
Challenges of SonarQube Plug-In Maintenance
Bence Barta, Günter Manz, István Siket

University of Szeged, Department of Software Engineering
Árpád tér 2. H-6720 Szeged, Hungary
{bartab,magun,siket}@inf.u-szeged.hu

Rudolf Ferenc
FrontEndART Software Ltd.

Zászló u. 3 I./5. H-6722 Szeged, Hungary
ferenc@frontendart.com

Abstract—The SONARQUBE™ platform is a widely used
open-source tool for continuous code quality management. It
provides an API to extend the platform with plug-ins to upload
additional data or to enrich its functionalities. The SourceMeter
plug-in for SONARQUBE™ platform integrates the SourceMeter
static source code analyzer tool into the SONARQUBE™ plat-
form, i.e., uploads the analysis results and extends the GUI to be
able to present the new results. The first version of the plug-in
was released in 2015 and was compatible with the corresponding
SONARQUBE™ version. However, the platform – and what
is more important, its API – have evolved a lot since then,
therefore the plug-in had to be adapted to the new API. It
was not just a slight adjustment, though, because we had to
redesign and reimplement the whole UI and, at the same time,
perform significant alterations in other parts of the plug-in as
well. Besides, we examined the effect of the API evolution on
other open-source plug-ins and found that most of them still
remain compatible with the latest version, even if they have not
been updated alongside the underlying API modifications. The
reason for this is that these plug-ins use only a small part of the
API that have not changed over time.

Index Terms—SourceMeter, SonarQube, plug-in, API, evolu-
tion, software quality, metrics, clone detection, coding issues

I. INTRODUCTION

In software development, it is very common to use third-
party libraries and components during development. This cre-
ates dependencies between third-party component developers
and users, so developers of such components should be very
careful about changing the API. On the other hand, it is
necessary to keep pace with the evolution of programming
languages and technologies, and meet the needs that arise
from the users. Besides, the component itself also evolves
continuously, and we have not even considered any bug fixes or
security risks. These changes are not always easy to follow and
previous research has shown that they are not always justified
either. Ko et al. [4] examined 8 Java library API documenta-
tions and evaluated the results against 2126 applications. They
found that, on average, 3.6 APIs per month become obsolete,
while the same amount is removed. Unfortunately, 39% of
the cases do not specify which new APIs can replace the old
functionality and it is rarely explained why the API became
obsolete. Additionally, the outdated API was updated in 62%
of the cases when the API was properly documented and in

The research described has been carried out as part of the CROSSMINER
Project, which has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No. 732223.
Ministry of Human Capacities, Hungary grant 20391-3/2018/FEKUSTRAT
is acknowledged.

only 49% of the cases when the appropriate documentation
was missing. Brito et al. [1] asked developers to justify all
their API changes that break compatibility. They found that the
reason for most of the compatibility-breaking modifications
were generally inspired by the need to implement new features
and evolutionary purposes. In addition, the two other common
reasons were that they wanted to simplify the API and improve
maintenance. However, there were cases where we cannot say
what the reason of the change was. Zhou and Walker [10]
found that an API item is much more frequently removed
than marked as obsolete. This is typical for small projects
where it would require too much extra work to maintain them.
These API changes can be grouped into three categories:
(1) increased resources for maintenance, (2) low impact or
minor changes, and (3) other motivations.

The SONARQUBE™ platform [6] (“platform” in the fol-
lowing) is an open-source software quality assurance frame-
work that provides an API to develop external plug-ins that
allow uploading additional data and the creation of custom
graphical user interfaces (GUI). The open-source SourceMeter
plug-in [3], [9] (“SM plug-in” in the following) adds the results
of the SourceMeter static command line source code analyzer
[8] to the platform and extends it with custom GUI pages. The
SM plug-in has not changed since its latest release (which was
two years ago) but the platform has been evolving and newer
versions were released. During this time, most of the APIs
used by the SM plug-in have become obsolete, which means
the SM plug-in cannot be used with the newer versions of
the platform because backward compatibility was broken. This
motivated us to update the earlier version of the SM plug-in to
be compatible with the latest version of the platform. During
development, we found that due to a significant change in the
API, updating the SM plug-in requires significant changes and
many of the previously developed solutions could no longer
be reused. For example, the GUI component had to be retired
and a completely new one had to be implemented

This prompted us to also examine 23 other open-source
plug-ins to see how the API changes affected them and how
much effort was required to maintain them.

II. SONARQUBE™ PLATFORM PLUG-IN DEVELOPMENT

SONARQUBE™ platform [2], [6] is an open-source quality
assurance tool released by SonarSource [7] in 2009 and
actively developed ever since. It helps users keep track of
their systems and ensure quality. It supports more than 20

languages and defines various source code metrics, coding rule
violations, code duplications, and test coverages to qualify the
system, and also provides an estimate of the technical debt.

The platform has a public API that allows the development
of custom plug-ins. These plug-ins can be used to add new
features to the system, expand the user interface, or upload
additional data. However, we can only make such changes or
additions if there is a suitable API for the purpose. These
expansion options can be divided into three major groups:

• Scanner, which is responsible for running source code
analyzers.

• Process Unit, which aggregates the results of the analysis
(counts second level measurements, aggregates measure-
ments1, gives developers new issues, or saves the data).

• Web Application, which provides the user interface.
The platform has a Java API, only the GUI API is

JavaScript. We can create a new plug-in by deriving our classes
from classes (or interfaces) defined by the API. It is important
to note that a class defined by a plug-in is only used by
the platform in specified phases, e.g., Sensor classes are
instantiated during code analysis and are only used in this
phase. The supported API extensions include the following:

• A new programming language can be introduced as the
target of an analysis.

• New coding rule violations can be defined.
• New file level metrics can be calculated.
• It is possible to design new pages to the GUI.

These extensions ensure that external plug-ins can be added to
the platform that use the results of third-party tools. To do so,
plug-ins have to execute the external tool, process the result,
upload it to the platform, and new pages should be provided
to display the results if needed.

A. The API of the Platform GUI

Documentation and examples describing the GUI are scarce.
There is only a minimal description on the official site, with no
related material located in the forums. The web API available
in the GUI is documented well2, but the JavaScript methods to
be used with AJAX requests for accessing it are not so much3.
Perhaps this is the reason why there are only a few plug-ins
that extend the GUI. In addition to our plug-in, we have found
only one other that adds a custom page to the platform [5].
That is why we briefly review how the GUI can be extended
and what difficulties we had to deal with.

The first step in developing a GUI plug-in is to register
a Page in the plug-in, resulting in a new “More” menu
on the GUI. By clicking on this drop-down menu the titles
of the added pages are listed. This part is done using Java
code. Afterwards a JavaScript file must be specified, where a
function (“specified function”) is registered that manages the
initialization of the new page.

1If we are analyzing a project written in multiple programming languages
and each source code analyzer can only produce metrics for its language and
these metrics must be summarized at higher level.

2https://docs.sonarqube.org/display/DEV/Web+API
3https://docs.sonarqube.org/display/DEV/Making+Ajax+Request

The biggest challenge we faced during the extension of
the web application was that the platform only allows the
specification of a single JavaScript function per newly added
page, which has to manage the entire content, look, and
behavior of that page. All HTML content has to be generated,
and – if necessary – dynamically managed with event-listeners,
created all inside that single function. Custom CSS styles may
not be specified anywhere. It is also not possible to declare
helper functions, since the scope in the file differs from where
the platform executes the specified function. Consequently, all
helpers would have to be declared in the global context in order
to be callable, but declaring everything globally is considered
a bad practice4, and it might lead to accidental overrides of
other functions already declared and used by the platform.

Lastly, it is also not possible to logically group independent
pieces of code into separate JavaScript files, the platform API
expects us to put all code into that one function in that one
file. We developed a custom bootstrapping mechanism inspired
by Jake Archibald5, which uses dynamic JavaScript loading
to inject new JavaScript or CSS source files into the HTML
document and executes them in the specified order, effectively
guaranteeing a similar environment as in any HTML document
where scripts and CSS files can be included freely.

B. Evolution of the Platform

The platform evolves continuously and the associated API
is evolving as well. Our aim was to resume development
and improve our open-source plug-in which was compatible
with platform version 4.5, and to make it work with version
6.7 [3], [9]. More than two years have passed between the
releases of the two versions, and the platform has undergone
spectacular changes. On the opening page of the older version,
we only see some basic characteristics (such as the number
of classes, functions, bugs, and the amount of cloned code)
which makes it impossible to draw a more serious conclusion
on the quality of the system. On the other hand, the opening
page of the newer version displays the classification of the
systems according to different aspects, and we will also get
an “aggregated” evaluation of whether a given project passed
the quality assurance check (Passed) or not (Failed).

At the same time, the platform’s widget system was also
eliminated, which allowed the user to compile unique dash-
boards in a straightforward way. Instead, we can implement
custom pages in the new versions by programming their behav-
ior in JavaScript. Another important change is that while the
GUI was previously developed using the Ruby on Rails (RoR)
framework, the new GUI is already developed in JavaScript.

Changes in the background of the API are less visible to
users, but can cause headache for developers. For example,
Decorator classes were used to modify the results calcu-
lated by the platform. They are completely removed from
the system, so once the values are calculated they cannot
be modified. Initializer classes were executed before

4https://www.w3.org/wiki/JavaScript_best_practices#Avoid_globals
5https://www.html5rocks.com/en/tutorials/speed/script-loading/

#toc-dom-rescue

https://docs.sonarqube.org/display/DEV/Web+API
https://docs.sonarqube.org/display/DEV/Making+Ajax+Request
https://www.w3.org/wiki/JavaScript_best_practices#Avoid_globals
https://www.html5rocks.com/en/tutorials/speed/script-loading/#toc-dom-rescue
https://www.html5rocks.com/en/tutorials/speed/script-loading/#toc-dom-rescue

Sensor classes. The file system was also available in API
version 4.5, but it is no longer in the newer versions. Our
implementation used the file system at this stage, consequently
we had to move all the functions into Sensor classes.

Beside the numerous API changes, there are some parts of
the system that work the same way as before. In the settings
page of the platform, the user has the opportunity to customize
the code analysis. This includes changing the default threshold
values for metrics, adding new parameters to the external plug-
ins, and many more. These customization feature related API
entries fortunately remained the same.

III. SOURCEMETER PLUG-IN

SourceMeter is a command line source code analyzer
tool that supports C/C++, Java, C#, Python, and RPG lan-
guages [8]. It is able to calculate nearly 100 source code
metrics, detect coding rule violations in the source code,
and find Type-2 code clones (duplications). The results are
presented in textual form (.txt and .csv), but a structured
binary file containing all the results (accessible through an
API) is also available for further processing.

The SM plug-in uploads the results of the SourceMeter tool
to the platform, providing a new look for SourceMeter. We
can configure the SourceMeter-related parameters on the GUI
of the platform before the SM plug-in runs the SourceMeter
command line tool as an external analyzer and uploads the
results. As already described, the earlier version of the SM
plug-in was designed for platform version 4.5 and has not
been developed for two years. Meanwhile, new versions of
the platform were released and its API has changed a lot,
therefore the SM plug-in became obsolete and did not work
with release 6.7. When we decided to support the new version,
we encountered various difficulties because of the changes and
the new API restrictions.

API changes affecting functionality: In the following
paragraphs, we summarize the most important and most in-
teresting API changes we have had to face and present a short
description of our solutions.
Uploading “unsupported” results: The platform supports file
level metrics only, while SourceMeter counts class and method
level metrics as well. In the earlier version we introduced two
new “special file kinds” in the platform, which represented
the class and method level elements. This way we could
upload classes, methods and their metrics, and at the same
time, their child-parent relationships were also represented
in the file system hierarchy. Luckily, although they became
part of this hierarchy, they were “special files” under other
files, therefore the platform did not display them on the GUI.
On the other hand, the SM plug-in could recognize them,
therefore it was able to present them (with their metrics) in
an appropriate GUI placeholder. Unfortunately, the new API
does not allow us to upload additional files, thus we cannot
apply this trick now. To overcome this problem, we applied
another workaround by introducing new system level metrics
for the project. Since a metric value can store any kind of
data, the SM plug-in extracts all similarly handled elements

at a given level (e.g., classes, interfaces, enums, structs, and
unions are handled as class level elements) and creates only a
single JSON object that stores the elements and their metric
values, then uploads it as one metric value. This way only four
new metric values are uploaded (package, class, method and
clone) for a programming language but a separate metric is
defined for each programing language SourceMeter supports.
Code duplications: Both the platform and the SourceMeter
toolchain can detect code duplications. In the earlier version,
we were able to replace the built-in data, namely, the API
allowed us to delete the results of the platform and to upload
the code duplications found by SourceMeter. This is no longer
possible, not even extending the platforms duplications with
additional code duplications found by any external tools.
Unmodifiable platform results: Because of the lack of the
above mentioned Decorator classes, the uploaded results
cannot be modified which may lead to different kinds of
anomalies. Maybe the biggest problem is that the code duplica-
tions detected by the platform cannot be replaced or extended.
This means that the built-in duplication viewer shows only
those duplications that were detected by the built-in analyzer
of platform even if the external plug-in would provide better
results. To solve this problem, we stored all code duplication
results in a JSON object and designed and implemented a
custom clone view GUI (see Figure 2). Another problem is
that there are some metrics that are calculated both by the
platform and SourceMeter, but since the SM plug-in is not
able to replace these metrics, users might find different values
for the same metric on different GUI pages.

GUI changes: The SM plug-in extends the platform with
new GUI elements, including menus on the setup page as
well as full custom pages. In the earlier version, we provided
a dashboard for each project in order to view the metrics
calculated by SourceMeter. In addition, for each class and
method the metrics also appeared in the source code view
and it was possible to navigate among them [3]. These features
cannot be implemented in the newer versions. Instead, metrics
now appear on a newly added page which replaces the old
dashboard. The page is divided into 4 boxes (see Figure 1,
only two boxes are presented), the first three of which show
the metrics of packages, classes, and methods, and provide
sorting per column, filtering for entries and/or metrics, and
paging functionalities. To aid users in understanding what the
values in the tables indicate, descriptions for each metric can
be swiftly accessed by simply hovering over the name of any
metric in the table header. Clicking the name of an item opens
a new popup window displaying the source code belonging to
that item, where the first line of the item is highlighted.

The SM plug-in can also deal with a project written in
several languages and display its results on the dashboard.
In this case, the set of items is merged together within each
level, with an icon in front of their name indicating which
language an individual item belongs to (see Figure 1).

The fourth box is more specific for clone classes and
instances. In this box, clone instances are shown grouped

Fig. 1. SourceMeter Dashboard

together next to the clone class they belong to6. The basic
display of clones implemented in the platform needs improve-
ment: it indicates duplicated lines in the code browser by
placing gray stripes next to duplicated lines and showing and
linking to the matching instances when hovering over these
stripes. Using only this simple “clone browser”, it is hard
to get an overview of, e.g., how many clone classes and
corresponding clone instances exist inside the project. The
metrics calculated by the SM plug-in for each clone class and
instance individually can help by providing this overview.

Additionally, a custom Clone Viewer has been released
(see Figure 2). This new viewer puts emphasis on comparing
instances and highlighting the differences between two clone
instances using diffing software.

The SM plug-in also adds a new globally accessible page
to the GUI containing the User’s Guides for the SM plug-in
and the underlying SourceMeter analyzer.

Unchanged API: Although there were lots of changes in
the API, several functionalities remained the same. From the
SM plug-in’s point of view, it is convenient that the coding
rule violations found by SourceMeter can be uploaded and the
platform can present them as code issues. Besides, the setting
pages have remained the same therefore we could reuse the
existing implementation.

IV. EFFECT OF THE PLATFORM API EVOLUTION

The platform versioning strategy7 has multiple goals. On
one hand, they release often and early in order to get quick
feedback from the SonarQube community. At the same time,
they also release stable versions of the platform for companies
whose main priority is to set up a very stable environment even
if the price for such stable environments is missing out on the
latest features. A central rule of their versioning strategy is that
each two months a new version of the platform is released,
which should increment the minor digit of the previous version
(e.g. from 4.2 to 4.3). After three (or more) releases, a bug-fix

6Clone instances are the occurrences of code copies while clone classes
group the corresponding clone instances.

7The description of the version strategy, rules, and deprecation is copied
from the platform Versioning and API Deprecation homepage: https://docs.
sonarqube.org/display/DEV/Versioning+and+API+Deprecation.

Fig. 2. SourceMeter Clone View

version is released, and becomes the new long-term support.
The major digit of the subsequent version is incremented to
start a new cycle (e.g. from 5.6 to 6.0).

API deprecation strategy: The goal of the deprecation
strategy is to make sure that deprecated APIs will be dropped
without side-effects. The most important rules are:

• An API must be deprecated before being dropped.
• A deprecated API must be fully supported until its

drop. For instance, the implementation of a depre-
cated method cannot be replaced by a throw new
UnsupportedOperationException () .

• If an API is deprecated in version X.Y, this API will
be dropped in version (X+2).0. For example, an API
deprecated in 4.1 is supported in 4.2, 4.3, 5.0, 5.1, 5.2,
5.3 and is dropped in version 6.0.

• According to the versioning strategy, an API can remain
deprecated before being dropped for 6 to 12 months.

There are many open-source community plug-ins for the
platform. 66 plug-ins can be found on GitHub under Sonar-
Source’s GitHub organization page8 but, for example, the
community C++ plug-in can be found on a separate GitHub
page called SonarOpenCommunity9. As we have seen, our
plug-in upgrade was a big challenge, so we wanted to examine
how the API changes of the platform affected the other plug-
ins and how they dealt with it. It is difficult to answer this in
general, therefore we examined the following questions:

• Does the platform version 6.7 start without any errors
using the latest version of the plug-in?

• How active is the plug-in development community?
• How active is the development of these plug-ins?
• When did the last release happen?

Since there are lots of Community plug-ins, we chronolog-
ically ordered them and selected only the 22 most recently
updated ones – with our SM plug-in as the 23rd.

When calculating the activity of development, we searched
for the last commits in each repository in which the source
code was modified in some significant way. This means that
we did not include changes to the build process, nor the version
updates of external libraries. If the source code has changed,
but no changes have been made to the logical structure of the
program (for example, exchanging licenses at the beginning

8https://github.com/SonarQubeCommunity
9https://github.com/SonarOpenCommunity

https://docs.sonarqube.org/display/DEV/Versioning+and+API+Deprecation
https://docs.sonarqube.org/display/DEV/Versioning+and+API+Deprecation
https://github.com/SonarQubeCommunity
https://github.com/SonarOpenCommunity

Fig. 3. The LOC of the selected plug-ins (SM plug-in is presented in green)

of the source files or rewriting the license’s validity date), we
did not consider it as a substantive change as they do not
cause any bug fixes or feature additions to the plug-in and
presumably modifications to the platform API would not have
any influence on these types of changes.

Figure 3 shows the selected plug-ins ordered in increasing
lines of code (LOC) values and the red names indicate that
the plug-in does not work with version 6.7. Almost two-third
of the plug-ins have less than 1000 lines, although there are
several medium-sized and two extremely large plug-ins.

As shown in Figure 4, most of the plug-ins were success-
fully launched with version 6.7; only 5 of the 23 tested plug-
ins were incompatible, which is only 22%. It is also interesting
that most plug-ins have not been modified since 2016 – i.e.,
for 2 years – and they still work without any issues. We have
found that the bulk of the plug-ins are small and simple, which
is presumably why they are not affected by the changes made
to the API, so there is no need to update them. This would
explain how it is possible that the 2 or 3 years old code is
still working. Additionally, none of them use the GUI API but
simply upload data, mainly coding rule violations, so they are
not affected by switching from RoR to JavaScript either. It is
conspicuous that all but one of the plug-ins smaller than 1000
LOC still operate error-free now.

On the other hand, a few medium-sized plug-ins could not
be started. For example, the SonarQube Lua Plugin (3,957
LOC) is one of the most well-maintained plug-ins in the list
but the plug-in is incompatible with the current version for
at least a year now, but it still has not been repaired so far.
This suggests that the task is not simple, otherwise it would

Fig. 4. The examined events associated with the plug-ins

probably have been solved by now. One of the largest and
most actively developed plug-in is the open community C++
plug-in which does work with the latest version.

Based on this investigation, we have come to the conclusion
that some APIs do not change, so many plug-ins work well
even under low maintenance. However, 22% of the tested plug-
ins are obsolete, including medium-sized and well-maintained
plug-ins as well, suggesting that the API’s change is signifi-
cant, which is also supported by our own experience with the
SM plug-in. Based on these, we can say that the change in the
API of the platform is not negligible and requires continuous
maintenance and development from plug-ins.

V. CONCLUSION

Originally, the SONARQUBE™ platform provided many
possibilities for external plug-ins to extend existing function-
ality or upload additional data. However, many opportunities
have been eliminated or transformed in recent years. Since the
SourceMeter plug-in used major parts of the affected APIs
(uploading or replacing data and files, new GUI elements),
these changes caused big problems and we encountered serious
difficulties when trying to keep the main functionalities of the
plug-in during the upgrade. In this paper, we presented the
most important API changes of the platform and explained the
solutions and tricks we used to further develop the SM plug-
in. We could see that some of the changes were only technical,
but there were also a number of constraints in the changes that
limit the possibilities of plug-ins. The examination of other
plug-ins has shown that although the changes of the API do not
cause problems for “simple” plug-ins, larger plug-ins require
more effort to maintain compatibility.

The SourceMeter plug-in’s source code, releases, and
online demo and video is available at https://github.com/
FrontEndART/SonarQube-plug-in.

REFERENCES

[1] Aline Brito, Laerte Xavier, André C. Hora, and Marco Tulio Valente.
Why and How Java Developers Break APIs. CoRR, (TODO: Accepted at
International Conference on Software Analysis, Evolution and Reengi-
neering, SANER 2018), abs/1801.05198, 2018.

[2] G. Ann Campbell and Patroklos P. Papapetrou. SonarQube in Action.
Manning Publications Co., Greenwich, CT, USA, 1st edition, 2013.

[3] Rudolf Ferenc, László Langó, István Siket, Tibor Gyimóthy, and Tibor
Bakota. SourceMeter SonarQube plug-in. In Proceedings of the 14th
IEEE International Working Conference on Source Code Analysis and
Manipulation (SCAM 2014), pages 77–82, Victoria, British Columbia,
Canada, September 2014. IEEE Computer Society.

[4] Deokyoon Ko, Kyeongwook Ma, Sooyong Park, Suntae Kim, Dongsun
Kim, and Yves Le Traon. API Document Quality for Resolving
Deprecated APIs. In 21st Asia-Pacific Software Engineering Conf., pages
27–30, Jeju, South Korea, December 2014. IEEE Computer Society.

[5] Robert Willems of Brilman. Issue resolver Plugin for SonarQube.
https://github.com/willemsrb/sonar-issueresolver-plugin.

[6] SonarQube Homepage. https://www.sonarqube.org/.
[7] SonarSource Homepage. https://www.sonarsource.com/.
[8] SourceMeter Homepage. https://www.sourcemeter.com/.
[9] SourceMeter plug-in for SONARQUBE platform.

https://github.com/FrontEndART/SonarQube-plug-in.
[10] Jing Zhou and Robert J. Walker. API Deprecation: A Retrospective

Analysis and Detection Method for Code Examples on the Web. In
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2016, pages 266–277,
New York, NY, USA, 2016. ACM.

https://github.com/FrontEndART/SonarQube-plug-in
https://github.com/FrontEndART/SonarQube-plug-in
https://github.com/willemsrb/sonar-issueresolver-plugin
https://www.sonarqube.org/
https://www.sonarsource.com/
https://www.sourcemeter.com/
https://github.com/FrontEndART/SonarQube-plug-in

	Introduction
	SONARQUBE™ Platform Plug-In Development
	The API of the Platform GUI
	Evolution of the Platform

	SourceMeter Plug-In
	Effect of the Platform API Evolution
	Conclusion
	References

