
Don’t DIY: Automatically transform legacy Python
code to support structural pattern matching

Abstract—As data becomes more and more complex as technol-
ogy evolves, the need to support more complex data types in pro-
gramming languages has grown. However, without proper storage
and manipulation capabilities, handling such data can result in
hard-to-read, difficult-to-maintain code. Therefore, programming
languages continuously evolve to provide more and more ways to
handle complex data. Python 3.10 introduced structural pattern
matching, which serves this exact purpose: we can split complex
data into relevant parts by examining its structure, and store
them for later processing. Previously, we could only use the
traditional conditional branching, which could have led to long
chains of nested conditionals. Maintaining such code fragments
can be cumbersome. In this paper, we present a complete
framework to solve the aforementioned problem. Our software
is capable of examining Python source code and transforming
relevant conditionals into structural pattern matching. Moreover,
it is able to handle nested conditionals and it is also easily
extensible, thus the set of possible transformations can be easily
increased.

Index Terms—Python, AST, structural pattern matching, code
transformation

I. INTRODUCTION

Python 3.10 introduced structural pattern matching to make
complex data handling easier, as well as to make the cor-
responding code easier to read and maintain. It allows us
to make conditional branching based on the structure of the
data, and to destructure the data into smaller parts for later
processing. Previously, we only had the traditional if-elif-else
structure to do so, which could have resulted in deeply nested
conditionals. Many programming languages support some
form of structural pattern matching. Originally, the feature
was first implemented in functional programming languages,
like Scala [12] or Haskell [7]. Other languages like C# [3]
or Java [11] partially implement structural pattern match-
ing, however, some elements are missing from the offered
feature. C++ supports structural pattern matching with the
corresponding library called Mach7 [16]. JavaScript supports
object destructuring, however, it does not support structural
pattern matching yet. 1

In this paper, we introduce our framework which can trans-
form traditional conditional branching to the newly introduced
structural pattern matching in such a way that the program’s
behavior remains unchanged, but the transformed source code
becomes easier to read and maintain.

The paper is organized as follows. In Section II, we enu-
merate the related literature. The rules of structural pattern

1The feature is already proposed (and in draft state): https://github.com/
tc39/proposal-pattern-matching

matching and how it works are described in Section III. We
introduce our transformation framework in Section IV. The
implemented transformations are presented in Section V, then
we present our evaluation process in Section VI. Finally, we
conclude the paper in Section VII.

II. RELATED WORK

Refactoring was first defined by Martin Fowler [6]. Ac-
cording to his definition, the behavior of the code should
not change, but the structure of the source code should be
improved. Refactoring can have many purposes [10], e.g.,
improving readability. Regardless of the purpose, we can
refactor our code manually, or by a tool, automatically. Source
code is most often represented in a tree-based data structure
(Abstract Syntax Tree (AST)). Most compilers and static
analyzers [1], [5] use this representation for further analysis.

Automatic transformation can support compatibility be-
tween programming language versions. For example, due to
backward compatibility issues, 2to3 [14] was developed to
convert source code written in Python 2. Similarly, in legacy
environments, it can be useful to enable the use of newer
language features, for which Antal et al. [2] created an
automatic tool that can transform C++11 code into C++03.

Most IDEs include some kind of refactoring framework
too. 2 There are, however, frameworks specifically designed
for refactoring, where one can define exactly what to refactor
and how to refactor. For example, the ROSE framework [19]
for processing C, C++, and Fortran source code; Proteus [18]
for C/C++ code; and the Spoon [13] framework for Java.

III. STRUCTURAL PATTERN MATCHING

Programming languages provide numerous ways to handle
complex data types. One such way is structural pattern
matching, which can destructure complex data into relevant
parts and branch the execution depending on the structure
of the data. In structural pattern matching, the two main
factors are the data (the Subject) and the defined patterns.
Pattern matching is based on the assumption that the Subject
follows a certain structural pattern that can be associated with a
specific data processing method (which is specifically designed
to handle the data of the defined structure). If there is also a
specific condition that is independent of the pattern, we speak
of conditional pattern matching. From the combination of
several patterns and the associated data processing operations,

2For example, the refactoring framework in IntelliJ IDEA: https://www.
jetbrains.com/help/idea/refactoring-source-code.html

https://github.com/tc39/proposal-pattern-matching
https://github.com/tc39/proposal-pattern-matching
https://www.jetbrains.com/help/idea/refactoring-source-code.html
https://www.jetbrains.com/help/idea/refactoring-source-code.html


we are able to create a system that can ensure that the
data is handled based on its structure, either conditionally
or unconditionally [9]. The primary “output” of the pattern
matching process is the success of the match, but a secondary
outcome can be the assignment of values to variables that
match the sample, i.e. the destructured data.

A. Structural pattern matching in Python

In this section, we briefly summarize the use of structural
pattern matching in Python 3.10,3 its functionality, and the
rules that are very important for understanding the transfor-
mation framework later on. If the reader wishes to explore
the topic of structural pattern matching in more depth, we
recommend the official proposals PEP634 [4], PEP635 [8],
and the paper [9] written by the feature’s developers.

Prior to Python 3.10, structural pattern matching was only
available in a very limited form. From sequential data, it is
possible to extract data and assign them to variables (called
“Iterable unpacking” 4). However, it may not always make
sense to store data in sequences; as it may be more convenient
to use graph structures or classes and objects to represent
the data. Handling the latter data types requires several
nested if-elif-else structures, and the use of reflective methods
like isinstance, hasattr, etc. Promising a more elegant and
readable solution [17], complete structural pattern matching
was introduced in Python 3.10. The syntax is similar to
the switch/case structure found in other languages, but it
supports more complex patterns, as can be seen in Listing 1.

match obj: # obj is the Subject

case Cat(color="Orange", weight = "a lot"):

give_food(obj, Lasagne())

case Cat(color="Black" | "Gray"): # Sub-patterns

turn_around()

case Cat(color = c) if cat_affinity > 0: # Guard

print(f"Its a {c} cat!") # Using binding

case _: # Wildcard branch

raise ValueError("Object is not a cat!!")

Listing 1: Summary example of using Python structural pattern
matching

Overview. The pattern matching process expects a pattern
and a value (the Subject) as its “input”. Perhaps the simplest
way of describing the process is: “The value of the Subject is
fitted to the pattern”. In the case of a successful match, some
patterns can assign the Subject (or part of it) to a new local
variable (Binding), which can be used later (even outside
the pattern matching block). In case of a failed match, the
behavior of the binding process is intentionally unspecified
to avoid semantic constraints that could limit the subsequent
extension of Binding [4]. A pattern may contain one or more

3https://docs.python.org/3/whatsnew/3.10.html
4PEP 3132, https://peps.python.org/pep-3132/

sub-patterns. Sub-patterns are evaluated from left to right until
the success of the pattern matching is determined.

Each branch can have an extra condition called Guard,
which is in fact just a logical expression that is evaluated only
if the pattern is successfully matched. While the pattern can
only test the Subject, no such constraint is applied to the
Guard.

Keywords, definitions. The match keyword indicates the
start of the pattern matching block. The keyword must be
followed by the Subject, the value of which will be used in the
pattern matching process. This is followed by the branches (the
usual Python indentation rules apply). A new branch is defined
with the keyword case, then we need to specify the pattern
which the value of the Subject will be matched against. After
the pattern, one can specify a Guard with the if keyword.
Finally, this is followed by the code block that is executed on
a successful match (the usual Python indentation rules apply).
It is possible to define a “default” branch using irrefutable
patterns. Since branches are evaluated from top to bottom,
only the last branch can be defined as such.

B. Patterns

Patterns have two main roles in pattern matching: they
impose (structural) constraints on the Subject, and they define
which values of the Subject should be assigned to new
variables. In contrast to the traditional iterable unpacking, there
is no error generated in case of a failed match. For this reason,
efforts have been made to keep the side effects of the patterns
to a minimum. It is not allowed to assign values to attributes
of objects or indexed values. Therefore, values can only be
assigned to new local variables.

Patterns could be understood as declarative elements, com-
monly found in formal parameters of function definitions, as in
they are not (and cannot contain) expressions. In this paper, we
present only the patterns that are essential for understanding
the transformation process. All patterns can be found in the
corresponding PEPs [4], [8].

Class Pattern The class pattern has two main functions:
to determine whether the Subject is really an instance of
the given class defined in the pattern, and to match patterns
to specific attributes of the Subject. The attributes of the
Subject can be referenced by positional arguments, and by
keyword arguments. The class of the Subject is verified by
an isinstance call.

Literal Pattern. The literal pattern allows you to set
constraints not on the structure of the Subject, but on its value.
The Subject′s value and the value defined by the pattern are
compared using Python’s general equality test (x == y). The
possible values are, as the name of the pattern implies, Python
literals. Expressions cannot be used in the patterns, so format
strings, ranges, etc. cannot be used.

Singleton Pattern. The singleton pattern is very similar
to the literal pattern, with the only difference being that it
compares the value of the Subject by identity (x is y). It is
mainly used to compare the Subject to the True, False,
None singleton triple.

https://docs.python.org/3/whatsnew/3.10.html
https://peps.python.org/pep-3132/


OR Pattern. As its name implies, the or pattern is similar to
the or keyword in Python. It can be used to combine multiple
sub-patterns, and if one is successfully matched, the whole
pattern is successfully matched. Variable assignment within
the or pattern is only possible if all sub-patterns assign values
to the same set of variables. The sub-patterns will be evaluated
in order, from left to right.

Assigning patterns. The job of an assigning pattern is to
assign the value of the Subject to an arbitrary name. Since
assigning patterns does not set any constraints on the structure
and/or the value of the Subject, they are grammatically
irrefutable. One such pattern is the Capture Pattern and its
special variant, the Wildcard Pattern. The form of Capture
Pattern is a name. The pattern takes any value and assigns the
value to this name, which will serve as a local variable. The
same name cannot be used more than once within a pattern for
assignment. The Wildcard Pattern accepts any value but does
not create a new local variable. To use it, the ’ ’ character must
be used, which is a special character reserved for the same
purpose in other programming languages that use structural
pattern matching. The AS pattern can be used to define an OR
pattern, and assign the Subject to an arbitrary name using the
as keyword.

IV. TRANSFORMATION FRAMEWORK

The source code transformation is controlled by the transfor-
mation framework. When designing the system, we put great
emphasis on the possibility of future extensibility. Since the
framework is practically a command line program, it can easily
be integrated into any CI/CD system.

The system consists of two main parts. The analysis system
(Analyzer from now on) uses a plugin structure.1 Plugins
represent the recognisable patterns. The task of the Analyzer
is to recognize the AST received as input with the defined
patterns, perform the necessary checks, and save which nodes
of the received input are transformable with which plugins.
The actual transformation of a node is executed by the
transformer module (henceforth Transformer), the tasks
of which include, among others, reading the source files,
transforming them into ASTs, initializing the Analyzer, and
merging the transformed code with the source files.

Using the transformation framework is very simple: the
program expects the path to the source code to be transformed
as a mandatory argument. This can be a single .py file or a
path to a folder containing an entire Python project.

The goal of the framework is to increase readability and
maintainability, which is of course a very subjective matter.
Fine-tuning the refactoring process can be done in the provided
config.ini file. Because of the structure of the Python AST,
each Python file must be treated as a separate entity, so as
a first step, the tool finds all .py files. The overview of the
transformation process is shown in Figure 1.

Transformer. It is the job of the Transformer to handle
the transformation of a single file. After converting the source

1https://en.wikipedia.org/wiki/Plug-in (computing)

file into an AST, the AST is passed to the Analyzer. Using its
results, the transformations are performed on the AST. After
that, the AST gets converted back to source code. Converting
the AST back to source code can lead to unnecessary changes
in the file (e.g. missing comments) [15], therefore, it is the job
of the Transformer to merge the transformed code segments
with the original source code. The Transformer also checks
the source and the transformed files for grammatical errors. In
the case of an error, it reverts the transformation of the file
and notifies the user within the log about the location and
the nature of the error. Several optional features are included
within the Transformer, all of which are explained later in
this section.

Analyzer. The Analyzer is responsible for examining the
AST of the source code received as input. During prepro-
cessing, it extracts the code fragments to be analyzed from
the AST, which it breaks down into further, more manageable
syntactic units, Branches. The Transformer gets from the
Analyzer the list of branches that can be transformed, and
the way to transform them. We only summarize the tasks of
the Analyzer here, the process of analyzing and transforming
the AST will be explained in more depth in Section V-A.

A conditional statement can only be transformed if all of its
Branches are recognized by at least one Plugin. Therefore,
it is the task of the Analyzer to pass each Branch to the
plugins. If a conditional statement contains a Branch that
is not recognized by any plugin, then the statement is not
transformable. Otherwise, additional checks are required.

It is also the Analyzer′s job to make sure, that inside
the to-be-transformed conditional statement, every Branch
considers the same variable as their Subject. If each Branch
can be recognized by at least one plugin, but they cannot
“settle” on a common Subject, then the conditional statement
is not transformable.

Plugins. Perhaps the most important, and yet smallest, part
of the framework, plugins are responsible for implementing
mappings between the conditions of Branches and the pat-
terns of Cases. Their task is to recognize a pattern, determine
its possible Subjects, and transform it. For each pattern, there
is a set of variable names that contains the Subjects that can
be used to transform the pattern. Using these, the Analyzer
determines the Subject of the entire conditional statement.

Some patterns may contain sub-patterns, so plugins can
access each other. Thus, a kind of parent-child relationship
can be established between the patterns, where the parent
pattern may contain one or more sub-patterns, which can be
used by the parent to determine the Subject and perform
the transformations. Furthermore, “complex” patterns can be
defined, which can access and even modify their parent pattern.
This is necessary in cases where several sub-patterns can be
merged into a single, “complex” pattern.

Configuration options. Several features of the framework
can be customized in the config.ini configuration file. The
Transformer is capable of transforming the bodies of
untransformable conditional statements. Since comments are
not preserved in the AST, converting the transformed AST

https://en.wikipedia.org/wiki/Plug-in_(computing)


Start

Create AST 
from input Preprocess Analyze the AST

Analyzer
NO

YES

Transformable?

YES

Are there 
nested blocks?

Transform and
mergePlugins

Transformer

Fig. 1: The overview of our transformation process

back to source code leads to these comments being lost.
The Transformer can collect the comments present in the
original source code if needed. We can also choose to generate
a .diff file or edit the source code in place. The Analyzer
can try to “flatten” nested conditional statements. Successful
flattening can greatly increase readability, which process is
explained more in-depth in Section V-B. We can control the
amount of code repetition in nested conditionals’ flattening.
We can also force the flattening, even in an unadvised situa-
tion. And of course, the minimum number of branches needed
in conditional statements can be also set.

V. IMPLEMENTED TRANSFORMATIONS

To understand the transformation, it is useful to highlight
the differences between conditional branching and structural
pattern matching. We know that conditional branching consists
of Branches, each of which is associated with a logical
expression (condition) and a code segment that will be ex-
ecuted if the condition is satisfied. Structural pattern matching
consists of a Subject and Cases, each of which defines a
pattern, a guard, and a code segment that runs if the Subject
matches the pattern and the guard is evaluated to true. Hence,
every conditional branch is transformable into an equivalent
structural pattern by only using irrefutable patterns, and putting
the original conditions into guards (see Listing 2).

if number == 0:

print("It's zero!")

elif 1 == number:

print("It's one!")

else:
print("Default answer!")

⇒

match number:

case _ if number == 0:

print("It's zero!")

case _ if 1 == number:

print("It's one!")

case _:
print("Default answer!")

Listing 2: A seemingly unnecessary, but grammatically and
logically correct transformation

Clearly, this kind of transformation looks ugly and unnec-
essary, as it does not improve readability. To avoid these kinds
of transformations, we define a mapping, which is able to form
a pattern from an input logical expression.

This mapping not only has to provide the pattern from the
input logical expression, but must also be able to determine
the “subject” of the condition given.

This mapping is implemented by the plugins. Their job is
to guarantee that the transformed pattern will only match the

determined subject if and only if the input boolean expression
would evaluate to true with the same value assigned to this
subject. We are presenting the implemented plugins, which,
not coincidentally, correspond to the structural patterns pre-
sented in III-B. To avoid any confusion, when we talk about
structural patterns we follow the Literal pattern notation, while
for the plugins we use the LiteralPattern notation.

A. Recognizable patterns

Recognizable structural patterns are represented by plugins.
Their task is to transform logical expressions into the structural
pattern they represent, and to determine the expression’s
“subject”.

LiteralPattern. The simplest, but perhaps the most com-
monly recognized pattern. It can be used to detect condi-
tions that compare the value of the Subject to a constant
value. It can recognize conditions of the form subject ==
literal and subject is singleton. In both cases,
the name of the Subject and the value of the constant can
easily be determined. The pattern matching process compares
the value of the Subject and the pattern-defined constant in
the exact same way, so we can be sure that the condition
and the pattern are equivalent. As previously mentioned, the
singleton values True, False and None are matched similarly.

if a == "yes" or a is True:
continue

elif a == "no" or a is False:
break

⇒

match a:

case 'yes' | True:
continue

case 'no' | False:
break

Listing 3: An example transformation using OrPattern with its
sub-patterns being Literal patterns.

OrPattern. This plugin’s job is to recognize conditions that
separate several expressions with the or keyword. Therefore
it can recognize conditions of the form E1 or E2 (or
En)*.5 Every inner expression is considered to be a sub-
pattern to be recognized by other patterns. These sub-patterns
have to refer to a common Subject in order for the Or
pattern to be transformable. Assuming that every sub-pattern
is equivalent to their respective expression, we can determine
that the whole logical expression and the transformed pattern

5We use a hyphen to denote an arbitrary number of occurrences, as in
formal grammars.



are also equivalent. Listing 3 shows an example of a successful
OrPattern transformation.

GuardPattern. The GuardPattern recognizes conditions of
the form E1 and E2 (and En)*. The expressions are
considered to be sub-patterns that are recognized by other pat-
terns. The GuardPattern can only transform the given condition
if at least one of the expressions is recognizable, and has the
appropriate Subject. If there is more than one recognizable
expression, then the GuardPattern is capable of adapting to the
rest of the Branches in the conditional statement by selecting
the expression with the appropriate Subject (see Listing 4).
Once an expression is selected, the rest of the expressions
have to be put into the pattern’s guard, unless the selected
expression is considered to be a “complex” pattern, in which
case that pattern gets control of the GuardPattern to potentially
“merge” expression from the guard into itself. The Guard
pattern can only be transformed if it is a parent pattern, since
sub-patterns cannot have a guard. Assuming that the chosen
pattern is equivalent to its corresponding expression, the Guard
pattern is equivalent to the full condition.

if (a == 2) and (b == 4):

something()

elif (b == 8 or b == 9) and c():

something_else()

⇒

match b:

case 4 if a == 2:

something()

case 8 | 9 if c():

something_else()

Listing 4: An example of using GuardPattern, where the
second branch fixes the Subject.

ClassPattern. The ClassPattern recognizes expressions of
the form isinstance(obj, cls). The Class pattern can-
not only impose conditions on the Subject’s class, but it can
also match patterns on its attributes too. Therefore, if a Class
pattern is found within the sub-patterns of a Guard pattern, the
ClassPattern gets the chance to merge other sub-patterns into
itself. If another pattern’s recognized Subject is an attribute
of the Class pattern’s Subject, then that pattern can be used
as a sub-pattern assigned to a keyword attribute. The second
argument of the isinstance function can be a tuple of
classes. This can be handled by the ClassPattern using the
Or pattern (see Listing 5). Assuming that every argument’s
sub-pattern is equivalent to the relevant logical expression,
we can conclude that the Class pattern as a whole is also
equivalent to its original expression, since it only recognizes
the isinstance function call, which is also used during the
pattern matching process.

B. Nested conditional statements

By nesting conditional statements, we can ensure that the
nested condition is only evaluated after the parent condition
has been evaluated to true. It also provides the possibility to
run arbitrary code between condition evaluations.

Recursive transformation. The simplest way to transform
nested conditional branching. Embedded branches are trans-
formed recursively, so code segments of any depth can be

if isinstance(obj, (A, B, C)):

something()

elif isinstance(obj, (D, E)) and obj.attr == 1:

something_else()

⇓

match obj:

case A() | B() | C():

something()

case D(attr = 1) | E(attr = 1):

something_else()

Listing 5: Operation of the ClassPattern if multiple classes are
given in the condition

transformed. This only happens when the parent condition is
not transformable.

Flattening. Since the body of the nested branch will
only execute if the parent branch’s condition and the nested
branch’s condition evaluates to true, we can say that nesting
the conditions is equivalent to using the and keyword. By
exploiting this, it is possible to ”flatten” nested conditional
statements, i.e. to merge parent and nested branches. For
each nested condition, the parent condition is added using
the and keyword. Furthermore, if there were code segments
within the parent branch before or after the nesting, they are
repeated and added to the beginning and to the end of all
new branches, so“flattening” may introduce code repetition.
Since this transformation introduces the and keyword, it is
clear that the transformed expression will be recognized by
the GuardPattern. To avoid putting too many conditions into
the guard, the transformation will only occur if the flattened
branches can be further compressed via a complex pattern,
otherwise the resulting flattened branches would be “ugly”.
See Listing 6 for an example of this process.

if isinstance(obj, Cat):

if obj.color == 'black' or obj.color == 'gray':

turn_around()

elif obj.color == 'orange' and obj.weight == 'a lot':

give_lasagne()

else:
ignore_cat()

⇓

match obj:

case Cat(color='black' | 'gray'):

turn_around()

case Cat(color='orange', weight='a lot'):

give_lasagne()

case Cat():

ignore_cat()

Listing 6: An example of an ideal “flattening”.

VI. TESTING AND EVALUATION

We evaluated our framework from two aspects: the cor-
rectness of the transformations, and the usability in practice.



TABLE I: Details of the projects and their run times (seconds) and memory usages (MiB)

Project SLOC NF NNE NT 1 thread 2 threads 4 threads 6 threads 12 threads
Time Memory Time Memory Time Memory Time Memory Time Memory

InstaPy6 13,405 38 1001 17 1.54 65.63 0.89 82.90 0.60 119.38 0.58 152.71 0.68 247.55
discord.py7 30,474 144 2325 28 2.96 65.47 1.59 86.22 0.93 120.92 0.78 157.48 0.72 255.88
pylint8 58,896 1276 3787 55 8.54 69.34 4.32 91.30 2.54 129.46 2.08 167.22 1.69 271.71
keras9 156,344 687 7342 124 13.81 78.80 6.91 107.41 3.82 141.18 2.96 188.70 2.36 308.56
django10 326,138 2129 9209 130 20.90 80.93 11.04 111.95 7.43 152.37 5.75 200.38 4.30 324.75
pandas11 358,075 1355 12,496 243 28.59 82.17 14.53 106.34 7.92 156.37 6.09 200.90 4.76 336.77

First, during development, we used regression testing in order
to test the functionalities of the framework. To automate this
process, we created a script that runs the tests and compares
the transformed files with the reference files.

To test the usability of the framework in practice, we
selected some of the most popular open-source Python reposi-
tories from GitHub that are listed in Table I. We also measured
both run time 12 and memory usage on an average computer.
We ran the framework with the default configuration on each
project 3 times. In Table I, we can see the details of and the
results of the projects: the lines of code (SLOC), the number of
files (NF), the number of nodes examined (NNE), the number
of transformations (NT), and the measurements data on 1,
2, 4, 6, and 12 threads. To summarize, 597 transformations
were made on the 6 projects, all of which were manually
validated by two of the authors. Most of them looked useful,
however, some transformations seemed to be unnecessary
as the transformed code was as readable as the original.
We would like to note that there are several configuration
options that could have been used to avoid the unnecessary
transformations. We also asked 15 developers, with various
Python programming skill levels (academics and industrial
experts). They all agreed, that most of the transformations
made the code more readable. Not surprisingly, the runtime
is observed to be directly proportional to the lines of code in
the transformed project.

VII. SUMMARY

Refactoring traditional conditionals might be a very
resource-intensive tasks to do by hand, and there is always
room for mistakes. In this paper, we have presented a complete
framework that can transform legacy Python code to support
structural pattern matching. Our solution automatically ana-
lyzes and refactors the source code using Python’s AST (while
preserving the comments). We presented a brief introduction
to structural pattern matching and described the most common
patterns that exist in Python. We described how the analyzer
and transformer work and discussed the architecture and
capabilities of our system, as well as the configuration options.
We also evaluated our framework from several aspects, and
found out that it could be used in practice, either as a command
line application or as a step in any CI/CD system. Moreover,
as our framework is built using a plugin system, extending the
framework’s capabilities is easy. Both the framework and the
used scripts are available in the online appendix.13

12Only the actual transformations were measured, we omitted the file
copying time.

13https://doi.org/10.5281/zenodo.6812500

REFERENCES

[1] Paul black. static analyzers in software engineering. crosstalk, the journal
of defense software engineering, pages 16–17, 2009.

[2] Gábor Antal, Dávid Havas, István Siket, Árpád Beszédes, Rudolf
Ferenc, and József Mihalicza. Transforming c++11 code to c++03 to
support legacy compilation environments. In 2016 IEEE 16th Interna-
tional Working Conference on Source Code Analysis and Manipulation
(SCAM), pages 177–186, 2016.

[3] Bill Wagner and Genevieve Warren. Pattern matching overview -
C guide. https://docs.microsoft.com/en-us/dotnet/csharp/fundamentals/
functional/pattern-matching, 2022. [Online; accessed 07-July-2022].

[4] Brandt Bucher and Guido van Rossum. Structural pattern matching:
Specification. PEP 634, 2020. [Online; accessed 07-July-2022].

[5] William Bush, Jonathan Pincus, and David Sielaff. A static analyzer
for finding dynamic programming errors. Software: Practice and
Experience, 30:775–802, 06 2000.

[6] Martin Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, Boston, MA, USA, 1999.

[7] Paul Hudak, John Peterson, and Joseph Fasel. A gentle introduction to
haskell 98, 1999.

[8] Tobias Kohn and Guido van Rossum. Structural pattern matching:
Motivation and rationale. PEP 635, 2020. [Online; accessed 07-July-
2022].

[9] Tobias Kohn, Guido van Rossum, Gary Brandt Bucher II, and Ivan
Levkivskyi. Dynamic pattern matching with python. In Proceedings
of the 16th ACM SIGPLAN International Symposium on Dynamic
Languages, pages 85–98, 2020.

[10] Tom Mens and Tom Tourwé. A survey of software refactoring. IEEE
Trans. Softw. Eng., 30(2):126–139, 2004.

[11] Stefania Loredana Nita and Marius Iulian Mihailescu. Jdk 17: New
features. In Cryptography and Cryptanalysis in Java, pages 9–19.
Springer, 2022.

[12] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Stphane
Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, and
Matthias Zenger. The scala language specification, 2004.

[13] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera,
and Lionel Seinturier. Spoon: A Library for Implementing Analyses
and Transformations of Java Source Code. Software: Practice and
Experience, 46:1155–1179, 2015.

[14] 2to3 - Automated Python 2 to 3 code translation. https://docs.python.
org/3/library/2to3.html. [Online; accessed 07-July-2022].

[15] Python AST module documentation. https://docs.python.org/3.10/
library/ast.html). [Online; accessed 07-July-2022].

[16] Yuriy Solodkyy, Gabriel Dos Reis, and Bjarne Stroustrup. Open pattern
matching for c++. In Proceedings of the 12th international conference on
Generative programming: concepts & experiences, pages 33–42, 2013.

[17] Guido van Rossum, Barry Warsaw, and Nick Coghlan. Style guide for
Python code. PEP 8, 2001. [Online; accessed 07-July-2022].

[18] Daniel G. Waddington and Bin Yao. High-fidelity c/c++ code transfor-
mation. Electronic Notes in Theoretical Computer Science, 141(4):35–
56, 2005. Proceedings of the Fifth Workshop on Language Descriptions,
Tools, and Applications (LDTA 2005).

[19] Deborah L. Whitfield and Mary Lou Soffa. An approach for exploring
code improving transformations. ACM Trans. Program. Lang. Syst.,
19(6):1053–1084, nov 1997.

https://doi.org/10.5281/zenodo.6812500
https://docs.microsoft.com/en-us/dotnet/csharp/fundamentals/functional/pattern-matching
https://docs.microsoft.com/en-us/dotnet/csharp/fundamentals/functional/pattern-matching
https://docs.python.org/3/library/2to3.html
https://docs.python.org/3/library/2to3.html
https://docs.python.org/3.10/library/ast.html)
https://docs.python.org/3.10/library/ast.html)

	Introduction
	Related Work
	Structural pattern matching
	Structural pattern matching in Python
	Patterns

	Transformation Framework
	Implemented transformations
	Recognizable patterns
	Nested conditional statements

	Testing and evaluation
	Summary
	References

