
QualityGate SourceAudit:
A Tool for Assessing the Technical Quality of Software

Tibor Bakota
FrontEndART Software Ltd.

Zászló u. 3 I./5. H-6722 Szeged, Hungary
bakotat@frontendart.com

Péter Hegedűs, István Siket
MTA-SZTE Research Group on

Artificial Intelligence, Szeged, Hungary
{hpeter,siket}@inf.u-szeged.hu

Gergely Ladányi, Rudolf Ferenc
University of Szeged

Department of Software Engineering
Árpád tér 2. H-6720 Szeged, Hungary

{lgergely,ferenc}@inf.u-szeged.hu

Abstract—Software systems are evolving continuously in order
to fulfill the ever-changing business needs. This endless modifica-
tion, however, decreases the internal quality of the system over
time. This phenomena is called software erosion, which results
in higher development, testing, and operational costs.

The SourceAudit tool presented in this paper helps managing
the technical risks of software deterioration by allowing imme-
diate, automatic, and objective assessment of software quality.
By monitoring the high-level technical quality of systems it is
possible to immediately perform the necessary steps needed to
reduce the effects of software erosion, thus reaching higher
maintainability and lower costs in the mid and long-term.
The tool measures source code maintainability according to
the ISO/IEC 25010 based probabilistic software maintainability
model called ColumbusQM. It gives a holistic view on software
quality and warns on source code maintainability decline.

I. INTRODUCTION

Because of continuous changes, software systems are ex-
posed to quality deterioration – software erosion [1] – and
as a result, the development and testing expenses increase,
as well as the operational risks. Maintenance of custom-made
software in the course of its complete life-cycle often exceeds
the initial costs of development.

In the case of organizations, operating large number of
custom-developed software systems to reduce the effect of
erosion is crucial. The risks that are due to quality deterioration
of even functionally well operating software systems are taken
by the contracting party of the development or the party
that will operate the system. Without an objective evaluation
of source code maintainability, the quality of the delivered
system can be judged only relying on the results of the
acceptance tests, which characterize the functionality of the
system exclusively, but do not provide information on its
maintenance costs and operational risks.

The SourceAudit tool, member of the QualityGate product
family,1 is a software quality management tool, which allows
immediate, automatic, and objective assessment of software
quality. The tool measures source code maintainability using
our ColumbusQM [2] maintainability model and provides a
holistic view on the change of software quality. It warns on
source code maintainability decline and helps in improving
source code quality and performance of development teams.
The tool supports also software operating companies by auto-
matically monitoring the source code quality of their software
systems.

1http://www.frontendart.com

SourceAudit includes the important features of other exist-
ing tools (e.g. SIG maintainability model, QUAMOCO, Sonar
SQALE, or SQUALE) and extends them with trend analysis,
maintenance cost estimation, and a drill-down mechanism [3]
for assessing the maintainability of individual source code
elements (e.g. classes and methods).

II. BACKGROUND

A. Measuring Source Code Maintainability

The theoretical basis of quantifying source code quality is
laid down in the work introducing ColumbusQM [2]. One of
the keystones of the measurement is the so-called reference
database (benchmark), which contains source code character-
istics of numerous software systems. The reference database
is the basis for comparison of the software system to be
evaluated. Using the same reference database, maintainability
of different systems or the maintainability of many versions
of the same system have become comparable, i.e. the change
of the maintainability may be observed in time.

Figure 1. An example of a source code maintainability model

The other important element of measuring source code
maintainability is the maintainability model, which is a di-
rected acyclic graph, whose nodes represent low- and high-
level characteristics (see Figure 1). The low-level characteris-
tics – the nodes without input edges (sensor nodes) – can be
directly calculated from the source code with the help of static
analysis (e.g.: the complexity of source code elements, the
ratio of serious coding errors, the ratio of code duplications).
The high-level characteristics – the nodes with input edges
(aggregated nodes) – represent the quality attributes with
subjective meaning that cannot be computed directly from the
source code (maintainability, stability etc.). The edges among
the nodes of the graph indicate a dependency. The model
provides the possibility of weighting the edges of the graph by
software developer experts, so the subjectivity of the notions
during the aggregation becomes manageable. Weighting given

978-1-4799-3752-3/14 c© 2014 IEEE CSMR-WCRE 2014, Antwerp, Belgium
Tool Demonstration

Accepted for publication by IEEE. c© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

440



by each expert is considered as one vote, and the probability
distributions of the votes on the edges represent the subjective
opinions of the experts.

The last building block for maintainability measurement is
the method of aggregation itself. In the case of a software
system to be assessed, the computation of low-level source
code characteristics happens first. Next, they are compared to
the software systems in the reference database. The result of
the comparison is a probability distribution function, defined
for each low-level characteristic of the model. Then, the
already calculated probability distributions along the edges
in the model are being aggregated – according to the votes’
distribution assigned to the edges – with the help of statis-
tical methods, which yield an objective measure for high-
level characteristics. Repeating the process several times the
Maintainability node – the root of the graph – also gets a
measure.

B. Relationship between Source Code Maintainability and
Development Costs

The importance of source code maintainability arises from
its obvious relationship to software development costs. Main-
tainability is defined most commonly, as the effort required to
modify the behavior of the software. The formal relationship
between development costs and source code maintainability is
described in a previous paper by Bakota et al. [4].

Figure 2. The connection of maintainability and development cost

According to the introduced cost model, source code main-
tainability is an exponential function of the effort put in the
development, i.e. the development effort degrades source code
maintainability in an exponential rate. The model makes it
possible to express the development costs of a software system
relative to another one having an average maintainability.
Figure 2 represents this ratio of development costs for different
maintainability values. The SourceAudit tool is able to present
the maintenance costs of a software system according to this
cost model.

III. USING QUALITYGATE SOURCEAUDIT

Continuous integration. The QualityGate product family
comes with continuous integration support in form of a Jenkins
plug-in. The plug-in is capable of managing the whole analysis
process, by performing the following steps:

• Regularly checks for changed source code in the version
control system.

• Performs static source code analysis of the source code
by using the QualityGate CodeAnalyzer tool, which
computes source code metrics, and detects coding rule
violations and code duplications.

• Uploads the analysis results to the central QualityGate
repository.

• Computes the source code maintainability based on the
models and benchmarks in the repository.

• Visualizes the results on the SourceAudit web-based
graphical user interface.

User interface. The user interface of SourceAudit provides
a holistic view of the quality of software systems. After log-
ging in, the user can see the three main function groups of the
system, appearing as tabs on the top of the page: Certification,
Quality Model, and Benchmark (see e.g. Figure 3).

In the following, the main use-cases of the user interface
will be described in detail.
A. Benchmark Management

For measuring software maintainability, a reference database
(so-called benchmark) is needed. The quality of a system can
be quantified relative to the systems in this reference database.
SourceAudit provides a default benchmark database, which
contains hundred open- and closed-source software systems
and their analysis results.

Viewing benchmark details. By clicking on the informa-
tion box of a benchmark listed on the Benchmark tab (see
Figure 3), statistical data of the particular benchmark can be
seen. The page lists the name, description, the number of
systems in the benchmark, as well as the contained systems
and the date of last modification. The mean and range values of
some important source code metrics (number of lines of code,
packages, classes, methods, etc.) of systems in the benchmark
can be seen as well. The related quality models are also listed,
as well as the metric values, which are shown on pie charts.

Figure 3. The benchmark tab
Creating new benchmarks. The users are able to create

new benchmarks by selecting the systems, which should be
included. After creating a benchmark, a new information box
representing the newly created reference database appears on
the Benchmark site.

Editing and deleting benchmarks. The name, description
and the systems contained in the benchmark can be modified
at any time. Deleting an existing benchmark is also possible
but this operation can be executed only if no quality model is
referring to this particular benchmark.

441



B. Quality Model Management

Software quality assessment is carried out according to
a quality model. A model is a directed acyclic graph (see
Figure 1), consisting of low- and high-level characteristics.
The quality model management tab provides a possibility to
the users to create and calibrate their own models.

Viewing quality model details. Details of a quality model
appearing on the Quality model tab can be viewed by clicking
on the information box representing the particular model.
Apart from the basic information (e.g. model name, descrip-
tion, benchmark used, number of nodes) the graph of the
model can also be seen. By double-clicking on the nodes of
the model, supplementary information for the model element
can be gained (e.g. name, description, for what type of source
code elements it is applicable). In addition, the distribution of
expert votes on a given dependency can also be visualized.
The elements of the quality model can be rearranged in any
way for the sake of better overview.

Creating a quality model. It is possible to create a new
quality model at the Quality model tab. After giving a name
and a description for the new model, it is necessary to assign
a benchmark to it (each model may use only one benchmark).
The new model can be created with the help of a graphical
editor presented in Figure 4. In order to make the model
suitable for quality assessment, weighing the relations among
model nodes is needed, which can be done by assigning votes
for the edges of the model.

Figure 4. The default Java quality model

Editing and deleting quality models. Editing an existing
model is possible only if there are no votes assigned to its
edges yet. Users can also delete a quality model.

C. Certification View
Maintainability assessments based on the different models

in SourceAudit can be viewed on the Certification tab (see
Figure 5). Each information box represents an evaluation of a
system’s maintainability according to a specified model. Apart
from the name of the system and the model used for validation,
the latest assessment date and the result of the assessment can
be seen. The value of the evaluation is defined on a ten-point
scale (0 is the worst, 10 the best) and it expresses the quality
of the given system compared to the systems in the benchmark
used by the model. The most important system-level metrics of
the latest assessed source code version can also be displayed
(e.g. total lines of code, number of classes, copy-paste ratio).

Figure 5. Certification view

Viewing certification details. By choosing the appropriate
information box on the Certification tab the evaluation results
of the system according to the given model can be seen (see
Figure 6). The stars at the top of the page indicate the quality
of the system.

The timeline, located in the middle of the page, shows the
system’s quality change in time. By clicking on the points on
the timeline, details regarding the root causes of the change
appear (green color indicates quality improvement, red means
quality decrease). On the appearing window, it is possible to
generate PDF or Excel reports for the selected version. By
clicking on the cost icon, the user can toggle between the
quality and the relative maintenance cost computed for the
system, which is shown in percentages and indicates the cost
of maintenance compared to an averagely maintainable system
(100% stands for the maintenance cost of a system with a
quality value of 5, see Section II for more details).

Figure 6. The certification details of a system.

Certification breakdown. It is possible not only to view the
high-level quality changes over time, but to select a particular
version of the source code and breakdown to the root causes
of the certification results. The main benefit of the function
is that low-level technical information can be gained without
having to generate a report as the concrete source code parts
of the affected elements can also be displayed.

The tool provides an overview table with the following
information: coding rule violations introduced in the current
version, changes in source code metrics causing the change in
the system level maintainability, the newly introduced copy-
paste code parts, etc. Besides this overview, the actual source

442



Figure 7. Annotations and source view Figure 8. SourceAudit Eclipse plug-in

code of the affected source code elements can be downloaded
from the version control system and displayed decorated with
the rule violations and copy-paste parts existing in them (see
Figure 7). What is more, users can directly annotate code parts
or create tickets for a particular issue. This information gets
uploaded into the central database which is also read by an
Eclipse plug-in that fetches the created issues and annotations
and displays the information to the developers right in the IDE
(see Figure 8). This is an especially useful feature as there is no
need for extra communication between managers, architects,
and lead developers (who are more likely to use SourceAudit
for getting a quality overview of a system) and programmers
(who typically use IDEs).

Executing quality assessments. In general, quality assess-
ments are executed automatically by Jenkins, as described
above. However, it is also possible to manually start as-
sessments of systems that have earlier been uploaded to
SourceAudit. After selecting a quality model, the versions of
the system for which the validation is to be performed should
be given. Subsequently, the user gets back to the Certification
tab showing the new information box corresponding to this
certification. It is also possible to delete any assessment of a
system. By deleting a certification, the source code character-
istics of the software are not deleted, thus, the validation can
be restarted.

Generating reports. It is possible to generate a PDF report
of the quality of a given system for stakeholders and managers,
or an Excel report, which provides a technical-level overview
of the quality for a given version of the system.

Generating a widget code. The widget code is an HTML
code that can be embedded in a website, and which keeps
track of the source code quality in form of a stamp logo. The
name of the validated system, the latest validation date and
the actual quality value appear on the stamp (see Figure 9).

Figure 9. The qualification stamp logo

IV. CONCLUSIONS

In this paper we introduced the SourceAudit software-
quality management tool, member of the QualityGate product
family. It aims to provide an easy-to-understand, holistic view
of the high-level quality of software. The tool implements
a state-of-the-art ISO/IEC 25010 based probabilistic quality
model – called ColumbusQM – for calculating technical qual-
ity and integrates the cost model derived from it. SourceAudit
includes all the important functionalities provided by similar
tools and extends them in several ways (e.g. with trend
analysis, source code element level maintainability).

On one hand, our tool is useful for managers at companies
operating software systems for monitoring the quality of
their software at high level. On the other hand, SourceAudit
also helps software developers to gain low-level technical
information of the quality of their code and on how to improve
it. For them, we also provide an Eclipse IDE plug-in to make
it easier to get the information from SourceAudit (e.g. tickets
and comments added by project leaders).

ACKNOWLEDGMENT

This research and development was supported by the Hun-
garian national grant GOP-1.1.1-11-2011-0006, and the Eu-
ropean Union and the State of Hungary, co-financed by the
European Social Fund in the framework of TÁMOP 4.2.4.
A/2-11-1-2012-0001 “National Excellence Program”.

REFERENCES

[1] D. L. Parnas, “Software Aging,” in Proceedings of the 16th International
Conference on Software Engineering, ser. ICSE ’94. Los Alamitos, CA,
USA: IEEE Computer Society Press, 1994, pp. 279–287.

[2] T. Bakota, P. Hegedűs, P. Körtvélyesi, R. Ferenc, and T. Gyimóthy,
“A Probabilistic Software Quality Model,” in Proceedings of the 27th
IEEE International Conference on Software Maintenance (ICSM 2011).
Williamsburg, VA, USA: IEEE Computer Society, 2011, pp. 368–377.

[3] P. Hegedűs, T. Bakota, G. Ladányi, C. Faragó, and R. Ferenc, “A Drill-
Down Approach for Measuring Maintainability at Source Code Element
Level,” Electronic Communications of the EASST, vol. 60, 2013. [Online].
Available: http://journal.ub.tu-berlin.de/eceasst/article/download/852/846

[4] T. Bakota, P. Hegedűs, G. Ladányi, P. Körtvélyesi, R. Ferenc, and
T. Gyimóthy, “A Cost Model Based on Software Maintainability,” in
Proceedings of the 28th IEEE International Conference on Software
Maintenance (ICSM 2012). Riva del Garda, Italy: IEEE Computer
Society, 2012, pp. 316–325.

443



APPENDIX

During the demonstration we use a SourceAudit tool
installation publicly available at the following URL:
http://columbus.inf.u-szeged.hu:10000/QualityGate. We show
the certification details of an open-source project, going
through the following steps.

a) Present the applied quality model: The SourceAudit
tool is able to evaluate systems according to an arbitrary
quality model. However, it comes with a default quality model
defined for the Java language. All the presented results are
prepared using this default quality model. As a first step,
we show how this model is built up using the quality model
preview screen depicted in Figure 4. We overview the general
structure of the model, the applied source code metrics, and
the weight distributions coming from the expert votes.

b) Show the statistics of the used benchmark: Each
model uses a benchmark of other systems as the basis of
the qualification. After we present the structure of the quality
model itself, we show some statistics of the default benchmark
assigned to the default quality model. The statistics page of
the benchmark is shown in Figure 10. It lists the contained
systems together with some descriptive metrics (summed and
averaged), e.g. total lines of code, total number of classes,
and total number of methods. Besides the overall values the
distribution of these basic metrics is presented on pie-charts.

Figure 10. The default benchmark statistics

c) Certification details of the open-source system: As
the main part of the demonstration we show the certification
history and details of an open-source system (with a large
number of analyzed versions). We introduce the information
found on the certification details view (see Figure 6):

• The maintainability timeline showing the high-level qual-
ity trend of the system.

• The spider charts and timelines representing the values
of the low- and high-level quality attributes.

• The trend of maintainability costs of the system (see Fig-
ure 11) calculated according to the cost model introduced
in Section II.

Figure 11. The timeline of the maintainability costs of the system

d) Breaking down to root causes of the changes in
a particular version: Selecting a particular version of the
analyzed system we drill down to the root causes of the
maintainability change. We show the reports that can be used
for analyzing the source code level changes in the system as
well as the source code view of SourceAudit. The breakdown
view of the tool (see Figure 12) helps to identify the new rule
violations introduced since the previous version, the changed
source code metrics, the most critical source code elements
according to our drill-down algorithm, the code clones, etc.
We present the different options to get to the source code of
the analyzed systems using SourceAudit.

Figure 12. The breakdown table view of SourceAudit

e) Creating tickets and annotations in the source view:
The source code view is decorated with the current rule
violations and code clones. The view is depicted in Figure 7.
We show the feature of SourceAudit with which the user is
able to annotate a certain code part as well as to create new

444



issues (tickets) for the developers. We also create a new issue
and assign it to a developer.

f) Finding the issues of a source code element: Not only
coding rule violations can be assigned to a developer but it
is possible to annotate a whole method or class itself. To
help identifying the issues of these source code elements, their
metrics are also shown in a table depicted on Figure 13. The
metrics in the table are split into several groups e.g., coupling,
complexity. The NII (Number of Incoming Invocations) metric
for instance helps to determine the importance of a method. If
this value is large then an error can be more serious because
it affects a large number of other source core parts.

Figure 13. Metrics of a method in the source view.

g) Finding clones with SourceAudit: SourceAudit also
provides a table that lists clone instances in the current version
of the system (see Figure 14). In the table one can see the
most important information about these clone instances e.g.,
in which clone class they are, or their position in the file.

Figure 14. Listing clone instances in SourceAudit.

By selecting one of the instances SourceAudit opens the
source view panel highlighting the affected clone as shown in
Figure 15. Clones also have different metrics (e.g. risk of the
clone) which are displayed in SourceAudit. We present how
to find clones and view their source code in SourceAudit.

Figure 15. Clone instances in the source view.

h) Loading and fixing tickets in the Eclipse IDE: The
created tickets in the SourceAudit tool get uploaded into a
central database. We present our Eclipse plug-in which is able
to read the information from this central database. The plug-
in lists all the tickets assigned to a developer and shows all
the annotations and comments made by the project manager
and/or other developers (see Figure 8). After navigating to the
issue in the source code using the IDE and fixing the bug, the
ticket can be closed. We present this scenario and show how
this information is propagated back to SourceAudit where the
status of the tickets can also be observed (see Figure 16).

Figure 16. The active tickets in the current version.

445


