
Assessing Ensemble Learning Techniques in Bug
Prediction

Zsolt János Szamosvölgyi1[0000−0002−4216−1705], Endre Tamás
Váradi1[0000−0001−8274−8992], Zoltán Tóth1[0000−0002−2268−1877], Judit
Jász1,2[0000−0001−6176−9401], and Rudolf Ferenc1[0000−0001−8897−7403]

1 University of Szeged, Hungary
2 FrontEndART Ltd., Hungary

{szamos,idarav,zizo,jasy,ferenc}@inf.u-szeged.hu

Abstract. The application of ensemble learning techniques is contin-
uously increasing, since they have proven to be superior over tradi-
tional machine learning techniques in various domains. These algorithms
could be employed for bug prediction purposes as well. Existing studies
investigated the performance of ensemble learning techniques only for
PROMISE and the NASA MDP public datasets; however, it is impor-
tant to evaluate the ensemble learning techniques on additional public
datasets in order to test the generalizability of the techniques. We inves-
tigated the performance of the two most widely-used ensemble learning
techniques AdaBoost and Bagging on the Unified Bug Dataset, which en-
capsulates 3 class level public bug datasets in a uniformed format with a
common set of software product metrics used as predictors. Additionally,
we investigated the effect of using 3 different resampling techniques on
the dataset. Finally, we studied the performance of using Decision Tree
and Näıve Bayes as the weak learners in the ensemble learning. We also
fine tuned the parameters of the weak learners to have the best possible
end results.

We experienced that AdaBoost with Decision Tree weak learner outper-
formed other configurations. We could achieve 54.61% F-measure value
(81.96% Accuracy, 50.92% Precision, 58.90% Recall) with the configura-
tion of 300 estimators and 0.05 learning rate. Based on the needs, one
can apply RUS resampling to get a recall value up to 75.14% (of course
losing precision at the same time).

Keywords: AdaBoost · Bug Prediction · Resampling · Unified Bug
Dataset

1 Introduction

As bugs having a high cost, especially in later stages of the development of a
software, it is crucial to reveal and eliminate as many of them as we can early in
order to keep the maintenance costs low [4]. Evidently, this fact implies defect
prediction being one of the most active research area [16, 25].



2 Zs. Szamosvölgyi et al.

Recently, ensemble learning techniques have gained attention as they have
performed better than traditional machine learning approaches in various do-
mains covering a broad-spectrum [20]. Not surprisingly, ensemble learning tech-
niques have been applied for defect prediction as well [12]. AdaBoost [23] is one
of the most widely adopted ensemble learning method for bug prediction [12, 21,
27], where different base learning algorithms were investigated, such as Näıve
Bayes, Logistic Regression, Multi-Layer Perceptron, Support Vector Machine,
Decision Tree and more [18, 28].

Machine learning algorithms take the input as a series of feature vectors,
which means that one has to produce these numerical values for each entry (usu-
ally files, classes or methods). Hence, researchers tend to reuse existing datasets
in order to reduce the amount of work to be done and increase the reproducibil-
ity of their approaches. One common form of input data is where entries are
described with software product metrics such as in the PROMISE [22] or the
NASA MDP bug datasets [19]. These datasets were used by numerous stud-
ies [12, 27, 28]. In our approach, we used a different dataset, namely the Unified
Bug Dataset [10], to investigate whether the achieved results hold in general.
The Unified Bug Dataset contains bug related information for class level en-
tries, amongst others. The dataset brings different software product metric-based
datasets together, such as the PROMISE dataset [22], Bug Prediction dataset [7],
and the GitHub Bug Dataset [26].

In this study, we investigate whether AdaBoost is superior over Bagging,
both applying decision tree and Näıve Bayes algorithms as their weak learn-
ers. Related papers investigated parameter tuning only in a limited fashion or
not experimented with at all. We ran a fine-grained search for finding the best
parameter setup which includes tuning n estimators, learning rate, max depth,
min samples leaf, and the criterion (gini or entropy). Note that the latter 3 are
parameters for decision trees only.

Since bug datasets usually suffer from imbalance in their data, we also investi-
gated the effect of using various resampling methods. We employed SMOTE [5],
RUS [13], and a custom one used in the Deep Water Framework [11].

Based on the above mentioned aspects and deficiencies, we composed the
following research question to be answered in this paper:

RQ 1: Does AdaBoost performs better than other classifier methods for bug
prediction?

RQ 2: Is there any resample technique which performs consistently better than
others?

RQ 3: Which is the best weak learning algorithm and which parameter config-
uration is the most powerful?

The rest of the paper is organized as follows. In Section 2, we enumerate the
related papers, then we show the tools and techniques in details of which our
approach consists in Section 3. Next, we evaluate our approach and answer our
research questions in Section 4. The threats to validity are listed in Section 5.
Finally, Section 6 concludes the paper and gives future work directions.



Assessing Ensemble Learning Techniques in Bug Prediction 3

2 Related Work

In this section, we present the most related works to our study.
As Catal et al. showed [3], the most widely used machine learning algorithms

for bug prediction are Logistic Regression, Näıve Bayes, Decision Tree, and Ran-
dom Forest. Recently, ensemble learning techniques have started to be adopted in
the context of bug prediction. Nevendra and Singh showed that AdaBoost with
Extra Tree base learner could improve the performance of bug prediction [17],
but this technique focuses on the bug count (regression) instead of binary clas-
sification.

AdaBoost was also used to predict defects in an imbalanced dataset [12, 21,
27]. Gao and Yang tried to use Back Propagation Neural Network to fight the
imbalance in the data. We rather applied Decision Tree and Näıve Bayes base
learners and investigated whether a resampling technique can help achieving
better performance in the end. The work of Wang and Yao [27] is more close to
ours as they investigated the usability of various resampling techniques. Beside
AdaBoost, Bagging is also used as an ensemble learning technique [14], but
these were not studied together in these papers. This missing comparison was
provided by Peng et al. [18] by using Analytic Hierarchy Process (AHP) to rank
the quality of ensemble methods. They found that AdaBoost is the best method,
with the base learners of KNN, C4.5 decision tree and Näıve Bayes. Later, Khan
concluded similar results [15] when used a hybrid ensemble approach to predict
bugs. However, in their studies, they did not report any method to be applied
in order to decrease imbalance in their data. We evaluated both AdaBoost and
Bagging as an ensemble learner, with an additional resampling technique.

In a recent study, Yucalar et al. provided an exhaustive comparison of ma-
chine learning methods that are included in the popular WEKA machine learning
framework [28]. They used numerous algorithms to form a baseline to which they
compared the ensemble learning techniques. They found Rotation Forest (ROF),
Random Forest, Logic Boost, Adaboost and Voting as the best fault predictors
in terms of F-Measure and Area Under Curve (AUC). However, they did not
consider the parameters of the base learners, only the number of learners used
by the ensemble learners. In this study, we have tried to fine tune the parameters
of the algorithms as well.

Ensemble learning techniques were also trialed in a narrowed domain of bug
prediction, namely, in Aging Related Bugs prediction [24]. The study focuses on
bagging, boosting, and stacking ensemble techniques which were justified to be
effective in this narrowed domain as well. We stick with the general approach
and evaluate ensemble learning methods on a wider range of datasets.

Most of the studies related to bug prediction; especially the ones using en-
semble learning, are evaluated their approach on the PROMISE [22] and the
NASA MDP dataset. However, it was shown that one should use these datasets
with precautions [19]. Using only one dataset, which was constructed with one
selected method, also makes the bug prediction techniques built on top of it
more sensible. This generalizability threat should be eliminated by involving
additional public bug datasets. The Unified Bug Dataset was previously used



4 Zs. Szamosvölgyi et al.

successfully in bug prediction [8, 10], which gives an extra opportunity to test
the ensemble learning techniques on.

3 Approach

3.1 Dataset

In order to test the AdaBoost and Bagging classifiers in fault prediction, a
large and representative dataset is necessary. Our choice to measure the via-
bility of ensemble learning classifiers is the class-level part of the Unified Bug
Dataset [10], which contains 60 different metrics for every 47,618 classes. The
Unified Bug Dataset is an integration of 3 well-known and widely-used datasets
(namely, PROMISE [22], the Bug Prediction Dataset [7] and the GitHub Bug
Dataset [26]). An entry in the dataset contains 60 different numeric metrics simi-
lar to the experiments of [8] (from the simplest LOC metrics to the more complex
complexity metrics) and the number of bugs that were determined for the actual
class. The features which is used by the classification process is calculated by the
OpenStaticAnalyzer toolset [1]. The number of bug occurrences are transferred
from the original datasets, which basically means that the bug proneness of the
entries come from three different approaches.

There are projects that occur multiple times in different versions in the uni-
fied dataset. Using these kinds of datasets arises the question of whether it is a
problem in our approach of using machine learning techniques for fault predic-
tion? We did not treat this as a problem, because the whole approach relies on
the calculated metrics and our goal is to prove that using this kind of information
is enough to successfully detect possible faults in source codes.

3.2 Preprocessing

The preprocessing of training data starts with the deletion of unnecessary class-
and file-related information for every entry such as filename, parent, path, etc.
Furthermore, we binarized the target labels i.e., converting the number of bugs
found in a class to 0 or 1. In other words, we separated the classes into “buggy”
and “not buggy” sets in order to perform binary classification on it. On the
other hand, we applied one-hot encoding on the “Type” feature (class, interface
or enum) in pursuit of getting better results and drop one of the newly created
features to avoid the Dummy Variable trap. The Dummy Variable trap is a
scenario in which the independent variables are multicollinear, or in simple terms
one variable can be predicted from the others. If we want to use categorical data
such as “Interface”, “Class”, etc., encoding to numerical data is necessary. If
there is no natural ordering over our variables one-hot encoding can be applied
to encode our features. One-hot encoding create a new variable for all categorical
value, which is highly correlated with each other.

Other preprocessing possibilities for the features are the normalization –
where metrics are linearly transformed into the [0,1] interval and standardization



Assessing Ensemble Learning Techniques in Bug Prediction 5

– where features are transformed in order to get zero mean and one standard
deviation. Standardized data is essential for accurate data analysis, it is easier
to draw clearer conclusions about the current data when one has other data to
measure it against.

3.3 Resample Techniques

In our dataset the distribution of examples across the classes is biased. From the
47,618 samples there are 38,838 labelled as “not buggy” which makes up 82%
of the overall data. Performing binary classification on an unbalanced dataset
is a challenging task. In order to solve this problem, we used different resample
techniques, such as SMOTE [5], RUS [13] and random upsampling method which
was also used in the Deep Water Framework (DWF) [11]. In the following, let
us dedicate a few sentences to these algorithms.

SMOTE (Synthetic Minority Oversampling Technique) selects a random
sample from the minority class, then selects its k nearest neighbors from the
feature space. It chooses a random point from the k neighbors then connects to
the originally selected sample with a line, and creates new samples along the line
in feature space. So the new samples will be convex combinations of the original
samples of the minority class.

RUS (Random Under-Sampling) uses all the samples from the minority class
and random points from the majority class in order to achieve a balanced dataset.

The random upsampling strategy works by duplicating randomly selected
samples from the minority class until the size of the two classes reach the size
of the majority class multiplied by the given factor. In our study we applied a
50% upsampling rate, as it was shown to be the best upsampling parameter on
the same dataset [11].

3.4 Learners

During our experiments we applied several learning techniques, including dif-
ferent ensemble learners combined with various base learner techniques. Several
experiments show that the use of ensemble models can improve the performance
of base learning techniques [18, 24]. Ensemble models combine the results of mul-
tiple base learner instances in order to provide a prediction for the class of the
given sample. Different learner methods can be used as base learning methods
as long as they provide a slightly better prediction than a random choice would.
As base learners, we tried the Gaussian Näıve Bayes, along with the Decision
Tree classifier, which considered to be a good choice for ensemble learning ap-
proaches [28]. We applied both Bagging and AdaBoost as ensemble learners for
these base learners. The latter has shown to be one of the best choices as an
ensemble learner [18].

During our experiments, we used the implementation of the learning tech-
niques provided in the scikit learn python package3.

3 https://scikit-learn.org/



6 Zs. Szamosvölgyi et al.

Fig. 1. Workflow of the approach

4 Evaluation

In our study, we used 10-Fold strategy to evaluate our models. It means that
we had 10 different splits of our data, which all contained separate sets for both
the train and test data. Then, the given model has been evaluated on the 10
train-test datasets and the given results has been averaged. This workflow can
be seen in Figure 1.

During the evaluation to measure our models’ performance, we mainly fo-
cused on F-measure, although we calculated Accuracy, Precision, and Recall as
well. All of these metrics are calculated from the True Positive, False Positive,
True Negative, and False Negative values of the confusion matrix with the fol-
lowing formulas.

True Positive: The number of correctly labeled “bugged” samples.
False Positive: The number of incorrectly labeled “not bugged” samples.
True Negative: The number of correctly labeled “not bugged” samples.
False Negative: The number of incorrectly labeled “bugged” samples.



Assessing Ensemble Learning Techniques in Bug Prediction 7

Table 1. F-measure values for different preprocessing techniques

Ensemble
learner

Base
learner

None Normalize Standardize
Normalize

+ Standardize

AdaBoost DecisionTree 47.38% 45.13% 47.39% 47.39%
AdaBoost GaussianNB 30.62% 36.44% 31.08% 31.08%
Bagging DecisionTree 28.51% 28.51% 28.51% 26.05%
Bagging GaussianNB 35.02% 35.02% 35.67% 37.17%

Accuracy: Accuracy =
TP + TN

TP + TN + FP + FN

Precision: Precision =
TP

TP + FP

Recall: Recall =
TP

TP + FN

F-measure: F-measure =
2 × Precision×Recall

Precision + Recall

The F-measures values measured with different ensemble learner, base learner
combinations, and with different preprocessing techniques can be seen on Ta-
ble 1. To keep the experiment as simple as possible, we did not use any prepro-
cessing technique (normalization and standardization) later on our dataset (the
achieved results were similar when no normalization and/or standardization was
involved).

4.1 RQ1: Does AdaBoost performs better than other classifier
methods for bug prediction?

As previous studies also showed that AdaBoost can be a superior choice of
ensemble learning techniques, we mainly focus on this algorithm. In order to
measure the performance of AdaBoost, we compared AdaBoost with another
widely-used classifier, namely the Bagging classifier. We selected Bagging instead
of other classifiers, because Bagging is an ensemble learner as well, which gives
us a good comparison base against the AdaBoost classifier. As mentioned in
Section 3.4, we tried two different weak learners i.e. the Decision Tree and Näıve
Bayes classifiers. Our measurements are shown in Table 2.

The table shows the ensemble learners in the first column before specify-
ing the base learner in the second column. We have grouped the entries based
on these two and separated the groups with a horizontal line. In each group,
we highlighted the best configuration with bold typeface. Best algorithms were
marked based on the F-Measure scores.

As the table shows, the configuration for the best result was AdaBoost with
Decision Tree after some hyperparameter tuning. We could achieve an F-Measure



8 Zs. Szamosvölgyi et al.

of 54.61% with a high accuracy (81.96%) with the configuration of 300 estimators
and a learning rate of 0.05. High accuracy in itself is not enough since the dataset
is biased, however the precision is above 50% which means that half of entries
marked as buggy were in fact buggy. Finally, we could identify 58.9% of the total
buggy entries as the recall value suggests.

Answering RQ1: As we can see the AdaBoost performs better with the Deci-
sion Tree base learner than the Bagging. On the other hand, Bagging seems to
provide slightly better results when used with Näıve Bayes and not with Decision
Tree. Our measurements prove that with the best hyperparameters AdaBoost
classifier with Decision Tree can outperform other classifiers on the Unified Bug
Dataset [11].

4.2 RQ2: Is there any resample technique which performs
consistently better than others?

Since our dataset was imbalanced as mentioned in Section 3.3, some kind of re-
sampling is necessary. SMOTE, RUS, and random upsampling techniques, which
were briefly explained, can enhance the reliability and efficiency of the learning
algorithms. Table 3 shows the F-Measure results of the ensemble learning algo-
rithms with respect of the resampling methods. As it can be depicted, random

Table 2. Evaluation of ensemble learners

Ensemble
learner

Base
learner

Number of
estimators

Learning
rate

F-measure Accuracy Precision Recall

AdaBoost DecisionTree 100 0.05 54.13% 81.06% 48.91% 60.64%
AdaBoost DecisionTree 200 0.05 54.61% 81.56% 50.00% 60.17%
AdaBoost DecisionTree 300 0.05 54.61% 81.96% 50.92% 58.90%
AdaBoost DecisionTree 400 0.05 54.12% 81.89% 50.75% 57.98%
AdaBoost DecisionTree 500 0.04 53.93% 81.83% 50.62% 57.72%

AdaBoost GaussianNB 100 0.04 37.23% 77.41% 38.38% 36.52%
AdaBoost GaussianNB 200 0.04 36.10% 75.78% 35.32% 37.23%
AdaBoost GaussianNB 300 0.04 35.34% 74.36% 33.18% 38.09%
AdaBoost GaussianNB 400 0.04 34.94% 73.45% 32.04% 38.76%
AdaBoost GaussianNB 500 0.04 34.58% 72.78% 31.21% 39.09%

Bagging DecisionTree 100 50.54% 79.21% 45.00% 57.67%
Bagging DecisionTree 200 50.48% 79.20% 44.98% 57.53%
Bagging DecisionTree 300 50.48% 79.21% 45.00% 57.49%
Bagging DecisionTree 400 50.48% 79.22% 45.01% 57.49%
Bagging DecisionTree 500 50.51% 79.22% 45.02% 57.55%

Bagging GaussianNB 100 35.14% 80.50% 45.39% 28.69%
Bagging GaussianNB 200 35.16% 80.49% 45.38% 28.71%
Bagging GaussianNB 300 35.09% 80.48% 45.33% 28.64%
Bagging GaussianNB 400 35.12% 80.49% 45.34% 28.68%
Bagging GaussianNB 500 35.10% 80.48% 45.32% 28.67%



Assessing Ensemble Learning Techniques in Bug Prediction 9

upsampling (RandUp.) achieved the best results regarding the F-measure values
in all cases (marked as bold in the table).

Besides the results of F-Measure, Table 4, 5 and 6 show the Accuracy, Preci-
sion, and Recall results, respectively. In case of Accuracy and Precision, none of
the resampling techniques could improve upon the original results. However, in
case of recall, RUS could improve a vast amount when used with Decision Tree
as a base learner.

During our experiments, we primarily focus on the F-Measure metric, so we
used random upsampling as our resampler in our workflow later on. These values
are acquired with fixed hyperparameters because of consistency. The hyperpa-
rameters for AdaBoost were 300 for Number of estimators, 0.05 for the Learning
rate, and the hyperparameters for Bagging were 100 for Number of estimators,
1.00 for Max features, 1.00 for Max samples as well. The Decision Tree’s fixed
hyperparameters were 6 for Max depth, 22 for Min sample leaf along with gini
as Criterion. The rest of the parameters for learning was the default values
provided by the implementation of scikit learn.

Answering RQ2: Our experiments show the three resampling techniques can
get better scores regarding specific metrics. The question itself can depend on the
context, but in our case, where F-measure was the primary evaluation metric,
we can clearly state that the random upsampling is the best choice.

4.3 RQ3: Which is the best weak learning algorithm and which
parameter configuration is the most powerful?

As previously mentioned, Table 2 shows AdaBoost and Bagging classifiers work
better with Decision Tree than the Gaussian Näıve Bayes classifier. The best
parameters for Decision Tree classifier depends on the ensembler learner too.
The best hyperparameters for the AdaBoost Classifier with different ensemblers
shown in Table 7 and Table 8.

Table 3. F-measure values of different resampling techniques

Ensemble learner Base learner None RandUp. RUS SMOTE

AdaBoost DecisionTree 47.38% 53.91% 52.83% 48.01%
AdaBoost GaussianNB 30.62% 32.39% 32.31% 33.21%
Bagging DecisionTree 28.51% 50.51% 49.16% 47.49%
Bagging GaussianNB 35.02% 35.10% 35.53% 36.14%

Table 4. Accuracy values of different resampling techniques

Ensemble learner Base learner None RandUp. RUS SMOTE

AdaBoost DecisionTree 84.76% 81.93% 75.27% 84.59%
AdaBoost GaussianNB 73.69% 68.57% 69.15% 63.89%
Bagging DecisionTree 83.29% 79.22% 71.32% 75.72%
Bagging GaussianNB 80.47% 80.48% 80.34% 80.34%



10 Zs. Szamosvölgyi et al.

Table 5. Precision values of different resampling techniques

Ensemble learner Base learner None RandUp. RUS SMOTE

AdaBoost DecisionTree 65.12% 50.86% 40.75% 63.55%
AdaBoost GaussianNB 29.83% 26.97% 27.23% 25.26%
Bagging DecisionTree 67.57% 45.02% 36.55% 39.50%
Bagging GaussianNB 45.25% 45.32% 44.90% 44.99%

Table 6. Recall values of different resampling techniques

Ensemble learner Base learner None RandUp. RUS SMOTE

AdaBoost DecisionTree 37.26% 57.36% 75.14% 38.61%
AdaBoost GaussianNB 31.49% 40.79% 40.00% 48.68%
Bagging DecisionTree 18.08% 57.55% 75.18% 59.56%
Bagging GaussianNB 28.58% 28.67% 29.41% 30.21%

Only 100 estimators works best for Bagging which is positive, however, the
achieved results were also lower. Optimal estimator number is 300 in case of
Decision Tree which could be argued whether causes a slower runtime or not.
Although we did not have the exact measurements for runtimes, we can state
that runtime was never an issue.

In case of the other common parameters, Adaboost and Bagging are on
consensus. Both ensemble learners performed the best with a decision tree having
the max depth of 6 and min sample leaf as 22. Gini is superior over entropy in
both cases for the Criterion parameter.

Answering RQ3: Based on our measurements, the best hyperparameters for
the AdaBoost classifier and the Decision Tree were 300 for Number of estimators,
0.05 for the Learning rate, 6 for Max depth, 22 for Min sample leaf along with
gini as Criterion, and the best hyperparameters for Bagging and Decision Tree
were 100 for Number of estimators, 1.00 for Max features, 1.00 for Max samples,
6 for Max depth, 22 for Min sample leaf along with gini again as Criterion.

5 Threats to Validity

In our work we tried to be as objective as possible. However, there could be
some factors that could make us produce invalid results. One factor could be the
quality of the dataset we used. Since we used an already published dataset, we
had no influence over the quality of it. The Unified Bug Dataset has numerous

Table 7. Best hyperparameters for AdaBoost and Decision Tree

Number of
estimators

Learning
rate

Max depth
Min sample

leaf
Criterion

300 0.05 6 22 gini



Assessing Ensemble Learning Techniques in Bug Prediction 11

Table 8. Best hyperparameters for Bagging and Decision Tree

Number of
estimators

Max features Max samples Max depth
Min sample

leaf
Criterion

100 1 1 6 22 gini

reviews [2, 6, 11, 9], so it makes us believe that the dataset is a reliable source for
software fault detection studies.

Another factor could be that we choose to fix the parameters of the prepro-
cessing techniques, resample techniques and we had a limited search space for
our experiments due to our limited resources. During our study we used 1,337
as a fixed seed for every execution in order to make our results reproducible. To
measure how changes of these values would have made an impact on our results
was out of the scope of this study, since it would have blown the search space.

6 Conclusion and Future Work

In this paper, we presented a detailed approach on how to apply AdaBoost
classifier with different base learners in order to predict software faults from static
source code metrics alone. We focused our study on revealing the capabilities
of AdaBoost classifier in bug detection. We investigated the optimal parameter
setup both for the ensemble learner and the base learner. We also tested whether
different preprocessing steps would enhance the effectiveness of the ensemble
learning method regarding F-Measure, Accuracy, Precision, and Recall metrics as
well. Our study used a more recent public bug dataset, the Unified Bug Dataset
as its input in order to check the generalizability of the ensemble learners.

We concluded that AdaBoost with a proper resampling technique can be an
appropriate method for software fault prediction based on static source code met-
rics, especially combined with Decision Tree classifier. We could achieve 54.61%
F-Measure, 81.96% Accuracy, 50.92% Precision, and 58.90% Recall with a proper
parameterization.

Applying different resampling technique is highly context-sensitive. When F-
Measure is the main focus of ours, we should employ random upsampling, while
Recall is the most important metric, one should apply RUS with a decision tree.

The advantage of applying Decision Trees over Näıve Bayesian methods as
base learners is clearly visible. We got the best end results by setting the number
of estimators to 300, the learning rate to 0.05, max depth to 6, min sample leaf
to 22 and the criterion to gini in case of AdaBoost with Decision Tree. In case
of Bagging, 100 estimators gave the optimal results with max features and max
samples both set to 1. Additional decision tree parameters (max depth, min
sample leaf, criterion) should be unchanged in case of Bagging.

Out future plans include trying different ensemble learner methods combined
with other base learner techniques. We would also like to try other preprocessing
techniques as well in our future work. We also need to test the effectiveness of



12 Zs. Szamosvölgyi et al.

ensemble learning techniques on file and especially on method level to see if the
conclusions hold.

Overall, we consider our findings a successful step towards understanding the
AdaBoost classifier and the role it can play in software fault prediction.

Acknowledgement

This research was supported by the project ”Integrated program for training
new generation of scientists in the fields of computer science”, no EFOP-3.6.3-
VEKOP-16-2017-00002. The project has been supported by the European Union
and co-funded by the European Social Fund.

The research was partly supported by the Ministry of Innovation and Tech-
nology NRDI Office within the framework of the Artificial Intelligence National
Laboratory Program (MILAB),and by grant NKFIH-1279-2/2020 of the Min-
istry for Innovation and Technology, Hungary, and by grant 2018-1.2.1-NKP-
2018-00004 “Security Enhancing Technologies for the IoT” funded by the Hun-
garian National Research, Development and Innovation Office.

References

1. OpenStaticAnalyzer static code analyzer. (2021), https://github.com/sed-inf-u-
szeged/OpenStaticAnalyzer

2. Bejjanki, K.K., Gyani, J., Gugulothu, N.: Class imbalance reduction (cir):
A novel approach to software defect prediction in the presence of
class imbalance. Symmetry 12(3) (2020). https://doi.org/10.3390/sym12030407,
https://www.mdpi.com/2073-8994/12/3/407

3. Catal, C.: Software fault prediction: A literature review and current trends. Expert
systems with applications 38(4), 4626–4636 (2011)

4. Chaturvedi, K., Bedi, P., Misra, S., Singh, V.: An empirical validation of the com-
plexity of code changes and bugs in predicting the release time of open source
software. In: 2013 IEEE 16th International Conference on Computational Science
and Engineering. pp. 1201–1206 (2013). https://doi.org/10.1109/CSE.2013.201

5. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic mi-
nority over-sampling technique. Journal of artificial intelligence research 16, 321–
357 (2002)

6. Compton, R., Frank, E., Patros, P., Koay, A.: Embedding java classes
with code2vec: Improvements from variable obfuscation. In: Proceed-
ings of the 17th International Conference on Mining Software Repos-
itories. p. 243–253. MSR ’20, Association for Computing Machinery,
New York, NY, USA (2020). https://doi.org/10.1145/3379597.3387445,
https://doi.org/10.1145/3379597.3387445

7. D’Ambros, M., Lanza, M., Robbes, R.: An extensive comparison of bug prediction
approaches. In: 2010 7th IEEE Working Conference on Mining Software Reposito-
ries (MSR 2010). pp. 31–41 (2010). https://doi.org/10.1109/MSR.2010.5463279

8. Ferenc, R., Bán, D., Grósz, T., Gyimóthy, T.: Deep
learning in static, metric-based bug prediction. Array 6,
100021 (Jul 2020). https://doi.org/10.1016/j.array.2020.100021,



Assessing Ensemble Learning Techniques in Bug Prediction 13

http://www.sciencedirect.com/science/article/pii/S2590005620300060, open
Access

9. Ferenc, R., Siket, I., Hegedűs, P., Rajkó, R.: Employing Partial Least Squares
Regression with Discriminant Analysis for Bug Prediction. arXiv e-prints
arXiv:2011.01214 (Nov 2020)

10. Ferenc, R., Tóth, Z., Ladányi, G., Siket, I., Gyimóthy, T.: A public unified bug
dataset for java and its assessment regarding metrics and bug prediction. Software
Quality Journal 28, 1447–1506 (2020). https://doi.org/10.1007/s11219-020-09515-
0, https://doi.org/10.1007/s11219-020-09515-0, open Access

11. Ferenc, R., Viszkok, T., Aladics, T., Jász, J., Hegedűs, P.: Deep-water framework:
The swiss army knife of humans working with machine learning models. SoftwareX
12, 100551 (2020). https://doi.org/https://doi.org/10.1016/j.softx.2020.100551,
https://www.sciencedirect.com/science/article/pii/S2352711019303772

12. Gao, Y., Yang, C.: Software defect prediction based on adaboost algorithm under
imbalance distribution. In: 2016 4th International Conference on Sensors, Mecha-
tronics and Automation (ICSMA 2016). Atlantis Press (2016)

13. Hasanin, T., Khoshgoftaar, T.: The effects of random undersampling with sim-
ulated class imbalance for big data. In: 2018 IEEE International Conference on
Information Reuse and Integration (IRI). pp. 70–79. IEEE (2018)

14. Jiang, Y., Cukic, B., Ma, Y.: Techniques for evaluating fault prediction models.
Empirical Software Engineering 13(5), 561–595 (2008)

15. Khan, M.Z.: Hybrid ensemble learning technique for software defect prediction.
International Journal of Modern Education & Computer Science 12(1) (2020)

16. Kumari, M., Misra, A., Misra, S., Fernandez Sanz, L., Damasevicius, R.,
Singh, V.: Quantitative quality evaluation of software products by consider-
ing summary and comments entropy of a reported bug. Entropy 21(1) (2019).
https://doi.org/10.3390/e21010091, https://www.mdpi.com/1099-4300/21/1/91

17. Nevendra, M., Singh, P.: Software bug count prediction via adaboost.r-et. In: 2019
IEEE 9th International Conference on Advanced Computing (IACC). pp. 7–12
(2019). https://doi.org/10.1109/IACC48062.2019.8971588

18. Peng, Y., Kou, G., Wang, G., Wu, W., Shi, Y.: Ensemble of software defect predic-
tors: an ahp-based evaluation method. International Journal of Information Tech-
nology & Decision Making 10(01), 187–206 (2011)

19. Petrić, J., Bowes, D., Hall, T., Christianson, B., Baddoo, N.: The jinx on the NASA
software defect data sets. In: Proceedings of the 20th International Conference on
Evaluation and Assessment in Software Engineering. pp. 1–5 (2016)

20. Polikar, R.: Ensemble learning. In: Ensemble machine learning, pp. 1–34. Springer
(2012)

21. Ren, J., Qin, K., Ma, Y., Luo, G.: On software defect prediction using machine
learning. Journal of Applied Mathematics 2014 (2014)

22. Sayyad Shirabad, J., Menzies, T.: The PROMISE Repository of Software Engi-
neering Databases. School of Information Technology and Engineering, University
of Ottawa, Canada (2005), http://promise.site.uottawa.ca/SERepository

23. Schapire, R.E.: Explaining adaboost. In: Empirical inference, pp. 37–52. Springer
(2013)

24. Sharma, S., Kumar, S.: Analysis of ensemble models for aging related bug predic-
tion in software systems. In: ICSOFT. pp. 290–297 (2018)

25. Singh, V.B., Misra, S., Sharma, M.: Bug severity assessment in cross project con-
text and identifying training candidates. Journal of Information & Knowledge Man-
agement 16(01), 1750005 (2017). https://doi.org/10.1142/S0219649217500058,
https://doi.org/10.1142/S0219649217500058



14 Zs. Szamosvölgyi et al.

26. Tóth, Z., Gyimesi, P., Ferenc, R.: A public bug database of github projects and
its application in bug prediction. In: Gervasi, O., Murgante, B., Misra, S., Rocha,
A.M.A., Torre, C.M., Taniar, D., Apduhan, B.O., Stankova, E., Wang, S. (eds.)
Computational Science and Its Applications – ICCSA 2016. pp. 625–638. Springer
International Publishing, Cham (2016)

27. Wang, S., Yao, X.: Using class imbalance learning for software defect prediction.
IEEE Transactions on Reliability 62(2), 434–443 (2013)

28. Yucalar, F., Ozcift, A., Borandag, E., Kilinc, D.: Multiple-classifiers in software
quality engineering: Combining predictors to improve software fault prediction
ability. Engineering Science and Technology, an International Journal 23(4), 938–
950 (2020)


