
An End-to-End Framework for Repairing
Potentially Vulnerable Source Code

Judit Jász
University of Szeged

FrontEndART Ltd.
Szeged, Hungary

0000-0001-6176-9401

Péter Hegedűs
University of Szeged

FrontEndART Ltd.
Szeged, Hungary

0000-0003-4592-6504

Ákos Milánkovich
SEARCH-LAB Ltd.

Budapest, Hungary
akos.milankovich@search-lab.hu

Rudolf Ferenc
University of Szeged

FrontEndART Ltd.
Szeged, Hungary

0000-0001-8897-7403

Abstract—Nowadays, program development is getting easier
and easier as the various IDE tools provide advice on what
to write in the program. But it is not enough to implement a
solution to a problem; it is also important that the non-functional
properties, like the quality or security of the code, are appropriate
in all aspects. One of the most widely used techniques to ensure
quality is testing. If the tests fail, one can fix the code immediately.
However, security issues are unexpected cases when implementing
the program, which is why we do not write tests for them in
advance. In many cases, security-relevant bugs can not only cause
financial loss but also put human lives at risk, so detecting and
fixing them is an important step for the reliability and quality of
the program. The tool presented in this paper aims to generate
automatic code repairs to potential vulnerabilities in the program.
By integrating the recommended fixes, one can easily harden the
security of their program early in the development process. A
case study on six open-source Java subject systems showed that
we were able to generate viable repair patches for 57 out of the 81
detected security issues (70%). For certain types (e.g., revealing
private references of mutable objects), our tool reached close to
perfect performance.

Index Terms—automated code repair, vulnerability, ASG
transformation

I. INTRODUCTION

Today’s world is increasingly dominated by computer pro-
grams, which means that more and more code is being
developed and the speed of development is getting faster and
faster. However, to ensure the quality and security of these
programs it is very important to be able to detect and correct
errors in them efficiently and quickly. Security issues (i.e.,
vulnerabilities) in particular can not only cause financial loss
but also put human lives at risk.

Of course, manually localizing and correcting errors is
a time-consuming process, which is why it is important to
automate the steps of this process as much as possible. The
topic of Automated Program Repair (APR) is a very active
area within software engineering, both in terms of tools and
the scientific literature. Most of the solutions in this area
are relying on the unit tests of programs and target simple
functional defects, where the goal of the repair tasks is defined
as the automatic correction of the failing test cases by code
modification.

However, security vulnerabilities are very specific sub-types
of defects that are not anticipated by the developers (i.e.,

caused by an unexpected execution of the program), therefore
tests are usually not prepared for them in advance. This means
that we cannot apply the general APR approach of fixing
security issues based on failing unit tests in most cases. As
a potential solution, we can apply static code analysis tools,
which are capable of indicating source code locations with
potential defects without running the program. For example,
consider the Ariane rocket case [1], where the rocket exploded
because a 64-bit floating-point number relating to the hori-
zontal velocity of the rocket with respect to the platform was
converted to a 16-bit signed integer. This error could have been
detected by a quite simple static analyzer, and by correcting
the right line of the source code in time, the tragedy could
have been avoided.

Static code analyzers, especially static application security
testing (SAST) tools are nowadays capable of detecting much
more complex and profound issues than that by analyzing the
source code. However, state-of-the-art tools stop at detecting
coding problems and describing potential corrective actions
(e.g., SonarLint [2]), and the actual fix of the issue remains the
responsibility of the developers. It would make the developers’
job a lot easier if there was a tool at hand that could suggest
automatic fixes for the detected problems so that they could
fix those immediately.

In this paper, we present an automated code repair frame-
work based on ASG (Abstract Syntax Graph) transformation
rules that automate the process of finding and fixing minor
security flaws. Kirbas et al. [3] argue that practitioners are
much more interested in tools that can fix such minor issues
quickly and accurately in large quantities than in complex
research tools. The framework detects security-related issues
without test cases, using problems flagged by a static parser,
and displays only fixes that ensure compiling and working
code. During the implementation of the tool, we focused
primarily on security issues that have been proven to occur
typically in programming and can be easily and accurately
identified. Since the fixes for these flaws are often simple code
transformations, we could build on solutions applied in refac-
toring tools like [4]. A case study on 6 open-source subject
systems showed that our tool was able to generate viable repair
patches for 57 out of the 81 detected security issues (70%).
For certain types (e.g., revealing private references of mutable

objects) our tool reached close to perfect performance.
The rest of the paper is organized as follows. In Section II,

we show related techniques in the area of automatic code
repair and program refactoring, which form the basis of our
tool. In Section III we introduce the approach to how we
repair the source code. In Section IV, we present the essential
elements of the framework, and in Section V, we discuss its
evaluation with a study. Since the presented tool is still in a
prototype state, we highlight our long-term goals with the tool
in Section VI.

II. RELATED WORK

Both the literature and the tools available offer a wealth of
automatic program repair (APR) tools. Most APR systems are
based on some kind of test base, where the goal is to auto-
matically correct failing tests (i.e., improve the functionality
of the program). These tools typically use genetic algorithms
or heuristics to modify the source code. GenProg [5] and
its Java version jGenProg, which is part of the ASTOR [6]
program repair Java library, or ARJA [7] tools fall into this
category. Besides genetic algorithms, there are of course also
solutions based on different deep learning techniques, such
as DeepRepair, another component of ASTOR, which tries to
repair based on code similarities [8], DeepFix [9], GenPat [10],
or solutions using mutations [6]. The disadvantage of the
former approaches may be the large search spaces to examine
and the difficulty in finding the exact fix for a specific case
when it requires a more complex, larger change.

There are approaches where static analyzers like Spot-
Bugs [11], SonarQube [12], PMD [13] are used to detect
bugs and try to fix them automatically and quickly based on
some patterns [14]. However, all these approaches still rely
on failing unit tests as they use static analysis warnings for
deriving fix patterns only, while we use static checkers both
as bug detection and fix validation techniques. For security
bugs, databases such as NIST-NVD or CVE provide suitable
input to filter out the faulty code fragments using various
machine learning methods [15], possibly recognizing structural
and semantic similarities with vulnerable code.

In this paper, we present a repair tool that automates the
process of finding and fixing minor security flaws. Our work
is similar to those of Xuan-Bach et al. [16], Durieux et al. [17],
and Jiang et al. [18] with the distinction that we rely on static
code analysis based issue detection (i.e., no test cases are
needed) and a rule-based ASG transformation for code repair,
all integrated into an end-to-end framework ready for practical
application.

III. SECURITY IDENTIFICATION AND REPAIR APPROACH

At the core of the repair framework is our CodeRepair
module which is an open-source command-line application.1

It implements a pattern-based code repair approach performed
as graph transformation on the ASG (Abstract Syntax Graph)

1https://github.com/FrontEndART/OpenStaticAnalyzer/tree/
CodeRepairTool/java/cl/CodeRepair

representation of the source code. The high-level schematic of
the program’s operation is shown in Figure 1.

Fig. 1. The ASG transformation based repair algorithm
We first analyze the source code with the OpenStaticAna-

lyzer [19] open-source tool, which produces the ASG of the
system. Each node of the ASG represents a single program
element (e.g., statement, identifier, expression). As already
outlined in Section I, we use static analysis tools to identify
potentially vulnerable locations in the source code, therefore,
together with the code analysis, we run a static code analyzer
as well. We selected the SpotBugs tool for this purpose but it
can be replaced by any other static analyzer or even some other
(e.g., deep learning-based) solution that can identify potential
vulnerabilities in the program. The output of such a tool should
be the type of the detected issue and an exact location in the
source code (i.e., path, line, and column of the detected issue).
The input of the CodeRepair module is an XML file containing
the list of such locations and the type of the detected issues.

The module first maps the exact source code locations to
the nodes of the ASG using a heuristic approach proposed
by Szőke et al. [4]. Next, it determines the set of possible
transformation patterns by the actual type of the detected
issue (e.g., possible null dereference). The necessary changes
to the ASG are defined by specifying the ASG nodes that
need to be modified, deleted, or possibly rebuilt, and also the
positions where the changes are to be included in the code,
using the original source code. For this, we had to implement
an ASG transformation API over the language schema used
by OpenStaticAnalyzer, therefore we used a modified version
of it.1 Based on the modified ASG nodes and the information
that determines the location of the modifications, we finally
generate the modified source code (or a diff patch that can be
applied to the original source code). We note that the module
can produce several potential repair patches for the same issue
if there are multiple fix patterns defined. The validation and
verification of the produced patches are carried out by the
repair framework described in Section IV.

IV. THE AUTOMATED REPAIR FRAMEWORK

To realize our dedicated goals (i.e., practically applicable
security-related automated code repair), we have created a
complete framework, which implements the proposed security
identification and repair approach (see Section III) and inte-
grates the entire repair process into an end-to-end solution.
The framework is written in Java and targets the security-

Fig. 2. The conceptual design of the repair framework and plugin

related automated code repair of Java subject systems.2 The
conceptual design of the framework is depicted in Figure 2.

The framework orchestrates the whole process of automated
security issue repair, starting from the collection of subject
system source code, localizing security-relevant issues, fix-
ing and validating them, and presenting the candidate so-
lutions to the developers. We designed the framework with
a high level of abstraction in mind, therefore its architec-
ture is modular and supports a plug-in mechanism. This is
to ensure that the users can employ their security detec-
tion/repair/validation/visualization approaches still benefiting
from the framework that binds all these steps together us-
ing well-defined interfaces and driver classes. The modules
marked with gray and dashed lines in Figure 2 are exchange-
able, they only define the appropriate interfaces for input and
output and can be freely substituted with arbitrary implemen-
tations. For example, to get the vulnerability locations in the
source code, one can apply a static analysis-based vulnerability
detection but just as easily apply an ML prediction model to
find vulnerable code parts.

The role of the different modules and our current choice of
their implementation are as follows.

Get source code. This module acquires the source code
from a local directory or a remote repository (e.g, git).

Detect vulnerabilities. The module takes the source code as
input and produces the list of source code positions where vul-
nerabilities are detected. We implement this module with the
open-source code analysis tool called OpenStaticAnalyzer [19]
that integrates many checkers, like SpotBugs, SonarQube, and
PMD that can detect vulnerabilities as proposed in Section III.
The module can also produce different artifacts upon code

2https://github.com/FrontEndART/AIFix4SecCode

analysis, like representation of the source code (ASG, embed-
ding, etc.) to be used later in the repair step.

Transform code / repair. This is the core module of
the framework that performs the actual code repair task. It
can use the source code of the project and the intermediate
representations produced in the previous step (e.g. an ASG).
We implement an Abstract Semantic Graph (ASG)-based
transformation that performs code changes at the ASG level
and generates source code (Java) based on this transformed
ASG as described in Section III.

Compile and test. After the code repair candidates are
generated, we need to validate that the proposed code changes
keep the system in a syntactically valid state with all the
unit tests passing. This module performs these sanity checks.
The supported build systems can be extended as well, by
implementing the proper interfaces of this module. Currently,
the framework supports the Maven and Gradle build systems.
After the module is executed, some patches might be thrown
away that produce failing tests or break the syntax of the code.

Validate. After filtering out invalid patches in the previ-
ous step, we need to validate that the originally detected
vulnerability disappears after applying the generated patch.
We achieve this by re-running the same analysis as in the
step of vulnerability detection and confirming that the targeted
vulnerability is not found anymore in the source code version
after applying the fix patch. The output of this module is the
filtered list of patches that indeed remove the vulnerability
in question. If the validation fails for all potential fixes, the
framework will not offer to fix a given bug.

Visualize patches. This module implements the last step of
the repair process, the visualization of the code changes. The
input of this module is the final set of patches. We currently
provide a Visual Studio Code IDE plug-in as the means for
results visualization (see more details in Section V-A). The

VSCode (Visual Studio Code) plugin of the framework is
capable of visualizing the output and triggering the execution
of the analysis. The patches are presented in a “diff view” and
the user can navigate between patch candidates where they can
decide to apply or decline the patches.

The framework can be used as a command-line tool as
well (i.e., running the executable jar directly) that can support
DevOps by integrating the framework into CI/CD pipelines.
The whole repair process can be started from the IDE plug-in
also, which is more convenient for the developers.

V. TOOL EVALUATION

A. Data Mining and Implemented Fixes

To find out the most relevant issues to be fixed and derive
their repair recipes, we followed a data-driven, empirical
approach. We collected real-world fixes by mining GitHub for
a set of commits with SonarQube and SpotBugs in commit
messages, issues, and source code of JAVA projects. The
source code has been examined by hand to filter out duplicates
and false positives.

We have collected the originally vulnerable and fixed ver-
sions of the code along with metadata (commit message,
commit links, the position of the issue) grouped by the selected
issues. The first iteration of the dataset contains 1902 instances
of bugs and their fixes accompanied by a machine-processable
JSON metadata descriptor. The type-wise distribution of the
collected samples can be seen in Figure 3, the S1444 (“public
static” fields should be constant) issue comes from SonarQube,
and the rest are detected by SpotBugs.3

These are the vulnerability-related warning types that are
most frequently fixed within the open-source community,
therefore we identified them as our primary target for pro-
viding automated repairs. As a first step, our tool is capable
of fixing the following issues:

1) EI EXPOSE REP / EI EXPOSE REP2 (SpotBugs) –
three fix strategies are implemented: (i) fix with object
cloning; (ii) fix with array copying; (iii) fix with instan-
tiating a new DateTime object.

2) MS SHOULD BE FINAL / SQUID S1444 (SpotBugs
/ SonarQube) – one fix strategy is implemented: fix with
adding the “final” keyword.

3) NP NULL ON SOME PATH / NP NULL ON
SOME PATH EXCEPTION (SpotBugs) – one fix

strategy is implemented: add a null check for the
variable in a ternary operator.

The utilization of the dataset will go beyond identifying
issues and their repair strategies, it can be used for training
machine learning-based fixing of detectable issues in the
framework or for deriving prioritization among the various
repair patch candidates.

B. Evaluation Study

We used the IDE-based analysis usage scenario to evaluate
the tool’s performance on 6 subject systems. We selected

3https://spotbugs.readthedocs.io/en/stable/bugDescriptions.html

popular open-source systems that contained potential security
issues that the OpenStaticAnalyzer tool could detect. The set
of subject systems we used in the study is shown in Table I.

TABLE I
STUDY SUBJECT SYSTEMS

System Version Repo URL Java Lines
ANTLR4 4.2 https://github.com/antlr/antlr4 40K
Arduino 1.8.19 https://github.com/arduino/Arduino 27K
EasyExcel 3.0.5 https://github.com/alibaba/easyexcel 25K
Guava 31.0.1 https://github.com/google/guava 360K
MapDB 0.9.6 https://github.com/jankotek/mapdb 47K
Titan 0.5.1 https://github.com/thinkaurelius/titan 80K

For all the subject systems, we downloaded the source code
for the selected releases and loaded them into the VSCode
plug-in provided as part of the repair framework. We started
the analysis from the plugin and used its diff view to observe
the generated patches. For 2 out of the 6 subject systems, two
of the paper authors with more than 15 years of experience also
evaluated all the generated patch candidates manually. They
either accepted or declined them providing also the reasoning
of their decision in a textual form.

The overall results of the repair framework on the 6 subject
systems are shown in Table II. The framework detected 81
security-relevant issues altogether that it can potentially fix in
the 6 subject systems and was able to provide a fix patch for
57 of them (70%). The generated patches and statistics are
available online.4

The repair framework was able to correctly fix all the
MS_SHOULD_BE_FINAL issues detected. The repair of this
issue requires a single “final” keyword insertion, which is
a fairly simple transformation. Nonetheless, fixes for the
EI_EXPOSE_REP and EI_EXPOSE_REP2 are almost al-
ways successfully generated (92.3% and 91.7% of the cases,
respectively). The only exception is the EasyExcel system,
where the framework was unable to generate a fix patch for
1-1 such problems. Looking into the results, we found that the
problem is that the framework could not locate the appropriate
source code location where to apply the code repair. This
was because EasyExcel is using the Lombok5 library for
generating getter and setter methods. The source code contains
only the data members of the Java beans and the necessary
constructors, getters, and setters are generated during compile
time based on various Lombok annotations. However, both
EI_EXPOSE_REP and EI_EXPOSE_REP2 were firing to
getter and setter methods of such Java beans. Since SpotBugs
uses the class files for detecting issues, it could successfully
locate the generated getter and setter methods, while the repair
framework uses the source code, where it could not locate the
appropriate methods, therefore no viable repair patches could
be generated.

Our framework was the least efficient for
finding correct fixes for potential null pointer
dereference issues (NP_NULL_ON_SOME_PATH and
NP_NULL_ON_SOME_PATH_EXCEPTION). We investigated

4https://doi.org/10.5281/zenodo.6778637
5https://projectlombok.org/

Fig. 3. Ratio of entries in the dataset grouped by warning types

TABLE II
CODE REPAIR RESULTS ON 6 SUBJECT SYSTEMS

Issue System ANTLR4 Arduino EasyExcel Guava MapDB Titan Repair ratio

EI EXPOSE REP
Found 1 0 1 0 5 6

92.3%Fixed 1 0 0 0 5 6

EI EXPOSE REP2
Found 0 4 1 0 2 4

91.7%Fixed 0 4 0 0 2 4

MS SHOULD BE FINAL
Found 3 3 12 0 2 3

100%Fixed 3 3 12 0 2 3

NP NULL ON SOME PATH
Found 3 1 0 22 2 5

36.4%Fixed 0 0 0 9 1 2

NP NULL ON SOME PATH EXCEPTION
Found 1 0 0 0 0 0

0%Fixed 0 0 0 0 0 0
Total time (s) 399 578 1,768 1,140 894 2,037

all the failed cases manually and found that there were
different reasons why the framework was unable to generate
repair patches.

For ANTLR4, the NP_NULL_ON_SOME_PATH_
EXCEPTION and two out of the three
NP_NULL_ON_SOME_PATH issues are located in generated
sources. Since SpotBugs analyzes the compiled bytecodes,
it can detect the issue, while the framework works on
the source code of the project, therefore could not locate
the position where to apply the repair rules. For the last
NP_NULL_ON_SOME_PATH, the framework was not able
to transform the expression in a syntactically correct way,
therefore there is still room for improving the repair rules.
We note, however, that this particular issue is a false positive
SpotBugs finding since there is a null check earlier in the
code.

In Arduino, the possible null pointer dereference is located
in a negated condition of an if statement, which the frame-
work could not transform correctly.

For Guava, the framework could not fix 13
NP_NULL_ON_SOME_PATH out of the 22. In three
cases, the framework could not locate the exact column
information of the code element potentially being null (i.e.,
SpotBugs reports only line information for a warning but
the repair framework needs the exact source code location,
which it tries to extract). All these are located in inner classes
within complex expressions. All the remaining cases are such
that the possibly null variable is not on the right-hand side of
an assignment operation (which we assume when generating
the null check in ternary as we observed only such cases in

the collected dataset), therefore the generated repair will not
form a valid statement. It suggests that we might need to
consider adding further transform rules to this issue type.

In the case of MapDB, the unsuccessfully fixed
NP_NULL_ON_SOME_PATH issue is fired for the log
variable in a complex condition of an if statement, where
there are multiple checks concatenated together with boolean
|| operators. The framework cannot handle the case properly,
where there are multiple references to the same variable that
might be potentially null. It suggests that further fix strategies
are needed for this particular issue type.

For Titan, the framework generated a fix for two out of
the three NP_NULL_ON_SOME_PATH issues, but they could
not be compiled. Our ternary operator fix is generated inside
another ternary in these cases, which would not work. For
the last one, the issue was similar to the log case, a file
variable was used multiple times in a large condition, which
the framework could not handle.

The running time of the repair tool is reported in the last row
of Table II. Even for the largest systems the complete running
time of detection, repair, and validation is within half an hour.
The running time depends on the number of generated repair
candidates but these are realistic subject systems that reflect
the expected analysis time.

Even though we know that all of the patches compile
and remove the underlying SpotBugs warnings, to eval-
uate the correctness of the patches semantically as well
two of the authors validated all the proposed patches for
the MapDB and the Titan systems. In general, the manual
evaluation confirmed the previous analysis. Both evaluators

marked all the generated patches for the EI_EXPOSE_REP,
EI_EXPOSE_REP2, and MS_SHOULD_BE_FINAL issues as
acceptable and semantically correct. They agreed that the
single fix of NP_NULL_ON_SOME_PATH in MapDB is in-
valid as it changes the expected behavior of the code. The
fix inserted a ternary null check into a one-liner compare
method (consisting of a ternary expression itself), where the
null value was already handled properly. They agreed that
the issue reported by SpotBugs can be considered a false
positive. The two NP_NULL_ON_SOME_PATH fixes in Titan
were syntactically and semantically correct according to the
evaluators, however, both of them marked the fix to be invalid.
This was again because the actual variable could not be
null due to a Preconditions.checkArgument() call
earlier in the code. Therefore, the fix was incorrect due to a
false positive issue report.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we have presented an end-to-end framework
supporting the automated repair of security-relevant static
analysis warnings. Our goal was to provide a practical and
efficient way of automatically fixing code problems that could
lead to vulnerabilities. The framework relies on so-called
repair recipes defined as graph transformations on the ASG
of the underlying subject system.

Even though the framework is a work-in-progress prototype,
it is already capable of fixing 6 different types of security-
related issues. A VSCode plug-in for visualizing and eval-
uating the generated patches is also part of the framework.
Both the issues to fix and the corresponding repair recipes
were collected by an extensive data mining process from open-
source project code histories.

With a case study on 6 well-known open-source subject sys-
tems, we showed that the framework is applicable in practice,
as it was able to generate viable repair patches for 57 out of the
81 detected coding issues (70%). Moreover, the framework’s
efficiency on the EI_EXPOSE_REP, EI_EXPOSE_REP2,
and MS_SHOULD_BE_FINAL issues was close to 100%. It
struggled a bit with repairing potential null dereference issues
(fixed 12/34, 35%), which indicates that further improvement
and additional recipes are required. Nonetheless, in many
cases, the underlying problem was that the identified security
issue was a false positive, which depends entirely on the code
analysis tool we integrated. The manual evaluation of two
subject systems by two of the authors confirmed that the vast
majority of the generated viable patches are acceptable by
humans as well (both syntactically and semantically).

We plan to further improve our framework by gathering
even more data on bug-fix pairs to support the repair gen-
eration process. The repair patch generation algorithm can
provide multiple candidate patches, which all have to pass
compilation and unit tests. However, the developers have to
select the best candidate to apply the patch. The evaluation of
the tool revealed that prioritization of the patches would be
beneficial to help this process, which we intend to add soon.

Furthermore, we will continuously implement newer repair
strategies for other, not yet supported security-relevant issues.

ACKNOWLEDGEMENT

The research was supported by the Ministry of Innova-
tion and Technology NRDI Office within the framework
of the Artificial Intelligence National Laboratory Program
(RRF-2.3.1-21-2022-00004) and by project TKP2021-NVA-
09, implemented with the support provided by the Ministry
of Innovation and Technology of Hungary from the National
Research, Development and Innovation Fund, financed under
the TKP2021-NVA funding scheme. The research was partly
supported by the EU-funded project AssureMOSS (Grant no.
952647) as well.

Furthermore, Péter Hegedűs was supported by the Bolyai
János Scholarship of the Hungarian Academy of Sciences.

REFERENCES

[1] Ariane 5. [Online]. Available: ”https://iansommerville.com/
software-engineering-book/case-studies/ariane5”

[2] SonarLint. [Online]. Available: ”https://www.sonarlint.org/”
[3] S. Kirbas, E. Windels, O. McBello, K. Kells, M. Pagano, R. Szalanski,

V. Nowack, E. R. Winter, S. Counsell, D. Bowes, T. Hall, S. Haraldsson,
and J. Woodward, “on the introduction of automatic program repair in
bloomberg,” IEEE Software.

[4] G. Szőke, C. Nagy, L. J. Fülöp, R. Ferenc, and T. Gyimóthy, “Fault-
buster: An automatic code smell refactoring toolset,” in 2015 IEEE
15th International Working Conference on Source Code Analysis and
Manipulation (SCAM), 2015, pp. 253–258.

[5] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically
finding patches using genetic programming,” in 2009 IEEE 31st Inter-
national Conference on Software Engineering, 2009, pp. 364–374.

[6] M. Martinez and M. Monperrus, “Astor: A program repair library for
java,” in Proceedings of ISSTA, 2016.

[7] Y. Yuan and W. Banzhaf, “Arja: Automated repair of java programs via
multi-objective genetic programming,” IEEE Transactions on Software
Engineering, vol. 46, no. 10, pp. 1040–1067, 2020.

[8] M. White, M. Tufano, M. Martı́nez, M. Monperrus, and D. Poshyvanyk,
“Sorting and transforming program repair ingredients via deep learning
code similarities,” in 26th IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER), 2019, pp. 479–490.

[9] R. Gupta, S. Pal, A. Kanade, and S. Shevade, “Deepfix: Fixing common
c language errors by deep learning,” in Thirty-First AAAI conference on
artificial intelligence, 2017.

[10] J. Jiang, L. Ren, Y. Xiong, and L. Zhang, “Inferring Program Transfor-
mations From Singular Examples via Big Code,” ser. ASE, 2019.

[11] Spotbugs. [Online]. Available: ”https://spotbugs.github.io/”
[12] Sonarqube. [Online]. Available: ”https://www.sonarqube.org/”
[13] Pmd. [Online]. Available: ”https://pmd.github.io/”
[14] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “AVATAR: fixing

semantic bugs with fix patterns of static analysis violations,” in Proceed-
ings of the 26th IEEE International Conference on Software Analysis,
Evolution, and Reengineering. IEEE, 2019, pp. 456–467.

[15] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong,
“VulDeePecker: A deep learning-based system for vulnerability detec-
tion,” in Proceedings 2018 Network and Distributed System Security
Symposium. Internet Society, 2018.

[16] X.-B. D. Le, D. Lo, and C. Le Goues, “History driven program repair,”
in IEEE 23rd International Conference on Software Analysis, Evolution
and Reengineering (SANER) 2016. IEEE, 2016.

[17] T. Durieux, B. Cornu, L. Seinturier, and M. Monperrus, “Dynamic Patch
Generation for Null Pointer Exceptions Using Metaprogramming,” in
IEEE International Conference on Software Analysis, Evolution and
Reengineering, 2017.

[18] J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen, “Shaping program
repair space with existing patches and similar code,” ser. ISSTA, 2018.

[19] OpenStaticAnalyzer. [Online]. Available: ”https://openstaticanalyzer.
github.io/”

