
evaluations were performed in the daily operative work of two selected Hungarian
libraries with the help of the UEF. We are allowed to refer the investigated
systems anonymously, so we refer them as System1 and System2. Both systems
are implemented in Java, but System1 is a desktop while System2 is a web

A Semi-Automatic Usability Evaluation Framework 9

application. The study included all members of sta� of the participant libraries
who use the integrated system, without distinction to experience or position.

We have developed speci�c loggers inside the investigated applications to
collect usage information. Finally, the collected information are exported into
the input format of UEF (con�g and log XML �les).

Based on the literature and discussions with professionals of Monguz Ltd. a
few metrics have been implemented in UEF to help the evaluation of the two
ICMS systems. Se�ah and others [16] introduce more than one hundred metrics
for usability in di�erent aspects. We have employed and derived metrics from the
productivity aspect. Some of the calculated metrics are summarized in Table 1. A
complete collection of the calculated metrics (and other materials) are available
on the project's homepage [18].

Metric Metric name Short description

NI Number of In-
stances

Number of instances for a location type

RNI Recursive Num-
ber of Instances

Number of instances for a location type plus instances of
other windows opened from this location type

NT Net Time Net time spent on a location instance
ET Existence Time Time between opening and closing (location instance

metric)
ATR Active Time Ra-

tio
The ratio of having focus to the time of existence (loca-
tion instance metric)

PTR Passive Time Ra-
tio

The ratio of not having focus to the time of existence
(location instance metric)

NE Number of Errors Number of error messages appeared from a given location
instance

NHU Number of Help
Uses

Number of help uses initiated from a given location in-
stance

RNE Relative Number
of Errors

The ratio of error messages appeared to the number of
steps while performing a functionality starting from the
given location instance

RT Recursive Time The time spent over the full functionality accessible from
the given location instance (in seconds)

Table 1. Some of the calculated metrics

Based on several discussions with professionals of Monguz Ltd. a question-
naire has been set up as well. The survey has been �lled out by 20 users in the
case of System1, and by 50 users in the case of System2.

There is a question enquiring about the overall satisfaction of the users.
Users of System2 gave an average 7.4 grade out of 10, while users of System1
marked their system with an average 6.89 score. Correlation models cannot be
built between the questionnaires and calculated metrics because we evaluated
only two software systems. Still, some relation can be observed when comparing

10 Authors Suppressed Due to Excessive Length

System1 System2

Max Avg Med Max Avg Med
NI 461 28 8 115 22 8
RNI 1753 292 18 291 34 8
NT 6628 169 10 4348 296 19.5
ET 95446 9269 33 37445 3755 7.9

Table 2. Most important metrics for the two examined systems. Lower or equal values
of the comparison of System1 and System2 are denoted with gray background.

these subjective results to the calculated objective metrics. Except of two cases
(NT-Avg and NT-Med), the metric values of System2 are lower than the ones of
System1 (see Table 2). Based on the other values, we can hypothesize that lower
values for NI, RNI and ET indicate better overall satisfaction of the users.

There are some textual responses given by the users concerning concrete
locations in the software. We compared these to the calculated metric values
and it seems that in certain cases NI, RNI and ET could indicate the general
usability of a software system, while NT could mark tangible usability bugs.

We have also examined the top 30 patterns (frequent user interaction se-
quences) found in both system (see Table 3). The average pattern length is
signi�cantly bigger in System1 (22 locations) than in System2 (14 locations).
Based on this, we hypothesize that pattern length could be an indicator for
usability problems as well (besides the metrics).

System1 System2

Min Max Avg Min Max Avg
Pattern freq. 11 59 22.03 3 57 14.17
Pattern's length 10 16 10.7 5 16 6.3

Table 3. Summary of the patterns found in the examined systems

6.1 Improvement of the systems

We have made improvements to the ICMS systems based on the results of the
UEF report. In the case of System1, some of the results point out exact usability
bugs in the system, which were �xed in the following release. Other responses
point out problems with the automatic noti�cation system, which is also �xed.
The data also pointed out possible usability improvements in certain windows of
the circulation module, some of which are improved upon, other improvements
are being planned in the next major release of the software.

A Semi-Automatic Usability Evaluation Framework 11

7 Evaluation and application guidelines

In this section we evaluate UEF. First, we have to emphasize that the frame-
work does not deal with application speci�c logging of user interactions. In some
point of view it is a drawback because application developers have to extend
their application to generate XML input �les for the UEF framework. At the
same time, it is a really big advantage in an other point of view. This feature
guarantees a very important requirement of the framework, the wide applica-
bility. By generating the necessary XML �les, the framework provides several
useful features: detection of frequent user interactions (i.e. patterns), calculation
of metrics, detection of questionnaires based on prede�ned templates, and so on.

In the followings, we show a detailed evaluation of the framework through
the requirements introduced in Section 3.

� Support production environments is indirectly ful�lled by the XML-based
con�guration �les. Nowadays, any kind of software application can produce
simple XML text �les that can be loaded into the framework. In fact, this
requirement have to be ful�lled by the investigated application.

� Detection of patterns is ful�lled by the adaptation of the su�x array method
and algorithm. In the proof of concept, several patterns have been detected
and evaluated.

� Detection of usability bugs is ful�lled by the adaptation of a questionnaire
engine and the automatically calculated metrics. However, manual investi-
gation and evaluation of the questionnaire results and the calculated metrics
is needed. Furthermore, we have calculated some basic metrics only, and
validate them in a simple proof of concept experiment. Therefore, this re-
quirement has been only ful�lled yet.

� Transparency is ful�lled because the data being recorded in the background,
so the users are not a�ected. The framework ensures this requirement by its
general XML input formats. The investigated application is responsible for
silent logging and to provide the XML �les.

� Automatic is mostly completed. UEF only requires one manual step from
users: �lling the questionnaires.

� Wide applicability is also ful�lled. It is domain- and application indepen-
dent because its general usability model and interfaces do not contain any
domain or application speci�c data, i.e. domain and application speci�c log-
ging mechanisms are independent from the UEF. Platform-independency is
guaranteed by that the framework is written in Java, and its interfaces are
also platform-independent: the input can be given in XML format, while the
HTML results can be displayed in any browser.

7.1 General application guidelines

Based on the experiencies collected during the proof of concept we have devel-
oped a general template that ensures the application of the UEF prototype in
arbitrary domains as well.

12 Authors Suppressed Due to Excessive Length

1. Generating UEF's XML inputs. Either the XML �les are directly cre-
ated during the logging or if the investigated system logs elsewhere (e.g. to a
database table) then the information have to be converted into UEF's XML
�les.

2. Data collection (in production environment). This step consists of
the actual use of the observed systems, during which the logger components
collect the user interaction data into XML �les. Depending on the amount
of data you want to collect, this could take weeks or months.

3. Surveying questionnaires. A speci�ed questionnaire will be generated as
the metrics and the sequences have been calculated. This survey will be
presented to the users of the observed systems. Depending on the number of
the users, �lling out the survey takes 1 or 2 days.

4. Automatically generating reports. The framework generates an HTML
report based on the calculated information and the opinions given by the
users. This step takes maximum 1 or 2 hours depending on the amount of
data.

Apart from the fact that the survey has to be �lled by the users, the UEF
is automatic. It seems that speci�c loggers will have to be implemented for each
new case study to produce speci�c XML �les. In some degree it is true if a con-
crete software application should be investigated speci�cally with the logging
of application speci�c data. Still, the extension of the corresponding software
application would desire just a little extra work based on our current expe-
riencies3. Moreover, speci�c libraries could be developed to collect technology
speci�c data like TrackerBird [17] does it for .NET applications. This way, us-
ability data could be collected easily from several software applications, which
are in the same technology domain.

8 Conclusions

The contribution of the paper can be summarized as follows. Based on related
works and several discussions with professionals from industry we have de�ned
the requirements of a general usability evaluation framework. Next, we developed
the Usability Evaluation Framework (UEF) conforming to the de�ned require-
ments. The provided framework architecture can be considered as a reference
architecture for future (e.g. industrial) implementations as well.

We successfully applied UEF to evaluate and to improve the usability of
two systems. They are evaluated in real-life production environments, at two
libraries in Hungary. During the evaluation, the framework has been extended
with newly implemented metrics and newly con�gured questionnaires based on
the discussions with the industry partner. The developed metric calculator plu-
gins and the con�gured questionnaires could be used by new potential partners

3 The discussed proof of concept has proved that it is easy to develop such XML
generator components.

A Semi-Automatic Usability Evaluation Framework 13

and application developers in the future. Moreover, we have successfully demon-
strated that the UEF framework can be extended easily with new metrics and
questionnaires to satisfy the needs of an industrial partner.

The UEF framework is designed to be platform-, domain- and application-
independent. Contrary, the evaluated two systems are a little bit homogeneous,
i.e. they come from the same ICMS domain, both are written in Java while
one run in a web browser and the other run as a standalone Windows desktop
application. Therefore, we are currently working on the application of UEF in
other contexts, i.e. the usability evaluation of an o�ce software suite written in
C++ and runs both on mobile devices and as a standalone Windows desktop
application. We also plan to integrate further metrics and questionnaires into
the framework, and to perform new case studies in the future.

Acknowledgement This research was supported by the Hungarian national
grants GOP-1.1.2-07/1-2008-0007 and GOP-1.1.1-11-2011-0006.

References

1. Andreasen, M.S., Nielsen, H.V., Schrøder, S.O., Stage, J.: What happened to re-
mote usability testing?: an empirical study of three methods. In: Proceedings of
the SIGCHI conference on Human factors in computing systems. pp. 1405�1414.
New York, NY, USA (2007)

2. Au, F.T.W., Baker, S., Warren, I., Dobbie, G.: Automated usability testing frame-
work. In: Proceedings of the ninth conference on Australasian user interface. vol. 76,
pp. 55�64. Darlinghurst, Australia, Australia (2008)

3. Basit, H.A., Jarzabek, S.: E�cient token based clone detection with �exible tok-
enization. In: Proceedings of the the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The foundations
of software engineering. pp. 513�516. ESEC-FSE '07, ACM, New York, NY, USA
(2007)

4. Chilana, P.K., Ko, A.J., Wobbrock, J.O., Grossman, T., Fitzmaurice, G.: Post-
deployment usability: a survey of current practices. In: Proceedings of the 2011
annual conference on Human factors in computing systems. pp. 2243�2246. New
York, NY, USA (2011)

5. Homepage of Google Analytics [7 May 2013], http://www.google.com/analytics/
6. Harty, J.: Finding usability bugs with automated tests. Communications of the

ACM 54, 44�49 (Feb 2011)
7. Hasan, L., Morris, A., Probets, S.: Using Google Analytics to Evaluate the Usability

of E-Commerce Sites. Springer Berlin / Heidelberg (2009)
8. Hosseini-Khayat, A., Hellmann, T.D., Maurer, F.: Distributed and Automated Us-

ability Testing of Low-Fidelity Prototypes. In: Proceedings of the AGILE confer-
ence. pp. 59�66 (2010)

9. Ivory, M.Y., Hearst, M.A.: The state of the art in automating usability evaluation
of user interfaces. ACM Computing Surveys 33, 470�516 (Dec 2001)

10. Landauer, T.K.: The Trouble with Computers: Usefulness, Usability, and Produc-
tivity. A Bradford Book (1995)

11. LimeSurvey - Open Source Survey Application [7 May 2013], http://www.

limesurvey.org

14 Authors Suppressed Due to Excessive Length

12. Manber, U., Myers, G.: Su�x arrays: a new method for on-line string searches. In:
Proceedings of the �rst annual ACM-SIAM symposium on Discrete algorithms. pp.
319�327. SODA '90, Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA (1990)

13. Propp, S., Forbrig, P.: ViSE: a virtual smart environment for usability evaluation.
In: Proceedings of the Third international conference on Human-centred software
engineering. pp. 38�45. Berlin, Heidelberg (2010)

14. Runge, M.: Simulation of Cognitive Processes for automated Usability Testing.
Diploma, Deutche Telekom Laboratories, Berlin (2008)

15. Schrettner, L., Fülöp, L.J., Beszédes, A., Kiss, A., Gyimóthy, T.: Software Qual-
ity Model and Framework with Applications in Industrial Context. In: Proceed-
ings of 16th European Conference on Software Maintenance and Reengineering
(CSMR'12) (2012)

16. Se�ah, A., Donyaee, M., Kline, R.B., Padda, H.K.: Usability measurement and
metrics: A consolidated model. Software Quality Control 14(2), 159�178 (Jun 2006)

17. Homepage of TrackerBird [7 May 2013], http://www.trackerbird.com/
18. Homepage of UEF [7 May 2013], http://www.inf.u-szeged.hu/~flajos/

usability

