
The Seventh International Workshop on Software Quality and Maintainability, March 5, 2013, Genova, Italy

P r e w o r k s h o p P r o c e e d i n g s

Proceedings of the Seventh International
Workshop on Software Quality and

Maintainability

Bridging the gap between end user expectations, vendors’ business

prospects, and software engineers’ requirements on the ground.

Edited by Eric Bouwers and Yijun Yu
Sponsored by the Software Improvement Group

version 1.0

Foreword

Welcome to the 7th International Workshop on Software Quality and Maintainability. Continuing
the debate of Is software quality in the eye of the beholder? started seven years ago, this workshop
aims at feeding into it by establishing what the state of the practice is and, equally important,
what the way forward is.

After a rigorous peer-reviewing process, 4 out of 9 submissions are accepted to be presented at
the half-day workshop. This pre-workshop proceedings brings in original topics to the discussion,
ranging from code analysis to design:

• Does fixing a bug in one instance of code clones really fix the problem com-
pletely? Martin Pölmann and Elmar Juergens examined six software systems from their
version history to see what percent of bug fixes in clones leads to incomplete changes and
potential bug candidates.

• Can software quality concepts be applied to the design of a robot control frame-
work, and can quality considerations of such a design guide the quality control
of software in general? Max Reichardt, Tobias Föhst and Karsten Berns used their own
robot control framework to give a positive answer to both questions.

• How much does a source code element such as classes or methods contribute to
the maintainability index relatively? Péter Hegedüs, Tibor Bakota, Gergely Ladányi,
Csaba Faragó and Rudolf Ferenc measured the drilled downed metrics and compared the
ratings to human experts.

• How to make architecture styles conform to a quality model? Andreas Goeb
adapted the Quamoco quality modeling approach to enforce the conformance between a
service-oriented architecture style with quality goals.

If these are not enough, the topics for discussions are enriched by our invited speaker Bram Adams,
who will provide an overview of the studies into the impact of release engineering on software
quality.

After the workshop, we encourage all the papers will be submitted to the special issue of
Electronic Communications of the EASST by taking into account the feedback and comments
discussed at the workshop.

To summarize, the complete workshop program is as follows:

14:00 - 14:10 Workshop welcome and introduction by the chairs
14:10 - 15:10 Invited talk by Bram Adams
15:10 - 15:30 Questions and discussion
15:30 - 16:00 Break
16:00 - 17:20 Presentation of 4 selected papers and Q/A
17:20 - 17:30 Closing of workshop

We hope all will enjoy this rather-packed half day event!

Eric Bouwers and Yijun Yu,
SQM 2013 Chairs, March 2013

i

Chairs

• Eric Bouwers, Software Improvement Group, The Netherlands

• Yijun Yu, The Open University, UK

• Miguel Alexandre Ferreira (publicity chair), Software Improvement Group, The Netherlands

Program Committee

• Arpad Beszedes, University of Szeged, Hungary

• Goetz Botterweck, University of Limerick, Ireland

• Magiel Bruntink, University of Amsterdam, The Netherlands

• Alexander Chatzigeorgiou, University of Macedonia, Greece

• Florian Deissenboeck, Technische Universitaet Muenchen, Germany

• Jürgen Ebert, University of Koblenz-Landau, Germany

• Neil Ernst, University of British Columbia, Canada

• Jesus M. Gonzalez-Barahona, Universidad Rey Juan Carlos, Spain

• Liguo Huang, UT Dalas, USA

• Siket Istvan, University of Szeged, Hungary

• Slinger Jansen, Utrecht University, Netherlands

• Robert Lagerström, the Royal Institute of Technology, Sweden

• Julio Cesar Sampio Do Prado Leite, Pontifca Universidade Catlica do Rio de Janeiro, Brazil

• Sotirios Liaskos, York University, Canada

• Lin Liu, Tsinghua University, China

• Christos Makris, University of Patras, Greece

• Nan Niu, Mississippi State University, USA

• Xin Peng, Fudan University, China

• Daniele Romano, Delft Technical University, The Netherlands

• Joost Visser, Software Improvement Group, The Netherlands

• Vadim Zaytsev, Centrum Wiskunde en Informatica, The Netherlands

Subreviewers

• Markus Buschle

Sponsors

Software Improvement Group, Amsterdam, The Netherlands

ii

Contents

Foreword i

Bram Adams
So, you are saying that our software quality was screwed up by ...
the release engineer?! iv

1 Martin Pölmann and Elmar Juergens
Revealing Missing Bug-Fixes in Code Clones in Large-Scale Code Bases 1

2 Max Reichardt, Tobias Föhst and Karsten Berns
On Software Quality-motivated Design of a Real-time Framework for Complex
Robot Control Systems 11

3 Péter Hegedüs, Tibor Bakota, Gergely Ladányi, Csaba Faragó and Rudolf Fer-
enc
A Drill-Down Approach for Measuring Maintainability at Source Code Element
Level 20

4 Andreas Goeb
A Meta Model for Software Architecture Conformance and Quality Assessment 30

iii

So, you are saying that our
software quality was screwed up
by ... the release engineer?!

Bram Adams

Abstract

Businesses spend a significant amount of their IT budget on software application maintenance.
Each firm’s portfolio of applications helps them run their daily operations, report their financials,
and help them market and sell their products. Therefore, a firm’s ability to improve the quality
and maintainability of these applications will have a significant impact on their bottom line as well
as establish credibility with their shareholders and customers. However, even though firms have
spent significant time and money addressing this, they have achieved mixed results. Why?

Software release engineering is the discipline of integrating, building, testing, packaging and
delivering qualitative software releases to the end user. Whereas software used to be released in
shrink-wrapped form once per year, modern companies like Intuit, Google and Mozilla only need
a couple of days or weeks in between releases, while lean start-ups like IMVU release up to 50
times per day! Shortening the release cycle of a software project requires considerable process and
development changes in order to safeguard product quality, yet the scope and nature of such changes
are unknown to most practitioners. This presentation will touch on the major sub-fields of release
engineering (integration, build and delivery) and their interaction with software quality. We will
explore state-of-the-art results in this domain, as well as open challenges for the SQM community.
In the end, we hope to convey the message that seemingly innocent factors like shorter release
cycles or version control branching structure have a major impact on software quality.

iv

Revealing Missing Bug-Fixes in Code Clones in
Large-Scale Code Bases

Martin Pöhlmann, Elmar Juergens
CQSE GmbH, Germany

{poehlmann,juergens}@cqse.eu

Abstract—If a bug gets fixed in duplicated code, often all
duplicates (so called clones) need to be modified accordingly.
In practice, however, fixes are often incomplete, causing the bug
to remain in one or more of the clones. In this paper, we present
an approach to detect such incomplete bug-fixes in cloned code.
It analyzes a system’s version history to reveal those commits
that fix problems. It then performs incremental clone detection
to reveal those clones that became inconsistent as a result of
such a fix. We present results from a case study that analyzed
incomplete bug-fixes in six industrial and open source systems to
demonstrate the feasibility and defectiveness of the approach. We
discovered likely incomplete bug-fixes in all analyzed systems.

Keywords-code clones, clone detection, incomplete bug-fixes,
evolution analysis, repository analysis

I. INTRODUCTION

“I had previously fixed the identical bug [...], but didn’t
realize that the same error was repeated over here.” [1]
This excerpt of a commit message is a common verdict of
developers who unveil inconsistencies in duplicated (cloned)
code. As research in software maintenance has shown, most
software systems contain a significant amount of code clones
[2]. During maintenance, changes often affect, and thus need
to be carried out, on all clones.

If developers are not aware of the duplicates of a piece of
code when they make a change, the resulting inconsistencies
often lead to bugs [3]. Awareness of clones in a system is
especially important, if a developer fixes a bug that has been
copied to different locations in the system. Those clones that
are not fixed continue to contain the bug. Many studies have
reported discovery of errors in clones in practice, often due to
incomplete bug-fixes [3, 4, 5, 6, 7, 8, 9].

To avoid such incomplete bug-fixes, clone management [2]
approaches have been proposed to alert developers of the
existence of clones when they perform changes. However,
while such approaches can possibly ease future maintenance,
they are of no help with those incomplete bug-fixes that have
happed in the past. How can we detect such inconsistent bug-
fixes that are already part of the source code of a system?

One approach to detect incomplete bug-fixes in cloned code
is to search for clones that differ from each other, e.g. in
modified or missing statements. These differences could hint
at incomplete bug-fixes. Several clone detection approaches
exist that can detect clones with differences (so called type-3
clones) [10]. Unfortunately for the precision of this approach,
however, not every difference between a pair of clones hints

at a bug. In many cases, a developer copy & pastes a piece
of code and modifies it intentionally, since the new copy is
required to perform a slightly different function.

During the past five years, we have inspected clones
in numerous industrial and open-source systems. Most of
them contain substantial amounts of clones—including type-3
clones. Searching for incomplete bug-fixes by manually in-
specting type-3 clones is inefficient, simply because many of
the differences were introduced intentionally, often already
during the creation of the clone. To reveal incomplete bug-
fixes more efficiently, we ideally require an approach that can
(at least to a certain degree) differentiate between intentional
and unintentional differences between clones.

This paper proposes a novel approach to reveal inconsistent
bug-fixes. It iterates though the revision history of a system
and classifies changes as bug-fixes, if the commit message
contains specific keywords like bug or fix. It then tracks the
evolution of code clones between revisions to detect clones
which become inconsistent as consequence of a fix. Our
assumption is that such inconsistencies have a high likelihood
of being unintentional. The case study that we have performed
for this paper confirms this assumption.

Furthermore, in contrast to clones detected on a single
system version, this approach provides information on which
change, by which author and for which defect, caused the
difference between the clones. From our experience, this
information substantially supports developers in judging if and
how to resolve differences between clones.

Problem: Bug-fixes in cloned code are often incomplete,
causing the bugs to remain in the system. We lack approaches
to efficiently reveal such incomplete bug-fixes.

Contribution: This paper presents a novel approach for
detecting missing bug-fixes in code clones by combining clone
evolution analysis with information gathered from the version
control system.

We have implemented the approach based on the incremen-
tal clone detection functionality of the open-source program
analysis toolkit ConQAT1. We have evaluated it in a case study
on six industrial and open-source systems in Java and C#. The
results of the case study show that the approach is feasible and
does reveal missing bug-fixes.

1http://conqat.org

1

II. RELATED WORK

This section gives an overview of approaches to reveal
incomplete or missing bug-fixes. We distinguish between work
concerning system evolution and clone detection.

A. Evolution-based

Kim et al. [11] proposed a tool called BugMem, which uses a
database of bug and fix pairs for finding bugs and suggesting
fixes. In particular, this system-specific database is built via
an on-line learning process, since each revision of the version
control system is scanned for a commit message hinting at
a bug-fix. As suggested by Mockus and Votta [12] they use
the terms ”Bug” or ”Fix” for identifying bug-fixes, as well as
reference numbers to issue-tracking software like Bugzilla. For
each fix-commit, the changeset data is extracted and separated
into code-with-bug and code-after-fix. These code regions are
normalized to generalize identifiers and stored in the database.

We use the same method for scanning the version history
for interesting terms, but refrain from including references to
bug tracking reports, since some systems track both bugs and
feature requests with such tools. For including them, further
work is required to distinguish bugs and requests, as well as
making the data available offline.

Zimmermann et al. [13] took a similar approach by min-
ing data from a version control system for a change rec-
ommendation system. Their goal is to suggest in an IDE
changes and fixes [14] in the manner of shopping applications:
”Programmers who changed these functions also changed...”.
The precision of meaningful suggestions is 26%. From a
user-perspective the main difference to our approach is, that
the recommendation tool tries to prevent bugs by suggesting
changes upon modification of files in the IDE. Yet, the amount
of wrong recommendations is rather high.

B. Clone-based

Juergens et al. [3] inspected a set of gapped clones for in-
complete bug-fixes using their open source tool suite ConQAT.
They proposed an approach for identifying gapped code clones
using an algorithm based on suffix-trees and evaluated it on
several large-scale systems. The results of this study show an
average precision of 28% for detecting unintentional incon-
sistent clones. Nevertheless, the tool reported for all but one
system over 150 inconsistent clones, which is a large amount
for initial analyses.

The approach proposed in this paper also builds upon
ConQAT, but uses another technique for detecting inconsistent
code clones using an index-based algorithm in conjunction
with evolution analysis. Hence, we compare our approach to
that from Juergens et al. in terms of reported inconsistencies,
precision and execution time.

C. Combined – Clone-evolution-based

APPROX of Bazrafshan et al. [15] is a tool for searching
arbitrary code fragments in multiple versions and branches for
similar fragments to find missing fixes. The search is based on
code clone detection, but limited to search for code fragments

similar to a search term. In contrast to our approach APPROX
requires developers to know beforehand which code snippet
contains a bug-fix and is of interest.

Duala-Ekoko and Robillard [16] created an extension for the
Eclipse IDE, which reads a clone report from SimScan2 and
tracks the location of the clones automatically as code changes
in the editor or between revisions. The approach focuses more
on getting an overview about all related clones while editing
a file, since they provide automated edit propagation to other
clone siblings as well.

In contrast, Kim et al. [17] analyzed clone genealogies by
combining CCFinder [18] with a clone tracking approach. In
a case study they showed that only up to 40% of all clones are
changed consistently during system evolution. Canfora et al.
[1] used another clone detection tool as well as other study
objects and reproduced the results from Kim et al. with about
43% of all clones being consistently modified. In detail, the
inconsistencies sum up to 67% whereas 14% of these were
propagated later to become consistent again.

Also Göde and Rausch [19] analyzed the evolution of three
open source systems during a time frame of five years. For this,
they used an iterative clone detection and tracking algorithm,
and showed as well, that 43.1% of all changes to clones
are inconsistent with 16.8% being unintentional inconsistent.
Again, the total amount of reported inconsistencies is with
131 clones quite high and includes lots of false positives with
respect to unintentional inconsistencies. As we go further and
filter the revisions by commit message, we significantly reduce
the amount of false positives.

Geiger et al. [20] presented an approach for identifying
interesting correlations between code clones and change cou-
plings mostly with respect to different subsystems. Change
couplings are files that are committed at roughly the same
time, from the same author and with the same commit message
[21]. Nevertheless, they conclude that a correlation is too
complex to be easily expressed and more information is
needed to identify harmful clones. In our approach we will
not correlate change coupling, but use a prediction of which
commit is a fix based on its commit message.

III. REVEALING MISSING BUG-FIXES

This section provides an in-depth explanation of how the
analysis process of the proposed approach works. As depicted
in Fig. 1 the process is an iteration over the available revisions
of the version control system in order to simulate the source
code evolution. For each iteration, several steps are performed
to identify incomplete bug-fixes in code clones. At the end of
each cycle, the iterator is queried for the next revision and a
new detection starts. As soon as no newer revision is available,
the bug detection results are reported and the analysis process
terminates.

A. Get Next Revision

Upon the start of the analysis the version control system is
queried for all or a subset of available revisions. During the

2http://blue-edge.bg/simscan

2

Fig. 1: Overview of the iterative bug detection process

iteration loop, the revisions are checked out in chronological
order and metadata containing the commit message is handed
over to the next steps.

B. Preprocessing

First, the source code is read from the disk into memory.
Regular expressions are used as include and exclude filters for
omitting generated and test code, since the former does not
contain manual modifications and the latter is not interesting
for production use. We further strip unnecessary statements,
like package identifiers or include statements as these are
unlikely to contain bugs. Finally, the source code is normalized
into a generic representation which is insensitive to method
names, variable names and literals.

C. Clone Detection

For detecting code clones, we use an algorithm using a hash
index [22], which allows incremental updates of the clone data
with high performance. For each revision, we gather the list
of altered, added and deleted files and remove all data from
the index, that belongs to these files. Afterwards, these files
are added to the index again, but with updated content. Thus,
we can keep most of the data and update just a small fraction
depending on the changeset size.

Detection is configured to keep clones from crossing method
boundaries. Hence, we can minimize the amount of semanti-
cally not meaningful code clones. Moreover, we do not take
gapped clones (type-3) into account, which contain statement
additions, removals and modifications after normalization.
Including gapped clones in this step will not allow us to
determine if the inconsistency in such a clone is related to
a bug-fix.

D. Clone Tracking

This step performs the actual evolution analysis for code
clones. For this, the reported clones from the clone detection
step are mapped to those from the previous iteration cycle

Fig. 2: Clone tracking dataflow process

(cf. Fig. 2). Modifications that are performed inconsistently
between clones, turns a group of ungapped cloned into a group
of gapped clones. Moreover, these gapped clones are marked
as modified in this revision.

The clone tracking is also performed by ConQAT and
roughly follows the approach proposed by Göde and Koschke
[23]. It first calculates the edit operations of a code clone
between two consecutive revisions. Then it propagates these
edit operations to the clones of the current revision, so the
clone positions are updated accordingly. Afterwards, the up-
dated clones are mapped to those from the the current detection
step: First, those clones are matched, which positions do not
differ. Second, a fuzzy coverage matching is performed on the
remaining clones, that determines whether one clone covers an
other and reports clones with modifications and gaps, that are
of interest for the proposed bug detection approach.

E. Filtering

All clones without gaps are filtered, because they cannot
contain incomplete bug-fixes. We also remove clones that
differ too much with regards to their length. The threshold we
choose is 50% around the average length of all clone instances
of a group.

For example, a group of clones with two instances of length
23 and one of length 8 has an average clone length of 18. As
the length of the shortest instance lies outside the 50% interval
around this average length ([9, 27]), it is removed from the
group. The other instances remain, because they lie within the
interval. If all clones of a group lie outside this interval, the
entire group is discarded.

F. Bug Detection

Clones are classified in those that contain an incomplete
bug-fix and those that do not, as outlined in Fig. 3. To achieve
this, the version control system is first queried for the commit
message of the current revision. In the message we search for
terms like fix, defect or bug that may indicate a bug-fix. If
such a term is found, the whole commit and its modifications
are seen as bug-fix commit. Mockus and Votta [12] proposes

3

Fig. 3: Incomplete bug-fix detection flow

an even more extensive approach for finding fixes in commit
messages. In our case, system specific terms were sufficient.

Afterwards, the list of code clones is searched for those that
were marked as modified in this revision in the clone tracking
step. For those, the approach suggests that the clone contains
an incomplete fix, as the commit is a bug-fix and the clone
was inconsistently modified in this revision. Consequently, it
will be added to the global list of all incomplete bug-fixes.
Finally, we also need to clean this list of incomplete bug-fixes
as soon as a clone became consistent again or vanished. We
continue with a new iteration loop, as long as newer revisions
are available.

G. Result Reporting

After the revision iteration terminates, the result reporting
is the last step. It writes all incomplete bug-fixes into a
XML file for manual inspection with the ConQAT Clone
Workbench. The report contains details about the location of
clone instances in the source code, which includes file name,
start and end line, as well as the position of gaps. Moreover,
also information about the revision that caused the clone to
become inconsistent are stored, namely the commit message
and the revision identifier.

H. Performance Optimization: Revision Compression

After analyzing the version history of some software sys-
tems, we found that only a small percentage of the commits
represent a bug-fix. In the studied systems roughly 25%. We
can exploit this for a notable performance improvement, since
we only need to inspect each commit that represents a bug-
fix. All revisions between bug-fixes can be compressed into
a single composite revision, as depicted in Fig. 4. These

Fig. 4: Compressing non-bug-fix revisions (white) into single
commits. Revisions including a bug-fix (gray) are not com-
pressed.

compressed revisions are created by appending the commit
messages and merging the changesets of altered files.

The general performance improvement can be described as
follows: Let R be the total number of commits and F be
the amount of fixes in a system (determined from the commit
message) with of course F ≤ R. Then we have to inspect R
revisions without compression. With revision compression at
most 2 ∗ F + 1 revisions have to be inspected, whereas R is
still an upper limit that cannot be exceeded. For a system with
a ratio of one fix per four commits, we can skip at least 50%
of all revisions.

IV. CASE STUDY

This section presents a case study which examines the
amount of fixes in code clones of industrial and open source
software systems. Moreover, it evaluates how well bugs can
be detected with the proposed clone evolution approach and
compares it to gapped clone detection on a single system
revision.

A. Research Questions

We investigate the following five research questions:
RQ 1: Can fixes be determined from commit messages?

The first question serves as fundamental analysis of how fixes
can be detected solely from analyzing commit messages. It
analyzes if a set of a few keywords can be chosen in a manner
that they identify a commit as fix.

RQ 2: Which amount of code clones is affected by fixes?
If inconsistent changes to clones do not occur in software
systems, further analyses do not make sense.

RQ 3: How many inconsistently fixed clones qualify as
bug candidates?
This question investigates whether the proposed approach is
appropriate for detecting bugs and how many false positives
are returned. For a toolkit in production use, a high precision
in detecting incomplete bug-fixes is desireable.

RQ 4: What is the impact of the commit changeset size
on the bug-finding precision?
Commits with a lot of modified files are likely to contain
refactorings, feature additions or branch merges besides the
actual fix. We suspect that more false positives are reported and
try to give evidence by analyzing the precision with respect
to limited changeset sizes.

4

TABLE I: List of the analyzed software systems

System Organization Language History Size Commits
(years) (kLOC)

A Munich Re C# 1.5 81.4 823
B Munich Re C# 1.5 370.6 638
C Munich Re C# 5 652.7 7483
D Aol Java 1.5 47.5 1449

Banshee Novell C# 7 165.6 8097
Spring VMWare Java 4 417.6 5034

RQ 5: How does evolution-based bug-detection compare
to gapped clone detection on a single revision?
Finding incomplete bug-fixes can also be achieved by gapped
clone detection. Hence, the question arises if the overhead of
analyzing history information is justified compared to gapped
clone detection in terms of precision and the amount of
reported inconsistently fixed clones needed to be inspected
by a developer or quality assurance engineer.

B. Study Objects

The case study was performed on six real-world software
systems as listed in Table I. The reason for choosing these
projects was on the one hand the requirement of having an
evolved version history, on the other hand we need access to
the version control system even for non-open-source projects.
Thus, we relied on own contacts for industry code. In contrast,
Banshee and Spring are available as open source systems and
maintained by Novell and VMWare.

All systems are written by different teams, have individual
functionality and evolved independently. They also differ in
size and age. System A, B and C are owned by Munich Re,
but are developed and maintained by different suppliers. They
are written in C# and used for damage prediction and risk
modeling. System D is an Android application developed by
AOL. The two open source applications are the popular open
source cross-platform audio player Banshee3 written in C# by
more than 300 contributors and the Java enterprise application
framework Spring4 developed by over 50 contributors. All
systems are actively developed and in production use.

C. Determining Bug-Fixes — RQ 1

Design and Procedure: This question explores how well
fixes can be determined from the commit messages of a
version control system. To answer it, we manually inspected
commit messages from all study objects and identified reoccur-
ring terms which are used in bug-fix commits. These keywords
were compiled to a regular expression so that it matches any
of the terms.

Results: The manual inspection of all six systems yielded
the following list of keywords suitable for identifying bug-
fixes: Fix, Bug, Defect, Correct. As system A, B and C
are developed by German engineers, some of the commit
messages are written in German as well. This yields an
extended set of keywords also containing the German words

3http://banshee.fm
4http://springsource.org/spring-framework

Fig. 5: Excerpt of commit logs from Banshee

TABLE II: Total amount and percentage of identified fixes

System Commits Fixes Fixes (%)
A 823 194 23.6
B 638 203 31.8
C 7483 1754 23.4
D 1449 326 22.5

Banshee 8097 2016 24.9
Spring 5034 648 12.9

Fehler, Defekt, behoben and korrigiert. Additionally, the word
correct seems to be often misspelled by developers as corect,
so we also took this variant into account.

We decided against identifying commits as fixes solely
from the presence of a reference to a bug-tracking software.
As shown in Fig. 5, such references are mostly given by a
number code representing the identifier of a bug or feature
request in the issue-tracker. In the example, only the sec-
ond commit with a bug-tracking identifier (Ë) is a bug-fix,
while the first one (Ê) references a feature request. Thus,
we suspect to threaten precision by generally taking these
identifiers into account. All in all, we can compile the follow-
ing regular expression to match a commit message against:
(?is).*(fix|bug|defe(c|k)t|fehler|behoben|

co(r|rr)ect|ko(r|rr)igier).*
Table II summarizes the amount of fixes detected by the

above regular expression in each analyzed system. According
to this result, almost every fourth commit is a fix.

Discussion: The results show that detecting bug-fixes
from commit messages works reasonably well, at least for
the systems we studied. Of course, the list of keywords used
for detection varies depending on the software system and the
language the developers speak. The proposed terms provide
an initial starting point. But as soon as the bug detector is
used on other systems, the terms need to be customized and
tailored.

Still, it might happen that a commit is falsely identified as
bug-fix, as depicted in Fig. 5 (Ì). However, this seems to be a
rare problem and in case of the above example the modification
was at least related to a bug-fix.

D. Amount of Incomplete Fixes — RQ 2

Design and Procedure: The second research question
investigates the amount of code clones that is affected by fixes
and became inconsistent thereby. To answer it, we counted
both, the total amount of incomplete fixes during project
evolution, as well as those that were still present in the latest
revision of the system history. Therefore, our bug detection

5

TABLE III: Evolution of incomplete bug-fixes

System Total Incomplete Fixes Still Present
A 48 28
B 60 50
C 108 61
D 26 15

Banshee 112 21
Spring 35 23

toolkit has been slightly modified to deliver these statistics.
The configuration remained as described in Section III with a
minimal clone length of 7 statements. Additionally, groups of
clones with more than three instances were filtered, because
for them the tracking approach is unreliable. Including these
clones remains for future work.

Results: Table III shows for each system the amount of
incomplete bug-fixes in code clones. For all systems less fixes
are present in the last revision than occurred in total. This is
due to corrected inconsistencies or completely removed clones.
Moreover, a code clone can also be affected by more than one
bug-fixed and appear multiple times in the above statistic.

Discussion: Depending on the system, we were able to
reduce the total amount of code clones to a small fraction
compared to all gapped clones, as shown by Table VI later in
the case study.

Comparing the low amount of incomplete fixes for Banshee,
which are still present in the last revision, to all inconsistencies
found during the analysis shows that the detection algorithm
is not stable with regards to big refactorings. The Banshee
developers partially restructured the project with regards to
sub components, which caused some detected bugs to be lost
during tracking. Even gathering renamed files from the version
control system will not completely eliminate this issue, since
code may be exchanged between files as well. Also system C
suffered from this in a minor extent.

Moreover, The Banshee Git repository contains lots of
branching on the main development line, but the analysis loops
through all commits in a sequential order provided by the jGit
library. Thus it might switch between branches for consecutive
runs and causing some bugs to disappear, due to tracking
issues. An adapted evolution analysis is needed for this case,
that traverses merged branches separately. This requires some
major rework for the entire revision iteration and bug detection
process, which is left for future work.

E. Detection Precision — RQ 3

Design and Procedure: This question investigates bug-
detection precision. The inconsistently fixed clones, which
were gathered with RQ 2, were manually inspected by the
researcher and separated in false positives and bug candidates.
For answering the question, we calculated the precision of the
bug detector according to Equation 1.

precision =
bug candidates

inconsistently fixed clones
(1)

The decision if an inconsistently fixed clone qualifies as
bug candidate was made upon comparing the source code of

TABLE IV: Results of the bug detection for each system

System Total Inconsistently Bug Precision Time
Clones Fixed Clones Candidates (min)

A 200 28 11 0.39 2.7
B 765 50 9 0.18 23
C 778 61 23 0.38 116
D 170 15 6 0.40 5

Banshee 165 21 5 0.25 119
Spring 518 23 4 0.17 127

clones using the ConQAT clone workbench for Eclipse and
manual inspection of the commit message and modifications.
This is shown in Fig. 6. We used a Laptop with a 2.2 GHz
Quadcore CPU and 4 GB of RAM running a 32 Bit Ubuntu
Linux with Oracle JDK 7 for the detection.

Our goal is to cost-effectively find missing bug-fixes. We
are thus willing to sacrifice recall for higher precision and
leave analysis of recall (if feasible at all) for future work.

Results: Table IV summarizes the total amount of code
clones, which were detected during history evolution and
present in the last revision, as well as the inconsistently fixed
clones. Additionally, it lists the amount of bug candidates
resulting from manual inspection, the precision calculated with
Equation 1 and the time the detection took in minutes.

Besides Spring, the detection algorithm identifies roughly
10% of all clones as inconsistently fixed. The manual in-
spection of the researcher revealed that 17% to 40% of these
reported clones are classified as bug candidates. The execution
times varies with regard to the project size and the amount of
revisions chosen for evolution analysis. Still, all analyses were
performed in less than three hours.

Discussion: The lowest result with respect to precision
shows system B and Spring. The latter has a very low rate
of bug-fixes in general and just 23 bugs were reported out
of over 5000 revisions with more than 400.000 lines of code
per revision. According to the documentation it has very strict
guidelines5 for third party contributions with respect to coding
style, unit-testing and patch submission and similar rules seem
to apply for internal work as well.

For system B, lots of false positives were introduced by
big commits that “fixed“ coding style related issues. We did
not count these as bugs. The same problem also decreases the
results for system C. RQ 4 tries to alleviate this problem by
limiting the amount of modified files per commit in order to
be recognized as bug-fix.

F. Changeset Size Impact — RQ 4

Design and Procedure: This question analyzes how
the size of the commit changeset influences the bug-finding
precision. Analogous to RQ 3, we answered this question
by inspecting the returned inconsistently fixed clones and
determining the precision according to Equation 1. Therefore,
the detection toolkit was executed with the same parame-
ters as described for RQ 3. Additionally, a minimum and

5https://github.com/SpringSource/spring-framework/wiki/
Contributor-guidelines

6

Fig. 6: Screenshot of the ConQAT clone workbench including a clone compare view (Ê) and metadata about the commit this
inconsistency was introduced by (Ë)

maximum threshold to the changeset size of a commit is
applied, which is evaluated at the time of revision compres-
sion. The changeset size is limited with window of size 5
sliding from 1 to 21. This results in the following intervals:
[1, 5], [6, 10], [11, 15], [16, 20], [21,∞[

Results: The results are summarized in Table V and
grouped by the limit interval. One can clearly see that the pre-
cision in intervals [1, 5] and [6, 10] is almost two times higher
than the average precision from Table IV and ranges from 30%
to 60%. In contrast, the precision drops off significantly for
commits with changeset sizes larger than 10. As discussed,
the style related fixes in system B which lowered the results
for RQ 3 fall into this category. Nevertheless, the systems
performing worse before did not catch up to the other systems
in terms of precision, but an increase is still noticeable.

It is worth a remark that the sum of the reported bugs or
bug candidates of each system may not be equal to the results
from Table IV, since a clone can be altered by fixes of different
changeset sizes. Thus, some clones are listed multiple times.

Discussion: Applying a maximum limit to the changeset
size of at most 10 altered files, the precision of the approach
could almost be doubled and bugs are detected with an ac-
ceptable precision of 30% to 60%. We consider this sufficient
for use in real-world assessments.

G. Gapped Clone Detection Comparison — RQ 5

Design and Procedure: This research question compares
the evolution based bug-finding approach to the less time-
consuming gapped clone detection. To answer it, we run a

TABLE V: Results with limits applied to the changeset size

Limit System Inconsistently Bug Precision
Fixed Clones Candidates

[1, 5]

A 11 8 0.73
B 20 5 0.25
C 35 13 0.37
D 11 5 0.45

Banshee 12 4 0.33
Spring 17 5 0.29

[6, 10]

A 4 2 0.50
B 5 2 0.40
C 11 9 0.82
D 3 1 0.33

Banshee 4 1 0.25
Spring 3 1 0.33

[11, 15]

A 0 — —
B 1 0 0.00
C 5 1 0.20
D 0 — —

Banshee 2 0 0.00
Spring 0 — —

[15, 20]

A 3 1 0.33
B 0 — —
C 0 — —
D 1 0 0.00

Banshee 0 — —
Spring 0 — —

[21,∞[

A 7 0 0.00
B 26 3 0.12
C 5 2 0.40
D 0 — —

Banshee 3 0 0.00
Spring 0 — —

7

TABLE VI: Results for finding bugs with gapped clone
detection

System Reported Inspected (%) Bug Precision
Clones Candidtates

A 42 42 (100%) 13 0.31
B 219 109 (50%) 26 0.23
C 192 96 (50%) 25 0.26
D 60 60 (100%) 15 0.25

Banshee 34 34 (100%) 8 0.24
Spring 166 83 (50%) 17 0.20

gapped clone detection with ConQAT on the study objects and
filter the returned clones to contain at least one modification.
The parameters from RQ 3 are used again with the following
parameters being chosen especially for the gapped clone
detection according to Juergens [24]: The gap ratio must be
at most 20% and the edit distance has a maximum of 5 edits.

Finally, we determined the precision of finding bugs in this
set of clones with Equation 1. The results are then compared to
those of RQ 3 and RQ 4. Due to the large amount of reported
inconsistently fixed clones for some systems, we just inspected
a percentage of the reported clones for bug candidates, which
are randomly chosen from the entire result set.

Results: Table VI presents the results for the gapped
clone detection executed for each of the study objects. Com-
pared to the results from the evolution based approach, one can
see that the overall precision is more homogeneously ranging
from 20% to 30%. Hence, there is no significant difference
to the evolution analysis without taking changeset sizes into
account. Nevertheless, the detection reported 2 to 6 times more
clones we have to manually inspect. As positive side effect,
also more bug candidates were detected. As for the enhanced
approach with limits applied to the changeset size, the gapped
detection performs clearly worse in terms of precision.

Discussion: The results of the evolution based approach
are gained with a time consuming analysis that took over
two hours for some systems. Hence it is valid to ask if a
simple gapped clone detection, which only takes two minutes
to execute, does the job of finding inconsistent clones with
similar precision.

Just by taking the results from the basic evolution based
approach one may concede this point. Nevertheless, the gapped
detection was performed with additional parameters that al-
ready filtered lots of false positives. Not applying those filters
increases the size of inconsistently changed clones for system
A from 42 to 309. For the evolution-based approach, we
did not apply these filters and may gain further precision by
applying them. Furthermore, when it comes to comparison
with limited changeset sizes, the precision is clearly higher
than for gapped clone detection. Thus, we consider the long
execution times as justified.

Besides precision, there are other valid arguments for favor-
ing the history based approach: First, we can gain important
information about the fix from the corresponding commit
messages. Furthermore, in an continuous scenario, we just
have to update the clone index for altered files and can thus

return new results in almost real-time. Related to the future
extensions, the revision information can also be used to get
knowledge about the person who introduced the inconsistency.

It is noteworthy that the gapped detection unveiled some
bugs, we did not encounter before, but vice-versa the evolution
based approach reported some bug candidates not found by the
gapped approach as well. Hence, also a combination of both
methods could be beneficial.

H. Threats to Validity

This section gives an overview of internal and external
threats to validity of the case study and how we tried to
mitigate them.

Internal Validity: The main error source for the case
study may be determining if an inconsistently fixed clone is
a bug candidate, since the researcher has no deep knowledge
of how the analyzed systems are built and components work
together. We tried to mitigate the threat by inspecting the
results twice and concluded with the same results. For future
work we also want to verify the results by developers.

For answering the research questions, we did not take recall
into account. Yet, this is no problem with regards to the aim
of the proposed toolkit. The key requirement is to find bugs
with high precision combined with context information. This
set of tool-reported bugs should contain as less false positives
as possible to minimize manual inspection efforts. As long as
the time spent searching for bugs is justified by the bugs we
find, we do not mind how many we miss: the time invested
into finding bugs paid off.

Another group of threats concerns the program evolution.
Depending on the version control system used, fixes that
happen on feature branches are not visible on the main branch
after being merged. All systems that were imported from Sub-
version and Microsoft Team Foundation server suffer from this
problem, whereas the Git based systems Banshee and Spring
do not. Similarly, we will not detect clones that were newly
created and a fix was applied to the code before committing
to the version control system again. These problems are more
or less technical restrictions that cannot be prevented and thus
the set of reported bugs may be smaller than the actual set of
inconsistent fixes that were applied to code clones.

A further problem may be clone false positives, which
are code regions that are syntactically similar to each other
but contain no semantic similarity. Examples are e.g. lists of
getters and setters with different identifiers. We included those
false positives in the results of the case study and counted them
as not representing a bug candidate. Doing so, we penalize the
precision of the bug-finding tool.

Finally, the list of keywords for identifying bugs may not be
exhaustive. Again, our aim is not to find all possible bugs, but a
subset with a high precision. Moreover, adding new keywords
for other systems is easy.

External Validity: The systems chosen for the case study
as study objects may not represent an average software system.
Yet, for closed-source systems, we are limited to existing
industry contacts. However, all systems are developed by

8

different teams and for different purposes as described in
Section IV-B. Moreover, RQ 1 and RQ 3 showed that they
also have different characteristics in terms of bug evolution
and amount of code clones. We are thus convinced that we
have no strong bias in the results.

V. CONCLUSION AND FUTURE WORK

This paper contributed to the analysis of the evolution
history of code clones with the goal to find incomplete bug-
fixes. A novel approach has been proposed that inspects
commit messages for terms indicating a bug-fix in conjunction
with unveiling gapped clones from evolution analysis.

We have performed a study on six real-world open source
and industrial software systems for evaluating this approach.
The results clearly show that inconsistent fixes—although
varying in number—are a problem common to many software
systems. The proposed toolkit helps revealing this missing
bug-fixes in code clones with an acceptable precision of 30%
to 60%. Compared to gapped clone detection, which has a
precision of 20% to 30%, the evolution analysis produces more
precise results. Moreover, bugs are not only reported, but with
commit messages and inconsistent clone pairs valuable context
information is provided.

The approach is suitable for both first-time analyses of a
system which may even be performed by persons not familiar
with the system as well as continuous analyses. The latter is
supported by the index-based clone detection backend, which
supports fast incremental updates.

For future work, the approach can be extended, to gain
further precision or performance improvements. We plan to do
a combined approach of gapped clone detection and evolution
analysis with some kind of weighting of the found incomplete
fixes. Also the content of altered source code can be taken into
account. Added null-checks, catched exceptions or additional
if-clauses are highly suspect to represent missing bug-fixes
if applied inconsistently. However, this requires additional
research and goes beyond the scope of this paper.

Further performance improvements can be gained by keep-
ing the normalized source code in memory between consec-
utive iterations and just update modified files. An analogous
method is already used for updating the clone index and needs
to be applied here as well, since disk operations are one
essential bottle neck for large-scale system analyses.

ACKNOWLEDGMENT

The authors would like to thank Munich RE Group and
AOL for supporting this study. This work was partially funded
by the German Federal Ministry of Education and Research
(BMBF), grant “EvoCon, 01IS12034A”. The responsibility for
this article lies with the authors.

REFERENCES

[1] G. Canfora, L. Cerulo, and M. Di Penta, “Tracking your
changes: a language-independent approach,” Software,
IEEE, vol. 26, no. 1, pp. 50–57, 2009.

[2] R. Koschke, “Survey of research on software clones,”
in Duplication, Redundancy, and Similarity in Software.
Dagstuhl Seminar Proceedings, 2007.

[3] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wag-
ner, “Do code clones matter?” in Proceedings of the 31st
International Conference on Software Engineering, 2009,
pp. 485–495.

[4] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: Find-
ing copy-paste and related bugs in large-scale software
code,” IEEE Trans. on Softw. Eng., 2006.

[5] E. C. Lingxiao Jiang, Zhendong Su, “Context-based
detection of clone-related bugs,” in Proc. of ESEC/FSE
’07, 2007.

[6] L. Aversano, L. Cerulo, and M. Di Penta, “How clones
are maintained: An empirical study,” in Proc. of CSMR
’07, 2007.

[7] S. Thummalapenta, L. Cerulo, L. Aversano, and
M. Di Penta, “An empirical study on the maintenance
of source code clones,” Empirical Software Engineering,
2009.

[8] T. Bakota, R. Ferenc, and T. Gyimothy, “Clone smells in
software evolution,” in Proc. of ICSM ’07, 2007.

[9] A. Ying, G. Murphy, R. Ng, and M. Chu-Carroll, “Pre-
dicting source code changes by mining change history,”
IEEE Trans. on Softw. Eng., 2004.

[10] C. Roy, J. Cordy, and R. Koschke, “Comparison and
evaluation of code clone detection techniques and tools:
A qualitative approach,” Science of Computer Program-
ming, 2009.

[11] S. Kim, K. Pan, and E. E. Whitehead Jr, “Memories of
bug fixes,” in Proceedings of the 14th ACM SIGSOFT
international symposium on Foundations of software en-
gineering, 2006, pp. 35–45.

[12] A. Mockus and L. G. Votta, “Identifying reasons for
software changes using historic databases,” in Software
Maintenance, 2000. Proceedings. International Confer-
ence on, 2000, pp. 120–130.

[13] T. Zimmermann, P. Weibgerber, S. Diehl, and A. Zeller,
“Mining version histories to guide software changes,” in
Software Engineering, 2004. ICSE 2004. Proceedings.
26th International Conference on, 2004, pp. 563–572.

[14] T. Zimmermann, N. Nagappan, and A. Zeller, “Predicting
bugs from history,” T. Mens, S. Demeyer (Eds.), Software
Evolution, Springer, pp. 69–88, 2008.

[15] S. Bazrafshan, R. Koschke, and N. Gode, “Approximate
Code Search in Program Histories,” in Reverse Engineer-
ing (WCRE), 2011 18th Working Conference on, 2011,
pp. 109–118.

[16] E. Duala-Ekoko and M. P. Robillard, “Tracking code
clones in evolving software,” in Software Engineering,
2007. ICSE 2007. 29th International Conference on,
2007, pp. 158–167.

[17] M. Kim, V. Sazawal, D. Notkin, and G. Murphy, “An
empirical study of code clone genealogies,” ACM SIG-
SOFT Software Engineering Notes, vol. 30, no. 5, pp.
187–196, 2005.

9

[18] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a
multilinguistic token-based code clone detection system
for large scale source code,” Software Engineering, IEEE
Transactions on, vol. 28, no. 7, pp. 654–670, 2002.

[19] N. Göde and M. Rausch, “Clone Evolution Revisited,”
Softwaretechnik-Trends, vol. 30, no. 2, pp. 60–61, 2010.

[20] R. Geiger, B. Fluri, H. Gall, and M. Pinzger, “Relation
of code clones and change couplings,” Fundamental
Approaches to Software Engineering, pp. 411–425, 2006.

[21] H. Gall, K. Hajek, and M. Jazayeri, “Detection of logical
coupling based on product release history,” in Software
Maintenance, 1998. Proceedings. International Confer-
ence on, 1998, pp. 190–198.

[22] B. Hummel, E. Juergens, L. Heinemann, and M. Con-
radt, “Index-based code clone detection: incremental,
distributed, scalable,” in Software Maintenance (ICSM),
2010 IEEE International Conference on, 2010, pp. 1–9.

[23] N. Göde and R. Koschke, “Incremental clone detection,”
in Workshop Software-Reengineering (WSR’09), 2009,
pp. 219–228.

[24] E. Juergens, “Why and How to Control Cloning in
Software Artifacts,” 2011, Dissertation, Technische Uni-
versität München.

10

On Software Quality-motivated Design of a Real-time Framework
for Complex Robot Control Systems

Max Reichardt, Tobias Föhst, Karsten Berns

Abstract— Frameworks have fundamental impact on soft-
ware quality of robot control systems. We propose systematic
framework design aiming at high levels of support for all
quality attributes that are relevant in the robotics domain.
Design decisions are taken accordingly. We argue that certain
areas of design are especially critical, as changing decisions
there would likely require rewriting significant parts of the
implementation. For these areas, quality-motivated solutions
and benefits for actual applications are discussed. We illustrate
and evaluate their implementations in our framework FINROC
– after briefly introducing it. This includes a highly modular
framework core and a well-performing, lock-free, zero-copying
communication mechanism. FINROC is being used in complex
and also in commercial robotic projects – which evinces that
the approaches are suitable for real-world applications.

I. MOTIVATION

Reaching high levels of software quality is in many
ways a decisive factor for success when developing robot
control systems – especially when systems grow beyond
a certain size. With the intent to commercially develop
and sell increasingly complex autonomous service robots on
emerging (mass) markets, importance of this topic will rise
even further. Certification for safety is a central requirement
in this context.

Complex robot control software is typically implemented
based on a robotic framework, toolkit or middleware. As
these terms overlap, “framework” will be used in the re-
mainder of this document. By defining a component model
and dealing with many common problems, the selected
framework has fundamental impact on the quality of robot
control software: For example, if the framework is portable,
efficient or scalable, robot control software will more likely
be, too.

In fact, we observe the framework as the central adjustable
factor determining software quality – with significant poten-
tial to introduce measures that actually guarantee or enforce
certain quality requirements. From this point of view, frame-
works are an important research topic for making progress
in robotics software development. Due to its special nature,
characteristics and constraints (e.g. autonomy in complex
dynamic environments), it is worthwhile to investigate this
topic specifically for the service robotics domain as possi-
bilities and difficulties differ from other areas of (embedded)
software development.

In order to implement quality measures and perform ex-
periments, it is sometimes necessary to have full control over

Max Reichardt, Tobias Föhst and Karsten Berns are with the Robotics Re-
search Lab, Department of Computer Science, University of Kaiserslautern,
Gottlieb-Daimler-Straße, 67663 Kaiserslautern, Germany {reichardt,
foehst, berns}@cs.uni-kl.de

TABLE I: Relevant quality attributes in robotics software

Execution Qualities Evolution Qualities

Performance efficiency Maintainability
Responsiveness (latency) Reusability
Safety and Reliability Portability
Robustness and Adaptability Flexibility
Recoverability Extensibility
Scalability Modularity
Usability and Predictability Changeability
Functional Correctness Integrability
Interoperability Testability

the framework core, architecture, tools or code repositories.
Therefore, using a framework developed and maintained by
a third party can be a limiting factor. Thus, we implemented
FINROC1 (see IV) considering factors altering software qual-
ity from the initial design phase in 2008. Nonetheless, as this
is in fact a software quality attribute as well, we pay close
attention that our efforts are interoperable with other projects
in the open source robotics community. The fact that FINROC
is being used in complex and also in commercial robotic
projects (see VI) evinces that the presented approaches are
actually suitable for real-world applications.

With respect to effort spent on software quality assurance,
professional product development and most research groups
are two different worlds. In academics, spending time on
this task is typically not rewarded – as long as systems
run sufficiently robust and efficient. In robotics, however,
systems often have considerable complexity. Keeping them
maintainable across multiple generations of PhD students is
a major problem. In practice, many systems are abandoned
when their developers leave. Due to time constraints in this
context, measures to raise software quality are of particular
interest if they cause only little extra effort in application
development. Again, we see measures and policies imple-
mented in the framework as a promising area to work on.

II. SOFTWARE QUALITY IN ROBOTICS

Software quality is strongly related to non-functional re-
quirements as these “characterize software quality and enable
software reuse” [1]. “Although the term ‘non-functional re-
quirement’ has been in use for more than 20 years” and there
“is a unanimous consensus” that they are important, “there is

1http://www.finroc.org

11

still no consensus in the requirements engineering commu-
nity what non-functional requirements are” [2]. International
standards such as ISO/IEC 9126 and ISO/IEC 25010 struc-
ture non-functional requirements in quality characteristics
and subcharacteristics. Mari et al. [3] distinguish between
“execution qualities” and “evolution qualities”. Following
this, we believe the quality attributes collected in TABLE I
are especially relevant across a wide range of control systems
for service robots.

Various publications on robotics software deal with the
necessity and difficulties reaching these quality attributes,
such as [4], [1], [5] on software reuse, [6] on robustness and
reliability, [7] on scalability or [8] on interoperability and
integration.

Clearly, it is challenging for a software developer to con-
sider all these attributes when designing a robotic application.
Using a suitable framework can simplify this task signifi-
cantly. We distinguish three levels of framework support:

• In the ideal case, quality attributes can be ensured
“seamlessly”. E.g. if the framework provides conve-
nient facilities for efficient, scalable and robust inter-
component data exchange – possibly providing real-
time guarantees – the developer does not need to worry
and the resulting application will not have deficiencies
in this respect. Interoperability is another example.

• If bad code or bad component behavior can be detected
automatically, requirements can be enforced by noti-
fying the developer. This way, for instance, memory
allocation or locking can be prevented in real-time code.
Introducing a total ordering on locks – as shown in [9]
– avoids dead-locks.

• There are many other measures to support certain soft-
ware quality attributes that do not provide any guar-
antees though. Promoting good software development
practices such as separating framework-independent
from framework-dependent code will increase reusabil-
ity and portability of software artifacts.

With FINROC as an object of study and validation, we
investigate measures that can be implemented in a framework
to support or even guarantee certain quality attributes.

III. CRITICAL AREAS OF DESIGN

Many important decisions must be taken when designing
a framework – often involving trade-offs. Ideally, those deci-
sions are well-founded. This requires a thorough understand-
ing of the available options. Studying existing solutions, we
identified alternatives, best practices and lessons learnt with
respect to different areas of design. Their implications on a
robot control’s quality attributes were evaluated carefully.

Notably, design decisions greatly differ in criticality. In
fact, some decisions can easily be changed later should
other options seem superior. Others, however, can only be
undone with immense development effort, which might not
be realistic as this would often require rewriting major parts
of a framework. Adding real-time support to a framework
that was not designed with this in mind is an example. It is
important to be aware of this fact.

Difficult to Simple to
add or change add or change

Real-time Support Script Language Support
Overall Architecture Network Transport
Runtime Construction Interoperability
Modular Framework Core Web Interface
Efficient, Lock-free Communication Tooling

Portability
API and Application Constraints

Fig. 1: Subjective criticality ratings for areas of design

Fig. 1 is an attempt to rate features and areas of design
with respect to their criticality. Note that these ratings assume
that a highly modular framework core is used (see III-B): e.g.
a network transport mechanism is only easily exchangeable,
if it is clearly separated from the rest of the framework.
As long as the framework is implemented in a portable
programming language and depends – if at all – on platform-
independent libraries, Portability is not a major issue. Fur-
thermore, any binary serialization mechanisms should take
care of endianness. The API can always be extended with
little effort. However, changing it can become laborious once
a considerable amount of components and applications exist.

Having identified critical areas of design, we focused on
getting those right in the initial FINROC release. As we
believe that all the features on the left – real-time support,
a highly modular framework core, runtime construction
and efficient, lock-free communication – are beneficial to
software quality, they are all supported. As it turned out,
it is somewhat challenging to implement those features in
combination. FINROC is actually the only framework we
are aware of that supports them all. As this is not always
obvious, their relevance for the service robotics domain is
briefly discussed in the following.

A. Efficient, lock-free real-time implementation

Less computational overhead leads to lower latency and
lower power consumption of a robot control. More tasks can
be executed on a computing node – or smaller, cheaper nodes
can be used. Nesnas [10] shares the view that communication
overhead is critical: “An application framework must pay
particular attention to avoiding unnecessary copying of data
when exchanging information among modules”.

Due to the modular application style, using a framework
will always induce computational overhead compared to a
perfectly engineered monolithic solution. However, frame-
works such as Orocos [11] show that computational overhead
can be low, despite a relatively loose coupling. In practice,
as soon as it comes to buffer management or multithreading,
we often observe that framework-based solutions actually
outperform custom standalone code – sometimes drastically.
This is due the fact that efficient, lock-free buffer manage-
ment is complex to implement. As monolithic implementa-
tions are furthermore detrimental with respect to reusability,

12

maintainability and tool support, they are no alternative to
using an efficient framework for realizing complex robot
control software.

Efficiency also influences scalability – imposing limits on
the maximum number of components that are feasible and
therewith component granularity. In our research on large
behavior-based networks, for instance, we develop systems
that consist of far more than thousand components.

Notably, locking can be an even bigger issue with respect
to latency and scalability – as we experienced exchanging
data via blackboards in MCA2 [12]. Although based on
an efficient shared memory implementation, locking them
exclusively from different components quickly causes signif-
icant, varying delays. Such delays in the image processing
components of our humanoid robot ROMAN, for instance,
hindered natural interaction. Furthermore, overall cycle times
are high. Being able to use shorter cycle times in FINROC
immediately solved several problems we had with a lateral
controller steering an agricultural vehicle. Lock-free imple-
mentations are certainly advantageous.

Finally, functionality with real-time requirements can only
be realized without completely bypassing the framework (and
taking care of multithreading and lock-free data sharing man-
ually) if the framework provides real-time support. While
real-time requirements can often be neglected in scientific
experiments, this is a central topic for safety-critical parts of
commercial robot control systems in order to guarantee that
a robot will always react in time to certain events. For our
bucket excavator THOR (see VI) this is certainly critical.

Notably, it is possible to separate the component com-
munication mechanism (“transport”) from the rest of the
framework to make it exchangeable later – an approach taken
in Orocos. This might seem to contradict the criticality rating
in fig. 1. However, it does not as the framework must be
deliberately designed for this. Apart from that, the common
API for all transports can limit efficiency: e.g. if empty
buffers are not obtained from the API, unnecessary copying
cannot be avoided in multithreaded applications.

B. Modular framework core

Makarenko et al. [13] discuss the many benefits of frame-
works having a slim and clearly structured code base –
especially regarding development and maintainability of a
framework itself. A modular framework core is furthermore
beneficial regarding flexibility, extensibility and changeabil-
ity of a framework and the resulting robot control systems.
Furthermore, portability is increased, as many advanced fea-
tures such as script language support or a web interface can
be made optional. This allows creating slim – possibly single-
threaded – configurations of a framework with minimal
library dependencies that are suitable for small computing
nodes. Generally, this configurability can allow to tailor a
framework to applications, computing hardware and network
topology. In the end, this makes the framework suitable for
a broader range of systems.

The concept of “stacks” in ROS [14] goes into this
direction. Some frameworks such as Player [15] feature an

exchangeable network layer. In contrast, as MCA2 was tightly
coupled to a custom TCP-based protocol, we encountered
limitations with respect to robustness and efficiency that
could not easily be resolved – especially in the context
of tele-operation over weak wireless connections and the
internet. With respect to ratings in fig. 1, a modular frame-
work implementation with a clear separation of concerns is
essential in order to classify design areas as simple to change.

C. Runtime Construction

The term “runtime construction” refers to the possibility
to instantiate, connect and delete components at applica-
tion runtime. Some frameworks support this on a process
level: processes containing components can be started and
terminated. If performance is not to be sacrificed, however,
runtime construction is also relevant for components located
inside the same process. Whether or not a framework should
support especially the latter is a controversial topic – due to
limited advantages and significantly complicating the frame-
work implementation. We see some use cases for dynamic
application structure:

• When operating in smart environments, robots typically
need to condense the available sensor information in
homogeneous views of the environment. Suitable com-
ponents to perform such tasks can be created as sensors
are encountered.

• Smart [6] proposes graceful degradation in order to
increase robustness of systems. This includes dynamic
rewiring of components in the case of sensor failure.

• If developers can modify an application while a robot
is running – possibly using a graphical tool – effort
for recompiling and restarting robot controls during
experiments can be reduced significantly.

• It simplifies implementations – e.g. of network transport
plugins with a dynamic set of I/Os. Furthermore, it
provides the necessary facilities to handle application
structure in e.g. XML files instead of source code –
with the advantage that structure changes do not require
recompiling and tools for round-trip engineering are
simpler to realize.

Thus, runtime construction contributes to adaptability and
flexibility of a system.

IV. FINROC IMPLEMENTATION AND EVALUATION

For the past decade, we have been using MCA2 [12]
for developing robot controls, and learned to appreciate
many of its qualities – such as real-time support, its scal-
ability and its application style. By distinguishing between
sensor and controller data, it is well-suited for application
visualization. MCA2 was originally developed at the FZI2

(“Forschungszentrum Informatik”) in Karlsruhe. Over the
years, we realized various modifications and enhancements
in the MCA2-KL branch3. As its kernel is monolithic, diffi-
culties improving several of the areas listed in fig. 1 were

2http://www.fzi.de/
3http://rrlib.cs.uni-kl.de/

13

Module
Image Output Port

Module
Input Port

Module

Bu�er Pool

Bu�er 1

Bu�er 2

Bu�er 3

Bu�er n

...

Routing Port

Group

Input Port

Input Queue

void mDemo::Update() {
 tPortDataPtr<const tImage>
 im = port.GetPointer();
 ...
}

Fig. 2: FINROC’s lock-free, zero-copying data exchange

encountered. Unable to find an open source framework with
the properties we rate critical (see chapter III), we decided
to implement FINROC. As Makarenko et al. [13] argue,
developing and maintaining a framework can be feasible.

System decomposition is similar to MCA2: applications
are structured in “modules” (components), “groups” and
“parts” (OS processes). The interfaces of modules, groups
and parts are a set of ports. These can be connected if their
types are compatible. A FINROC application consists of a
set of interconnected modules and can be visualized as a
data flow graph. “Groups” encapsulate sets of modules (or
other groups) that fulfil a common task. They structure an
application. Modules and groups can be placed in “thread
containers” to assign them to operating systems threads.
Unlike in MCA2, it is also possible to trigger execution by
asynchronous events – as Nesnas [10] recommends.

Furthermore, we separate framework-dependent from
framework-independent code – as also [13], [16], [14] en-
courage. In our experience, this is the best way to make
software artifacts portable and reusable across research
institutions. In fact, most of our code base are actually
framework-independent libraries (called RRLIBs). Over the
last decade, we developed a considerable collection of drivers
and libraries for robot controls available as RRLIBs. Many
of them have already been integrated in FINROC.

There is a C++11 and also a native Java implementation
of FINROC. The C++11 version currently depends on the
platform-independent boost libraries4. We will remove this
dependency, as soon as compilers on our systems have
sufficient C++11 support. C++11 being the first C++ stan-
dard with a multithreading-aware memory model [9], it is
preferable to plain C++ for safe, lock-free implementations.
Notably, lock-free code that is safe on one CPU architecture
might not be on another, due to different behavior with
respect to memory ordering.

FINROC works well on ARM-based platforms such as
Gumstix5 or the PandaBoard6. Furthermore, FINROC’s Java
implementation compiles on Android, so apps can utilize it
to communicate with robots.

4http://www.boost.org/
5http://www.gumstix.com/
6http://pandaboard.org/

Module
Pose Output Port

Module
Input Port

Module

Pose3D
Bu�er Pool

Bu�er 1

Bu�er 2

Bu�er n

...

Routing Port

Group

Input Port

Input Queue

void mDemo::Update() {
 tPose3D pose = port.Get();
 ...
}

Thread i

Fig. 3: Optimized implementation for cheaply copied types

A. Lock-free, zero-copying intra-process communication

Aiming to maximize (intra-process) communication effi-
ciency, FINROC features a lock-free implementation that does
not copy data. It is illustrated in fig. 2. The implementation
supports input queues and allows switching between push-
ing and pulling data at application runtime. Notably, port
connections can be changed without blocking threads that
currently publish data via the same ports. Ports allow n:m
connections – although connecting multiple output ports to
one input port is typically discouraged.

The lock-free implementation is based on buffer pools,
typically managed by output ports. Apart from the actual
data, buffers contain storage for a timestamp and manage-
ment data such as a reference counter. In order to publish
data via an output port, an unused buffer is obtained from
the port and filled with the data to be published. If all buffers
are in use, another buffer is allocated and added to the pool.
For real-time code, pools need to contain sufficient buffers
so that this does not occur.

Ports contain atomic pointers, pointing to the ports’ current
values (symbolized by small orange squares in fig. 2).
Publishing data replaces these pointers and updates reference
counters. Obtaining the current buffer from a port is the
tricky part: the pointer to the current buffer is read in one
atomic operation and the reference counter is increased in
another. In a naive implementation things can go wrong if the
buffer is returned to the buffer pool (and possibly published
again) in between these two operations. Therefore, we use
tagged pointers and tagged reference counters. The reference
counter may only be increased if it is not zero and if tags
match. Otherwise, a new buffer has arrived and the procedure
is repeated.

Once published, buffers are immutable (get operations on
ports return const pointers). Almost any C++ type can be
used in ports – including types without copy constructor and
assignment operator, as well as std::vectors of them.
Merely, stream operators for binary serialization need to be
provided. If the type has no default constructor, a template
needs to be specialized, so that buffers of this type can be
instantiated.

Lock-free buffer pool management and atomics-based
reference counting causes some computational overhead.

14

TABLE II: Results of image transport benchmark

Framework Consumers ØFPS CPU RAM
0 N/A 9 % 35 MiB

Orocos 1 50.00 40 % 52 MiB
Locked 7 50.00 40 % 52 MiB

15 50.00 41 % 52 MiB
0 N/A 2 % 29 MiB

Orocos 1 50.00 11 % 61 MiB
Lock-free 7 50.00 49 % 202 MiB

15 49.20 100 % 392 MiB

FINROC

0 N/A 6 % 32 MiB
1 50.00 6 % 32 MiB
7 50.00 6 % 33 MiB

15 50.00 7 % 36 MiB

MCA2-KL

0 N/A 6 % 19 MiB
1 50.00 6 % 19 MiB
7 50.00 6 % 19 MiB

15 50.00 7 % 19 MiB

Therefore, FINROC uses an optimized port implementation
for small data types of constant size (see fig. 3). For such
types, thread-local buffer pools are used and only the owner
thread accesses the reference counter. Again, pointers are
tagged in order to avoid the ABA problem.

In order to evaluate our implementation’s impact on com-
putational overhead, a benchmark with uncompressed, high-
resolution camera images was set up – as they are quite
costly to copy. References are MCA2-KL and Rock/Orocos
with a state-of-the-art, intra-process communication model –
either locked or lock-free with copying.

A producer-consumer scenario was set up in each of
these frameworks7: One producer sends HD RGB24 images
(1920 × 1080) at 50 fps to several consumer tasks – filling
the image buffers via memcpy8. Consumers are port-driven
and calculate the arriving frames per second. CPU load
and memory consumption were determined via htop. Only
thread-safe communication mechanisms were used.

The results are shown in TABLE II. Using lock-free com-
munication in Orocos, CPU load and memory consumption
grow drastically with an increasing number of consumers. In
FINROC, on the other hand, adding consumers has minimal
impact on CPU load or memory usage. Possibly, an Orocos
transport plugin based on the mechanism presented here
would be feasible. MCA2-KL uses only a single buffer and
therefore has the lowest memory footprint. It has, however,
issues with blocking (see III-A).

To measure the theoretical limits imposed by compu-
tational overhead from intra-process communication, five
simple modules were connected to a control loop – each
module reading and publishing a 4×4-matrix in every cycle.
This control cycle can be executed with more than 1 MHz
by a single thread that never pauses.

B. Highly modular framework core

Targeting a high level of modularity with a clear sepa-
ration of concerns, we opted for a plugin architecture in

7All benchmarks were performed on an Intel Core i7 @2.67 GHz PC
running Ubuntu 12.04, 32-bit

8Notably, this is not always necessary in FINROC. Consumers directly
receive the buffers obtained from the v4l2 driver, for instance.

util (899 SLOC)

design_patterns (790 SLOC)

time (692 SLOC) xml (670 SLOC)

logging (1.4 kSLOC)

serialization (3.1 kSLOC)

rtti (1.9 kSLOC)concurrent_containers (2.1 kSLOC)

bu�er_pools (576 SLOC)

core
(3.8 kSLOC)

data_ports (5.8 kSLOC)

parameters (1.8 kSLOC)

scheduling (567 SLOC)

runtime_construction (2.1 kSLOC)

structure (820 SLOC)

blackboard
(1.8 kSLOC)

tcp
(4.0 kSLOC)

urbiscript
(1.0 kSLOC)

RRLIBs

Core

Plugins

ib2c
(1.3 kSLOC)

thread (1.5 kSLOC)

rpc_ports
(1.7 kSLOC)

ros
(1.1 kSLOC)

Fig. 4: FINROC’s modular core with a selection of plugins

FINROC. Furthermore, framework-independent functionality
was realized as independent RRLIBs. Fig. 4 illustrates how
this currently looks like for a selection of plugins9.

Functionality that is not needed in every application, is
generally implemented in optional plugins. By combining
plugins with the relevant functionality, FINROC can be tai-
lored to the requirements of an application. Furthermore,
functionality that supports developers can be added via
plugins during the development process of a system. When
software is to be deployed – possibly on small embedded
nodes – this functionality can simply be removed.

As motivated by Makarenko et al. [13], a central target
is keeping the code base of FINROC’s core components
slim as less code means lower maintenance effort and fewer
errors. Quality assurance can be focused on important and
relatively small core components. Research on better tools
and experimental enhancements are ideally conducted in
plugins with no impact on quality of the core components
that are used in important projects.

As depicted in fig. 4, FINROC consists of many small
independent software entities. These typically consist of only
a few thousands lines of code. Hence, they can be reimple-
mented with reasonable effort. As long as interfaces stay the
same, each of these entities can be replaced with alternative
implementations – possibly optimized for certain hardware,
application constraints or in some way certified. Single-
threaded implementations, for instance, would be simpler and
more efficient.

The plugins data ports, rpc ports and blackboard provide
different mechanisms for component interaction. data ports
contains the implementation presented in section IV-A and
is the primary mechanism for data exchange. The RRLIBs
concurrent containers and buffer pools comprise lock-free
utility classes that are central for its implementation. struc-
ture is the default FINROC API and provides the base classes

9Lines of code were counted using David A. Wheeler’s ’SLOCCount’

15

tFrameworkElement

tAbstractPort

tRuntimeEnvironment tAnnotation
1

*

 outgoing
*
 incoming
*

1 *

Fig. 5: Central classes in core

for modules, groups and parts as introduced in chapter IV,
whereas ib2c contains the API and base classes for different
kinds of behaviors in our iB2C architecture [17]. urbiscript
adds experimental support for the scripting language from
the URBI framework [18]. ros enables interoperability with
ROS [14]. tcp provides a slim TCP-based peer-to-peer net-
work transport supporting the publisher/subscriber pattern
and featuring simple quality of service. It is currently the
default in FINROC. runtime construction contains function-
ality presented in IV-C.

There are four fundamental classes in the FINROC core
(see fig. 5). We tried to come up with a simple structure to
which the elements in MCA2, the FINROC API and possibly
other frameworks can be mapped.

The central one is tFrameworkElement. It is the
base class for all components, ports and structural entities.
Framework elements are arranged in a hierarchy. In our
tooling, this hierarchy is typically shown in a tree view
on the left (see fig. 6). Then there is tAbstractPort.
Ports of compatible data types can be connected – the core
allows n:m. Such connections are network-transparent. The
root framework element is the tRuntimeEnvironment
singleton.

Several plugins need to attach information to framework
elements – such as parameter links to config files, or tasks
that need to be scheduled. Allowing the attachment of
arbitrary annotations appears to be a fortunate design choice
with respect to decoupling.

C. Runtime Construction

Decisions on support for concurrency significantly influ-
ence the effort required to implement runtime construction.
In FINROC, two threads cannot make changes to the appli-
cation structure (component hierarchy and port connections)
at the same time. All operations required in control loops,
however, execute concurrently, so that real-time threads
in particular are not blocked performing their tasks. This
requires using lists that allow iteration concurrently to mod-
ifications in several core classes. Furthermore, it is critical
to ensure that no thread accesses a port or component when
deleting it.

With these preparations in the core, the
runtime construction plugin has three central tasks. First
of all, it manages a global list of instantiable component

Fig. 6: FINSTRUCT: application visualization, inspection and
construction

types. By default, FINROC component classes register
on application startup providing class name and callback
for construction. Applications do not necessarily need
to be linked against the shared library files containing
the components that are used. They can also be loaded
dynamically at runtime using this plugin. Finally, it allows
to store the current application structure in a simple XML
format and restore it on the next run.

Based on these mechanisms, components can be instanti-
ated, connected and removed graphically at application run-
time using the FINSTRUCT tool (see fig. 6). Changes made
to application structure can be saved to these XML files.
In a way, FINSTRUCT is an optional round-trip engineering
tool for application structure and is actually used in several
projects in this way. Managing the structure information in
separate files in a simple format is a reason for this working
reasonably well. If the interfaces of components change, it
might no longer be possible to instantiate all elements as
stored. In this case, components or edges that have become
invalid are discarded and possibly need to be recreated.

Elements are automatically arranged utilizing graphviz10.
Apart from that, FINSTRUCT is the tool to visualize and
inspect applications and can display and change the current
values of all ports and parameters with supported data types.
This includes unknown data types that can be serialized to
strings or to XML. FINSTRUCT is the counterpart to MCA-
Browser in MCA2.

V. POLICIES TO INCREASE MAINTAINABILITY

Frequent changes are a typical characteristic of software
projects in the service robotics domain and it is important
to keep the resulting effort for software maintenance low.
With projects growing beyond a certain size, this is certainly
(also) critical in small institutions such as university groups
with the main developers always leaving after a few years.
Framework design and policies have significant influence on
this issue. In the following, we briefly discuss some of our
experience and decisions we have taken in FINROC in this
respect.

A. Application interface and constraints
An interesting question is whether imposing contraints on

application structure is good practice – and also what they

10http://www.graphviz.org/

16

should look like. Frameworks such as ROS [14], Player [19]
or Orca [20] strive to prescribe as little as possible or
necessary, as unnecessary contraints can be a nuisance and
lead to ugly workarounds. In MCA2, for instance, it is
forbidden to connect modules in a way that lead to cycles in
data dependencies. This led to inserting loop-back modules
to realize such cycles in many applications.

On the other hand, strict guidelines help to avoid chaotic
implementations. In our university group, many developers
contribute to projects and libraries. Most existing code is
from developers no longer working here. Experience shows
that not all developers write clean code. Enforcing guidelines
contributes significantly to keeping large software systems
maintainable. Furthermore, controls of different robots have
increased similarities, which facilitates reuse. Apart from
that, guidelines, such as separating sensor and controller data
in MCA2, allow visualizing applications in a clearer way –
compared to using a typical layout algorithm on a “raw” data
flow graph.

Since different kinds of APIs and programming styles
are suitable for different levels of robot controls – e.g.
CLARAty [10] explicitly separates a functional from a
decisional layer – we decided to add APIs as plugins. This
way, they are clearly separated from the framework core.
Relatively strict constraints and guidelines are enforced in
those APIs only, while the framework core prescribes as little
as possible.

Ideally, the relevant API classes can all be mapped on
the basic primitives the core provides. This allows using
the same tools to interact with application parts based on
different APIs – an advantage compared to using unrelated
subframeworks.

B. Size of libraries and components

Having refactored a considerable amount of code from
members that are no longer in our group, we experienced
that – as a rule of thumb – reusable libraries with up to
5000 SLOC are typically comfortable to maintain and can
be understood relatively quickly. So we try to keep all our
libraries – including the framework core and its plugins –
below this boundary (see IV-B). When a library becomes
larger, it is checked whether there is a good way of splitting
it up. Sometimes libraries contain relatively independent
functionality. In other cases, core functionality and optional
extensions can be identified. With this policy, we hope to
support a clear separation of concerns and avoid heavy-
weight software artifacts as well as feature bloat. This also
increases suitability for embedded systems.

C. Separating Framework-independent Code

In our experience, reuse of software artifacts across re-
search institutions works best with code that is framework-
independent. The OpenCV library [21] is a good example.
Developers of some frameworks explicitly encourage sepa-
rating framework-independent code ([13], [16], [14]) – and
we fully agree.

Fig. 7: The autonomous mobile bucket excavator THOR

Over the years, a considerable repository of reusable
MCA2 libraries for all kinds of applications evolved. Be-
fore porting them to FINROC, we decided to separate the
framework-independent code. As it turned out, most of the
code actually is – leaving only thin modules that wrap
this code for MCA2. Equivalent FINROC modules are even
thinner. Notably, using it in an ADTF [22] component for
an industrial partner was not a problem either. So this
appears to be good practice for migration and for avoiding
framework lock-in: If most of the code is independent,
migrating existing projects to other frameworks becomes
much less of an issue.

D. Coping with variability

A major challenge with respect to reusable software
artifacts is handling variability across a broad range of
projects (as discussed in [5]). We try to cope with this
issue primarily using C++11 templates. In our view, this is a
very powerful and appropriate mechanism allowing amazing
designs – without any additional tooling – and providing
strict type-safety along with high flexibility by decomposing
type-behavior into policies [23]. On the downside, however,
code can be hard to read for developers not familiar with
these concepts.

E. Code Generation

Custom code generators are sometimes integrated into a
framework’s build toolchain with the intention to reduce de-
velopment effort. In our experience, constraints, unforeseen
side-effects and reduced transparency when tracking bugs
can quickly outweigh any benefits – so adoption must be con-
sidered carefully. We deliberately minimized the amount of
code generated by the framework to optional string constants
for enums and port names. With respect to transparency, we
want the complete system behavior to be evident from plain,
versioned C++ code that an IDE such as Eclipse can index.

VI. CURRENT APPLICATIONS

The autonomous mobile bucket excavator THOR (see fig. 7
and 8) is the first major project we ported to FINROC.
Apart from that, we are successfully using it in projects
on agricultural machinery. Small forklift robots that we use
for education including competitions are completely based

17

Fig. 8: User interface created in FINGUI tool connected to
simulated robot

Fig. 9: Robot VIONA developed by Robot Makers GmbH

on FINROC, too. Several other projects are currently being
migrated. As mentioned in chapter IV-B, there is a FINROC-
based implementation of our behavior-based architecture
iB2C. For the first time, the rules and guidelines worked out
in [17] are properly and automatically checked and enforced.

Robot Makers GmbH11, use FINROC in their product
lineup. This includes the mobile offroad robot VIONA (Ve-
hicle for Intelligent Outdoor NAvigation) – a commercially
available robot platform with double-ackermann-kinematics
(see fig. 9). Furthermore, they have developed FINROC
support for the EtherCAT12 real-time bus. This facilitates
integrating standard components from automation industry.

VII. OTHER FRAMEWORKS

Numerous frameworks for robotics exists. However, we
are not aware of any solution providing all the features we
identified as critical in chapter III in combination.

With their support for efficient, lock-free communication,
Orocos [11] and the derived Robot Construction Kit [16]
probably come closest.

The “Robot Operating System” (ROS) [14] is currently
the best-known and most wide-spread solution in academic
institutions. Several frameworks are interopable with it. In
this way, ROS has contributed to reusability and integrability

11http://www.robotmakers.de
12http://www.ethercat.org/

of available robotics software. Several frameworks including
ROS sacrifice performance for the benefits of an extremely
loose coupling: components usually run in separate threads
and exchange data exclusively via network sockets. Should
the computational overhead be an issue in ROS, it is possible
to use frameworks such as Orocos or FINROC inside a ROS
node – making them somewhat complementary. Alterna-
tively, ROS itself also has limited support for intra-process
communication. This is, however, less sophisticated as the
user needs to take care of buffer management manually.

Because of the limitations of MCA2, its original developer
– the FZI in Karlsruhe – started working on MCA3 [24].

The many other robotic frameworks include Microsoft
Robotics Developer Studio13, URBI [18], CLARAty [10],
OpenRTM [25], YARP [26] or cisst [27].

ADTF [22] is a solution with somewhat similar concepts
used in the automotive industry. In this domain, AUTOSAR
(AUTomotive Open System ARchitecture)14 is an emerging
architecture for the many control systems in vehicles sold
on the mass market. It therefore needs to be slim and
provide the high quality standards necessary for safety-
critical applications.

VIII. CONCLUSION AND OUTLOOK

In this paper, we discuss the impact of a framework
on software quality of robot control systems and propose
systematic framework design aiming at high levels of sup-
port for all relevant quality attributes. In the scope of this
document, we limit discussions to areas we identified as
especially critical for initial design. Further areas are inves-
tigated in [28]. The sections on the approaches implemented
in FINROC show how solutions for these areas can look
like. Applications in research and industry indicate that the
presented concepts work well in practice. However, it should
be noted that these are not necessarily the best solutions.

In its current state, we believe that FINROC provides the
necessary means to conveniently create efficient, complex
robot control systems. Being interopable with ROS, our
behavior-based architecture, for instance, may also be used
inside ROS nodes.

Regarding measures to support software quality, the ones
implemented are only the very beginning. There is certainly a
lot more potential. Identifying, implementing and evaluating
suitable such measures should be subject of future research.

There are several other directions of development, we
currently pursue. In order to provide real-time guarantees
across computing nodes, work on a plugin integrating the
open source real-time bus PowerLink15 is in progress. Apart
from that, we intend to come closer to hardware – making
FINROC’s core components slimmer and more efficient in
order to increase suitability for small embedded processors
– possibly without an operating system. In fact, FINROC-lite
was developed by Robot Makers as a temporary solution for
a Nios 2 soft core.

13http://www.microsoft.com/robotics/
14http://www.autosar.org/
15http://www.ethernet-powerlink.org/

18

REFERENCES

[1] D. Brugali and P. Scandurra, “Component-based robotic engineering
part i: Reusable building blocks,” Robotics Automation Magazine,
IEEE, vol. 16, no. 4, pp. 84–96, December 2009.

[2] M. Glinz, “On non-functional requirements,” in 15th IEEE Interna-
tional Requirements Engineering Conference. RE ’07, New Delhi,
India, October 15-19 2007, pp. 21–26.

[3] M. Mari and N. Eila, “The impact of maintainability on component-
based software systems,” in Proceedings of the 29th Conference on
EUROMICRO, ser. EUROMICRO ’03. Washington, DC, USA: IEEE
Computer Society, 2003, pp. 25–32.

[4] R. Vaughan and B. Gerkey, “Reusable robot software and the
player/stage project,” in Software Engineering for Experimental
Robotics, ser. Springer Tracts in Advanced Robotics, D. Brugali, Ed.
Springer - Verlag, April 2007, vol. 30.

[5] C. R. Baker, J. M. Dolan, S. Wang, and B. B. Litkouhi, “Toward
adaptation and reuse of advanced robotic software,” in IEEE Inter-
national Conference on Robotics and Automation (ICRA), Shanghai,
China, May 9-13 2011, pp. 6071–6077.

[6] W. D. Smart, “Writing code in the field: Implications for robot
software development,” in Software Engineering for Experimental
Robotics, ser. Springer Tracts in Advanced Robotics, D. Brugali, Ed.
Berlin / Heidelberg: Springer - Verlag, April 2007, vol. 30.

[7] A. Shakhimardanov, N. Hochgeschwender, M. Reckhaus, and G. K.
Kraetzschmar, “Analysis of software connectors in robotics,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), San Francisco, CA, USA, September 25-30 2011, pp. 1030–
1035.

[8] C. Cote, D. Letourneau, and C. Ra, “Using marie for mobile robot
component development and integration,” in Software Engineering for
Experimental Robotics, ser. Springer Tracts in Advanced Robotics,
D. Brugali, Ed. Berlin / Heidelberg: Springer - Verlag, April 2007,
vol. 30.

[9] A. Williams, C++ Concurrency in Action: Practical Multithreading,
ser. Manning Pubs Co Series. Shelter Island, NY, USA: Manning
Publications, February 2012.

[10] I. A. Nesnas, “The claraty project: Coping with hardware and software
heterogeneity,” in Software Engineering for Experimental Robotics,
ser. Springer Tracts in Advanced Robotics, D. Brugali, Ed. Berlin /
Heidelberg: Springer - Verlag, April 2007, vol. 30.

[11] P. Soetens, “A software framework for real-time and distributed robot
and machine control,” Ph.D. dissertation, Department of Mechanical
Engineering, Katholieke Universiteit Leuven, Belgium, May 2006.

[12] K. U. Scholl, J. Albiez, and G. Gassmann, “Mca- an expandable
modular controller architecture,” in 3rd Real-Time Linux Workshop,
Milano, Italy, 2001.

[13] A. Makarenko, A. Brooks, and T. Kaupp, “On the benefits of making
robotic software frameworks thin,” in IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS 2007), San Diego,
California, USA, October 29-November 2 2007.

[14] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating sys-
tem,” in IEEE International Conference on Robotics and Automation
(ICRA), Kobe, Japan, May 12-17 2009.

[15] B. Gerkey, R. Vaughan, K. Sty, A. Howard, G. Sukhatme, and
M. Matarić, “Most valuable player: A robot device server for dis-
tributed control,” in Proc. of the IEEE/RSJ Internatinal Conference
on Intelligent Robots and Systems (IROS), Wailea, Hawaii, October
2001, pp. 1226–1231.

[16] “The robot construction kit,” http://rock-robotics.org/.
[17] M. Proetzsch, T. Luksch, and K. Berns, “Development of complex

robotic systems using the behavior-based control architecture iB2C,”
Robotics and Autonomous Systems, vol. 58, no. 1, pp. 46–67, January
2010, doi:10.1016/j.robot.2009.07.027.

[18] J.-C. Baillie, “Design principles for a universal robotic software
platform and application to urbi,” in 2nd National Workshop on
Control Architectures of Robots (CAR’07), Paris, France, May 31-June
1 2007, pp. 150–155.

[19] B. Gerkey, R. Vaughan, and A. Howard, “The player/stage project:
Tools for multi-robot and distributed sensor systems,” in 11th Inter-
national Conference on Advanced Robotics (ICAR 2003), Coimbra,
Portugal, June 30 - July 3 2003, pp. 317–323.

[20] A. Brooks, T. Kaupp, A. Makarenko, S. Williams, and A. Orebäck,
“Orca: A component model and repository,” in Software Engineering
for Experimental Robotics, ser. Springer Tracts in Advanced Robotics,
D. Brugali, Ed. Berlin / Heidelberg: Springer - Verlag, April 2007,
vol. 30.

[21] G. Bradski, “The OpenCV library,” Dr. Dobbs Journal of Software
Tools, vol. 25, no. 11, pp. 120, 122–125, nov 2000.

[22] R. Schabenberger, “Adtf: Framework for driver assistance and safety
systems,” in International Congress of Electronics in Motor Vehicles,
Baden-Baden, Germany, 2007.

[23] A. Alexandrescu, Modern C++ design: generic programming and de-
sign patterns applied. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 2001.

[24] K. Uhl, M. Göller, J. Oberländer, L. Pfotzer, A. Rönnau, and R. Dill-
mann, “Ein software-framework für modulare, rekonfigurierbare satel-
liten,” in 60. Deutscher Luft- und Raumfahrtkongress 2011, Bremen,
Germany, September 27-29 2011.

[25] N. Ando, T. Suehiro, and T. Kotoku, “A software platform for compo-
nent based rt-system development: Openrtm-aist,” in Simulation, Mod-
eling, and Programming for Autonomous Robots, ser. Lecture Notes in
Computer Science, S. Carpin, I. Noda, E. Pagello, M. Reggiani, and
O. von Stryk, Eds. Springer Berlin / Heidelberg, 2008, vol. 5325,
pp. 87–98.

[26] P. Fitzpatrick, G. Metta, and L. Natale, “Towards long-lived robot
genes,” Robotics and Autonomous Systems, vol. 56, no. 1, pp. 29–45,
January 2008.

[27] M. Y. Jung, A. Deguet, and P. Kazanzides, “A component-based
architecture for flexible integration of robotic systems,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
Taipei, Taiwan, October 18-22 2010, pp. 6107–6112.

[28] M. Reichardt, T. Föhst, and K. Berns, “Introducing finroc: A conve-
nient real-time framework for robotics based on a systematic design
approach,” Robotics Research Lab, Department of Computer Science,
University of Kaiserslautern, Kaiserslautern, Germany, Technical Re-
port, July 2012.

19

A Drill-Down Approach for Measuring
Maintainability at Source Code Element Level

Péter Hegedűs, Tibor Bakota, Gergely Ladányi, Csaba Faragó, and Rudolf Ferenc
University of Szeged

Department of Software Engineering
Árpád tér 2. H-6720 Szeged, Hungary

{hpeter,bakotat,lgergely,farago,ferenc}@inf.u-szeged.hu

Abstract—Measuring source code maintainability has al-
ways been a challenge for software engineers. To address
this problem, a number of metrics-based quality models
have been proposed by researchers. Besides expressing source
code maintainability in terms of numerical values, these
models are also expected to provide explicable results, i.e.
to give a detailed list of source code fragments that should
be improved in order to reach higher overall quality.

In this paper, we propose a general method for drilling
down to the root causes of a quality rating. According to our
approach, a relative maintainability index can be calculated
for each source code element for which metrics are calculated
(e.g. methods, classes). The index value expresses the source
code element’s contribution to the overall quality rating.

We empirically validated the method on the jEdit open
source tool, by comparing the results with the opinions of
software engineering students. The case study shows that
there is a high, 0.68 Spearman’s correlation, which suggests
that relative maintainability indices assigned by our method
express the subjective feelings of humans fairly well.

Keywords-Relative maintainability index, Method level
maintainability, Metrics-based quality model, ISO/IEC 9126

I. INTRODUCTION

Aggregating a measure for maintainability has always
been a challenge in software engineering. The ISO/IEC
9126 standard [1] defines six high-level product quality
characteristics that are widely accepted both by industrial
experts and academic researchers. These characteristics
are: functionality, reliability, usability, efficiency, main-
tainability and portability. Maintainability is probably the
most attractive, noticeable and evaluated quality charac-
teristic of all. The importance of maintainability lies in
its very obvious and direct connection with the costs of
altering the behavior of the software package. Although
the standard provides a definition for maintainability, it
does not provide a straightforward way of quantifying it.
Many researchers exploited this vague definition and it has
led to a number of practical quality models [2]–[5]. The
non-existence of formal definitions and the subjectiveness
of the notion are the major reasons for it being difficult
to express maintainability in numerical terms.

Besides expressing source code maintainability in terms
of numerical values, these models are also expected to
provide explicable results, i.e. to give a detailed list
of source code fragments that should be improved by

the programmers in order to reach higher overall qual-
ity. Current approaches usually just enumerate the most
complex methods, most coupled classes or other source
code elements that bear with external values for some
source code metric. Unfortunately, this is not enough;
constellations of the metrics should also be taken into
consideration. For example, a source code method with a
moderate McCabe’s complexity [6] value might be more
important from a maintenance point of view than another
method with a higher complexity, provided that the first
one has several copies and contains coding problems as
well. It follows that a more sophisticated approach is
required for measuring the influence of individual source
code elements on the overall maintainability of a system.

In this paper, we propose a general method for drilling
down to the root causes of problems with the maintain-
ability of a software system. According to our approach, a
relative maintainability index is calculated for each source
code element, which measures the extent to which the
overall maintainability of the system is being influenced by
it. For measuring the maintainability of a software system,
we employed our probabilistic source code maintainability
model [5].

We empirically validated the approach on the jEdit
open source tool, by comparing the results with the
opinions of software engineering students. The case study
shows that there is a high, 0.68 Spearman’s correlation at
p < 0.001 significance level, which suggests that relative
maintainability indices assigned by our method express
the subjective feelings of humans fairly well.

In the next section, we summarize some of the studies
related to ours. Then, in Section III we present a detailed
description of our approach. Next, in Section IV we
present a case study, which evaluates the usefulness of
the approach. In Section V we collect some threats to the
validity of our approach. Finally, in Section VI we round
off with the conclusions and the lessons learned.

II. RELATED WORK

The release of the quality standards like ISO/IEC
9126 [1], ISO/IEC 25000 [7] has created a new and very
important direction of software quality measurement by
defining the properties of software quality. The majority of
researches deal with determining these quality properties
for the system as a whole. However, only a few papers

20

study the quality on finer levels (e.g. methods or classes).
The aim of the current work is to present a novel approach
and algorithm for calculating quality attributes on this
fine level. But first, we introduce the related results and
techniques for determining the ISO/IEC 9126 quality
characteristics on the level of source code elements.

Machine learning is a widely used technique to ap-
proximate subjective human opinions based on different
predictors. It is a very powerful tool; usually the built-up
models are close to the optimal solution. In this case the
test and the learning instances usually come from the same
dataset with the same distribution.

Bagheri and Gasevic [8] used this technique to approxi-
mate the maintainability property of software product line
feature models. They studied the correlation between the
low-level code metrics and the high-level maintainability
subcharacteristics evaluated by graduate students. They
also applied different machine learning models to predict
the subjective opinions.

In our previous work [9] we used machine learning
algorithms to predict the maintainability subcharacteristics
of Java methods. The subjective opinions were collected
from 36 experts and the effectiveness of the models was
measured by cross-validation. Based on different source
code metrics the J48 decision tree algorithm was able
to classify the changeability characteristic of the methods
into 3 classes (bad, average, good) with 0.76 precision.

The bottom-up methods on the other hand do not use
subjective opinions about the characteristics, the validation
dataset is independent from the model.

Heitlager et al. [10] described a bottom-up approach
developed by the Software Improvement Group (SIG) [11]
for code analysis focused on software maintainability.
They use threshold values to split the basic metric values
into five categories from poor to excellent. The evaluation
in their approach means summing the values for each
attribute (having the values between -2 and +2) and then
aggregating the values for higher properties.

Alves et al. [12] presented a method to determine the
threshold values more precisely based on a benchmark
repository [13] holding the analysis results of other sys-
tems. The model has a calibration phase [14] for tuning the
threshold values of the quality model in such a way that
for each lowest level quality attribute they get a desired
symmetrical distribution. They used the ⟨5, 30, 30, 30, 5⟩
percentage-wise distributions over 5 levels of quality.

The SIG model originally used binary relations be-
tween system properties and characteristics, but Correia et
al. [15] prepared a survey to elicit weights to the model.
They concluded that using weights does not improve the
model because of the variance in developers’ opinion.
Furthermore, as an interpretation of the ranking, an evalu-
ator can point out the really weak points of the examined
system regarding the different quality attributes.

Our approach has the same phases as the SIG model,
but the phases themselves are very different. The most
significant difference is that our approach presented in
this paper is created for measuring the maintainability of

source code elements (e.g. classes or methods) and not
the system as a whole. Our purpose was to determine
the critical elements of a system which cause the largest
decrease in overall maintainability, providing technical
guidelines for the developers.

To convert the low-level source code metrics into quality
indices we also used a benchmark with a large amount of
system evaluations, but we applied it in a different way.
During the calibration, instead of calculating threshold
values we approximate a normal distribution function
called benchmark characteristic (see Section III), which is
used to determine the goodness of the system with respect
to a certain metric. The distribution used in the SIG model
is also very close to a normal distribution but we had to
use a continuous scale since the impact of a source code
element on the overall quality of the system could be very
small.

The SQUALE model presented by Mordal-Manet et
al. [16] introduces the so called practices to connect the
ISO/IEC 9126 characteristics with metrics. A practice in
a source code element expresses a low-level rule and the
reparation cost of violating this rule. The reparation cost
of a source code element is calculated by the sum of the
reparation costs of its rule violations. The quality of a
source code element can be measured by the average cost
per line. After calculating this raw value they convert it to
a goodness value (A, B, C, D, E) using thresholds. Rule
violations have an important role in our approach too, but
besides the number of serious and medium rule violations
in a source code element we consider other source code
metrics as well. Our algorithm does not measure reparation
costs, but the extent to which the overall maintainability of
the system is being influenced by a source code element.

III. APPROACH

In this section we will present an approach that is an
extension of our earlier research achievement concerning
software quality models [5]. First, we will briefly introduce
our probabilistic software quality model, which can be
used for measuring source code maintainability at system
level. In our approach, the so-called benchmark character-
istics play an important role, therefore, a separate subsec-
tion will be devoted to this issue. Finally, we will present
the basic idea of how the relative maintainability index for
individual source code elements can be calculated.

A. The Probabilistic Source Code Maintainability Model

Our probabilistic software quality model [5] is based on
the quality characteristics defined by the ISO/IEC 9126 [1]
standard. In our approach, the relations between quality
attributes and characteristics at different levels are repre-
sented by an acyclic directed graph, called the attribute
dependency graph (ADG). The nodes at the lowest level
(i.e. without incoming edges) are called sensor nodes,
while the others are called aggregate nodes. Figure 1
shows an instance of the applied ADG. The description
of the different quality attributes can be found in Table I.

The sensor nodes in our approach represent source code
metrics that can be readily obtained from the source code.

21

Table I
THE QUALITY PROPERTIES OF OUR MODEL

Sensor nodes
McCabe McCabe cyclomatic complexity [6] defined for the methods of the system.
CBO Coupling between object classes, which is defined for the classes of the system.
NII Number of incoming invocations (method calls), defined for the methods of the system.
LLOC Logical lines of code of the methods.
Error Number of serious PMD [17] coding rule violations, computed for the methods of the system.1

Warning Number of suspicious PMD coding rule violations, computed for the methods of the system.1

CC Clone coverage [18]. The percentage of copied and pasted source code parts, computed for the methods of the system.
Aggregated nodes defined by us
Code complexity Represents the overall complexity (internal and external) of a source code element.
Comprehension Expresses how easy it is to understand the source code.
Fault proneness Represents the possibility of having a faulty code segment.
Effectiveness Measures how effectively the source code can be changed. The source can be changed effectively if it is easy to change

and changes will likely not have unexpected side-effects.
Aggregated nodes defined by the ISO/IEC 9126
Analyzability The capability of the software product to be diagnosed for deficiencies or causes of failures in the software, or for the

parts to be modified.
Changeability The capability of the software product to enable a specified modification to be implemented, where implementation includes

coding, designing and documenting changes.
Stability The capability of the software product to avoid unexpected effects from modifications of the software.
Testability The capability of the software product to enable modified software to be validated.
Maintainability The capability of the software product to be modified. Modifications may include corrections, improvements or adaptation

of the software to changes in environment, and in requirements and functional specifications.

In the case of a software system, each source code metric
can be regarded as a random variable that can take real
values with particular probability values. For two different
software systems, let h1 (t) and h2 (t) be the probability
density functions corresponding to the same metric. Now,
the relative goodness value (from the perspective of the
particular metric) of one system with respect to the other,
is defined as

D (h1, h2) =

∫ ∞

−∞
(h1 (t) − h2 (t)) ω (t) dt,

where ω (t) is the weight function that determines the
notion of goodness, i.e. where on the horizontal axis the
differences matter more. Figure 2 helps us understand
the meaning of the formula: it computes the signed area
between the two functions weighted by the function ω (t).

Figure 1. Java maintainability model

For a fixed probability density function h, D (h, _) is
a random variable, which is independent of any other
particular system. We will call it the absolute goodness

1The full list of applied PMD rules is available online:
http://www.inf.u-szeged.hu/~hpeter/SQM2013/PMD.xls

Figure 2. Comparison of probability density functions

of the system (from the perspective of the metric that cor-
responds to h). The empirical distribution of the absolute
goodness can be approximated by substituting a number
of samples for its second parameter, i.e. by making use
of a repository of source code metrics of other software
systems. We used the repository introduced earlier [5],
containing the metric results of 100 Java systems. The
probability density function of the absolute goodness is
called the goodness function. The expected value of the
absolute goodness will be called the goodness value. Fol-
lowing the path described above, the goodness functions
for the sensor nodes can be easily computed.

For the edges of the ADG, a survey was prepared,
where the IT experts and researchers who filled it were
asked to assign weights to the edges, based on how
they felt about the importance of the dependency. They
were asked to assign scalars to incoming edges of each
aggregate node, such that the sum is equal to one. Con-
sequently, a multi-dimensional random variable Y⃗v =(
Y 1

v , Y 2
v , . . . , Y n

v

)
will correspond to each aggregate node

v. We define the aggregated goodness function for the

22

node v in the following way:

gv(t)=

∫
t= q⃗r⃗

q⃗=(q1, . . . , qn) ∈ ∆n−1

r⃗=(r1, . . . , rn) ∈ Cn

f⃗Y⃗v
(q⃗)g1(r1). . .gn(rn)dr⃗dq⃗, (1)

where f⃗Y⃗v
(q⃗) is the probability density function of Y⃗v,

g1, g2, . . . gn are the goodness functions corresponding to
the incoming nodes, ∆n−1 is the (n − 1)-standard simplex
in ℜn and Cn is the standard unit n-cube in ℜn.

Although the formula may look frightening at first
glance, it is just a generalization of how aggregation is
performed in the classic approaches. Classically, a linear
combination of goodness values and weights is taken, and
it is assigned to the aggregate node. When dealing with
probabilities, one needs to take every possible combination
of goodness values and weights, and also the probabilities
of their outcome into account. Now, we are able to
compute goodness functions for each aggregate node;
in particular the goodness function corresponding to the
Maintainability node as well.

B. Benchmark Characteristics

After a benchmark containing several systems is avail-
able and a particular model is defined, the goodness values
for each software in the benchmark can be calculated. In
this way – for a particular node in the ADG – several
goodness values can be obtained, which can actually
be considered as a sample of a random variable with
normal distribution based on empirical observations. As
each system is compared to every other system twice (with
opposite signs), the expected value of the distribution is
necessarily zero. The distribution functions obtained in this
way are called the benchmark characteristics. Figure 3
shows an example of a benchmark characteristic for the
Maintainability node.

Figure 3. Benchmark characteristic for Maintainability

The characteristic functions map the (−∞, ∞) interval
to the (0, 1) interval. Therefore, we use these functions
to transform the goodness values of a particular software
system being evaluated to the (0, 1) interval. In this way,
a common scale is obtained for the goodness values of
different systems; i.e. they become comparable to each

other. The normalized goodness value is basically the
proportion of all the systems within the benchmark whose
goodness values are smaller.

C. The Drill-Down Approach

The above approach is used to obtain a system-level
measure for source code maintainability. Our aim is to
drill down to lower levels in the source code and to get a
similar measure for the building blocks of the code base
(e.g. classes or methods). For this, we define the relative
maintainability index for the source code elements, which
measures the extent to which they affect the system level
goodness values. The basic idea is to calculate the system
level goodness values, leaving out the source code ele-
ments one by one. After a particular source code element
is left out, the system level goodness values will change
slightly for each node in the ADG. The difference between
the original goodness value computed for the system, and
the goodness value computed without the particular source
code element, will be called the relative maintainability
index of the source code element itself. The relative
maintainability index is a small number that is either
positive when it improves the overall rating or negative
when it decreases the system level maintainability. The
absolute value of the index measures the extent of the
influence to the overall system level maintainability. In
addition, a relative index can be computed for each node
of the ADG, meaning that source code elements can affect
various quality aspects in different ways and to different
extents.

Calculating the system-level maintainability is computa-
tionally very expensive. To obtain the relative indices, it is
enough to compute only the goodness values for each node
in the ADG; one does not need to construct the goodness
functions. Luckily, computing the goodness values without
knowing the goodness functions is feasible. It can be
shown that calculating goodness functions and taking their
averages is equivalent to using only the goodness values
throughout the aggregation.

In the following, we will assume, that ω (t) is equal
to t for each sensor node, which means that e.g. twice as
high metric value means twice as bad code. While this
linear function might not be appropriate for every metric,
it is a very reasonable weight function considering the
metrics used by the quality model. However, the presented
approach is independent of the particular weight function
used, and the formalization can be easily extended to
different weight functions. Next, we will provide a step-
by-step description of the approach for a particular source
code element.

1) For each sensor node n, the goodness value of the
system without the source code element e can be
calculated via the following formula:

ge,n
rel =

Kgn
abs + m

K − 1
− 1

N

N∑

j=1

Mj

K − 1

where gn
abs is the original goodness value computed

for the system, m is the metric value of the source

23

code element corresponding to the sensor node, K
is the number of source code elements in the sys-
tem for which the sensor node is considered, N is
the number of the systems in the benchmark, and
Mj (j = 1, . . . , N) are the averages of the metrics
for the systems in the benchmark.

2) The goodness value obtained in this way is trans-
formed to the (0, 1) interval by using the character-
istic function of the sensor node n. For simplicity
reasons, we assume that from now ge,n

rel stands for the
transformed goodness value and it will be referred to
as goodness value as well.

3) Due to the linearity of the expected value of a random
variable, it can be shown that Formula 1 simplifies to
a linear combination, provided that only the expected
value needs to be computed. Therefore, the goodness
value of an aggregate node n can be computed in the
following way:

ge,n
rel =

∑

i

gi
relE

(
Y i

v

)

where gi
rel (i = 1, . . .) are the transformed goodness

values of the nodes that are on the other sides of the
incoming edges and E

(
Y i

v

)
is the expected value of

the votes on the ith incoming edge. Please note that
since

∑
i E

(
Y i

v

)
= 1, and ∀i, gi

rel ∈ (0, 1), the value
of ge,n

rel will always fall into the (0, 1) interval, i.e. no
transformation is needed at this point.

4) The relative maintainability index for the source code
element e and for a particular ADG node n is defined
as

ge,n
idx = gn

abs − ge,n
rel

The relative maintainability index measures the effect
of the particular source code element on the system level
maintainability computed by the probabilistic model. It
is important to notice that this measure determines an
ordering among the source code elements of the system,
i.e. they become comparable to each other. And what is
more, the system level maintainability being an absolute
measure of maintainability, the relative index values be-
come absolute measures of all the source code elements in
the benchmark. In other words, computing all the relative
indices for each software system in the benchmark will
give rise to an absolute ordering among them.

IV. EMPIRICAL VALIDATION

We evaluated the approach on the jEdit v4.3.2 open
source text editor tool (http://www.jedit.org/), by consid-
ering a large number of its methods in the source code.2

The basic properties of jEdit’s source code and the selected
methods are shown in Table II. These and all other source
code metrics were calculated by our Columbus tool [19].
A considerable number of students were asked to rate
the maintainability and lower level quality aspects of
191 different methods. Here, we reused the data of our
earlier empirical case study [20], where over 200 students

2https://jedit.svn.sourceforge.net/svnroot/jedit/jEdit/tags/jedit-4-3-2

manually evaluated the different ISO/IEC 9126 quality
attributes of the methods in the jEdit tool. Even though
we conducted a preliminary survey with IT experts, the
amount of collected data was insufficient, therefore we
chose to use the student evaluation for validation purposes.
For the empirical validation, the averages of students’
votes were taken and they were compared to the series
of numerical values (i.e. relative maintainability indices)
computed by the approach. A repeated study using the
median of the votes yielded very similar results.

Besides the manual evaluation, the relative maintain-
ability indices for the same characteristics have been
calculated based on the drill-down approach presented
in the previous section. The Spearman’s rank correla-
tion coefficient was determined for these two series of
numbers. This coefficient can take its values from the
range [−1, 1]. The closer this value is to 1, the higher
is the similarity between the manual rankings and the
automatically calculated values.

Table II
BASIC METRICS OF THE SOURCE CODE OF JEDIT AND THE

EVALUATED METHODS

Metrics Value
Logical Lines of Code (LLOC) 93744
Number of Methods (NM) 7096
Number of Classes (NCL) 881
Number of Packages (NPKG) 49
Number of evaluated methods 191
Average number of LLOC 26.41
for the evaluated methods
Average number of McCC complexity 5.52
for the evaluated methods

A. Manual Evaluation

The students who took part in the evaluation were third
year undergraduate students and completed a number of
programming courses. Some of them already had some
industrial experience as well. Each of the students were
asked to rank the quality attributes of 10 different meth-
ods of jEdit v4.3.2 subjectively. Altogether 191 methods
have been shared out among them. For the evaluation,
a web-based graphical user interface was constructed
and deployed, which provided the source code fragment
under evaluation together with the questionnaire about the
quality properties of the methods.

The methods for the manual evaluation were selected
randomly. We assigned the methods to students in such
a way that each method was always supposed to be
evaluated by at least ten persons. The students were asked
to rate the subcharacteristics of maintainability defined
by the ISO/IEC 9126 standard on a scale of zero to
ten; zero means the worst, while ten is the best. These
attributes were the following: analyzability, changeability,
testability, stability) and a new quality attribute – com-
prehensibility – defined by us earlier [9]. More details
regarding the data collection process and the used web
application can be found in our previous work [9].

24

Table IV
PEARSON’S CORRELATIONS AMONG THE SOURCE CODE METRICS AND STUDENTS’ OPINIONS

Metric Comprehensibility Analyzability Changeability Stability Testability Maintainability
CC 0.07 0.07 0.06 0.05 0.06 0.09
LLOC -0.45 -0.50 -0.46 -0.44 -0.41 -0.52
McCC -0.33 -0.37 -0.34 -0.32 -0.29 -0.38
NII -0.04 -0.03 -0.02 -0.08 -0.03 -0.03
Error (serious rule viol.) -0.14 -0.11 -0.07 -0.10 -0.08 -0.16
Warning (suspicious rule viol.) -0.30 -0.32 -0.30 -0.26 -0.30 -0.30

Table III
STATISTICS OF THE STUDENT VOTES

Quality attribute Avg. Max. Min.
std.dev. std.dev. std.dev.

Analyzability 1.87 3.93 0.00
Comprehensibility 1.89 4.44 0.44
Stability 2.22 4.31 0.53
Testability 2.04 3.82 0.32
Changeability 2.01 3.62 0.00
Maintainability 1.97 3.93 0.00

Table III contains some basic statistics of the collected
student votes. The first column shows the average standard
deviation values of student votes for the different quality
attributes. The values vary between 1.8 and 2.2 which
indicates that the students had an acceptable level of inter-
rater agreement in general. The next two columns show
the maximum and minimum of the standard deviations.
The maximums are approximately two times higher than
the averages, but the minimum values are very close to
zero. For analyzability, changeability and maintainability
attributes the minimum is exactly zero, meaning that there
was at least one method that got exactly the same rating
from each student.

Table IV shows the Pearson’s correlation coefficients
for the different metric values used in our quality model
(see Figure1) and the average votes of the students for
the high-level quality attributes (the CBO metric is not
listed because it is a metric defined for classes and not for
methods). Based on the data, a number of observations
can be made:

• All of the significant Pearson’s correlation coeffi-
cients (R values) are negative. This means that the
greater the metric values are, the worse are the
different quality properties. This is in line with our
expectations, as lower metrical values are usually
desirable, while higher values may suggest imple-
mentation or design related flaws.

• The quality attributes correlate mostly with the log-
ical lines of code (LLOC) and the McCabe’s cy-
clomatic complexity (McCC) metrics. The reason
for this might be that these are very intuitive and
straightforward metrics that can be observed locally,
by looking only at the code of the method’s body.

• As an analogy to the previous observation, being hard
to interpret the metrics locally, the clone coverage
(CC) and the number of incoming invocations (NII)

metrics show the lowest correlation.
• The number of rule violations also shows a noticeable

correlation with the quality ratings. Surprisingly, the
suspicious rule violations show a higher correlation
than the really serious ones. The reason for this
might be that either the students considered different
violations as serious or the fact that the number of
the most serious rule violations was low (five times
lower than suspicious violations), which may have
biased the analysis.

B. Model-Based Evaluation

We calculated the quality attributes for all the methods
of jEdit by using the implementation of the algorithm
presented in Section III. The relative maintainability in-
dices are typically small positive or negative numbers. The
negative values indicate negative impact on the maintain-
ability of the system while positive indices imply positive
effect. As we are mainly interested in the order of the
methods based on their impact on the maintainability, we
assigned an integer rank to every method by simply sorting
them according to their relative maintainability index in a
decreasing order. The method having the largest positive
impact on the maintainability gets the best rank (number 1)
while the worst method gets the worst rank (which equals
to the number of methods in the system). Therefore, the
most critical elements will be at the end of the relative
maintainability based order (i.e. larger rank means worse
maintainability).

Figure 4. The relative maintainability indices and corresponding ranks

Figure 4 depicts the relative maintainability indices of
the methods of jEdit and their corresponding ranks. It
can be seen that there are more methods that increase

25

the overall maintainability than those which decrease it.
However, methods having positive impact only slightly
improve the overall maintainability, while there are about
500 methods that have a significantly larger negative
impact on the maintainability. In principle, these are the
most critical methods that should be improved first, to
achieve a better system level maintainability.

Figure 5 shows the density function of the computed
relative maintainability indices. In accordance with the
previous observations, we can see that there are more
methods that increase the maintainability, however, their
maintainability index values are close to zero. This means
that they have only a small positive impact. The skewed
left side denotes that there are a smaller number of
methods decreasing the maintainability but they have a
significantly larger negative effect (their index is farther
out from zero). For evaluating the effectiveness of our

Figure 5. The density function of the relative maintainability indices

approach, we took the calculated quality attributes for each
of the manually evaluated methods. Our conjecture was
that the model-based assessment of quality rankings will
not differ much from the manually obtained values. If this
proves to be true, a list of the most critical methods could
always be generated automatically, which would correlate
well with the opinion’s of the developers.

As we are interested in the similarity between the
rankings produced by our algorithm and the rankings
obtained with the manual evaluation, we performed a
Spearman’s rank correlation analysis. The Spearman’s cor-
relation coefficient is defined as the Pearson’s correlation
coefficient between the ranked variables. Identical values
(rank ties or value duplicates) are assigned a rank equal
to the average of their positions in the ascending order of
the values.

First, we analyzed the relationship between the quality
ranking calculated by our algorithm and the rankings
assigned by the students. The Spearman’s correlation
coefficients and the corresponding p-values can be seen
in Table V. In statistical hypothesis testing, the p-value
is the probability of obtaining a test statistic that is at
least as extreme as the one that was actually observed,
assuming that the null hypothesis is true. In our case, the
null hypothesis will be that there is no relation between the
rankings calculated by the algorithm and the one obtained
by manual evaluations.

Table V
SPEARMAN’S CORRELATION VALUES AMONG THE RELATIVE
MAINTAINABILITY INDICES AND THE MANUAL EVALUATIONS

Quality attribute Correlation with students’ p-value
opinions (R value)

Analyzability 0.64 <0.001
Comprehensibility 0.62 <0.001
Changeability 0.49 <0.001
Stability 0.49 <0.001
Testability 0.61 <0.001
Maintainability 0.68 <0.001

As can be seen, the R values of the correlation analysis
are relatively high for each quality attribute. All the values
are significant at the level of 0.001. This means that there
is a significant relationship between the automatically
obtained rankings and the one derived from the students’
evaluations. The best correlation was found between the
data series of the Maintainability characteristic. According
to the results we can automatically identify those critical
source code elements that decrease the system’s main-
tainability the most. These are the source code elements
at the end of the ranked list (having the worst relative
maintainability indices). The list of critical elements is
crucial in order to improve the quality of a system, or at
least to decrease the rate of its erosion.

Although the results are promising in their current form,
we went towards tracing down the differences between
the manually and automatically obtained rankings. We
collected and manually examined several methods that
had the largest differences in their rankings. Table VI
lists the assessed methods, their rankings and some of
their most important metrical values. In the following,
we will provide a more detailed explanation regarding the
differences, considering the methods one-by-one.

• org.gjt.sp.jedit.bsh.ClassGeneratorImpl.
invokeSuperclassMethodImpl(BshClassManager, Object,
String, Object[])

This method attempts to find and invoke a particular
method in the superclass of another class. While our
algorithm found this method rather easy to maintain, the
students gave it a very low ranking. Despite the fact that
syntactically this program fragment is very simple it uses
Java reflection which is by its nature difficult to read and
comprehend by humans.

• org.gjt.sp.jedit.buffer.JEditBuffer.
fireContentInserted(int, int, int, int)

This method is a fairly simple function at a first
glance, which fires an event to each listener of an object.
On the other hand, from the maintainability point of
view, changing the method might be risky as it has four
clones (copy&paste). All the fire events are duplications
of each other. The code contains also a medium rule
violation; a catch block that catches all the Throwable
objects. It can hide problems like runtime exceptions or
errors. Nevertheless, human evaluators tend to give more
significance to local properties, like the lines of code

26

Table VI
THE LARGEST DIFFERENCES BETWEEN THE AUTOMATIC AND MANUAL RANKINGS

Method name Students’ Model Rank CC LLOC McCabe NII Rule
ranking ranking difference violations

invokeSuperclassMethodImpl 177 57 120 0 17 2 1 0
fireContentInserted 29 139 110 1 18 3 2 1
fireEndUndo 13 121 108 1 15 3 0 1
move 168 66 102 0 16 3 0 0
fireTransactionComplete 42 142 100 1 16 3 5 1
read 113 16 97 0 10 2 0 0

or McCabe’s complexity, because it is hard to explore
the whole environment of the code fragment. From this
respect, the method is indeed a well-maintainable code.
• org.gjt.sp.jedit.Buffer.fireEndUndo()

This is exactly the same type of a fire method than the
previous one. Therefore, the same reasoning holds in this
case as well.
• org.gjt.sp.jedit.browser.VFSBrowser.move(String)

This method is responsible for moving a toolbox. It
is short and has low complexity, therefore our algorithm
ranked it as a well-maintainable code. However, human
evaluators found it hard to maintain. The code is indeed a
little bit hard to read, because of the unusual indentation
(i.e. every expression goes to new line) of the logical
operators which might be the cause of the low human
ranking.
• org.gjt.sp.jedit.buffer.JEditBuffer.
fireTransactionComplete()

This is another method responsible for firing events, just
like the earlier ones. Therefore the same reasoning holds
in this case as well.
• org.gjt.sp.jedit.bsh.CommandLineReader.
read(char[], int, int)

This method reads a number of characters and puts
them into an array. The implementation itself is short and
clear, not complex at all, therefore our algorithm ranked it
as well-maintainable. However, the comment above the
method starts with the following statement: “This is a
degenerate implementation”. Human evaluators probably
read the comment and marked the method as hard to
maintain.

The manual assessment shed light to the fact that
human evaluators tend to take into consideration a wider
range of source code properties than the presented quality
model. These properties are e.g. code formatting, semantic
meaning of the comments or special language constructs
like Java reflection. The automatic quality assessment
should be extended with measurements of these properties
to achieve more precise results.

On the other hand, the automatic quality assessment
may take advantage from the fact that it is able to take
the whole environment of a method into account for main-
tainability prediction. We found that human evaluators
had difficulties in discovering non-local properties like
clone fragments or incoming method invocations. Another
issue was that while the algorithm was considering all the
methods at the same time, the human evaluators assigned

their ranks based only on the methods they evaluated. For
example, while the best method gets a maximal score from
the model, the evaluators may not recognize it as the best
one, as they have not seen all the others.

We also analyzed the correlations between the lower
level quality attributes calculated by the algorithm and
those assigned by the students. Figure 6 shows the diagram
of the correlations. The names of the quality attributes
are shown in the diagonal. The quality attributes starting
with the Stud_ prefix refer to the ones resulting from the
manual evaluation; the rest of the attributes are computed
by the model. In the upper right triangle of the diagram,
the Spearman’s correlation values of the different attributes
can be seen. On the side, a graphical view of the corre-
lation coefficients is presented, where the darker shade
means a higher correlation.

Based on the diagram, the following notable observa-
tions can be made:

• The dark triangle in the upper left corner shows that
there is a very high correlation among the quality
attributes calculated by our model. This is not sur-
prising, since the model is hierarchical and the higher
level attributes depend on the lower level ones.

• Similarly, the lower right corner shows a quite high
correlation among the quality attributes evaluated by
the students. However, the correlation coefficients are
smaller than the coefficients among the attributes of
the model. This suggests that students evaluated the
different quality properties somewhat independently
from each other, not following the ISO/IEC 9126
standard’s hierarchy strictly.

• Interestingly, the maintainability property evaluated
by the students shows a slightly higher correlation
with the algorithm-based approximation of compre-
hensibility and testability than with the maintainabil-
ity value of the model. The reason might be that
the comprehensibility and testability of the code are
more exact concepts than the others, like stability,
analyzability, etc. While comprehensibility is easier
for the students to understand or evaluate, it makes
them prone to equate maintainability and comprehen-
sibility.

• It is promising that the model-based maintainability
attribute shows the highest correlation with the main-
tainability property among the manually assessed
ones. It means that our model interprets the quality
on a broader scale than students do, i.e. it takes more

27

Figure 6. Correlations of the calculated and the manually assigned quality attributes

factors into consideration. This might be because the
students do not take into account all the hard-to-get-
concepts of the ISO/IEC 9126 standard. According
to our previous observation, the students tend to
care the most about comprehensibility only. This
is in line with the fact that students prefer locally
interpretable properties, like the lines of code or
McCabe’s complexity more.

V. THREATS TO VALIDITY, LIMITATIONS

Our validation is built on an experiment performed by
students. This is a threat to the validity of the presented
work due to the possible lack of their expertise and
theoretical background. To compensate this drawback we
selected third year undergraduate students who completed
preliminary studies on software engineering and main-
tenance. Additionally, at least ten evaluations have been
collected for each method to neutralize the effect of the
possibly higher deviation in their votes.

For efficiency reasons we did not construct the goodness
functions (probabilistic distributions, see Section III) but
computed only the goodness values for each node to obtain
the relative indices. This might seem a loss of information,
however, to get an ordering among the methods we should
have derived the goodness values from the goodness func-
tions anyway. Therefore, calculating only the goodness
values is enough for our purposes.

The presented approach described in Section III as-
sumes that the ω (t) weight function is equal to t for each
sensor node (e.g. twice as high metric value means twice
as bad code). This is not necessarily applicable for all
the metrics (e.g. the very low and very high values of
the Depth of Inheritance Tree metric is considered to be
bad while there is an optimal range of good values). Our
approach could be generalized to handle arbitrary weight
functions, however, it would result a much more complex
model. We decided to keep our approach simple and easy
to understand as for most of the metrics (especially the
ones included in our model) the applied weight function
is reasonable.

The results might not be generalizable as we examined
only 191 methods of one system. It required a huge

amount of manual effort; performing more studies would
require an even larger investment. This is actually, why
the automatic maintainability analysis of source code
elements is important. Despite the relatively small amount
of empirical data, we consider the presented results as an
important step towards the validation of our model.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented the continuation of our
previous work [5] on creating a model suitable for measur-
ing maintainability of software systems according to the
ISO/IEC 9126 standard [1] based on its source code. Here,
we further developed this model to be able to measure
also the maintainability of individual source code elements
(e.g. classes, methods). This allows the ranking of source
code elements in such a way that the most critical elements
can be listed, which enables the system maintainers to
spend their resources optimally and achieve maximum im-
provement of the source code with minimum investment.
We validated the approach by comparing the model-based
maintainability ranking with the manual ranking of 191
Java methods of the jEdit open source text editor tool.
The main results of this evaluation are:

• The manual maintainability evaluation of the methods
performed by more than 200 students showed a high,
0.68 Spearman’s correlation at p < 0.001 significance
level with the model-based evaluation.

• Some of the differently ranked methods were man-
ually revised and it turned out that humans take
into consideration a wider range of properties, while
the model is able to explore the environment more
effectively.

• The Spearman’s correlation of ISO/IEC 9126 at-
tributes (model vs. manual) is high in general. This
is especially true in the case of the maintainability
property (as already mentioned).

As a future work we would like to perform more case
studies to be able to generalize our findings. The current
evaluation took only methods into account. We would like
also to carry out a case study on manually evaluating the
maintainability of classes and correlating the results with
our drill-down approach.

28

ACKNOWLEDGEMENTS

This research was supported by the Hungarian national
grants GOP-1.1.1-11-2011-0038 and GOP-1.1.1-11-2011-
0006.

REFERENCES

[1] ISO/IEC, ISO/IEC 9126. Software Engineering – Product
quality. ISO/IEC, 2001.

[2] S. Muthanna, K. Ponnambalam, K. Kontogiannis, and
B. Stacey, “A Maintainability Model for Industrial Software
Systems Using Design Level Metrics,” in Proceedings of
the Seventh Working Conference on Reverse Engineering
(WCRE’00). Washington, DC, USA: IEEE Computer
Society, 2000, pp. 248–256.

[3] J. Bansiya and C. Davis, “A Hierarchical Model for Object-
Oriented Design Quality Assessment,” IEEE Transactions
on Software Engineering, vol. 28, pp. 4–17, 2002.

[4] M. Azuma, “Software Products Evaluation System: Quality
Models, Metrics and Processes – International Standards
and Japanese Practice,” Information and Software Technol-
ogy, vol. 38, no. 3, pp. 145–154, 1996.

[5] T. Bakota, P. Hegedűs, P. Körtvélyesi, R. Ferenc, and
T. Gyimóthy, “A Probabilistic Software Quality Model,”
in Proceedings of the 27th IEEE International Conference
on Software Maintenance (ICSM 2011). Williamsburg,
VA, USA: IEEE Computer Society, 2011, pp. 368–377.

[6] T. J. McCabe, “A Complexity Measure,” IEEE Transactions
on Software Engineering, vol. 2, pp. 308–320, July 1976.

[7] ISO/IEC, ISO/IEC 25000:2005. Software Engineering –
Software product Quality Requirements and Evaluation
(SQuaRE) – Guide to SQuaRE. ISO/IEC, 2005.

[8] E. Bagheri and D. Gasevic, “Assessing the Maintainability
of Software Product Line Feature Models using Struc-
tural Metrics,” in Software Quality Journal 19(3):579-612.
Springer, 2011.

[9] P. Hegedűs, T. Bakota, L. Illés, G. Ladányi, R. Ferenc, and
T. Gyimóthy, “Source Code Metrics and Maintainability:
a Case Study,” in Proceedings of the 2011 International
Conference on Advanced Software Engineering And Its
Applications (ASEA 2011). Springer-Verlag CCIS, Dec.
2011, pp. 272–284.

[10] I. Heitlager, T. Kuipers, and J. Visser, “A Practical Model
for Measuring Maintainability,” Proceedings of the 6th
International Conference on Quality of Information and
Communications Technology, pp. 30–39, 2007.

[11] “Software Improvement Group,”
http://www.sig.eu/en/.

[12] T. L. Alves, C. Ypma, and J. Visser, “Deriving Metric
Thresholds from Benchmark Data,” in Proceedings of the
26th IEEE International Conference on Software Mainte-
nance (ICSM 2010), 2010.

[13] J. P. Correia and J. Visser, “Benchmarking Technical Qual-
ity of Software Products,” in Proceedings of the 15th Work-
ing Conference on Reverse Engineering (WCRE 2008).
Washington, DC, USA: IEEE Computer Society, 2008, pp.
297–300.

[14] R. Baggen, K. Schill, and J. Visser, “Standardized Code
Quality Benchmarking for Improving Software Maintain-
ability,” in Proceedings of the Fourth International Work-
shop on Software Quality and Maintainability (SQM 2010),
2010.

[15] J. P. Correia, Y. Kanellopoulos, and J. Visser, “A Survey-
based Study of the Mapping of System Properties to
ISO/IEC 9126 Maintainability Characteristics,” IEEE In-
ternational Conference on Software Maintenance (ICSM
2009), pp. 61–70, 2009.

[16] K. Mordal-Manet, F. Balmas, S. Denier, S. Ducasse,
H. Wertz, J. Laval, F. Bellingard, and P. Vaillergues,
“The Squale Model – A Practice-based Industrial Quality
Model,” in Proceedings of the 25rd International Con-
ference on Software Maintenance (ICSM 2009). IEEE
Computer Society, 2009, pp. 531–534.

[17] “The PMD Homepage,”
http://pmd.sourceforge.net/.

[18] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and
L. Bier, “Clone Detection Using Abstract Syntax Trees,” in
Proceedings of the 14th International Conference on Soft-
ware Maintenance (ICSM’98). IEEE Computer Society,
1998, pp. 368–377.

[19] R. Ferenc, Á. Beszédes, M. Tarkiainen, and T. Gyimóthy,
“Columbus – Reverse Engineering Tool and Schema for
C++,” in Proceedings of the 18th International Conference
on Software Maintenance (ICSM 2002). IEEE Computer
Society, Oct. 2002, pp. 172–181.

[20] P. Hegedűs, G. Ladányi, I. Siket, and R. Ferenc, “Towards
Building Method Level Maintainability Models Based on
Expert Evaluations,” in Proceedings of the 2012 Inter-
national Conference on Advanced Software Engineering
And Its Applications (ASEA 2012), accepted, to appear.
Springer-Verlag CCIS, 2012.

29

A Meta Model for Software Architecture
Conformance and Quality Assessment

Andreas Goeb
Applied Research

SAP AG
Darmstadt, Germany

Email: andreas.goeb@sap.com

Abstract—Software architecture and design suffer from a
lack of documented knowledge on how different architectural
styles influence software quality. Existing software quality
models do not allow engineers to evaluate whether a given
software system adequately implements the basic principles of
the chosen architectural style, and which architectural proper-
ties and best practices beyond these principles contribute to the
system’s quality. In this paper, I present a meta quality model
for software architectures, which can be used not only as a
knowledge-base to easily compare architectural styles based on
their impact on software quality, but also to increase efficiency
of architectural quality analysis by leveraging existing modeling
concepts and tools. An experiment performing an architecture
assessment using a quality model for the SOA architectural
style not only showed that the approach is applicable in
practice, but also indicated a reduction of manual effort
compared to other architecture assessment approaches.

Keywords-Quality Model; Software Architecture; Design;
Conformance

I. INTRODUCTION

A. Motivation

Current trends in the software market show that quality
becomes a differentiating factor among software products
with decreasing functional diversification. It is widely ac-
cepted that software quality problems can be handled easier
and more cost efficient, the earlier they are detected during
development [1], [2]. In particular, almost all of a software
system’s quality attributes are influenced by its architec-
ture [3, p. 19]. Consequently, it is particularly relevant for
software engineering research and practice to develop means
for efficient software quality assessment on the architectural
level.

B. Problem

According to Svahnberg and Wohlin [4], there is a lack of
documented knowledge on how different architectural styles
influence software quality. This forces software architects to
base the selection of an architectural style purely on personal
experience rather than objective information.

Moreover, software architecture evaluation generally re-
quires a considerable amount of manual effort, because most
established techniques are based on the manual analysis of

scenarios. In particular with the emergence of new deploy-
ment models in the context of cloud applications, where
small increments of updated functionality are delivered in
very short periods of time, this approach becomes impracti-
cal in the long term. Because of the highly individual nature
of these techniques, they are not designed to be applied
repeatedly. Moreover, applying these techniques to more
than one software project involves individual preparation
effort for all of them. Within the software development
process, this also implies that quality assessment approaches
used in the architecture phase fundamentally differ from
those used in the implementation phase, leading to media
discontinuities during quality assurance. This complicates
continuous quality monitoring and control and therefore
negatively impacts the costs of quality assurance.

C. Contribution

In this paper, I present an architecture-specific extension
to the Quamoco meta quality model [5]. The proposed
quality model structure explicitly separates conformance
concepts from design best-practices and can be used both to
derive statements on the relationships between architectural
properties and product quality, and to increase efficiency of
architecture quality analysis due to large automation poten-
tial. While building architecture quality models according to
this approach still involves much manual work and expert
knowledge, these models can be used to repeatedly evaluate
software architectures. Moreover, the investment of building
such models pays off when they are reused to evaluate a
larger number of software systems.

D. Structure

The remainder of this paper is structured as follows:
Section II summarizes related work according to software
quality models and architecture evaluation approaches. In
Section III, I introduce architecture-specific additions to
the Quamoco meta quality model. Section IV explains the
contents of an architecture conformance and quality model,
in particular quality goals, architectural principles, general
design properties, and corresponding measures, as well as
the overall approach of building architecture quality models

30

and using them for architecture evaluation. In Section V,
the approach is experimentally applied by conducting an
architecture evaluation, using a quality model for service-
oriented architectures as an example for a specific archi-
tectural style. Finally, Section VI concludes the paper and
outlines directions for future work.

II. RELATED WORK

A. Software Quality Models

Modeling software quality has been a topic addressed
by researchers for several decades. Early quality models
date back to the late 1970s, e. g. those by Boehm [6]
or McCall [7], which hierarchically decompose software
quality into more tangible concepts. This approach has led
to international standards for software quality like ISO 9126
or its successor ISO 25010, which are reported to be used
as a basis for software quality assurance in many software
companies. However, recent studies also show that these
standards are too abstract to be directly used for quality
assessment [8]. Because of this shortcoming, there have
been several initiatives in defining models that not only
describe software quality, but can also be used to assess
software systems with regard to their quality. The Squale
project enhanced the ISO 9126 quality model with so-called
practices containing information on how to measure certain
quality characteristics [9]. They also provide tools to assess
source code quality in different programming languages.
In summary, software quality models help in developing a
common understanding of software quality. Some models
can be used for automatic quality assessment, lowering
the effort compared to inspection-based approaches. Most
of these assessment models, however, are targeted at low-
level source code constructs only, not taking architectural
properties into account.

B. Software Architecture Evaluation

Software architecture is crucial for software quality. This
means that the decision for a particular architecture is highly
dependent on the quality goals of the involved stakeholders.
Clements et al. [3] phrase this very concisely: “If the sponsor
of a system cannot tell you what any of the quality goals
are for the system, then any architecture will do.”

If architectural decisions are so important for the quality
of a software system, architecture assessment appears to be
a feasible means to provide statements about its quality.
To accomplish this, architecture evaluation methods have
been developed, which follow clear rules and provide a
certain degree of repeatability. Clements et al. categorize
these methods according to the tools they use: Questioning
methods are based on scenarios, questionnaires, and check-
lists for system analysis. These are often used in conjunction
with system documentation or specification, thereby not re-
quiring the system to be already completely implemented. In
contrast, measuring methods directly analyze the respective

system by means of automatic analysis tools, e. g. calculating
software metrics or simulating system behavior. In any case
this second group of methods requires the presence of
software artifacts and can therefore not be applied as early
as scenario-based methods.

Clements et al. [3] propose three scenario-based methods,
namely SAAM, ARID, and ATAM. They all start with the
elicitation of scenarios in workshops. A scenario might be:
“In addition to local deployment and operation, you should
also be able to operate the system on a cloud platform”.
Based on a prioritized list of such scenarios, different
architecture alternatives are then evaluated regarding their
ability to facilitate these scenarios. Depending on the method
and the particular situation, different techniques can be used,
e. g. sensitivity and tradeoff analysis in ATAM, scenario
walk-throughs in SAAM, or Active Design Reviews [10]
in ARID. A comparison of these methods is shown in
[3, p. 256]. The authors state that a mid-size architecture
evaluation using ATAM would take around 70 person days,
assuming a reasonable team size.

Vogel [11] presents a general overview on architecture
evaluation methods. Moreover, Zhao [12] provides links to
further literature. It is generally observed that according
to the classification above, the overwhelming majority of
architecture evaluation methods belong to the group of
questioning methods, thus requiring large amounts of man-
ual effort. This might be due to the fact that architecture
analysis is generally performed in a project-specific con-
text with individual requirements. For domain and project-
independent parts of the analysis, tool supported approaches
are available, e. g. ConQAT1 can automatically compare
dependencies between components of a software system
with the architecture specification and visualize the results.

Losavio et al. [13], [14] present an architecture mea-
suring approach for evaluating software quality according
to ISO 9126. They consecutively walk through all quality
characteristics and sub-characteristics contained in the ISO
standard and present measurement specifications in order
to quantify these on an architectural level. In total, they
present 16 attributes and associated metrics. Out of these,
nine are defined in a binary fashion and require identifying
whether there is a mechanism in the architecture to support
the respective sub-characteristic, e. g. co-existence is deter-
mined by “the presence of a mechanism facilitating the co-
existence” [13]. Three of the remaining metrics are defined
to aggregate the respective values from the individual com-
ponents and connectors. In particular, no further adjustments
to these individual scores are made based on the architecture,
e. g. maturity is defined as the sum of the maturities of all
components and connectors the architecture consists of [13].
In conclusion, the proposed approach provides a unified
process framework for architecture quality assessment. Since

1https://www.conqat.org

31

over half of the metrics are Boolean and require thorough
expert assessment, the approach has to be considered mainly
checklist-based. Most of the measures are defined on a high
granularity that makes it difficult to automate measurement
by implementing the proposed metrics in a tool.

In summary, most approaches for software architecture
evaluation either do not provide a way to automate as-
sessment steps or require executable software artifacts in
order to do so. Although some scenario-based approaches
offer sophisticated methodology to support project-specific
architectural decisions, none of the existing approaches
provides a way to quickly obtain a general statement of the
overall conformance and quality of a software architecture.

III. BASIC MODELING CONCEPTS

This section briefly describes the meta quality model
that we developed in the Quamoco project [5], [15]. It
addresses the shortcomings of related approaches in software
quality modeling presented in Section II-A. Because this
meta model provides the basis for the architecture extensions
proposed in Section IV, its elements are introduced in the
following.

Entities provide a decomposition of the software product.
Starting from the complete Product, entities can refine other
entities along an is-a or a part-of relation, e. g. both entities
Source Code and Documentation refine Product. Decomposi-
tion is usually performed as required, until a depth is reached
that is sufficiently detailed to describe the desired concepts.
The entity Return Parameter (of a method) would refer to
Parameter using the is-a relation. In turn, the parameter
would specify that it is part of a Method, which is in turn
part of an Interface. Note that entities describe things on a
conceptual level, not individual instances within an assessed
system (i. e. the return parameter of a certain operation).

These entities are characterized by attributes (e. g. ATOM-

ICITY, PRECISE NAMING, COHESION) in order to define product
factors. These factors describe observable properties of these
entities that may or may not be present in a particular system
to a certain degree. The degree is expressed in the factor’s
value range, which includes all real numbers from 0 to 1.
The factor [Service | PRECISE NAMING] is completely fulfilled
(thus evaluating to 1.0) for a system, whose services are all
named precisely.

The Quamoco meta quality model allows for several
kinds of quality aspects in order to cover a wide range
of established ways of decomposing product quality. Wag-
ner et al. [15] structure product quality using the quality
characteristics defined in ISO 25010. Other possible quality
aspect forms include activity-based quality goals (c. f. [16]).
These have been proposed in order to provide more natural
and meaningful decomposition semantics, and are therefore
used in the following. Activity-based quality aspects are
comprised of an activity, which is performed on or with
the system, and an attribute characterizing this activity. A

ImpactFactor

Evaluation

Instrument

refines
refines

refines

quantifies

uses

part-of

*

*

*

*

*

*

* *

*
*

*

*
is-a

1

1 Product
Factor

Measure

Entity

Quality
Aspect

Figure 1. Quamoco Meta Quality Model (Source: [15])

typical quality goal from a service consumer’s perspective
is the efficient analysis of the functionality provided by a
service: [Analysis | EFFICIENCY]. The fact that the presence of
a product factor in a software system affects the fulfillment
of a quality goal is represented by an impact. Since the effect
can be positive or negative, the impact is annotated with +
or −, respectively. For example, the idea that precise naming
helps a user to analyze whether a service provides the
functionality he needs is represented as: [Service | PRECISE

NAMING] +−→ [Analysis | EFFICIENCY].
In summary, product factors bridge the gap between

abstract categories of quality and observable properties of
software artifacts. In order to assess to which degree a factor
is fulfilled for a particular system, the quality model contains
measures. They provide means to actually obtain data about
the system. Depending on the particular technology or
programming language used in the software product, these
measures make use of different kinds of instruments, either
tool-based ones using static analysis tools and metrics, or
manual ones by defining steps for an inspection of the
respective entities. For aggregation purposes, evaluations
translate the values of measures assigned with a factor to
a degree of fulfillment between 0 and 1. Figure 1 depicts
the Quamoco meta quality model.

Quality model elements can be grouped into modules
to facilitate reuse and maintenance of quality models. As
an example, source code quality models can be split into
modules according to programming paradigms or languages,
so that general source-code related concepts can be reused
within an object orientation module, which is then further
operationalized by modules containing measures and instru-
ments for C# or Java. This way, technology-independent
information can be reused, while technology-dependent
modules add automation by linking general measures to
analysis tools. In addition, this modularization concept can
be used to extend or adapt quality models. Project-specific
quality requirements can be added as an individual module,
and evaluation formula can be overridden in order to adapt
priorities according to the project goals.

32

More details on the modeling concepts, the elements
that constitute the quality model, as well as the relations
between them, can be found in [15]. This paper proposes
an extension to this meta model to specifically address
software architecture quality so that architectural styles can
be compared based on their impact on software quality and
existing software architectures can be evaluated with respect
to both architecture conformance and quality.

IV. ARCHITECTURE MODEL EXTENSION

To specifically address software architecture quality in the
context of a given architectural style, I propose an extension
to the meta model presented in the previous section. In order
to retain compatibility with the existing tools for editing,
maintaining, visualizing and executing quality models, this
extension is based on conventions, so that e. g. instead of
formally adding a new model element type, I propose adding
certain semantics to existing element types. Technically,
already the Quamoco meta quality model does so by using
the factor concept for both quality aspects and product
factors.

A. Modules

Quality goals like [Adaptation | EFFICIENCY] are usually
independent from architectural styles. In particular this is
the case for quality standards that do not make any as-
sumptions on the architecture of the software to assess (e. g.
ISO 25010). Therefore, quality goals should be usable across
different quality models and are hence defined within an
independent Base module.

According to the overall question, which quality goals
are directly influenced by the underlying principles of a
certain architectural style, all quality model elements directly
related to these principles are subsumed in a module named
Conformance. Other quality-related concepts beyond these
principles constitute the Design module.

Within the conformance module, the main elements are
the Architecture Principles, which are modeled as a special
case of product factors. Their degree of fulfillment states
how well the system under evaluation implements the re-
spective principle. Since these principles are often defined
on an abstract level, they are refined by product factors
describing directly observable properties of system entities,
which in turn are quantified by measures. The details of the
conformance module are described in Section IV-C.

Further design aspects contributing to software quality
are subsumed in the design module, which contains product
factors that cannot directly be deferred from principles (e. g.
parameter granularity of operations). The design module is
described in Section IV-D. The modular structure of the
architecture quality model can be found in Figure 2. The uses
relation between the design and the conformance module
indicates that basic measures defined in the latter could be

Conformance

Design

Base Module

uses

uses

Figure 2. Modular Structure

referenced from the former in order to avoid a duplication
of modeling effort.

In addition to the modules described here, the modu-
larization approach can be utilized to extend the quality
model with domain or project-specific modules. Moreover,
it is also possible to include modules for quality assessment
on a different level of detail, e. g. source code, in order to
aggregate all assessment results into a single hierarchy of
quality goals.

B. Quality Goals

Classical quality attribute hierarchies have been criticized,
because their decomposition appears to reflect different,
implicit criteria and lacks clear semantics [17]. To tackle this
concern, activity-based quality models (ABQM) have been
proposed in order to provide more natural and meaningful
decomposition semantics [18]. In my approach, I support
this view and propose to describe quality goals using activ-
ities and attributes.

A set of relevant activities can be obtained from both ex-
isting ABQMs and literature on the software life-cycle, e. g.
IEEE 1074 [19]. Definitions of traditional quality attributes
like ISO 25010’s quality characteristics often reference activ-
ities and even corresponding attributes. The relation between
these quality attributes and activity-based quality goals has
been discussed in more detail by Lochmann and Goeb [20].
There, ISO 25010’s quality characteristics (“-ilities”) are
explicitly part of the quality model, represented as high-level
product factors that have an influence on the activity-based
quality goals, e. g. the property of a software product’s UI
not to use color as the only means of encoding important
information has an influence on the factor [Product | ACCES-

SIBILITY], which in turn positively impacts the quality goal
[Perceive | EFFECTIVENESS]2.

Quality goals can be refined using general techniques from
the requirement engineering field (e. g. [21]–[23]). In the
quality model, this refinement can either be done along the
attributes (e. g. [Use | QUALITY] is refined to [Use | EFFICIENCY],

2Although the syntax has been adapted to be consistent with the model
presented here, the semantics of the original paper have been preserved.

33

[Use | EFFECTIVENESS], and [Use | CONTINUITY]), or along the
activities (e. g. [Use | EFFICIENCY] is refined to [Perceive |
EFFICIENCY], [Understand | EFFICIENCY], and [Act | EFFICIENCY]).
For maintainability, e. g., Deissenboeck et al. [18] provide
a thorough decomposition of maintenance activities.

In the following, I use SOA as an example for an architec-
tural style and derive some activity-based quality goals from
typical scenarios. In order for a potential service consumer to
decide whether a service offers the desired functionality and
is therefore feasible for a given usage scenario, he first has
to understand it. The respective quality goal is [Analysis |
EFFICIENCY], since this analysis should be as efficient as
possible. Similarly, other activities imply the goal of being
conducted efficiently, in particular [Composition | EFFICIENCY],
[Adaptation | EFFICIENCY], and [Test | EFFICIENCY], which are
self-explanatory. The degree to which a service satisfies
consumers’ needs in terms of functionality and therefore
enables effective service consumption can be expressed as
[Consumption | EFFECTIVENESS]. Interaction between services
is crucial for an SOA to be effective. Since service interop-
eration is achieved by composing services, this quality goal
of effective interaction between services can be represented
as [Composition | EFFECTIVENESS].

C. Conformance—Architectural Principles

The conformance module of an architecture quality model
contains all essential principles that constitute a particular
architectural style. As shown in Figure 3, the conformance
module consists of two kinds of factors, namely princi-
ple factors and conformance factors. The former provide
a general definition and explanation of an architectural
principle and its impacts on quality goals, which can be
either positive or negative. The latter refine these principle
factors into properties that can directly be observed from the
system artifacts. In order to quantify the degree of such a
property’s presence or absence in a software architecture,
each conformance factor is assigned with one or several
measures. An evaluation function assigned to each factor
puts these measurement results into relation and maps them
on a scale representing the factors’ degree of fulfillment.

An example from the SOA domain would be the principle
of [SERVICE COMPOSITION], expressing that services can be
composed in order to create new services. This principle is
refined into conformance factors: A factor [Service | OUTGO-

ING DEPENDENCIES] could describe the fact that services that
depend on other services do make use of composition and
hence support the composition principle. A second confor-
mance factor, [Service | CONSUMPTION RATIO], could describe
to which degree services wihtin the system consume other
services. [SERVICE COMPOSITION] itself has a positive impact
on [Consumption | EFFECTIVENESS], because a system that
makes use of service composition allows for fine-grained
reuse of services and therefore facilitates effective service
consumption. To quantify [Service | CONSUMPTION RATIO], e. g.

the measure Consumer Provider Ratio is defined, which
describes the ratio between provider and consumer services
within the system. Provider services are services that are
consumed by other services within the system, whereas con-
sumer services consume other services. Of course, services
can be both providers and consumers at the same time.
This way, the rather intangible architectural principle of
composition can be refined with the help of conformance
factors into observable properties that are quantified by a
set of defined measures. At the same time, the effects of
adhering to this principle are captured in terms of impacts
on quality goals.

D. Design—Architectural Best-Practices

Adhering to a certain architectural style is not sufficient
to ensure good quality. Usually, architectural principles are
accompanied by guidelines and best-practices. The design
module contains factors and measures describing these addi-
tional properties that are not covered by the basic principles
of an architectural style. While the general Quamoco ap-
proach does not restrict the type of product factors contained
in a model, this module explicitly separates architectural
best-practices from other kinds of factors in order to provide
a more concise view on the overall product quality.

In contrast to conformance factors, design factors directly
define impacts on quality goals. They can, however, be
organized hierarchically in order to group similar low-level
properties and make navigating the model easier. Typical
topics to be covered in the design module are dependencies,
documentation and naming, granularity, or size and com-
plexity. Each of these topics can be addressed by several
product factors, describing respective architectural proper-
ties. Concerning granularity, e. g., one of these factors could
be [Operation | FUNCTIONAL GRANULARITY], which expresses the
property that a service operation should perform exactly
one function, e. g. searching a customer database for entries
matching a provided search pattern. This factor is quantified
using the measure Operations performing multiple functions,
which provides guidance for system experts to assess service
operations and report those, which perform more than one
function.

These factors and measures typically resemble a collection
of design guidelines and best-practices that are known to
have an influence on certain quality goals. In order to obtain
a comprehensive set of factors and measures, a thorough
analysis is required, followed by a validation in order to be
sure that all typical aspects of the particular architectural
style are appropriately covered by the model. A validation
method for quality models has been proposed and applied
in the context of a quality model for embedded systems by
Mayr et al. [24]. Architectural design factors and measures
for SOA have been published by Goeb and Lochmann [25].

34

E. Instantiation and Usage

The meta quality model defined above can be instan-
tiated to build a quality model for an architectural style
by combining various sources of knowledge like personal
experience or documented research studies. Usually these
sources vary depending on the type of model elements. In
order to create the set of principles in the conformance
module, literature on that particular architectural style is
probably most appropriate. The refinement into factors can
be performed based on personal experience as well as
existing models or frameworks. Likewise, there is a large
amount of well-evaluated research studies on the impacts of
particular design properties on different aspects of software
quality. The advantage of a formally defined model com-
pared to these textual representations is that the consolidated
model can be visualized, navigated and analyzed more
easily using appropriate tools. In addition, contradictions
or missing information become more evident in a formal
model. Literature might not provide a consistent view on
how different measures should influence a factor’s degree
of fulfillment.

As part of a larger research effort I created a correspond-
ing quality model for SOA, containing SOA principles as
well as further design factors. This model has been created
over the course of the recent years and will be published
separately, including an expert-based evaluation of its overall
structure as well as its contents. In total, the SOA quality
model consists of 111 elements and therefore cannot be
presented here in detail. An overview is, however, depicted
in Figure 4 on the next page.

For the weighing of model elements against each other
in order to allow quality assessment using the model, I pro-
pose an iterative approach: First, initial evaluation functions
should be manually defined for each factor based on personal
experience. Once a quality model is completely defined
and operationalized, a benchmarking technique should be
employed to calibrate these functions. This is achieved
by assessing a certain amount of software systems using
the quality model and thus observing typical value ranges
in real-world systems. More information on how to use
benchmarking approaches for the calibration of software
quality models can be found in [26].

In order to perform a model-based architecture quality
analysis, all measures defined in the model have to be
provided with measurement values. Using the Quamoco tool
chain, this can either be achieved by implementing according
adapters for automatically obtainable values or by generating
a spreadsheet template from the model, which can be filled
with the respective values by an inspector. In a second
phase, these measurement values are aggregated along the
hierarchy of refinement and impact relations defined in the
model, evaluating the formulas provided for each model
element. Because this is a core functionality of the Quamoco

approach, it is not elaborated here in more detail. An
exemplary quality assessment can be found in Section V.

F. Summary

The proposed meta quality model for software architecture
evaluation is comprised of three modules. The base module
contains definitions of quality goals and relations between
them. Usually, these quality goals are structured hierarchi-
cally. To represent quality goals, I propose the activity-based
notion, so that each quality goal is expressed as a pair of an
activity and an attribute. Hierarchical refinement of quality
goals can be done along both activities and attributes.

The conformance module contains information regarding
the core principles of a certain architectural style. These
principles are represented as principle factors. In order to
provide means for architecture conformance assessment,
these principles are refined by conformance factors, which
resemble observable properties of the software architecture
to reflect these principles. These factors are quantified by
measures, which can either be obtained by measurement
tools and metrics, or manually during architecture inspec-
tions. Besides architecture conformance assessment, the con-
formance module can provide valuable insight regarding the
effect of an architectural style on software product quality.
In order to achieve this, principle factors describe impacts
on the quality goals defined in the base module.

The design module covers quality-relevant architectural
properties originating from guidelines and best-practices,
which are not directly related to the principles of an architec-
tural style. Usually, conformance to architectural principles
helps achieving high quality, but is not sufficient. An analysis
of the quality model can easily identify quality goals that are
not sufficiently covered by architectural principles and hence
lead to the definition of further design guidelines in order to
achieve this coverage. These guidelines are represented by
design factors, which again resemble observable properties
of a software architecture. Design factors also define impacts
on quality goals, so that architecture quality assessment can
be done on the combination of conformance and design
factors. The resulting meta quality model for software ar-
chitecture conformance and quality assessment is depicted
in Figure 3.

In summary, the proposed structure allows the separation
of quality-related effects of an architectural style from gen-
eral best-practices that improve software quality. In addition,
architectural principles become tangible by refining them
to observable properties of architecture artifacts. In early
project phases, this transparency ensures a common under-
standing throughout the project. Once according models are
available for different architectural styles, they can also serve
as a decision basis in order to decide for a particular one.

35

Conformance Design

Measure

quantifies

Measure

quantifies

impacts ±

impacts ±

Conformance Factor

Entity Attribute

Design Factor

Entity Attribute

Principle Factor

refines

Quality Goal

Activity Attribute

Base Module

refines

refines

refines

Figure 3. Software Architecture Meta Quality Model

V. VALIDATION

In order to validate that an architecture quality model built
in accordance with the proposed meta model can be used for
architecture quality assessment in practice, I designed the
following experiment: We used the architecture conformance
and quality model for SOA described in Section IV-E to
assess an actual SOA-based software system, which was
developed as part of the European SmartProducts research
project3. This project was selected for the experiment be-
cause the number of services was small enough to manually
trace the evaluation results from the values on the quality
goal level down to values for individual measures. This was
considered an essential requirement for a first applicability
test. Figure 4 shows the SOA conformance and quality
model’s structure as well as some of the contained quality
goals, factors and measures.

A. Goal

We conducted this experiment to validate the practical
applicability of the presented approach for software ar-
chitecture conformance and quality assessment. Practical
applicability is measured by the success of conducting an
evaluation based on the set of measures defined in the
model. Furthermore, the experiment should demonstrate the
compatibility of the underlying concepts with existing tools
for quality modeling and assessment.

B. Setup and Procedure

Due to the diversity of analyzed artifacts (specifications,
models, source code), tool-based measurement would have
required implementing respective measurement tools for
each of these artifact types and has therefore been discarded.
Instead, I adapted the quality model, converting all measures
to be manually assessed. The Quamoco tool chain [27]
requires manual measures to be numerical. Following this
rule, it was possible to export an Excel template containing

3http://www.smartproducts-project.eu/

Quality Goals

SOA Conformance Factors

SOA Principle Factors

Conformance

refine

Measures

quantify

SOA Design Factors

Design

Measures

quantify

[Service | CONSUMPTION RATIO]

[Service | ABSTRACTION LEVEL]

…

Consumer-Provider Ratio

Service Abstraction Ratio

…

…[COMPOSITION]

[BUSINESS ABSTRACTION]
[Operation | DATA GRANULARITY]

[Service | STATELESSNESS]…

Context-Dependent Ops

Coarse-Grained Parameters

…

Services
Dependency Cycles

Base Module
[Consumption | EFFECTIVENESS] [Adaption | EFFICIENCY] …

impact ±
impact ±

Figure 4. SOA-Model

all measurement instruments along with their descriptions
and a column to enter the manually obtained measurement
results. Five researchers familiar with the system’s archi-
tecture used this template and manually conducted all the
measurements contained therein. All of the experts hold a
university degree in computer science, two of them also
hold a Ph. D. In addition, they all have several years of
experience in developing software. Because the only tool
the experts used was the Excel template, they did not have
to be introduced to the whole quality model in advance, but
could focus on collecting measurement data without being
biased by knowing how the evaluation would be impacted
by either of the measurement values.

Table I shows the measure names as well as the assessed
measurement values. The values represent the mean values
of the results obtained by the five experts. The filled template
has been imported into the assessment tool chain as the basis
for further processing according to the SOA model.

Due to the capabilities of the Quamoco tooling in han-
dling manually obtained measurement results, the remain-
ing steps of the quality assessment did not involve any
manual effort. The measurement data was processed and
transformed into an HTML dashboard presenting scores for
each quality goal contained in the quality model based on the
evaluation formulas defined there. These results were then
presented to the project team, followed by a discussion on
their opinion regarding the approach of model-based, semi-
automatic architecture quality assessment in general, and the
applicability of the SOA quality model in particular.

C. Results

In general, the project team highly appreciated the effort
savings due to the automation provided by the quality model
and the associated tools. Compared to other architecture
assessment techniques that had been used in the project

36

Table I
RAW MEASUREMENT RESULTS

Measure Name Value
Contract Implementation Coupling 0.00
Inconsistent Interface Standards 0.50
Number of Utility Services 5.00
Average Service Fan-In 2.00
Average Service Fan-Out 2.00
Number of Domain Services 3.00
Number of Process Services 4.00
Total Number of Services 12.00
Consistent and Unambiguous Documentation 50.00
Number of Dependency Cycles 0.00
Average Dependency Depth 2.00
Efficiently Groupable Parameters 6.00
Inconcisely Named Operations 28.00
Inconcisely Named Parameters 35.00
Inconcisely Named Services 5.00
Number of Context-Dependent Operations 5.00
Number of Exposed Operations 0.00
Total Number of Operations 55.00
Total Number of Parameters 100.00
Operations with External Dependencies 10.00
Operations Performing Multiple Functions 10.00
Average Dependencies per Service 2.00
Semantically Equivalent Services 0.00
Interface Data Cohesion 0.40
Interface Sequential Cohesion 0.15
Interface Usage Cohesion 0.50
Functional Domain Coverage 11.00

before (e. g. Active Design Reviews [10]), the team reported
that especially preparation and data analysis were far less
time-consuming, so that the team was able to assess the
system within one working day instead of several days for
preparing review questionnaires and analyzing the results. At
the same time the experts reported that the actual measure-
ment required a profound knowledge of the system and could
not easily be conducted by external people. This appears
reasonable, taking into account that many of the measures
were initially meant to be conducted automatically using
appropriate tools, but had been adapted to be conducted
manually due to the different development stages of the
involved artifacts.

Obviously the time savings for the analysis of a single
project’s architecture do not compensate for the initial effort
of building the SOA model. However, since the model is
available and reusable, other projects can make use of it and
(optionally) invest some time in project-specific tailoring.

The analysis tool provides the user with different visu-
alizations (see e. g. [15]) and a hierarchical HTML-based
table. Figure 5 shows an excerpt from this table. The first
column contains the hierarchical decomposition of quality
goals, including the impacting factors and the respective
measures. The right column shows the analysis results. In the
case of measures, these results correspond to the numbers
read from the template file. For factors and quality goals,
the value range is the interval [0; 1], which represents the
respective degree of fulfillment.

Figure 5. Validation Output View

Concerning the interpretation of these values it is im-
portant to mention that they are not meant to be absolute
statements. Experience with model-based quality assessment
has shown that quality models only produce objective results
if they are properly calibrated using a large number of
reference products. The experiment presented here only
aimed at showing the general applicability of the approach
for automatic quality assessment and the compatibility of the
adapted meta quality model with the Quamoco tool chain.
The calibration procedure for the Quamoco base quality
model for source code is outlined in [15] and can be applied
for architecture conformance and quality models as well.

Despite this fact, the results for some of the factors can
already provide hints regarding architecture quality. One
interesting finding was that the system scored comparably
low on the [BUSINESS ABSTRACTION] SOA principle. Discus-
sions revealed that the particular system was indeed not
completely following the SOA principle of providing mainly
business process-relevant functionality as services, but also
offered “low-level APIs”. Likewise, other assessment results
on a general level matched the overall perception of the
involved experts. Hence, model-based architecture confor-
mance and quality analysis can help software architects to
increase transparency regarding the conformance to archi-
tectural principles as well as potential quality problems with
comparably low effort, even before the software product is
completely implemented.

Because the main goal of this experiment was the appli-
cability evaluation of our approach for quality assessment,

37

a more detailed interpretation of assessment results was not
performed. In addition, such an analysis would have required
a proper calibration of the model’s evaluation formulas in
order to provide sound results. A more detailed discussion
on this topic can be found in the following section.

VI. CONCLUSIONS AND OUTLOOK

In this paper, I presented a variant of the Quamoco quality
modeling approach specifically addressing software architec-
ture conformance and quality. While relying on Quamoco’s
meta quality model, several conventions have been applied
in order to describe both the inherent properties of an
architectural style and additional properties the architecture
should possess in order to achieve high software quality.
These two flavors of architecture quality are represented in
the model’s conformance and design modules, respectively.
The model relies on the activity-based quality modeling
approach, which means that quality goals are expressed
via activities conducted with the system and attributes of
these activities. This way the multifaceted concept of quality
is structured along intuitive decomposition semantics by
splitting activities into sub-activities.

The building blocks of a software architecture are repre-
sented by entities, which are characterized by attributes in
order to describe factors that can be observed in a software
architecture. These factors have impacts on quality goals,
making them the intermediary between general quality goals
and actual measurements and metrics.

An experiment applying an architecture quality model for
SOA to an actual software system showed that architecture
quality models built according to our proposed structure
can be used for architecture evaluation. The project team
who built the system used for evaluation stated that the
greatest benefit of our approach is the strong reduction of
manual analysis and processing effort compared to other
architecture evaluation approaches applied in the project
before. Given a limited overall time frame, this allows for
architecture assessment more often, leading to increased
transparency regarding architectural properties and hence
to more responsive quality control. In addition, the most
significant assessment results matched the perception of the
project team. In order to show the value of the SOA quality
model beyond these tendencies, further empirical studies are
needed.

The architecture meta quality model provides a framework
to consistently collect and conserve quality knowledge.
Architecture quality models can be used to investigate for
a given quality goal, how it is affected by the principles of
an architectural style, and which additional design patterns
should be implemented in order to reach this quality goal.
This helps software architects to argue to which degree a
decision for a certain architectural style already has positive
impacts on software quality, and whether these might be
affected by ignoring further design properties.

Moreover, architecture quality models build the basis for
standardized and reproducible architecture quality assess-
ment by formalizing relationships between measures, factors
and quality goals. Back in 1992, Grady described his vision
regarding the importance of metrics in software engineering
in the year 2000 as follows: “First, tools will automatically
measure size and complexity for all the work products that
engineers develop. Besides warnings and error messages, the
tools will predict potential problem areas based on metric
data thresholds” [28, p. 220]. For source code, this goal
might have actually been reached, taking the large amount
of dashboards and related tools into account. With respect
to software architecture, however, even twelve years after
the mentioned date, this vision has not become reality yet.
The proposed architecture conformance and quality model
might be a step into this direction, since it provides clear
relationships between important concepts and allows for
automated assessment. Hence, it contributes to the repro-
ducibility of quality analysis, making sure that incremental
assessments after changes in the software are based on
the same evaluation rules. This also lowers the required
effort, since aggregation, processing and visualization of
results are automatically conducted using quality analysis
tools like ConQAT. Further automation potential is given by
the possibility to also use tools to obtain the measurement
values.

Further areas of future work include applying the model-
ing approach to a number of architectural styles. Doing so,
the resulting quality models can help to compare architec-
tural styles based on their impact on quality and provide
decision support for software architects. For a particular
software development project, they are provided with a
means to choose the architectural style that most adequately
covers the quality requirements defined for that project.
In the long term, a framework could emerge to describe
architectural styles from a quality perspective, providing
a solid basis for decisions in early software development
phases.

ACKNOWLEDGMENT

This work has partially been supported by the German
Federal Ministry of Education and Research (BMBF) in the
project Quamoco (01 IS 08023D). Further thanks go to the
SmartProducts project team at TU Darmstadt for taking part
in the applicability experiment.

REFERENCES

[1] A. Rivers and M. Vouk, “Resource-constrained non-opera-
tional testing of software,” in Proc. 9th Software Int. Sympo-
sium on Reliability Engineering, 1998, pp. 154–163.

[2] L. Briand, J. Wüst, J. Daly, and D. Victor Porter, “Explor-
ing the relationships between design measures and software
quality in object-oriented systems,” Journal of Systems and
Software, vol. 51, no. 3, pp. 245–273, 2000.

38

[3] P. Clements, R. Kazman, and M. Klein, Evaluating Software
Architectures: Methods and Case Studies. Addison-Wesley
Professional, 2001.

[4] M. Svahnberg and C. Wohlin, “An investigation of a method
for identifying a software architecture candidate with re-
spect to quality attributes,” Empirical Software Engineering,
vol. 10, no. 2, pp. 149–181, 2005.

[5] S. Wagner, K. Lochmann, S. Winter, F. Deissenboeck,
E. Juergens, M. Herrmannsdoerfer, L. Heinemann, M. Klaes,
A. Trendowicz, J. Heidrich, R. Ploesch, A. Goeb, C. Koerner,
K. Schoder, and C. Schubert, “The Quamoco Quality Meta-
Model,” Technische Universitaet München, Tech. Rep. TUM-
I128, 2012.

[6] B. W. Boehm, J. R. Brown, H. Kaspar, M. Lipow, G. J.
Macleod, and M. J. Merrit, Characteristics of Software Qual-
ity. North-Holland, 1978.

[7] J. A. McCall, P. K. Richards, and G. F. Walters, “Factors
in Software Quality,” Rome Air Development Center, Tech.
Rep. RADC-TR-77-369, 1977.

[8] S. Wagner, K. Lochmann, S. Winter, A. Goeb, M. Klaes, and
S. Nunnenmacher, “Software Quality Models in Practice,”
Technische Universitaet München, Tech. Rep. TUM-I129,
2012.

[9] K. Mordal-Manet, F. Balmas, S. Denier, S. Ducasse, H. Wertz,
J. Laval, F. Bellingard, and P. Vaillergues, “The squale model
- A practice-based industrial quality model,” in Proc. IEEE
Int. Conf. on Software Maintenance (ICSM), 2009, pp. 531–
534.

[10] D. L. Parnas and D. M. Weiss, “Active design reviews:
principles and practices,” in Proc. 8th Int. Conf. on Software
Engineering (ICSE), 1985, pp. 132–136.

[11] O. Vogel, I. Arnold, A. Chughtai, E. Ihler, T. Kehrer,
U. Mehlig, and U. Zdun, Software-Architektur: Grundlagen -
Konzepte - Praxis, 2nd ed. Spektrum Akademischer Verlag
Heidelberg, 2009.

[12] J. Zhao, “Bibliography of Software Architecture Analysis,”
Software Engineering Notes, vol. 24, no. 4, pp. 61–62, 1999.

[13] F. Losavio, L. Chirinos, A. Matteo, N. Levy, and A. Ramdane-
Cherif, “ISO quality standards for measuring architectures,”
Journal of systems and software, vol. 72, no. 2, pp. 209–223,
2004.

[14] F. Losavio, L. Chirinos, N. Lévy, and A. Ramdane-Cherif,
“Quality Characteristics for Software Architecture.” The Jour-
nal of Object Technology, vol. 2, no. 2, pp. 133–150, 2003.

[15] S. Wagner, K. Lochmann, L. Heinemann, M. Klaes, A. Seidl,
A. Goeb, J. Streit, A. Trendowicz, and R. Ploesch, “The
Quamoco Product Quality Modelling and Assessment Ap-
proach,” in Proc. 34th Int. Conf. on Software Engineering
(ICSE), 2012.

[16] M. Broy, F. Deissenboeck, and M. Pizka, “Demystifying
Maintainability,” in Proc. 4th Workshop on Software Quality
(WoSQ), 2006, pp. 21–26.

[17] H.-W. Jung, S.-G. Kim, and C.-S. Chung, “Measuring Soft-
ware Product Quality: A Survey of ISO/IEC 9126,” IEEE
Software, vol. 21, no. 5, pp. 88–92, 2004.

[18] F. Deissenboeck, S. Wagner, M. Pizka, S. Teuchert, and J.-
F. Girard, “An Activity-Based Quality Model for Maintain-
ability,” in Proc. IEEE Int. Conf. on Software Maintenance
(ICSM), 2007, pp. 184–193.

[19] IEEE, “Std 1074-2006 – IEEE Standard for Developing a
Software Project Life Cycle Process,” 2006.

[20] K. Lochmann and A. Goeb, “A Unifying Model for Software
Quality,” in Proc. 8th Int. Workshop on Software Quality
(WoSQ), 2011, pp. 3–10.

[21] A. van Lamsweerde and E. Letier, “Handling obstacles in
goal-oriented requirements engineering,” IEEE Transactions
on Software Engineering, vol. 26, no. 10, pp. 978–1005, 2000.

[22] A. van Lamsweerde, “Goal-Oriented Requirements Engineer-
ing: A Guided Tour,” in Proc. Int. Symposium on Require-
ments Engineering, 2001.

[23] S. Doeweling, B. Schmidt, and A. Goeb, “A model for the
design of interactive systems based on activity theory,” in
Proc. ACM Conf. on Computer Supported Cooperative Work
(CSCW), 2012, pp. 539–548.

[24] A. Mayr, R. Plösch, M. Kläs, C. Lampasona, and M. Saft,
“A Comprehensive Code-based Quality Model for Embedded
Systems,” in Proc. 23rd Int. Symposium on Software Relia-
bility Engineering (ISSRE), 2012.

[25] A. Goeb and K. Lochmann, “A software quality model
for SOA,” in Proc. 8th Int. Workshop on Software Quality
(WoSQ), 2011, pp. 18–25.

[26] K. Lochmann, “A Benchmarking-inspired Approach to De-
termine Threshold Values for Metrics,” in Proc. 9th Int.
Workshop on Software Quality (WoSQ), 2012.

[27] F. Deissenboeck, L. Heinemann, M. Herrmannsdoerfer,
K. Lochmann, and S. Wagner, “The quamoco tool chain for
quality modeling and assessment,” in Proc. 33rd Int. Conf.
on Software engineering (ICSE), 2011, pp. 1007–1009.

[28] R. B. Grady, Practical Software Metrics for Project Manage-
ment and Process Improvement. Prentice Hall, 1992.

39

