
Challenging Machine Learning Algorithms in Predicting Vulnerable JavaScript
Functions

Rudolf Ferenc†, Péter Hegedűs∗, Péter Gyimesi†, Gábor Antal†, Dénes Bán†, and Tibor Gyimóthy∗†
∗MTA-SZTE Research Group on Artificial Intelligence, Szeged, Hungary

{hpeter | gyimothy}@inf.u-szeged.hu
†Department of Software Engineering, University of Szeged, Szeged, Hungary

{ferenc | pgyimesi | antal | zealot}@inf.u-szeged.hu

Abstract—The rapid rise of cyber-crime activities and the
growing number of devices threatened by them place software
security issues in the spotlight. As around 90% of all attacks
exploit known types of security issues, finding vulnerable
components and applying existing mitigation techniques is a
viable practical approach for fighting against cyber-crime. In
this paper, we investigate how the state-of-the-art machine
learning techniques, including a popular deep learning algo-
rithm, perform in predicting functions with possible security
vulnerabilities in JavaScript programs.

We applied 8 machine learning algorithms to build predic-
tion models using a new dataset constructed for this research
from the vulnerability information in public databases of the
Node Security Project and the Snyk platform, and code fixing
patches from GitHub. We used static source code metrics as
predictors and an extensive grid-search algorithm to find the
best performing models. We also examined the effect of various
re-sampling strategies to handle the imbalanced nature of the
dataset.

The best performing algorithm was KNN, which created
a model for the prediction of vulnerable functions with an F-
measure of 0.76 (0.91 precision and 0.66 recall). Moreover, deep
learning, tree and forest based classifiers, and SVM were com-
petitive with F-measures over 0.70. Although the F-measures
did not vary significantly with the re-sampling strategies, the
distribution of precision and recall did change. No re-sampling
seemed to produce models preferring high precision, while re-
sampling strategies balanced the IR measures.

Keywords-vulnerability, JavaScript, machine learning, deep
learning, code metrics, dataset

I. INTRODUCTION

JavaScript is getting traction not just in client-side web
development but as a desktop and server language (Node.js),
mobile app language (React Native), or even as an IoT
(e.g. JerryScript or the Espruino framework) implementation
language. Therefore, programs written in JavaScript are
exposed more and more to various security risks.

Even though the rapid rise of cyber-crime activities and
the growing number of devices threatened by them place
software security issues in the spotlight, security concerns
of programs are still neglected from time to time. According
to past studies [1], around 90% of all attacks exploit known
types of security issues. Therefore, finding vulnerable com-
ponents for applying existing mitigation techniques on them
might be a viable practical approach for fighting against
cyber-crime. In this paper, we investigate how the state-of-
the-art machine learning techniques – including a popular

deep learning algorithm – perform in predicting functions
with possible security vulnerabilities in JavaScript programs.

Security vulnerabilities are very similar to bugs (i.e. most
of them can be seen as special types of bugs, though not
functional), however, many studies show that bug prediction
models cannot be applied for finding vulnerabilities as is [2],
[3]. Although this suggests that specific prediction models
are needed for finding vulnerable software components, we
can still leverage the abundance of knowledge already accu-
mulated in the area of bug prediction. JavaScript, however,
is not well studied in terms of bug prediction, so general
conclusions based on other languages might not hold.

Moreover, most of the bug prediction models find fault-
prone files or classes [3]–[9], while rarely working at
a finer granularity level (e.g. for methods, functions, or
statements [10]). These approaches are less effective for
JavaScript, as source code is often structured in only several
files (even into one single js file) and usually there are no
higher level logical constructs (like classes) above functions.
Prediction models for vulnerable source files would not be
really useful in such contexts; we need at least function level
vulnerability information and prediction models.

To the best of our knowledge, there are no existing
vulnerability datasets specifically for JavaScript programs,
which would contain vulnerability information at the level of
functions. VulinOSS [11] and VulData7 [4] are very useful
proposals with the aim of collecting general vulnerability
datasets together with fixing patches. However, they are not
specific to JavaScript and do not map the fixed vulnerabili-
ties to individual functions.

For this study, we created a fine-grained, public,
JavaScript vulnerability dataset with data extracted from
nsp (Node Security Platform [12]) and the Snyk Vulnerabil-
ity Database [13] automatically matched with information
available on GitHub (i.e fixing commits and patches). The
new function level vulnerability dataset contains 12,125
functions from which 1,496 are vulnerable. It includes static
code metrics provided by the OpenStaticAnalyzer [14] and
escomplex [15] tools, too.

With the help of this dataset, we investigate if predicting
vulnerable functions is feasible based on the fast and easily
calculable static code metrics. We compare the performances
of the most widely used machine learning algorithms on this
prediction task, including two deep neural network variants,

the K-Nearest Neighbors algorithm (KNN), a decision tree
classifier (Tree), the C-Support Vector Classification variant
of the Support Vector Machine algorithm (SVM), Random
Forest (Forest), Logistic regression (Logistic), Linear re-
gression (Linear) and the Gaussian Naive Bayes algorithm
(Bayes). We apply various re-sampling strategies to handle
the imbalanced nature of the dataset.

In this paper, we address the following research questions:
RQ1: Is predicting vulnerable JavaScript functions feasi-

ble using static source code metrics?
RQ2: How do the various machine learning algorithms

perform compared to each other for vulnerability prediction?
Given the highly dynamic nature of JavaScript, we got

encouraging results using only static code metrics as pre-
dictors. The main contributions of the paper are two-fold:
• We release a new public vulnerability dataset consist-

ing of the static analysis results of 12,125 JavaScript
functions complemented with the information whether
the functions contain a vulnerability or not.

• We publish a comprehensive comparison of 8 well-
known machine learning algorithms on predicting vul-
nerable functions.

II. RELATED WORK

In their preliminary study, Siavvas et al. [16] investigated
if a relationship exists among software metrics and specific
vulnerability types. They used 13 metrics and found that
software metrics may not be sufficient indicators of specific
vulnerability types, but using novel metrics could help. In
our study, we used 35 static source code metrics, including
various Halstead variants, and found that they can effectively
predict vulnerable functions in JavaScript.

In their work, Jimenez et al. [4] proposed an extensible
framework (VulData7) and dataset of real vulnerabilities,
automatically collected from software archives. Although
it is similar to our work, VulData7 is general, i.e., it
contains vulnerabilities for various languages at file level.
Even though it contains JavaScript vulnerabilities, using
them in our study was infeasible, as JavaScript files could
contain lots of functions. Our proposed database is more
fine-grained, every piece of information is available at the
function level, thus enabling more accurate experiments.

Neuhas et al. [5] introduced a new approach (and the
corresponding tool) called Vulture, which can predict vul-
nerable components in the source code, mainly relying
on the dependencies between the files. They analyzed the
Mozilla code base to evaluate their approach using SVM
for classification. Although their results are very promising,
we could not locate the proposed tool online. Contrary to
this work, we predict vulnerabilities at the level of JavaScript
functions and apply multiple machine learning approaches.

In their work, Shin et al. [10] created an empirical
model to predict vulnerabilities from source code complexity
metrics. Their model was built on the function level similar

to ours, but they consider only the complexity metrics.
They concluded that vulnerable functions have distinctive
characteristics separating them from “non-vulnerable but
faulty” functions. They studied the JavaScript Engine from
the Mozilla application framework. In this paper, we use
35 different metrics as predictors and build our prediction
models specifically for JavaScript programs.

Shin et al. [6] performed an empirical case study on two
large code bases: Mozilla Firefox and Red Hat Enterprise
Linux kernel, investigating if software metrics can be used in
vulnerability prediction. They considered complexity, code
churn, and developer activity metrics. The results showed
that the metrics are discriminative and predictive of vulner-
abilities. However, their model was also built on file level,
while we are predicting vulnerable functions.

Chowdhury et al. [9] created a framework that can predict
vulnerabilities mainly relying on the CCC (complexity, cou-
pling, and cohesion) metrics [17]. They also compared four
statistical and machine learning techniques (namely C4.5
Decision Tree, Random Forests, Logistic Regression, and
Naive Bayes classifier). The authors concluded that decision-
tree-based techniques outperformed statistical models in
their case. We also found that tree-based classifiers perform
well for vulnerable JavaScript function prediction.

Morrison et al. [8] built a model – replicating the vulner-
ability prediction model by Zimmermann et al [3] – for both
binaries and source code at file level. The authors checked
several learning algorithms including SVM, Naive Bayes,
random forests, and logistic regression. On their dataset,
Naive Bayes and random forests performed the best. In our
setup, the Naive Bayes algorithm was the worst performer,
while random forest achieved good results.

Yu et al. introduced HARMLESS [7], a cost-aware active
learner approach to predict vulnerabilities. They used a
support vector machine based prediction model with under-
sampled training data, and a semi-supervised estimator
to estimate the remaining vulnerabilities in a code base.
HARMLESS suggests which source code files are most
likely to contain vulnerabilities. They also used Mozilla’s
code base in their case study, with 3 different feature sets:
metrics, text, and the combination of text mining and crash
dump stack traces. The same set of source code metrics were
used than that of Shin et al. [6].

All the above works target file-level vulnerability pre-
diction, while we address the prediction of vulnerable
JavaScript functions in our current work.

III. APPROACH

A. Dataset collection method

To build machine learning models, we needed a training
dataset with features of JavaScript functions manually la-
beled as vulnerable or non-vulnerable. The overview of the
data mining process we performed is shown in Figure 1.

Figure 1. Data processing overview

1) Processing nsp and Snyk and linking them with
GitHub: We leveraged two publicly available vulnerability
databases, nsp (the Node Security Platform, which is now
part of npm) [12] and the Snyk Vulnerability Database [13].
Both of these projects aim to analyze programs for vulner-
able third party module usages. They have command line
and/or web-based interfaces, which can inspect an arbitrary
Node.js module to find external dependencies with known
vulnerabilities. To achieve this, they utilize a list of known
vulnerabilities to look for security issues in the particular
version of an external module the programs depend on. We
extracted and processed these vulnerability databases.

As for nsp, we used its command line interface to collect
vulnerability data. It provides a gather command that saves
its internal list of vulnerabilities into a JSON file. Snyk has
an online repository of known vulnerabilities, but there is no
possibility for downloading the entries. Nonetheless, Snyk
maintains a GitHub mirror1 of its vulnerability database
with monthly synchronization. We used the content of this
GitHub repository in case of Snyk (accessed on 27/05/2018).

The main issue with these extracted raw vulnerability
sources is that they contain unstructured data. The entries
include human readable description of vulnerabilities with
URLs of fixing commits, pull requests or issues in GitHub
or other repositories. However, these URLs are somewhat
arbitrary, they can appear on multiple places within the
entries and any of them might be missing entirely. To handle
this, we wrote a set of Python scripts to process these
vulnerability entries and create an internal augmented and
structured representation of them. The scripts collected all
the URLs from each entry vulni and kept all those pointing
to GitHub. Traversing these URLs, we derived a set of fixing
commits (commits pointing to the state of the system where
a security vulnerability has been fixed, thus they already
contain the mitigation code) for each vulni using the GitHub
REST API following these steps:

1) If the URL pointed to a particular commit, we put the
appropriate commit hash to the fixing list (fixi)

1https://github.com/snyk/vulnerabilitydb

2) If the URL pointed to a pull request or merge request,
we put all the commit hashes in the request to fixi

3) If the URL pointed to an issue, we traversed through
the comments of the issue and collected all mentioned
URLs into a separate list for manual validation.

If the separate list for manual validation was not empty,
we manually checked all the commit URLs in it and put
only those commits into fixi that were indeed related to the
fix of the original vulnerability issue (vulni). The manual
validation was performed by one of the authors, while
another author participated in the discussion and resolution
of problematic cases. The added commits usually introduced
unit tests or some corrections if the first fix was incomplete.

We note that it is possible that a commit which was
referenced in the dataset entry (i.e. fixi) contained tangled
code changes (i.e. pull or merge requests). To lower the risk,
we performed a random cross-check on several of these large
commits, but found no tangled changes in our sample.

Upon finalizing the fixing commit lists for each entry,
we collected all their code modifications in the form of a
combined patch file (patchi) that contained all the modifi-
cations from the fixing commits. We used the GitHub API
again to collect this information. Moreover, we identified the
parent commit of the first commit in time belonging to the
vulnerability fix (shapre) for each system. Version shapre
was used to assign the labels 1 or 0 to functions indicating
if the function contained a vulnerability or not. The final
dataset was assembled from all the shapre versions of the
functions in the systems. We marked all functions that were
affected by any of the vulnerability fixing modifications (i.e.
patchi changed those functions) as vulnerable. All the other
functions of the JavaScript programs were marked as non-
vulnerable. We note that all the test functions (i.e. functions
contained in files under “test” folders) have been filtered out
as these would only distort the prediction models.

2) Mapping patches with JavaScript functions: To per-
form the mapping of patches to functions, we used the patch
files (patchi for each vulnerability vulni collected by the
process described in Section III-A1) of the vulnerability-

https://github.com/snyk/vulnerabilitydb

fixing commits in a unified diff format. Each diff contains a
header information specifying the name of the original and
the new files. After that, there are one or more change hunks
that contain the actual line differences and each hunk begins
with range information about the modification. We checked
whether any function falls into this range. We achieved
this by using the source code positions of the functions –
begin and end line numbers, which were produced by the
OpenStaticAnalyzer tool – and checked whether these two
ranges intersect or not. An example is shown in Listing 1.

1 --- /path/to/original.js timestamp
2 +++ /path/to/new.js timestamp
3 @@ -4,1 +4,2 @@
4 + var tmp = bar(i);
5 + return tmp;
6 - return bar(i);

Listing 1. Example diff file
1 function foo(a) {
2 var i = 4 * a;
3 // call bar
4 var tmp = bar(i);
5 return tmp;
6 }

Listing 2. Example JavaScript function
The source position of the foo function is [1,6] and the

range from the diff is [4,5]. They intersect, so our method
incorporates the foo function into the dataset. With this
algorithm, we found all the functions that were changed by
each vulnerability fixing commit, which we mapped to their
previous versions (in shapre) to mark them vulnerable in
the version prior to the first fixing commit.

3) Static source code metrics: For predictors (or, fea-
tures), we used static source code metrics. We calculated
the metrics for the functions included in the final dataset
using two tools, escomplex [15] and OpenStaticAnalyzer
(OSA) [14]. Both OpenStaticAnalyzer [18] and escom-
plex [19], [20] were used and referenced in related research
works, thus we consider them to be reliable. The list of
calculated metrics is shown in Table I. Please note that
similar metrics are grouped together in one line, so the total
number of calculated metrics is 35.

4) Dataset structure: The final dataset structure follows
a simple CSV format that is easy to feed into many machine
learning frameworks. Each line of the CSV file represents a
function from a Node.js program. The 1st column is a short
name, while the 2nd is the qualified name of the function
generated by the algorithm described in Section III-A2. The
3rd column shows the path of the containing JavaScript
source file, while the 4th column contains a GitHub URL to
the analyzed JavaScript source file (in the shapre version).
The 5th and 6th columns contain the starting, while the 7th

and 8th the ending line and column information, respec-
tively. Columns 9 to 43 contain the calculated metric values
listed in Table I. The last column (column 44) contains the
flag indicating whether the function is vulnerable or not.

2Total means that the metric is calculated for the actual code element
including all the contained elements recursively.

Table I
CALCULATED STATIC SOURCE CODE METRICS

Metric Description Tool

CC Clone Coverage OSA
CCL Clone Classes OSA
CCO Clone Complexity OSA
CI Clone Instances OSA
CLC Clone Line Coverage OSA
LDC Lines of Duplicated Code OSA
McCC, CYCL Cyclomatic Complexity OSA, escomplex
NL Nesting Level OSA
NLE Nesting Level without else-if OSA
CD, TCD (Total2) Comment Density OSA
CLOC, TCLOC (Total) Comment Lines of Code OSA
DLOC Documentation Lines of Code OSA
LLOC, TLLOC (Total) Logical Lines of Code OSA
LOC, TLOC (Total) Lines of Code OSA
NOS, TNOS (Total) Number of Statements OSA
NUMPAR, PARAMS Number of Parameters OSA, escomplex
HOR D Nr. of Distinct Halstead Operators escomplex
HOR T Nr. of Total Halstead Operators escomplex
HON D Nr. of Distinct Halstead Operands escomplex
HON T Nr. of Total Halstead Operands escomplex
HLEN Halstead Length escomplex
HVOC Halstead Vocabulary Size escomplex
HDIFF Halstead Difficulty escomplex
HVOL Halstead Volume escomplex
HEFF Halstead Effort escomplex
HBUGS Halstead Bugs escomplex
HTIME Halstead Time escomplex
CYCL DENS Cyclomatic Density escomplex

The created vulnerability dataset3 consists of 12,125
JavaScript functions from which 1,496 are vulnerable.

B. Dataset analysis approach

We employed 8 different types of machine learning algo-
rithms on the vulnerability dataset created with the method
described in Section III-A. These algorithms were two deep
neural network variants, a simple (DNNs) and a complex
one (DNNc), the K-Nearest Neighbors algorithm (KNN), a
decision tree classifier (Tree), the C-Support Vector Classifi-
cation variant of Support Vector Machine algorithm (SVM),
Random Forest (Forest), Logistic regression (Logistic), Lin-
ear regression (Linear) and the Gaussian Naive Bayes algo-
rithm (Bayes). The deep neural network algorithms were
implemented in the TensorFlow [21] framework4, while
we used scikit-learn5 to run all the other algorithms. Both
frameworks were used in a Python environment. We could
not use only one of them because while TensorFlow has
a strong support for deep learning, it does not contain all
the classic algorithms. In contrast, scikit-learn is very strong
in classic machine learning algorithms but it is not a deep
learning framework in itself.

DNNs stands for the base DNN algorithm implemented
in TensorFlow. We used it without any modifications except
for changing the parameters it provides (see Section III-B1).
DNNs learning runs for a fixed number of iterations over all
the training instances (i.e. epochs). DNNc is our own modi-
fied strategy for training a DNN. It uses an adaptive learning
rate method where the learning rate parameter is not constant
over the course of training. We start with a relatively

3http://www.inf.u-szeged.hu/∼ferenc/papers/JSVulnerabilityDataSet/
4https://www.tensorflow.org/
5http://scikit-learn.org/stable/

http://www.inf.u-szeged.hu/~ferenc/papers/JSVulnerabilityDataSet/
https://www.tensorflow.org/
http://scikit-learn.org/stable/

high learning rate parameter and continue the classic back
propagation algorithm until there is no improvement in the
value of F-measure (we call this a miss). Then we reduce the
learning rate parameter to half, restore the previous model
state, and continue the learning process from there. We
repeat these steps until we get 4 misses in succession, then
terminate the algorithm and return the last, best performing
model. This strategy reduces the likelihood of the algorithm
getting “stuck” in a local optimum. Regarding KNN, Tree,
SVM, Forest, Logistic and Linear regression, and the Naive
Bayes algorithm, we used their scikit-learn implementation.

1) Grid search for the best parameters: To find the best
performing configuration of each algorithm, we applied a
grid search approach [22] on the hyper parameters of the
learning algorithms. It means that we defined various values
for machine learning algorithm parameters and trained multi-
ple models using various combinations of hyper parameters.
After having multiple results for each model, we could select
the best performing ones.

For all training sessions we divided the training data into
three sets, train, dev, and test in a 80%, 10%, 10% propor-
tion, respectively, and used a 10-fold cross-validation. At the
end of the 10 folds, we calculated the precision, recall, and
F-measure values. For selecting best performing parameter
configurations, we relied only on the results of the dev set.
This ensured that we did not use information for selecting
the best parameters from our final test set in any way. We
used F-measure as our primary performance indicator as in
the security domain both precision and recall are important.

2) Sampling strategies: In our assembled vulnerability
dataset, only slightly more than 10% of the functions were
marked as vulnerable. This highly imbalanced nature of the
training set is usually unwanted as prediction models might
be distorted by these skewed distributions.

A common way of handling such situations is the usage
of random under or over-sampling strategies [23]. Random
under-sampling means we randomly throw away training in-
stances from the larger set until we reach a pre-defined ratio
between the two classes. Random over-sampling is when we
randomly repeat training instances from the smaller set until
we reach a pre-defined ratio between the two classes.

We repeatedly ran our algorithm parameter grid search
(see Section III-B1) with the following re-sampling strate-
gies: no re-sampling (None); over-sampling (↑) with ratios
25%, 50%, 75% and 100%; under-sampling (↓) with ratios
25%, 50%, 75% and 100%.

IV. RESULTS
We trained 9 different prediction models on the created

vulnerability dataset (8 different algorithms, but two variants
of DNN) on a desktop PC6 using both CPU and GPU. The
running times varied between 6-12 hours for a complete
hyper-parameter grid-search of all algorithms. We repeated
these grid-search sessions for all the separate over and

68 core 2.4GHz CPU, NVIDIA Titan Xp GPU, 8GB RAM

Figure 2. Results on the imbalanced dataset

under-sampling strategies (described in Section III-B2), thus
building all the models took a considerable amount of time
and computing resources.

A. Results on the imbalanced dataset
First, we ran our grid-search without applying any re-

sampling on the vulnerability dataset, which is highly im-
balanced (out of 12,125 functions only 1,496 are vulnerable).
The performances of the 9 models with their best parameter
combinations is displayed in Figure 2.

The overall results are surprisingly good given the fact
that JavaScript is a highly dynamic language and we used
only static source code metrics as predictors. Five out of the
9 models (DNNs, DNNc, Forest, KNN, and Tree) achieved
an F-measure of over 0.70 and SVM was also very close
with 0.67. It is interesting to note that for all algorithms,
precision values were significantly higher than recall, except
for the decision tree classifier, which had a precision of 0.74,
a recall of 0.7 and an F-measure of 0.72.

Only the Naive Bayes algorithm was clearly incapable
of producing a viable prediction model using the original,
imbalanced vulnerability dataset. Logistic and linear
regression achieved a precision of 0.75 and 0.84,
respectively, which are relatively high values, however, they
had a very low recall (0.21 and 0.15, respectively) that
decreased the F-measure values.

As a simple baseline, we also ran the ZeroR algorithm
with the setup that it predicted all instances to be vulnerable
(and not vice versa as the default setup would do, because
if we predicted every instance to be non-vulnerable, all our
IR metrics would have been 0). ZeroR achieved a precision
of 0.12 and perfect recall of 1 (as it found all the vulnerable
instances), which adds up to an F-measure of 0.21. This
result is much worse than those of the other algorithms’
except for the Naive Bayes. Therefore, we can already
answer RQ1 based on these results.

RQ1: Choosing a suitable algorithm with proper pa-
rameters, it is possible to create efficient function level
vulnerability prediction models using only static source
code metrics as predictors. The DNN, KNN, Forest,
and Tree algorithms all achieved F-measures above 0.70
without any re-sampling on the dataset.

Table II
F-MEASURES ACHIEVED BY THE MACHINE LEARNING ALGORITHMS

Alg. None ↑25% ↑50% ↑75% ↑100% ↓25% ↓50% ↓75% ↓100% Rand

DNNs 0.71 0.71∗ 0.71 0.65 0.68 0.70 0.71 0.69 0.59 0.05
DNNc 0.71 0.70 0.71 0.68 0.65 0.71∗ 0.71 0.68 0.66 0.01
Forest 0.71 0.74∗ 0.74 0.73 0.72 0.72 0.72 0.72 0.65 0.05
KNN 0.76∗ 0.75 0.72 0.6935 0.6817 0.76 0.75 0.74 0.64 0.14
Lin. reg. 0.26 0.48 0.55∗ 0.49 0.45 0.30 0.37 0.51 0.44 0.02
Log. reg. 0.33 0.50 0.57∗ 0.55 0.49 0.38 0.45 0.53 0.49 0.01
SVM 0.67 0.70 0.72∗ 0.70 0.68 0.67 0.67 0.67 0.65 0.16
Tree 0.72∗ 0.71 0.71 0.71 0.70 0.70 0.69 0.67 0.59 0.15
Bayes 0.15 0.16 0.16 0.21∗ 0.20 0.16 0.16 0.18 0.17 0.07

Median 0.71 0.70 0.71∗ 0.68 0.68 0.70 0.69 0.67 0.59 0.05

B. Comparison of the models based on the complete results
The best performing model results based on the com-

plete grid-search using various re-sampling strategies are
summarized in Table II. Each column of the table contains
model results (in terms of F-measure7) using a particular
re-sampling strategy (see Section III-B2) with the best pa-
rameters found by the grid-search method. The first column
shows the results on the original imbalanced dataset without
re-sampling (in line with Figure 2). The next four columns
display the results on the over-sampled, while the following
four on the under-sampled dataset. The last column presents
results on a random sanity check. To make sure that having
these strong prediction results is not coincidental, we created
a new training dataset by reassigning the 1,496 vulnerable
labels randomly. The training results on this randomly la-
beled dataset shows that models cannot learn to distinguish
arbitrary set of functions based on their static source code
metrics, thus our prediction results are unlikely to be the
consequences of random factors.

The gray cells in the table mark the best performing algo-
rithm with the given re-sampling strategy. KNN is the best
in five different re-sampling configurations, Forest in three,
while DNNc in one. The values indicated in bold and with an
asterisk are the best F-measure values for a given machine
learning algorithm (i.e. the highest value in the row). The
most important thing to note here compared to the results
on the imbalanced training set is that even SVM achieved a
result above 0.70 with an appropriate over-sampling strategy
(↑50%, ↑75%). Seven out of the nine models achieved better
performances in some of the re-sampling configurations than
on the original, imbalanced dataset. The exact composition
of precision and recall values leading to this F-measures are
visualized in Figure 3. Based on the data in Table II and
Figure 3, we can answer RQ2 as follows.

RQ2: The best performing algorithm for predicting
vulnerable JavaScript functions in terms of F-measure
was KNN with an F-measure of 0.76 (0.91 precision and
0.66 recall). The best precision (0.95) was achieved by
SVM, while the best recall (0.80) by KNN. In overall,
KNN, DNN, SVM, Tree, and Forest are equally well-
suited for the task, while the regressions as well as the
Naive Bayes algorithm perform much worse.
7Matthews correlation coefficients (MCC) were slightly smaller in gen-

eral, but they showed the same tendency, see the shared dataset for details.

Figure 3. Impact of re-sampling on the learning precision and recall

V. THREATS TO VALIDITY

Our data collection process might not be 100% accurate
as only the additional candidate commits collected from
issue comments were validated manually. The original data
sources might contain errors as well as our automatic patch
collection and patch-to-function mapping algorithms might
introduce inconsistencies. We tried to mitigate this problem
by thorough code review of our scripts and programs.

We mapped static source code analysis results of various
tools and functions identified in patches by line information.
This is another source of possible errors, but we performed
a small evaluation on 20 randomly selected JavaScript func-
tions from the dataset and found no multiple functions in the
same line. Based on this and our past experience, we believe
it is a safe assumption that multiple functions in the same
code line are very rare in a non-minified JavaScript program.
As we used line information only within the same version
of the programs, the likelihood of mismatching functions is
even more negligible.

The extraction of features (i.e. static source code metrics)
is heavily dependent on the accuracy of the tools used,
which may threaten the extraction process. However, there
are numerous related works using the same tools, thus they
can be considered stable. Moreover, we manually double-
checked some of the calculated metric values and found no
problems in their calculation.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we published a novel JavaScript vulnerabil-
ity dataset to be used for building prediction models. The
dataset contains various JavaScript functions together with
their static source code metrics and a flag indicating whether
the function contains a vulnerability or not. This information
was assembled by mining public vulnerability data sources
of nsp and Snyk and collecting fixing patches from GitHub.

We presented an assessment of existing machine learning
algorithms for building function level vulnerability predic-
tion models using this dataset. We analyzed the perfor-
mances of 8 different types of algorithms using the training
set as is, and also by applying various re-sampling strategies.

Our results show that even for such a highly dynamic
language as JavaScript, static source code metrics are suit-
able predictors of vulnerabilities. However, we experienced
large variances in prediction performances depending on
the applied sampling strategy and hyper-parameters. Using
the appropriate machine learning algorithm (DNN, KNN,
Tree, Forest, or SVM) and suitable hyper-parameters, a
prediction with F-measure of 0.7 and above can be achieved.
Nonetheless, there is a clear trade-off between precision and
recall; over-sampling tends to improve recall, but decreases
precision, while intensive under-sampling improves preci-
sion, but reduces recall significantly.

We plan to extend the set of predictors with history and
textual metrics in order to further improve vulnerability
prediction at the level of JavaScript functions.

ACKNOWLEDGMENT

The research has been supported by the National
Research, Development and Innovation Fund of Hun-
gary, financed under the 2018-1.2.1-NKP funding scheme.
Ministry of Human Capacities, Hungary grant 20391-
3/2018/FEKUSTRAT is acknowledged. The Titan Xp used
for this research was donated by the NVIDIA Corporation.

REFERENCES

[1] N. R. Mead, J. H. Allen, M. Ardis, T. B. Hilburn, A. J.
Kornecki, R. Linger, and J. McDonald, “Software assurance
curriculum project volume 1: Master of software assurance
reference curriculum,” CARNEGIE-MELLON UNIV. PITTS-
BURGH PA SOFTW. ENG. INST., Tech. Rep., 2010.

[2] Y. Shin and L. A. Williams, “Can traditional fault predic-
tion models be used for vulnerability prediction?” Empirical
Software Engineering, vol. 18, pp. 25–59, 2011.

[3] T. Zimmermann, N. Nagappan, and L. Williams, “Searching
for a needle in a haystack: Predicting security vulnerabilities
for windows vista,” in 2010 Third International Confer-
ence onSoftware Testing, Verification and Validation (ICST).
IEEE, 2010, pp. 421–428.

[4] M. Jimenez, Y. Le Traon, and M. Papadakis, “Enabling
the Continous Analysis of Security Vulnerabilities with Vul-
Data7,” in IEEE International Working Conference on Source
Code Analysis and Manipulation, 2018, pp. 56–61.

[5] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller,
“Predicting vulnerable software components,” in Proceedings
of the ACM Conference on Computer and Communications
Security, 01 2007, pp. 529–540.

[6] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Eval-
uating complexity, code churn, and developer activity metrics
as indicators of software vulnerabilities,” IEEE Trans. Softw.
Eng., vol. 37, no. 6, pp. 772–787, Nov. 2011.

[7] Z. Yu, C. Theisen, H. Sohn, L. Williams, and T. Menzies,
“Cost-aware vulnerability prediction: the HARMLESS ap-
proach,” CoRR, vol. abs/1803.06545, 2018.

[8] P. Morrison, K. Herzig, B. Murphy, and L. A. Williams,
“Challenges with applying vulnerability prediction models,”
in HotSoS, 2015.

[9] I. Chowdhury and M. Zulkernine, “Using complexity, cou-
pling, and cohesion metrics as early indicators of vulnera-
bilities,” Journal of Systems Architecture, vol. 57, no. 3, pp.
294–313, 2011.

[10] Y. Shin and L. Williams, “An empirical model to predict
security vulnerabilities using code complexity metrics,” in
Proceedings of the Second ACM-IEEE international sympo-
sium on Empirical software engineering and measurement.
ACM, 2008, pp. 315–317.

[11] A. Gkortzis, D. Mitropoulos, and D. Spinellis, “VulinOSS: a
dataset of security vulnerabilities in open-source systems,” in
Proceedings of the 15th International Conference on Mining
Software Repositories. ACM, 2018, pp. 18–21.

[12] “Node Security Platform - GitHub,” https://github.com/
nodesecurity/nsp, Accessed: 2018-10-16.

[13] “Vulnerability DB — Snyk,” https://snyk.io/vuln, Accessed:
2018-10-16.

[14] “OpenStaticAnalyzer - GitHub,” https://github.com/sed-inf-u-
szeged/OpenStaticAnalyzer, Accessed: 2018-10-16.

[15] “escomplex - GitHub,” https://github.com/escomplex/
escomplex, Accessed: 2018-10-16.

[16] M. Siavvas, D. Kehagias, and D. Tzovaras, “A preliminary
study on the relationship among software metrics and specific
vulnerability types,” in 2017 International Conference on
Computational Science and Computational Intelligence –
Symposium on Software Engineering (CSCI-ISSE), 12 2017.

[17] S. R. Chidamber and C. F. Kemerer, “A metrics suite for
object oriented design,” IEEE Transactions on software engi-
neering, vol. 20, no. 6, pp. 476–493, 1994.

[18] E. Pengő and P. Gál, “Grasping primitive enthusiasm -
approaching primitive obsession in steps,” in Proceedings of
the 13th International Conference on Software Technologies
(ICSOFT), 2018, pp. 423–430.

[19] K. C. Chatzidimitriou, M. D. Papamichail, T. Diamantopou-
los, M. Tsapanos, and A. L. Symeonidis, “Npm-miner: An
infrastructure for measuring the quality of the npm registry,”
in Proceedings of the 15th International Conference on Min-
ing Software Repositories, ser. MSR ’18. New York, NY,
USA: ACM, 2018, pp. 42–45.

[20] C. L. Mariano, “Benchmarking javascript frameworks,” Ph.D.
dissertation, Dublin Institute of Technology, 2017.

[21] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard et al., “Tensor-
flow: a system for large-scale machine learning.” in OSDI,
vol. 16, 2016, pp. 265–283.

[22] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Al-
gorithms for hyper-parameter optimization,” in Advances in
neural information processing systems, 2011, pp. 2546–2554.

[23] G. E. A. P. A. Batista, R. C. Prati, and M. C. Monard, “A study
of the behavior of several methods for balancing machine
learning training data,” SIGKDD Explor. Newsl., vol. 6, no. 1,
pp. 20–29, Jun. 2004.

https://github.com/nodesecurity/nsp
https://github.com/nodesecurity/nsp
https://snyk.io/vuln
https://github.com/sed-inf-u-szeged/OpenStaticAnalyzer
https://github.com/sed-inf-u-szeged/OpenStaticAnalyzer
https://github.com/escomplex/escomplex
https://github.com/escomplex/escomplex

