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Abstract
Security has become a central and unavoidable aspect
of today’s software development. Practitioners and re-
searchers have proposed many code analysis tools and
techniques to mitigate security risks. These tools apply
static and dynamic analysis or, more recently, machine
learning. Machine learning models can achieve impres-
sive results in finding and forecasting possible security
issues in programs. However, most of the current ap-
proaches fall short of developer demands in two areas
at least: explainability and granularity of predictions.
In this paper, we propose a novel and simple yet,

promising approach to identify potentially vulnerable
source code in JavaScript programs. The model im-
proves the state-of-the-art in terms of explainability
and prediction granularity as it gives results at the level
of individual source code lines, which is fine-grained
enough for developers to take immediate actions. Ad-
ditionally, the model explains each predicted line (i.e.,
provides the most similar vulnerable line from the train-
ing set) using a prototype-based approach. In a study
of 186 real-world and confirmed JavaScript vulnerabil-
ity fixes of 91 projects, the approach could flag 60%
of the known vulnerable lines on average by marking
only 10% of the code-base, but in particular cases, the
model identified 100% of the vulnerable code lines while
flagging only 8.72% of the code-base.

Keywords: software security, vulnerability prediction,
data mining, CVE, explainable ML

1 Introduction
It has never been easier to exploit an existing vulner-
ability in a software system given the number of new
domains and scenarioswhere complex programs appear.
Therefore, security has become a central and unavoid-
able aspect of today’s software development. Dealing
with security is an activity that should span through the
whole software development life-cycle [7]. We focus
on security activities carried out within the implemen-
tation and quality assurance phases.
Practitioners and researchers have proposed many

code analysis tools and techniques to aid software devel-
opers in mitigating security risks. These usually apply
static and dynamic analysis or, more recently, machine
learning. Although machine learning-based vulnerabil-
ity prediction models can achieve impressive results
in finding and forecasting possible security issues in
programs, there are at least two areas where most of
the current approaches fall short of developer demands.
These are explainability and the granularity level of the
results. Explainability means that a model should be
able to provide so-called proof besides its prediction.
Most of the state-of-the-art vulnerability prediction
models fail to meet explainability expectations. There-
fore, developers cannot be sure why the model thinks
that a certain code part is vulnerable, which reduces
developer trust. Besides, without a clear explanation, it
is extremely hard to validate the reported results (i.e.,
the developers need to either find and confirm the re-
ported vulnerability or verify that the whole code part
is secure).
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The granularity of the results defines the unit of
source code, which the vulnerability prediction refers to.
It can be, for example, a file, a class, a function/method, a
block, a line, or a single statement. The coarser the gran-
ularity of the prediction, the better the performance of
a model. Nonetheless, the practical usability of a model
depends highly on its ability to localize its prediction
(i.e., to provide as fine-grained hit as possible). Most of
the state-of-the-art vulnerability prediction models pro-
vide prediction results at file [3, 8, 12, 16, 21], binary [22]
or class [19] level, but even the most fine-grained re-
sults stop at the level of functions/methods [4, 19]. It
means that developers need to explore large chunks of
code to confirm and identify the exact spot and type of
vulnerability predicted by a model. The lack of explana-
tion worsens the situation further, which may hinder
the entire practical adoption of the prediction model.
In this paper, we propose a novel and simple yet,

promising approach to identify potentially vulnerable
source code in JavaScript programs.We chose JavaScript
as our target language because it is among the most
popular languages nowadays [6] but gets less research
attention than other mainstream languages, like Java
or C/C++, which in this way have better support in
terms of code security. The proposed model improves
the state-of-the-art both in terms of explainability and
prediction granularity as it gives results at the level
of individual source code lines, which is fine-grained
enough for developers to take immediate actions. Addi-
tionally, the model shows proof for each predicted line
using a prototype-based [9] approach. That means that
it can provide a vulnerable line from the training data
set that is the most similar to the predicted potentially
vulnerable line. The model is based on the word2vec
embedding [10] of source code lines and applying vec-
tor distances with additional rules to find potentially
vulnerable source code lines similar to those contained
in a reference training set.
We performed a study on 186 real-world and con-

firmed JavaScript vulnerability fixes of 91 projects con-
tained in the dataset published by Ferenc et al. [4]
extended by a repository mining approach. However,
since our approach is very sensitive to the data quality
of the training set, we applied a line-by-line manual
evaluation of all the vulnerability fix patches to keep
only those code line changes that contribute to a vul-
nerability fix. Using this cleaned-up training data set
10-fold cross-validation showed that the approach could
flag 60% of the known vulnerable lines on average by
marking only 10% of the code-base, but in particular

cases, the model identified 100% of the vulnerable code
lines while flagging only 8.72% of the code-base. Ad-
ditionally, it was able to detect non-trivial similarities
between vulnerable source code lines.
The rest of the paper is organized as follows. In

Section 2, we motivate our research and present the
methodology we applied. The results obtained in the
case study are detailed in Section 3. In Section 4, we
present the works related to ours. Section 5 enumerates
the list of possible threats, while we conclude the paper
in Section 6.

2 Approach

We propose a simple yet, potentially practically useful
approach for predicting vulnerable JavaScript source
code lines. It is based on the word2vec similarity of
program lines. We set up and maintain a validated ref-
erence data set of vulnerable JavaScript code lines, the
vulnerable lines repository (VLR). The VLR is collected
by manually filtering and evaluating a publicly avail-
able function level JavaScript vulnerability dataset [4]
and patches collected by a repository mining approach
(see Section 2.3 for details). Therefore, the lines in the
VLR are samples of vulnerable code lines with very high
confidence (i.e., there are practically no false-positive
instances). The core of our vulnerable line detection
algorithm is the calculation of an aggregated vector
representation (see Section 2.3 for details) for each line
in the VLR as well as for each line of the system under
test (SUT). Once these semantically meaningful vector
representations are calculated, we simply calculate the
cosine distance between each pair of lines in the VLR
and SUT. We keep only the minimal distance values for
each line in the SUT (i.e., the distance between the cur-
rent line and themost similar line in the VLR). From this
distance and a couple of additional rules introduced to
enhance accuracy (see Section 2.2 for details), we derive
a probability for each line in the SUT that represents
the likelihood of the line being vulnerable. Based on
an empirically determined threshold, we can provide
a prediction for each line in the SUT: if its vulnerabil-
ity likelihood is above the threshold, we declare it to
be vulnerable, otherwise, we consider the line to be
non-vulnerable. For each likely vulnerable line, we can
provide the sample line from the VLR that has the clos-
est vector representation, which serves as a prototype-
based explanation for the prediction. The outline of the
proposed approach is depicted in Figure 1.
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Figure 1. Overview of our process
2.1 Motivation
The motivations behind the proposed approach are
many-fold, which we enumerate here.

Explainability and granularity. First and foremost,
it has the favorable properties of being fine-grained (i.e.,
line-level results) and explainable. We already discussed
in Section 1 why these properties are desirable and how
most of the state-of-the-art approaches lack them.

Vulnerability patterns. Secondly, vulnerable code
parts follow some common patterns. However, these
patterns are not exact; they cannot be found easily with
common methods like that of copy-paste detection (at
least using the mature techniques to detect type-1 and
type-2 clones). Word2vec proved to be meaningful for
source code as well, so semantically similar statements
(e.g., different loop instructions, type literals) fall close
to each other in the vector space. It makes word2vec
a good candidate for finding semantically similar, yet
syntactically different code patterns, like that of vulner-
abilities.

Lack of training data. Lastly, state-of-the-art ma-
chine learning methods, deep learning especially, re-
quire an enormous amount of training samples. In a
realistic setup, this availability of training data is simply
non-existent. Additionally, in almost all cases the col-
lected data is imbalanced, meaning that vulnerable code
samples are much less frequent in the training data than

non-vulnerable samples, which further complicates the
training of ML models. Therefore, our proposed light-
weight, vector similarity-based approach has a clear
advantage in this scenario. It requires heavy ML train-
ing only once for deriving word2vec vectors for the
JavaScript keyword tokens (see Section 2.2), but for vul-
nerability prediction, it does not use any ML techniques
at all. It is not affected by the imbalance problem, as it
uses only vulnerable code samples from the VLR. The
method can be used with an arbitrary number of sam-
ples in the VLR (even though the recall of the method
will be very slow with too few samples), but the VLR
can be extended iteratively with any newly identified
vulnerabilities in the code. Therefore, the method is
easy to adopt in practice and can be improved continu-
ously throughout its application.

2.2 Matching and Prediction Algorithm
2.2.1 Source Code Embedding. To employ the pro-
posed method, one needs to assign vectors to source
code lines. For this, first, we tokenize the JavaScript
source code and train a word2vec model with the set
of tokens listed in Table 1, and the operators available
in JavaScipt as the vocabulary. Two-dimensional vi-
sualization of some of the vocabulary vectors can be
seen in Figure 2. One can observe that the semantically
similar statements and/or operators (e.g., 𝑐𝑎𝑡𝑐ℎ/𝑓 𝑖𝑛𝑎𝑙𝑙𝑦,
+ =/− =) fall close to each other in the vector space.
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StringLiteral IdentifierName synchronized debugger transient implements 1 await
SQLStringLiteral protected Infinity NaN if byte false this
GETStringLiteral yield double public function try return catch
HTMLStringLiteral interface null volatile native in 0 true

RegularExpressionLiteral enum var abstract default with else -1
HTTPSStringLiteral goto boolean class typeof switch case break
POSTStringLiteral while package undefined delete static for short
PortStringLiteral long throw new float export int throws
HTTPStringLiteral TemplateHead instanceof let void Invalid super arguments

NoSubstitutionTemplate TemplateMiddle continue const finally eval private do
NumericLiteral TemplateTail import char extends final , ;

Table 1. The applied source code tokens

Figure 2. A vizualization of some of the word2vec vectors
For the lexical analysis of the source code (i.e., produc-

ing tokens), we applied the open-source node module
Js Tokens.1 Apart from the tokens derived from the
JavaScript syntax, we included several concrete literal
values in the vocabulary. These values are the literals of
HTML tags, SQL queries, HTTP URLs, and the “GET”,
“POST” and “Port” string literals and the 0, 1, and −1
numeric literals. The identification of these literals is
mostly straightforward, we just check whether the spec-
ified value is present in the word in question or not. In
the case of HTML and SQL, the process is slightly differ-
ent, since the words will not contain the tokens directly,
rather they contain specific key phrases or characters,
for example “<” and “>” in HTML and “SELECT” and
“FROM” in SQL. The reasons for including these specific
values are that these tokens are often associated with
security functionality. Therefore, we expect additional

1https://github.com/lydell/js-tokens

expressiveness from the word2vec vectors using these
tokens as well.2
We used a collection of 150,000 JavaScript files by

Raychev et al. [15] as a corpus for training the word2vec
model, which we implemented with the Gensim3 topic
modeling Python library. The calculated vectors have a
length of 100.
Now that we have a vector representation for each

token, we need to derive one aggregate vector for a sin-
gle line of JavaScript as our proposed method compares
lines of code by their vector representations. For this,
we chose a simple approach, namely to calculate the
average of vectors belonging to the tokens in a code
line. We are aware that this method does not reflect
the orders of the tokens within a line; however, it pro-
vides the flexibility of matching code lines with similar
2We repeated the study without including these tokens and got
slightly worse results, meaning that these special tokens indeed
improve method performance.
3https://radimrehurek.com/gensim/

https://github.com/lydell/js-tokens
https://radimrehurek.com/gensim/


Towards a Prototype Based Explainable
JavaScript Vulnerability Prediction Model

tokens used in a different order. Finding the most ap-
propriate aggregation mechanism, however, requires
further investigation.

2.2.2 CalculatingVulnerability Likelihood. To be
able to predict which lines in a subject system are vul-
nerable, we calculate the aggregated word2vec vectors
for each line in the VLR, which we can use during the
analysis of a new system. For each line in the subject
system, we also calculate its aggregated word2vec vec-
tor, then compare it with every line in the VLR and
calculate the cosine distance between them. After we
find the smallest distance, we calculate a probability
value according to the following formula:

𝑃𝑑𝑖𝑠𝑡 (𝑙𝑖𝑛𝑒𝑐𝑜𝑑𝑒) = 1−𝑚𝑖𝑛𝑒 (𝑐𝑜𝑠 (®𝑣 (𝑙𝑖𝑛𝑒𝑐𝑜𝑑𝑒), ®𝑣 (𝑙𝑖𝑛𝑒𝑉𝐿𝑅𝑒 )))

Nonetheless, we cannot use this probability value
directly to predict vulnerable code lines since language
syntax elements that are usually written in separate
lines such as else or } are guaranteed to be flagged as
vulnerable. A similar issue is caused by the common lan-
guage patterns such as var MyVar; or return Value;. Only
using the standard distance value will cause these to
also be permanently marked. Therefore, we introduced
two rules: (i) the one-word elimination and the (ii) com-
plexity rules. Rule (i) simply means that whenever we
have a line with only one token, we do not apply vector
matching but mark the line as non-vulnerable (to re-
duce false-positive rate). Rule (ii) ensures that the same
level of match between a pair of lines worth more if
the subject line is having a higher number of different
tokens. It is because complex lines match with very
specific vulnerable lines in VLR; thus, our confidence
should be higher. We derived a probability value from
the complexity rule as follows:

𝑃𝑐𝑜𝑚𝑝𝑙 (𝑙𝑖𝑛𝑒𝑐𝑜𝑑𝑒) = 1 − 1
𝑢𝑛𝑖𝑞𝑢𝑒𝐶𝑜𝑢𝑛𝑡 (𝑙𝑖𝑛𝑒𝑐𝑜𝑑𝑒)

Where 𝑢𝑛𝑖𝑞𝑢𝑒𝐶𝑜𝑢𝑛𝑡 refers to the number of unique
tokens present in the given line.
Once we have these two probabilities, 𝑃𝑑𝑖𝑠𝑡 (𝑙𝑖𝑛𝑒𝑐𝑜𝑑𝑒)

and 𝑃𝑐𝑜𝑚𝑝𝑙 (𝑙𝑖𝑛𝑒𝑐𝑜𝑑𝑒), we calculate their average, which
is our final estimated likelihood of a line being vulnera-
ble:

𝑃𝑣𝑢𝑙𝑛 (𝑙𝑖𝑛𝑒𝑐𝑜𝑑𝑒) =
𝑃𝑑𝑖𝑠𝑡 (𝑙𝑖𝑛𝑒𝑐𝑜𝑑𝑒) + 𝑃𝑐𝑜𝑚𝑝𝑙 (𝑙𝑖𝑛𝑒𝑐𝑜𝑑𝑒)

2 .

2.2.3 Deriving a Prediction. The calculated likeli-
hood can be used for prioritizing source code lines based
on their probabilities of being vulnerable. However, we
intend to create a prediction model that reports likely

vulnerable lines. Therefore, we have to define a thresh-
old and report all lines to be vulnerable with a vulnera-
bility likelihood above this threshold. We defined such
a threshold in an empirical manner, namely split our
dataset into a 𝑡𝑟𝑎𝑖𝑛, 𝑑𝑒𝑣 , and 𝑡𝑒𝑠𝑡 sets (see details in Sec-
tion 3.1). We use the 𝑑𝑒𝑣 set to find the best threshold
so that we calculate the 𝑃𝑣𝑢𝑙𝑛 (𝑙𝑖𝑛𝑒𝑐𝑜𝑑𝑒) values for each
code lines in the 𝑑𝑒𝑣 set and check the performance
measures (see details in Section 3.1) of the prediction
applying various thresholds from 0.85 to 0.99 with a
0.01 step size. Depending on the measure we want to
optimize, we can select an appropriate threshold and
apply it for further prediction.

2.3 Dataset and Manual Evaluation
We created the VLR from a publicly available JavaScript
vulnerability dataset [4] and by employing repository
mining. The dataset contains vulnerability numbers at
the function level; therefore, we had to extract the fix-
ing patches by their git commit hashes. Besides these
patches, we also performed repositorymining onGitHub
and analyzed the commit logs of over 500 JavaScript
projects. With a heuristic approach, we identified com-
mits whose messages mentioned the term “CVE”.4 We
separated the actual vulnerability fixes from test and
documentation updates, manually creating new patches.
We took the union of all collected patches (i.e., coming
from the vulnerability dataset and our repository min-
ing process) and manually filtered and cleaned them.
It means that two of the authors of this paper read
through all the lines in the vulnerability fixing patches.
We kept only those lines from the patches that we could
manually confirm belong to a vulnerability fix. Even
though it was a very labor-intensive task, it was essen-
tial to minimize the number of false-positive samples in
the VLR, thus improve prediction performance. Table 2
shows the descriptive statistics of the final dataset we
ended up with after the manual evaluation.

Project count 91
File count 122

Function count 443
Patch count before review 614
Patch count after review 186
Remaining patch amount 30%
Amount of vulnerable lines 893

Average vulnerable lines per project 9.8

Table 2. Descriptive statistics of the dataset used

4https://cve.mitre.org/cve/

https://cve.mitre.org/cve/
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file_lines The total number of lines in a fold
flagged_lines The number of lines flagged as vulnerable
vuln_lines The number of lines confirmed to be vulnerable
flagged_vuln_lines The number of confirmed vulnerable lines flagged as vulnerable
%_flagged The percentage of file_lines flagged as vulnerable (i.e., efficiency)
%_is_vuln The percentage of flagged_lines confirmed to be vulnerable (i.e., precision)
%_vuln_flagged The percentage of vuln_lines being flagged (i.e., recall)

Table 3. Our measures and their short descriptions

3 Results
3.1 Case Study Setup and Performance

measures
To evaluate the actual performance of the proposed
vulnerability prediction method, we carried out a case
study. We split the patches in the dataset described in
Section 2.3 into two sets in a 90%-10% ratio. We used
the 10% 𝑑𝑒𝑣 set to define the threshold needed to derive
a prediction (see Section 2.2). On the remaining 90% of
the data, we applied 10-fold cross-validation, meaning
that we randomly split it into an 80%-20% 𝑡𝑟𝑎𝑖𝑛, 𝑡𝑒𝑠𝑡 set
ten times. In each iteration, we used the vulnerable lines
from the 𝑡𝑟𝑎𝑖𝑛 set as the VLR and applied the prediction
method to every line of the JavaScript projects with the
patches in the 𝑡𝑒𝑠𝑡 set. We evaluated the performance
of the predictions in each iteration and calculated their
averages across the ten folds.
Since our proposed method is not a classical ML

model, we can express its performance in terms of cor-
rectly classified vulnerable code lines (i.e., precision),
amount of identified vulnerability lines compared to
all vulnerable lines (i.e., recall), and the total amount of
lines predicted to be vulnerable compared to the total
number of lines in the SUT (i.e., efficiency). For a com-
plete list of collected performance measures, refer to
Table 3.
However, one should be careful in interpreting these

measures as their meaning is slightly different from
that of a classic ML classification setup. We consider
the pair of efficiency-recall to be the most expressive
performance measure. For example, a 10%-60% ratio
would mean that we can narrow down the location of
the potential vulnerabilities into 10% of the source code,
where we could find 60% of all the vulnerabilities.

3.2 Prediction Performance of the Method
To present the current predictive performance of our
method, we performed 10-fold cross-validation on our
dataset, the results of which are presented in Table 4.

The table contains the results when we apply no addi-
tional rules (NR postfix) for filtering the results, just the
word2vec distance of the corresponding vectors, and
the case when complexity rule (see Section 2.2.2) has
been applied (CR postfix). We show not only the aver-
age of the ten results but the minimums and maximums
as well – these are the edge cases – in which the method
performs best and worst, respectively. We determined
these edge cases by calculating the %_𝑣𝑢𝑙𝑛_𝑓 𝑙𝑎𝑔𝑔𝑒𝑑 /
%_𝑓 𝑙𝑎𝑔𝑔𝑒𝑑 ratio for each fold and choosing their mini-
mum and maximum values. This ratio can be seen in
the 𝑓 𝑙𝑎𝑔𝑔𝑒𝑑_𝑟𝑎𝑡𝑖𝑜 column of Table 4. The minimum
line shows the case when the predictive power was
the lowest, meaning that many of the vulnerable lines
remained undetected, but a relatively large portion of
the examined code was flagged. The values seen here
for the two cases are different in nature, without the
complexity rule (MiNR), the method flags fewer lines
than average; however, it also misses most of the vul-
nerable lines, on the other hand, when we apply the
complexity rule (MiCR), it finds a higher percentage of
the issues than on average but it marks a higher portion
of lines as vulnerable. The maximum line shows off the
case where the models performed the best: here both
methods manage to find all of the vulnerable lines, the
difference between them is the number of false posi-
tives, which when we do not apply the complexity rule
(MaNR) stays significantly higher as opposed to when
we do (MaCR).
The average results are not as clear cut as the other

two examples, since it shows that most of the time, the
method using the complex rule (ACR) only finds 60%
of the vulnerable lines, while without it (ANR) 82% of
the issues were detected. However, if we look at the
flagged ratio of the two, we can see that after the ap-
plication of the complex rule, it has more than doubled
to 4.74 from 1.84, meaning that the loss in the amount
vulnerable lines flagged is more than made up for, with
the decrease in overall flagged lines. In the edge cases,
the advantage of the application of the complexity rule
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file_lines flagged_lines vuln_lines flagged_vuln_lines %_flagged %_is_vuln %_vuln_flagged flagged_ratio
ANR 4639.4 2084.2 12.2 10.1 44.49 0.48 82.11 1.84
ACR 4639.4 576.8 12.2 7.2 12.43 1.24 59.01 4.74
MiNR 15139 6195 38 18 40.92 0.29 47.36 1.15
MiCR 11044 2326 26 17 21.06 0.73 65.38 3.1
MaNR 2686 1046 7 7 38.94 0.66 100.0 2.56
MaCR 2614 228 6 6 8.72 2.63 100.0 11.46

Table 4. The results of the 10 fold cross validation both with and without the complexity metric
becomes even clearer since in the minimum case it de-
tects more lines while falsely flagging less than half of
its counterpart. We can see that the complexity rule
is necessary when it comes to producing the best cur-
rently possible predictions since it performs better in
almost every existing metric.
While these metrics are promising, their deviation,

especially in the edge cases is quite substantial, which
is likely caused by the relatively low size of our current
dataset, leading to fewer certain matches in with the
vulnerable lines. The lack of data can also be the cause
of the high false-positive rates since we have to use a
smaller acceptance threshold, allowing fewer certain
matches to also be accepted.
3.3 A Sample from the Results and its Proof
We picked a concrete sample from the case study re-
sults and showed its proof, too, to demonstrate the inner
working of our prediction method. Figure 3 displays a
line from the 𝑡𝑒𝑠𝑡 set, which we correctly predicted to
be vulnerable (red line). We also put there its modifica-
tion that appeared in the vulnerability fixing patch for
reference. The proof for this correctly predicted vulner-
able line is shown in Figure 4. We display also its fix
appearing in a mitigation patch.
As can be seen, both lines contain security issues

related to a Path Traversal vulnerability. 5 Even though
they show some degree of similarity, for example, there
is a 𝑝𝑎𝑡ℎ operation within another call, which also hap-
pens to contain a string literal expressing a relative
path, but they would be hard to match with any known
copy detection tools. Nonetheless, our method applies
a lexer to the code lines and produces their tokenized
form shown in Listings 1 and 2.

IdentifierName = IdentifierName (

IdentifierName . IdentifierName (

IdentifierName ) , ! IdentifierName

, StringLiteral ) ;

Listing 1. The tokenized form of a sample from
predicted vulnerable lines

5https://owasp.org/www-community/attacks/Path_Traversal

IdentifierName = IdentifierName .

IdentifierName ( IdentifierName .

IdentifierName ( IdentifierName ,

StringLiteral , IdentifierName ) )

;

Listing 2. The tokenized form of the proof for the
sample vulnerable line

Even though they are still different, their average
word2vec vectors will be very similar as there are lots
of similar token types in them. This causes a highmatch
probability (𝑃𝑑𝑖𝑠𝑡 (𝑙𝑖𝑛𝑒𝑐𝑜𝑑𝑒) = 0.965) between the two
lines. Given the fact that the lines are not trivial, con-
tain many different token types, their complexity score
(𝑃𝑐𝑜𝑚𝑝𝑙 (𝑙𝑖𝑛𝑒𝑐𝑜𝑑𝑒) = 0.889) will be high as well. The av-
erage of the two, therefore, becomes higher than 0.92,
so our method correctly flags the line shown in Figure 3
as vulnerable supported by proof as in Figure 4.

3.4 Discussion of Results
As demonstrated in the previous sections with both
the 10-fold cross-validation values and the concrete ex-
ample, our method is more than capable of producing
valuable results, not only in the sense of noticing real
vulnerabilities but also in producing accurate predic-
tions. Our complexity rule proved useful in decreas-
ing the number of flagged lines while keeping most
of the vulnerable ones. Despite the imbalance in our
dataset, the method is finding most of the vulnerable
lines, meanwhile only flagging less than 13% of all of
the available options. In an ideal situation, with a more
extensive VLR, this could mean that one would only
need to check about 10% of their code to find 6̃0% of the
potential vulnerabilities if one was using our method
to look through their code. Similar numbers are pre-
sented in past works [16] at a file level, so we think that
reaching the same ratio at the source code line level is a
great achievement. Despite this, our method still needs
further refinements to be usable in a real-world setting.
In our experience, the method usually flags a large

yet mutually independent number of the file’s lines at
hand, in which case it does not improve the debugging

https://owasp.org/www-community/attacks/Path_Traversal
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Figure 3. A sample vulnerable line predicted correctly and its actual fix

Figure 4. The proof line for the prediction and its actual fix
experience considerably. The amount of lines flagged
is still too high in comparison to the amount of truly
vulnerable lines. We intend to improve this issue by
either creating new, more sophisticated rules to deal
with the intricacies of written code or changing the way
our current rules are being calculated. In the case of
the complexity rule, for example, the function used to
create the final result is somewhat arbitrary and could
be further improved.

4 Related Work
Although using machine learning for predicting vulner-
able software components is quite a new area, there are
already numerous studies available.

File level. Shin et al. [16] performed an empirical
case study on two large codebases, investigating if code
complexity, code churn, and developer activity metrics
can be useful in vulnerability prediction. Their used
metrics were interpreted on files. The results showed
that the metrics are discriminative and predictive of
vulnerabilities. On Mozilla’s codebase, their model pre-
dicted 70.8% of known vulnerabilities, and on Red Hat’s
Linux kernel it achieved 68.8%.
Chowdhury et al. [3] created a framework to pre-

dict vulnerable files relying on the CCC (Complexity,
Coupling, and Cohesion) metrics [2]. They compared
four statistical and machine learning techniques. The
authors concluded that decision-tree-based techniques
outperformed statistical models in their case.
In their work, Morrison et al. [11] built a model by

replicating the prediction model proposed by Zimmer-
mann et al [22]. Their model is built for both binaries
and source code and used several code metrics at the file
level. They figured out that vulnerability prediction at
the binary level is not practical as it takes toomuch time
to inspect the flagged binaries. Their results for source
code metrics-based models showed a precision below
0.5 and a recall below 0.2. The authors checked several

learning algorithms, including SVM, Naive Bayes, ran-
dom forests, and logistic regression. On their dataset,
Naive Bayes and random forests performed the best.
In their work, Yu et al. proposed the HARMLESS [21]

approach, a cost-aware active learner that predicts vul-
nerabilities. They used a support vector machine-based
prediction model and a semi-supervised estimator to
estimate the remaining vulnerabilities in the codebase.
In its actual run, HARMLESS suggests source code files
that are most likely to contain vulnerabilities. They
also used Mozilla’s codebase in their study, with three
different feature sets: metrics, text, and the combina-
tion of text mining and crash dump stack traces. Their
results showed that HARMLESS finds 60-99% vulner-
abilities by inspecting only 6-34% of source code files,
and when targeting at 90, 95, 99% recall, HARMLESS
can stop at 23, 30, 47% source files inspected. They also
outperformed their previous study’s [20] recall and cost
value.
Jimenez et al. [8] developed VulData7, an extensible

framework (and dataset) of real vulnerabilities, auto-
matically collected from software archives. VulData7 is
a general framework that contains vulnerabilities for
four security-critical open source project languages at
the file level. However, their framework contains a lot of
data, so an additional processing step is needed before
the data can be used for predicting vulnerabilities.
In their work, Neuhas et al. [12] introduced their ap-

proach, so-called Vulture (with a corresponding tool),
which can predict vulnerable components in the source
code relying on the dependencies between the com-
ponents. A component in their approach is a header-
source pair (where both are available, source file other-
wise) for C/C++ (andwould be a .java file for Java). They
analyzed dependencies and function calls in between
the components and used SVM for classification. Their
classifier identified half of the vulnerable components
in the system. Two third of the predicted components
were correct.
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File level Class level Function level Block \ Line level
Pascarella et al. [14] •
Giger et al. [5] •
Basili et al. [1] •
Palomba et al. [13] •
Ferenc et al. [4] •
Siavvas et al. [18] •
Jimenez et al. [8] •
Neuhas et al. [12] • •
Shin et al. [17] •
Shin et al. [16] •
Morrison et al. [11] •
Chowdhury et al. [3] •
Yu et al. [21] •

Table 5. Summary of the related work

Class level. Siavvas et al. [18] investigated the re-
lationship between software metrics and specific vul-
nerability types. They used several class-level metrics
and found that software metrics may not be sufficient
indicators of specific vulnerability types.
In their work, Basili et al. [1] used a suite of object-

oriented design metrics [2] as predictors of fault-prone
classes, using a statistical approach. In contrast, our
approach is mainly based on machine learning.
Palomba et al. [13] created a new model to predict

bugs for smelly classes. They evaluated several predic-
tion models: the best results were obtained using the
Simple Logistic model. They also used several metrics
and introduced a new metrics called intensity that is
created by a third-party tool JCodeOdor.

Function level. Shin et al. [17] proposed an empir-
ical model to predict vulnerable functions from static
source code complexitymetrics. They used theWilcoxon
rank-sum test and binary logistic regression analysis
in their study. They showed that vulnerable functions
have distinctive characteristics that separate them from
“non-vulnerable but faulty” functions.

Giger et al.[5] presented method-level bug prediction
models using change and source code (size and com-
plexity) metrics based on the CK metrics suite. Their
models reached a precision of 84% and recall of 88%.
Ferenc et al. [4] presented a study using eight ma-

chine learning algorithms to predict vulnerable JavaScript
functions. They constructed a data set (consisted of
static source code metrics, and vulnerability data from
NVD6, along with patches collected from GitHub) and

6National Vulnerability Database

used that to train and test the algorithms. Their best
results came from a KNN and reached a precision of
91% and recall of 66%. Although this study might be
similar to ours, the used algorithms and predictors are
differing from ours. Besides, their collected data can
only be useful at the method level.
Pascarella et al. [14] replicated previous research by

Giger et al. [5] on method-level bug prediction on differ-
ent systems. They also proposed a more realistic evalua-
tion strategy than the original research they replicated.
The used more realistic strategy made a significant per-
formance drop to all of the models, so their final results
were close to a random classifier.
Table 5 summarizes the related papers according to

their level of prediction.

5 Threats to Validity
Next to the promising results, we also summarize the
possible threats to their validity.
The creation of the vulnerable line repository, which

is the basis of our prediction method, is based on a man-
ually evaluated vulnerability fixing patch set. As with
any human evaluation, this is also a subjective process.
To ensure the objective assessment of real vulnerable
code lines, two of the authors evaluated the patches
independently. Four disagreements arose during this
process when they debated the acceptance of ambigu-
ous cases. In these cases, if upon further investigation
they were unable to come to a clear conclusion, the line
was not marked as not vulnerable and has been left out
of the VLR to minimize the possibility of false positives.
The size of the sample vulnerability dataset is not

large; therefore, study results show a significant level
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of deviation depending on the train, test split of the
data. To minimize its effect, we applied a 10-fold cross-
validation approach and calculated the mean perfor-
mance measures to better reflect the true capabilities
of the proposed approach. However, the generality of
the results can be ensured further only by expanding
the training dataset.
The approach of finding vulnerabilities line by line

might be an oversimplification. Lots of vulnerability
fixes span over multiple lines and can be assessed by
looking at a larger portion of the code at the same
time. However, our experiences show that a significant
portion of the fixes (23% in our dataset) consists of only
one line, in which case our method works perfectly.
Moreover, even in the case of multi-line fixes, there are
key lines, which mitigate the security issue that we can
recognize separately.

6 Conclusion
Vulnerability prediction models are highly desirable, so
they attract a lot of research focus. The vast majority of
the state-of-the-art approaches apply machine learning
to build such models. In this paper, we proposed a novel
method for vulnerability prediction, which goes beyond
the state-of-the-art in two aspects: explainability and
granularity.
Our lightweight solution is based on a set of manually

evaluated real-world vulnerability fixing patches and
the word2vec vector similarity of source code lines. We
built a reference set of vulnerable source code lines
and proposed an algorithm to find source code lines
in a subject system that are very close to one of our
reference lines. When similarity between an analyzed
line and a line from our reference set is above a certain
threshold and several other rules also apply, we predict
the line to be vulnerable. The method is simple but
bears an abundance of favorable properties most of the
state-of-the-art approaches lack.
First, the method is lightweight, does not rely on

heavy machine/deep learning models, which require an
enormous amount of training samples. The only step
where actual model training happens is the creation of
word2vec vectors, which is a step that needs to run only
once. Second, the prediction results are provided at the
level of source code lines and not functions or files. It
allows the developers to immediately reason about the
correctness of the prediction and take immediate ac-
tions if necessary. Third, to further support reasoning
about the results, our method shows an explanation (i.e.,

proof) of the prediction. It is themost similar vulnerable
line from the reference set, which can help developers
understand the reason for their line being shown as vul-
nerable, and allow them to more easily decide, whether
further action is required or not. Fourth, it is easy to im-
prove the performance of the model iteratively during
its usage. For this, only the newly confirmed vulnerable
lines should be put into the reference set; no further
model training is necessary.
Although themethod is far from perfect, it is a promis-

ing step towards an actionable and explainable vulner-
able prediction model. We demonstrated its applicabil-
ity with a case study on 186 real-world and confirmed
JavaScript vulnerability fixes of 91 projects, where the
method could flag 60% of the known vulnerable lines on
average by marking only 10% of the code-base, but in
some cases, the model identified 100% of the vulnerable
code lines while flagging only 8.72% of the code-base.
That result is already compelling but could be further
improved. We plan to apply a smarter aggregation of
word2vec vectors to reflect the order of the tokens as
well, for example, by applying the doc2vec approach.
Defining additional rules that help further decreasing
the false positive rate is also among our plans.
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