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Abstract

Any mapping S : C → K, where K is a field and C = (C,Σ) is a Σ-algebra, is
called a KC-series. These series are natural generalizations of both formal series
on strings over a field and the tree series introduced by Berstel and Reutenauer
[1]. We consider various operations on KC-series and their effects on the linear
extensions of the series. We also study some algebraic aspects of theKΣ-algebra
formed by the KC-polynomials (i.e., the KC-series with finitely many non-zero
coefficients); a KΣ-algebra is a Σ-algebra based on a K-vector space in which
all the Σ-operations are multilinear. The syntactic congruence of a KC-series
S is a congruence on this KΣ-algebra of KC-polynomials, and the syntactic
KΣ-algebra SA(S) of S is the corresponding quotient algebra. These syntactic
algebras generalize Reutenauer’s syntactic K-algebras of string series [13] and
the syntactic KΣ-algebras of tree series studied by Bozapalidis et al. [5, 4, 3].
It is shown that SA(S) is finite-dimensional iff the series S is recognizable. We
also characterize the subdirectly irreducible KΣ-algebras and show that all of
them are syntactic. Furthermore, we show how various operations on KC-series
relate to the syntactic KΣ-algebras.
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1 Introduction

It is quite convenient to prove the basic common properties of syntactic semigroups of
string languages (cf. [8, 12], for example) and syntactic algebras of tree languages (cf.
[16], for example) for syntactic algebras of subsets of general algebras. This way one
may also obtain generalizations of the variety theories of string and tree languages
(cf. [15, 17], for example). In this paper, we develop a similar generalization for the
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syntactic algebras of various series over a field. More precisely, we study syntactic
congruences and syntactic algebras of what we call KC-series, i.e., mappings S : C →
K, where K is a field and C = (C,Σ) is a Σ-algebra. These series generalize both
formal series on strings over a field and the tree series introduced by Berstel and
Reutenauer [1]; the former are obtained when C is a finitely generated free monoid,
and the latter when C is a finitely generated term algebra of finite type.

We consider various operations on KC-series and their effects on the linear exten-
sions of the series. We also study some algebraic aspects of the KΣ-algebra formed
by the KC-polynomials (i.e., the KC-series with finitely many non-zero coefficients);
a KΣ-algebra is a Σ-algebra based on a K-vector space in which all the Σ-operations
are multilinear. The syntactic congruence of a KC-series S is a congruence on this
KΣ-algebra of KC-polynomials, and the syntactic KΣ-algebra SA(S) of S is the cor-
responding quotient algebra. These syntactic algebras generalize Reutenauer’s [13]
syntactic K-algebras of string series and the syntactic KΣ-algebras of tree series
studied by Bozapalidis et al. [5, 4, 3]. Accordingly, some of our results generalize
results presented in those papers. However, we give our own complete proofs. It
is shown that SA(S) is finite-dimensional iff the series S is recognizable. We also
characterize the subdirectly irreducible KΣ-algebras and show that they are syntac-
tic. Furthermore, we show how various operations on KC-series relate to syntactic
congruences and syntactic KΣ-algebras. The choice of these operations reflect the
fact that this work ultimately aims at a variety theory, in first place for tree series,
but perhaps also for more general families of series over a field.

The paper is organized as follows. In Section 2 we recall a few basic definitions
and fix some notation. Throughout the paper, K is a field and Σ is a ranked
alphabet, both arbitrarily chosen but fixed. In Section 3 we recall the notion of a
KΣ-algebra introduced in [3, 4]. It is equivalent to the ”representations” considered
already in [1], but the explicit formulation as algebras suits us well. We describe the
translations of a KΣ-algebra and use them for characterizing its congruences.

In Section 4 we consider the KC-series S : C → K over a given general Σ-algebra
C = (C,Σ). The sums S + T and the scalar multiples aS of KC-series are defined
by the usual pointwise conditions, and assuming that C satisfies a certain simple
condition, we can also define the natural Σ-operations for them. As special cases
we obtain both the usual formal K-series over an alphabet X (by letting C be the
monoid X∗) and the tree series S : TΣ(X) → K (by letting C be the term algebra
TΣ(X)), and many basic facts about string and tree series hold also for general KC-
series. In particular, the KC-series and the KC-polynomials form the KΣ-algebras
SK(C) = (K〈〈C〉〉,+, 0̃,Σ) and PK(C) = (K〈C〉,+, 0̃,Σ), respectively. We study
some further operations on KC-series such as their images and pre-images under
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translations or homomorphisms of the underlying Σ-algebras, and we show how such
operations affect the linear extensions S : K〈C〉 → K of KC-series. Furthermore,
we establish some useful algebraic facts about the polynomial algebras PK(C). Let
us note that in [10] W. Kuich considered series of general algebras over semirings as
solutions of systems of equations.

In Section 5 we define the syntactic congruence ≡S of a KC-series S and its
syntactic KΣ-algebra SA(S) = PK(C)/≡S . The recognizability of a KC-series by a
KΣ-algebra can be defined similarly as for ordinary power series in [13] or tree series
in [1, 4, 3], and we show that also here SA(S) is in a natural sense the least KΣ-
algebra that recognizes S (Proposition 5.6), and that S is recognizable if and only if
SA(S) has finite dimension (Corollary 5.7). Moreover, we characterize the syntactic
KΣ-algebras, i.e., the KΣ-algebras isomorphic to the syntactic KΣ-algebra of some
C-series for some Σ-algebra C. As a consequence, we obtain the useful fact that every
subdirectly irreducible KΣ-algebra is syntactic. Let us note that C. Mathissen [11]
considers recognizable series in Σ-algebras over a commutative semiring as well as
their syntactic algebras, and in some places we could have made use of his results.
However, our discussion of the topic is broader, and we have retained our own
presentation for the sake of uniformity and the convenience of the reader.

Finally, in Section 6 we review our results and consider some possible topics for
future research.

2 Preliminaries

We frequently write A := B to indicate that some object A is defined to be B. For
any integer n ≥ 0, let [n] denote the set {1, 2, . . . , n}. In particular, [0] = ∅.
For any relation ρ ⊆ A × B, the fact that (a, b) ∈ ρ for some a ∈ A and b ∈ B,

will usually be expressed by writing aρb. For any a ∈ A, let aρ = {b ∈ B | aρb} and,
for any A′ ⊆ A, let A′ρ = {b ∈ B | (∃a ∈ A′) aρb}. The converse of ρ is the relation
ρ−1 := {(b, a) ∈ B ×A | aρb} from B to A. The composition of relations ρ ⊆ A×B
and ρ′ ⊆ B×C is the relation ρ◦ρ′ := {(a, c) ∈ A×C | (∃b ∈ B) aρb and bρ′c}. In the
particular case of an equivalence relation, we write [a]ρ, or just [a], for aρ. As usual,
A/ρ denotes the quotient set {[a]ρ | a ∈ A}. The diagonal relation {(a, a) | a ∈ A}
of a set A is denoted by ΔA. A mapping ϕ : A→ B may also be viewed as a relation
(⊆ A×B), and aϕ (a ∈ A) denotes either the image ϕ(a) of a or the set formed by it.
Especially homomorphisms will usually be written this way as right operators that
are composed from left to right omitting the symbol ◦. Thus the composition of two
mappings ϕ : A→ B and ψ : B → C is the mapping ϕψ : A→ C, a �→ aϕψ, where
aϕψ = (aϕ)ψ = ψ(ϕ(a)). The kernel of a mapping ϕ : A → B is the equivalence

Formal Series of General Algebras over a Field and Their Syntactic Algebras

57



relation kerϕ := {(a1, a2) ∈ A2 | a1ϕ = a2ϕ} on A.
In what follows, Σ is always a ranked alphabet, i.e., a finite set of symbols each

of which has a given nonnegative integer arity. For any k ≥ 0, the set of k-ary
symbols in Σ is denoted by Σk. We use Σ as a set of operation symbols; a Σ-algebra
C consists of a nonempty set C of elements and a Σ-indexed family of operations
(σC | σ ∈ Σ) on C such that if σ ∈ Σk is a k-ary symbol, then σC : Ck → C is a k-ary
operation on C. In particular, any nullary symbol ω ∈ Σ0 fixes a constant in C that
we write as ωC . We write simply C = (C,Σ) without any symbol for the assignment
σ �→ σC . Subalgebras, homomorphisms (that we may call Σ-homomorphisms) and
congruences of such Σ-algebras are defined as usual (cf. [6] or [7], for example).
A mapping p : C → C is called an elementary translation of C = (C,Σ) if there

exist a k > 0, a σ ∈ Σk, an i ∈ [k] and elements c1, . . . , ci−1, ci+1, . . . , ck ∈ C such
that p(d) = σC(c1, . . . , ci−1, d, ci+1, . . . , ck) for every d ∈ C. Let ETr(C) denote the
set of elementary translations of C. The set Tr(C) of all translations of C is the least
set of unary operations on C that contains the identity map 1C : C → C, c �→ c, and
all the elementary translations, and is closed under composition. It is well known
(cf. [6] or [7], for example) that any congruence of an algebra C = (C,Σ) is invariant
with respect to every translation of C, and that an equivalence on C is a congruence
on C if it is invariant with respect to every elementary translation of C.
The following lemma (cf. [16]) will be needed several times.

Lemma 2.1 Let ϕ : C → D be a homomorphism between two Σ-algebras C = (C,Σ)
and D = (D,Σ). For every translation p ∈ Tr(C) of C there is a translation pϕ ∈
Tr(D) of D such that p(c)ϕ = pϕ(cϕ) for every c ∈ C. If ϕ is surjective, then for
every q ∈ Tr(D) there exists a p ∈ Tr(C) such that q = pϕ.

Especially in the later parts of the paper, we shall use a few further concepts and
results of universal algebra. These can be found, for instance, in Chapter II of [6].

3 KΣ-algebras

Throughout this paper, (K,+, ·, 0, 1) is a field, arbitrarily chosen but fixed. We shall
call it simply K. The product of any elements a, b ∈ K is usually written as a ·b. We
shall consider vector spaces over K equipped with Σ-operations that are linear in
all components. Given a K-vector space (M,+, 0), we will denote the scalar product
of a field element a ∈ K and a vector u ∈ M by au. Following [4, 3], we define a
KΣ-algebra1 to be a systemM = (M,+, 0,Σ) where (M,+, 0) is a K-vector space

1In [1] these are called linear representations (of term algebras). In the terminology of [9] they

would be called K-Σ-vector spaces.
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and (M,Σ) is a Σ-algebra in which all operations are multilinear, that is to say, for
any k > 0, σ ∈ Σk, i ∈ [k], u1, . . . , ui−1, u, v, ui+1, . . . , uk ∈M and a, b ∈ K,

σM(u1, . . . , ui−1, au+ bv, ui+1, . . . , uk)

= aσM(u1, . . . , ui−1, u, ui+1, . . . , uk) + bσM(u1, . . . , ui−1, v, ui+1, . . . , uk).

The Σ-algebra part (M,Σ) of M is denoted by M•, but we will write σM instead
of σM•

(σ ∈ Σ). The dimension of M is the dimension dimM of the underlying
vector space (M,+, 0), andM is said to be finite-dimensional if dimM is finite.
Subalgebras, homomorphisms and direct products of KΣ-algebras are defined

as one would expect; in each case both the K-vector space and Σ-algebra aspect
are taken into account. Let M = (M,+, 0,Σ) and N = (N,+, 0,Σ) be any KΣ-
algebras. Then M is a subalgebra of N if M ⊆ N and every operation of M is
the restriction of the corresponding operation of N , i.e.,M• is a subalgebra of the
Σ-algebra N •, and for any u, u′ ∈ M and a ∈ K, the vector sum u + u′ and the
scalar product au get the same values in M as in N . A mapping ϕ : M → N

is a homomorphism of KΣ-algebras, or a KΣ-homomorphism for short, which we
express by writing ϕ :M→N , if

(1) (u+ u′)ϕ = uϕ+ u′ϕ for all u, u′ ∈M ,

(2) (au)ϕ = a(uϕ) for all u ∈M and a ∈ K, and

(3) σM(u1, . . . , uk)ϕ = σN (u1ϕ, . . . , ukϕ) for all k ≥ 0, σ ∈ Σ and u1, . . . , uk ∈M .

A homomorphism is called an epimorphism, a monomorphism or an isomorphism
if it is, respectively, surjective, injective or bijective. If there is an isomorphism
ϕ : M → N , then M and N are isomorphic, M ∼= N in symbols, and if there is
an epimorphism ϕ : M → N , then N is an (epimorphic) image of M, N � M
in symbols. A monomorphism ϕ : M → N is also called an embedding. Such an
embedding exists exactly in case M is isomorphic to a subalgebra of N , and we
express this situation by writingM⊆ N . Furthermore, N is said to cover M ifM
is an image of some subalgebra of N . This we express by writingM� N . Clearly,
� generalizes both the subalgebra relation ⊆ and the epimorphic image relation �.
An equivalence θ onM is a congruence onM = (M,+, 0,Σ) if it is a congruence

on the Σ-algebraM• such that for all u, u′, v, v′ ∈M and a ∈ K,

(1) if u θ v and u′ θ v′, then u+ u′ θ v + v′, and

(2) if u θ v, then au θ av.

Let Con(M) denote the set of congruences onM. The quotient KΣ-algebraM/θ =
(M/θ,+, [0]θ ,Σ) with respect to a congruence θ ∈ Con(M) is defined as usual. Thus
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σM/θ([u1], . . . , [uk]) = [σM(u1, . . . , uk)] for all k ≥ 0, σ ∈ Σk and u1, . . . , uk ∈ M ,
and [u] + [v] = [u+ v] and a[u] = [au] for all u, v ∈M and a ∈ K.
Let us now consider the translations of KΣ-algebras. First we note the following

consequence of the multilinearity of the Σ-operations.

Lemma 3.1 Let M = (M,+, 0,Σ) be a KΣ-algebra. For any translation p of the
Σ-algebraM• = (M,Σ), and for all a, b ∈ K and u, v ∈M ,

p(au+ bv) = ap(u) + bp(v).

The set ETr(M) of elementary translations of a KΣ-algebraM = (M,+, 0,Σ)
consists of the elementary translations ofM• and the mappings

M →M, ξ �→ ξ + u, and M →M, ξ �→ aξ,

where u ∈M and a ∈ K are any given elements. By using Lemma 3.1, it is easy to
prove the following normal form result for the general translations of a KΣ-algebra.

Proposition 3.2 Let M = (M,+, 0,Σ) be a KΣ-algebra. A mapping p : M → M

is a translation ofM if and only if it can be expressed in the form p(ξ) = aq(ξ)+u,
where a ∈ K, q ∈ Tr(M•) and u ∈M .

The above description of the elementary translations of aKΣ-algebra and Propo-
sition 3.2 yield the following lemma.

Lemma 3.3 Let M = (M,+, 0,Σ) be a KΣ-algebra. An equivalence ≡ on M is a
congruence of M if and only if, for all u, u′ ∈M ,

(1) if u ≡ u′, then p(u) ≡ p(u′) for every p ∈ ETr(M•),

(2) if u ≡ u′, then u+ v ≡ u′ + v for every v ∈M , and

(3) if u ≡ u′, then au ≡ au′ for every a ∈ K.

On the other hand, if ≡ is a congruence of M, then u ≡ u′ implies aq(u) + v ≡
aq(u′) + v for all a ∈ K, q ∈ Tr(M•) and v ∈M .

4 Formal series and polynomials of Σ-algebras

Let K be our given field and C be a nonempty set. Any mapping S : C → K is
also called a formal C-series over K, or just a KC-series. The coefficient S(c) of an
element c ∈ C is usually denoted by (S, c), and one may view S as the formal sum∑
c∈C(S, c).c. The set of all KC-series is denoted by K〈〈C〉〉.
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The support of a KC-series S is the set supp(S) := {c ∈ C | (S, c) �= 0}. A
KC-polynomial is a KC-series S such that supp(S) is finite, and the set of these is
denoted by K〈C〉. If P is a KC-polynomial such that supp(P ) = {c1, . . . , cm} and
(P, ci) = ai (i = 1, . . . ,m), then we may write P = a1.c1 + . . .+ am.cm

2. If supp(P )
is a singleton, then P is called a KC-monomial. We may regard C as a subset of
K〈C〉 by identifying any element c ∈ C with the monomial 1.c, and c may denote
also this monomial. For any a ∈ K, we let ã denote the constant KC-series for
which (ã, c) = a for every c ∈ C. Note that 0̃ is a KC-polynomial.
The sum S + T of two KC-series S, T ∈ K〈〈C〉〉 and the scalar multiple aS of

a KC-series S by a scalar a ∈ K, are defined in the natural way: (S + T, c) =
(S, c) + (T, c) and (aS, c) = a · (S, c) for every c ∈ C. It is well known (and easy
to see that) K〈〈C〉〉 forms a K-vector space (K〈〈C〉〉,+, 0̃) under these operations.
Moreover, the KC-polynomials form the subspace (K〈C〉,+, 0̃).
If C = (C,Σ) is a Σ-algebra, then KC-series and KC-polynomials are also called

KC-series and KC-polynomials, respectively. A KΣ-algebra M = (M,+, 0,Σ) is
said to recognize a KC-series S if there exist a homomorphism ϕ : C → M• and a
linear form γ : M → K such that (S, c) = γ(cϕ) for every c ∈ C. A KC-series
is recognizable if it is recognized by a finite-dimensional KΣ-algebra. The triple
(M, ϕ, γ) is called a representation of S. Let RecK(C) denote the set of recognizable
KC-series. This definition generalizes the usual notions of recognizable string or
tree series over a field (cf. [13] and [1, 5, 4, 3], resp.). In [11] the corresponding
generalization is presented for KC-series where K is a commutative semiring; then
the KΣ-algebras are based on K-semimodules rather than on vector spaces.
At this point we introduce our running example. The underlying algebra was

obtained from an example considered in [14] by omitting the edge labels.

Example 4.1 The set SP of series-parallel graphs is defined inductively as follows:

(1) SP contains the directed graph ↓ consisting of two nodes, called the source and
the sink, and a directed edge from the source to the sink;

(2) if g1, g2 ∈ SP, then SP also contains

(a) the parallel composition g1‖g2 obtained by pasting together the sources
and the sinks of g1 and g2, and

(b) the series composition g1 · g2 obtained by pasting the sink of g1 to the
source of g2.

2This notation is used even when some of the c-elements may be equal; this happens especially

when the polynomial is obtained by an operation from some given polynomials. In such cases the

expression represents the polynomial obtained by joining together all terms with the same c-element.

For example, a1.c+ a2.d+ a3.c represents (a1 + a3).c+ a2.d (assuming that c �= d).
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Isomorphic graphs are regarded as identical. It should be clear that a series-parallel
graph is acyclic. We shall consider the algebra SP = (SP,Σ), where Σ consists of
the two binary symbols ‖ and · that are interpreted as the above graph operations.
Let Q be the field of rational numbers and let Paths ∈ Q〈〈SP〉〉 be the QSP-

series such that for any g ∈ SP, (Paths, g) is the number of paths from the source
to the sink in g. Since every series-parallel graph is acyclic, (Paths, g) is always a
well-defined positive integer.
To show that the QSP-series Paths is recognizable, we define the QΣ-algebra

M = (Q2,+, 0,Σ) as follows. Let e1 = (1, 0) and e2 = (0, 1) be the usual base
vectors of Q2. If we define the Σ-operations of M as the multilinear extensions of
the partial operations defined on the base vectors by e1‖e1 = e1, e1‖e2 = e2‖e1 = e2,
e2‖e2 = 0, e1 · e1 = e1, e1 · e2 = e2 · e1 = 0, and e2 · e2 = e2, where we used the infix
notation and omitted the superscriptM, we get

(a1, b1)‖(a2, b2) = (a1a2, a1b2 + a2b1) and (a1, b1) · (a2, b2) = (a1a2, b1b2),

for all (a1, b1), (a2, b2) ∈ Q2. Let us note thatM is essentially a reduct of the algebra
used in Example 4.2 of [1] for evaluating arithmetic expressions.
Next, we show that the mapping

ϕ : SP→ Q2, g �→ e1 + (Paths, g)e2,

is a homomorphism SP → M•. For this, consider any g1, g2 ∈ SP with n1 =
(Paths, g1) and n2 = (Paths, g2). Since (Paths, g1‖g2) = n1 + n2, we get

(g1‖g2)ϕ = e1 + (n1 + n2)e2

= (e1‖e1) + n1(e1‖e2) + n2(e2‖e1) + n1n2(e2‖e2) (e2‖e2 = 0)

= (e1 + n1e2)‖(e1 + n2e2) (by multilinearity)

= g1ϕ ‖g2ϕ.
In a similar way, we can show that (g1 · g2)ϕ = g1ϕ · g2ϕ.
If define the linear form γ : Q2 → Q by γ(e1) = 0 and γ(e2) = 1, then it is clear

that γ(gϕ) = (Paths, g) for every g ∈ SP, and hence Paths is recognizable. �

A Σ-algebra C = (C,Σ) has the finite decomposition property (FDP) if

{(c1, . . . , ck) ∈ Ck | σC(c1, . . . , ck) = c}

is finite for every choice of c ∈ C, k > 0 and σ ∈ Σk. Note that for any X, both the
term algebra TΣ(X) and the free monoid X∗ have this property. Also the algebra
SP of Example 4.1 has the FDP.
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Let C = (C,Σ) be a Σ-algebra with the FDP. For any k ≥ 0, σ ∈ Σk and
S1, . . . , Sk ∈ K〈〈C〉〉, the KC-series σ(S1, . . . , Sk) is defined by setting

(σ(S1, . . . , Sk), c) =
∑
{(S1, c1) · . . . · (Sk, ck) | c1, . . . , ck ∈ C, σC(c1, . . . , ck) = c}

for every c ∈ C. Note that the sum is always finite because of the FDP. We can now
turn the K-vector space (K〈〈C〉〉,+, 0̃) into a KΣ-algebra SK(C) = (K〈〈C〉〉,+, 0̃,Σ)
in which for any k ≥ 0 and σ ∈ Σk the Σ-operation is defined by

σSK(C) : K〈〈C〉〉k → K〈〈C〉〉, (S1, . . . , Sk) �→ σ(S1, . . . , Sk).

It is straightforward to verify that these operations are multilinear. We call SK(C)
the KΣ-algebra of KC-series. Clearly, the set K〈C〉 is closed under addition, multi-
plications by scalars and the σSK(C)-operations, and thus the KC-polynomials form
a subalgebra PK(C) = (K〈C〉,+, 0̃,Σ) of SK(C), the KΣ-algebra of KC-polynomials.

Remark 4.2 Note that σPK(C)(P1, . . . , Pk) is a well-defined KC-polynomial for any
k ≥ 0, σ ∈ Σk and P1, . . . , Pk ∈ K〈C〉 even if C does not have the FDP. Moreover,
it is easy to see that if Pi = ai1.ci1 + . . . + aimi .cimi (i = 1, . . . , k), then

σPK(C)(P1, . . . , Pk) =
∑
{a1j1 · . . . ·akjk .σC(c1j1 , . . . , ckjk) | j1 ∈ [m1], . . . , jk ∈ [mk]}.

Let C = (C,Σ) be an algebra with the FDP. If S is a KC-series and p ∈ Tr(C) a
translation of C, then the KC-series p(S) is defined by setting

(p(S), c) =
∑
{(S, d) | d ∈ C, p(d) = c},

for each c ∈ C. Again the FDP guarantees that the sum is finite. In particular, for
a KC-polynomial P = a1.c1 + . . .+ am.cm, we get p(P ) = a1.p(c1) + . . .+ am.p(cm),
and this is a well-defined polynomial even if the FDP is not assumed. On the other
hand, p−1(S) is defined as the KC-series such that (p−1(S), c) = (S, p(c)) for every
c ∈ C. Again, it is clear that if C has the FDP, then p−1(S) is a KC-polynomial for
every KC-polynomial S. It is also easy to prove the following useful observations.

Lemma 4.3 Let C = (C,Σ) be a Σ-algebra with the FDP. For any p, q ∈ Tr(C),
a ∈ K and S, T ∈ K〈〈C〉〉,

(a) p(aS) = ap(S), (d) p−1(aS) = ap−1(S), and

(b) p(S + T ) = p(S) + p(T ), (e) p−1(S + T ) = p−1(S) + p−1(T ).

(c) p(q)(S) = p(q(S)),
If S and T are KC-polynomials, these identities hold also in case C that does not
have the FDP.
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Lemma 4.4 Let C = (C,Σ) be a Σ-algebra. For any translation p ∈ Tr(C), there is
a translation p̂ of PK(C)• such that p̂(P ) = p(P ) for every P ∈ K〈C〉. In particular,
if p(ξ) = σC(c1, . . . , ξ, . . . , ck) is an elementary translation of C, then

p̂ : P �→ σPK(C)(1.c1, . . . , P, . . . , 1.ck), (P ∈ K〈C〉)

is an elementary translation of PK(C)• such that p̂(P ) = p(P ) for every P ∈ K〈C〉.
On the other hand, any elementary translation of PK(C) of the form

Π(ξ) = σPK (C)(Q1, . . . , ξ, . . . , Qk) (k > 0, σ ∈ Σk, Q1, . . . , Qk ∈ K〈C〉)

is a linear combination of such elementary translations p̂ with p(ξ) ∈ ETr(C).

Proof. The first statement follows from the second one, and since this is quite
obvious, we prove just the last statement. Assume that ξ occurs in the ith ar-
gument in the elementary translation Π(ξ) = σPK(C)(Q1, . . . , ξ, . . . , Qk) and let
Ql =

∑ml
j=1 alj .clj for 1 ≤ l ≤ k, l �= i. Then for any P ∈ K〈C〉 and c ∈ C, we get

(σPK(C)(Q1, . . . , P, . . . , Qk), c)

=
∑
{(Q1, c1) · . . . · (P, d) · . . . · (Qk, ck) | cl, d ∈ C (l �= i),

σC(c1, . . . , d, . . . , ck) = c}

=
∑
{a1j1 · . . . · (P, d) · . . . · akjk | jl ∈ [ml] (l �= i), d ∈ C,

σC(c1j1 , . . . , d, . . . , ckjk) = c}

=
∑
{a1j1 · . . . · (P, d) · . . . · akjk · (σ(1.c1j1 , . . . , 1.d, . . . , 1.ckjk), c) |

jl ∈ [ml] (l �= i), d ∈ C}

=
(∑

{a1j1 · . . . · (P, d) · . . . · akjkσ(1.c1j1 , . . . , 1.d, . . . , 1.ckjk) |

jl ∈ [ml] (l �= i), d ∈ C}, c
)

=
(∑

{a1j1 · . . . · (P, d) · . . . · akjkσPK(C)(1.c1j1 , . . . , 1.d, . . . , 1.ckjk) |
jl ∈ [ml] (l �= i), d ∈ C}, c

)

=
(∑

{a1j1 · . . . · akjkσPK(C)(1.c1j1 , . . . , (P, d).d, . . . , 1.ckjk) |
jl ∈ [ml] (l �= i), d ∈ C}, c

)

=
(∑

{a1j1 · . . . · akjkσPK(C)(1.c1j1 , . . . , P, . . . , 1.ckjk) | jl ∈ [ml] (l �= i)}, c
)
,

and hence the original translation can be represented as a linear combination of the
required kind. �

Lemma 4.4 means that when dealing with congruences of the polynomial algebra
PK(C), we may in general operate with translations of the Σ-algebra C itself. This
is expressed also in the following corollary of Lemma 3.3.
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Corollary 4.5 Let C = (C,Σ) be a Σ-algebra. An equivalence ≡ on K〈C〉 is a
congruence of the KΣ-algebra PK(C) of KC-polynomials, if and only if, for all P,Q ∈
K〈C〉,

(1) if P ≡ Q, then p(P ) ≡ p(Q) for every p ∈ ETr(C),

(2) if P ≡ Q, then P +R ≡ Q+R for every R ∈ K〈C〉, and

(3) if P ≡ Q, then aP ≡ aQ for every a ∈ K.

On the other hand, if ≡ is any congruence on PK(C), then P ≡ Q implies p(P ) ≡
p(Q) for every p ∈ Tr(C).

Before considering images and pre-images of series under homomorphisms, let
us note the close connection between the homomorphisms defined on a Σ-algebra C
and the homomorphisms of KΣ-algebras defined on the polynomial algebra PK(C).

Lemma 4.6 Let C = (C,Σ) be a Σ-algebra andM = (M,+, 0,Σ) be a KΣ-algebra.

(a) For any Σ-homomorphism ϕ : C →M•, there exists a uniqueKΣ-homomorphism
ϕ : PK(C)→M such that (1.c)ϕ = cϕ for every c ∈ C.

(b) If η : PK(C) →M is a KΣ-homomorphism, then η̂ : C → M•, c �→ (1.c)η, is
a Σ-homomorphism.

(c) ϕ̂ = ϕ for any Σ-homomorphism ϕ : C →M•.

(d) η̂ = η for any KΣ-homomorphism η : PK(C)→M.

Proof. It clear that in (a) we must set Pϕ = a1(c1ϕ) + . . . + am(cmϕ) for any
P = a1.c1 + . . . + am.cm in K〈C〉, and that this gives the required homomorphism.
Also the remaining statements can be proved by straightforward computations. �

Note also that, when we identify each monomial 1.c with the element c ∈ C,
then the ϕ of Lemma 4.6 (a) becomes the linear extension of ϕ from C to K〈C〉,
while the η̂ of Lemma 4.6 (b) is the restriction of η to C.

Let us now consider any Σ-algebras C = (C,Σ) and D = (D,Σ), and assume
that there is a homomorphism ϕ : C → D. Since D may be regarded as a subalgebra
of PK(D)•, we may view ϕ as a homomorphism ϕ : C → PK(D)•. Then its linear
extension ϕ : PK(C) → PK(D) introduced in Lemma 4.6 maps a KC-polynomial
P = a1.c1 + . . .+ am.cm to the KD-polynomial a1.c1ϕ+ . . .+ am.cmϕ because now
the operations in the image Pϕ are those of the polynomial algebra PK(D). Usually,
we write just Pϕ for Pϕ.
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Let us say that the homomorphism ϕ : C → D is locally finite if dϕ−1 is finite
for every d ∈ D. If this is the case, we may define Sϕ for any S ∈ K〈〈C〉〉 by

(Sϕ, d) =
∑
{(S, c) | c ∈ dϕ−1} (d ∈ D).

Furthermore, for any ϕ : C → D and any KD-series S ∈ K〈〈D〉〉 the KC-series
Sϕ−1 is defined by

(Sϕ−1, c) = (S, cϕ) (c ∈ C).

It is easy to see that if ϕ is locally finite, then Pϕ−1 is a KC-polynomial for every
KD-polynomial P ∈ K〈D〉.
Let us note that Lemma 2.1 can be extended to polynomials as follows. We omit

the straightforward proof.

Lemma 4.7 Let ϕ : C → D be a homomorphism of Σ-algebras. Then p(P )ϕ =
pϕ(Pϕ) for any KC-polynomial P and any translation p ∈ Tr(C).

Moreover, we note the following facts.

Lemma 4.8 Let ϕ : C → D be a locally finite homomorphism of Σ-algebras. For
any S, S′ ∈ K〈〈C〉〉, T, T ′ ∈ K〈〈D〉〉 and a ∈ K,

(a) (aS)ϕ = a(Sϕ), (c) (aT )ϕ−1 = a(Tϕ−1), and

(b) (S + S′)ϕ = Sϕ+ S′ϕ, (d) (T + T ′)ϕ−1 = Tϕ−1 + T ′ϕ−1.

The linear extension of aKC-series S : C → K to theK-vector space (K〈C〉,+, 0̃)
is the linear form S : K〈C〉 → K defined by

S(P ) =
∑
c∈C
(P, c) · (S, c) (P ∈ K〈C〉).

For P = a1.c1 + . . .+ am.cm, this can be written as

S(P ) = a1 · (S, c1) + . . .+ am · (S, cm).

In particular, S(1.c) = (S, c) for every c ∈ C. Note also that if (M, ϕ, γ) is a
representation of S, then S(P ) = γ(Pϕ) for every P ∈ K〈C〉.
In the following lemma we list some basic properties of these linear forms.

Lemma 4.9 Let C and D be Σ-algebras, and let S be a KC-series.

(a) S(aP ) = a · S(P ) for any a ∈ K and P ∈ K〈C〉.

(b) S(P +Q) = S(P ) + S(Q) for any P,Q ∈ K〈C〉.

(c) S(p(P )) = p−1(S)(P ) for any P ∈ K〈C〉 and any translation p ∈ Tr(C).
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(d) If ϕ : C → D is a homomorphism of Σ-algebras, then T (Pϕ) = Tϕ−1(P ) for
any KD-series T ∈ K〈〈D〉〉 and any KC-polynomial P ∈ K〈C〉.

Proof. Statements (a) and (b), that just express the fact that S is a linear form, are
quite obvious. To show (c) and (d), let P = a1.c1 + . . . + am.cm. Then

S(p(P )) = S(a1.p(c1) + . . . + am.p(cm))

= a1 · (S, p(c1)) + . . . + am · (S, p(cm))
= a1 · (p−1(S), c1) + . . .+ am · (p−1(S), cm)
= p−1(S)(P )

proves (c), and similarly

Tϕ−1(P ) = a1 · (Tϕ−1, c1) + . . .+ am · (Tϕ−1, cm)

= a1 · (T, c1ϕ) + . . . + am · (T, cmϕ)
= T (a1.c1ϕ+ . . . + am.cmϕ)

= T (Pϕ)

proves (d) �

The following facts also have very simple proofs.

Lemma 4.10 Let C = (C,Σ) be a Σ-algebra and let S, T ∈ K〈〈C〉〉 be any KC-series.
Then for any a ∈ K and any P ∈ K〈C〉,

(a) S + T (P ) = S(P ) + T (P ) and (b) aS(P ) = a · S(P ).

5 Syntactic congruences and KΣ-algebras of KC-series
In this section C = (C,Σ) is again any given Σ-algebra. When applied to string or
tree series, the following notion is equivalent to the notion based on syntactic ideals
presented in [13], [4] or [3], for example. It allows us to develop for general power
series a basic common theory of syntactic congruences and syntactic algebras. As
mentioned in the Introduction, some of the notions and facts of this section and the
following one also appear in [11] in a somewhat more general setting.
The syntactic congruence ≡S of a KC-series S is the relation on K〈C〉 defined

by
P ≡S Q ⇔ (∀p ∈ Tr(C)) S(p(P )) = S(p(Q)) (P,Q ∈ K〈C〉).

For the sake of convenience, we write simply [P ]S for [P ]≡S . It is easy to see that

γS : K〈C〉/≡S → K, [P ]S �→ S(P ),

is a well-defined linear form. We call it the syntactic linear form of S.
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Example 5.1 Let us compute the syntactic congruence of the series Paths of Ex-
ample 4.1. First we prove by induction on p that for every p ∈ Tr(SP), there are
integers k ≥ 1 and l ≥ 0 such that (Paths, p(g)) = k(Paths, g) + l for every g ∈ SP.

1. For p = 1SP we choose k = 1 and l = 0.

2. If p = ξ‖g′ or p = g′‖ξ for some g′ ∈ SP, then k = 1 and l = (Paths, g′) satisfy
the condition. If p = ξ · g′ or p = g′ · ξ for some g′ ∈ SP, then we choose
k = (Paths, g′) and l = 0.

3. Let p(ξ) = p1(p2(ξ)) be the composition of some p1, p2 ∈ Tr(SP) and let ki
and li be the integers belonging to pi (i = 1, 2). It is easy to verify that p is
defined by k = k1k2 and l = k1l2 + l1.

Also the converse holds: for all integers k ≥ 1 and l ≥ 0, there is a p ∈ Tr(SP) such
that (Paths, p(g)) = k(Paths, g)+ l for every g ∈ SP. In fact, if l > 0, we may choose
p = (ξ · g1)‖g2, where g1, g2 ∈ SP are such that (Paths, g1) = k and (Paths, g2) = l.
If l = 0, then we set p = ξ · g1, where (Paths, g1) = k.
For any polynomials P = a1.f1 + . . . + am.fm and Q = b1.g1 + . . . + bn.gn in

Q〈SP〉, P ≡Paths Q if and only if, for every p ∈ Tr(SP),

a1(Paths, p(f1))+ . . .+am(Paths, p(fm)) = b1(Paths, p(g1))+ . . .+ bn(Paths, p(gn)).

By the above observations, this holds if and only if, for all k ≥ 1 and l ≥ 0,

a1(k(Paths, f1) + l) + . . . + am(k(Paths, fm) + l) =

b1(k(Paths, g1) + l) + . . .+ bn(k(Paths, gn) + l),

i.e., if and only if, for all k ≥ 1 and l ≥ 0,

k(a1(Paths, f1) + . . .+ am(Paths, fm)) + l(a1 + . . .+ am) =

k(b1(Paths, g1) + . . . + bn(Paths, gn)) + l(b1 + . . .+ bn).

However, this latter condition is equivalent to the pair of equations

a1(Paths, f1) + . . . + am(Paths, fm) = b1(Paths, g1) + . . .+ bn(Paths, gn)

a1 + . . .+ am = b1 + . . .+ bn.

This means that the ≡Paths-class of P is determined by the two numbers a1+. . .+am
and a1(Paths, f1) + . . .+ am(Paths, fm).
On the other hand, for any pair of rational numbers a,A ∈ Q, there is a QSP-

polynomial a1.f1+ . . .+am.fm such that a1+ . . .+am = a and a1(Paths, f1)+ . . .+
am(Paths, fm) = A. In fact, we may choose

Pa,A := (2a−A).↓ +(A− a).(↓‖↓)
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as the canonical representative of the class corresponding to the pair a,A. Then we
have Q〈SP〉/≡Paths = {[Pa,A]Paths | a,A ∈ Q}. �

A congruence θ ∈ Con(PK(C)) saturates a KC-series S ∈ K〈〈C〉〉 if there exists
a linear form γ : K〈C〉/θ → K such that (S, c) = γ([c]θ) for every c ∈ C (again we
represent 1.c by c). Note that then S(P ) = γ([P ]θ) for every polynomial P ∈ K〈C〉.
Note also that if (M, ϕ, γ) is any representation of S, then kerS saturates S.
The following proposition generalizes a result that transpires from [4] or [3]. For

the reader’s convenience we give here a complete proof.

Proposition 5.2 Let C = (C,Σ) be a Σ-algebra. For any KC-series S ∈ K〈〈C〉〉, the
relation ≡S is the greatest congruence on the KΣ-algebra PK(C) of KC-polynomials
that saturates S.

Proof. Obviously ≡S is an equivalence relation. That it is a congruence on PK(C)
follows from Corollary 4.5 and Lemmas 4.3 and 4.9, and it saturates S because, for
the syntactic linear form γS , we get γS([c]S) = S(1.c) = (S, c) for every c ∈ C.
Let θ be any congruence on PK(C) that saturates S, and let γ : K〈C〉/θ → K

be a linear form such that (S, c) = γ([c]θ) for every c ∈ C. For any P,Q ∈ K〈C〉,

P θ Q ⇒ (∀p ∈ Tr(C)) p(P ) θ p(Q) (by Corollary 4.5)

⇒ (∀p ∈ Tr(C)) γ([p(P )]θ) = γ([p(Q)]θ)

⇒ (∀p ∈ Tr(C))S(p(P )) = S(p(Q))

⇒ P ≡S Q,

and hence θ ⊆≡S . �

Let us note how some basic operations on series affect the syntactic congruences.

Lemma 5.3 Let C = (C,Σ) and D = (D,Σ) be Σ-algebras.

(a) ≡S ∩ ≡T ⊆ ≡S+T for all S, T ∈ K〈〈C〉〉.

(b) ≡aS = ≡S for every S ∈ K〈〈C〉〉 and every a ∈ K,a �= 0.

(c) ≡S ⊆ ≡p−1(S) for every S ∈ K〈〈C〉〉 and every p ∈ Tr(C).

(d) If ϕ : C → D is a homomorphism of Σ-algebras, then ϕ ◦≡S◦ϕ−1 ⊆ ≡Sϕ−1 for
every S ∈ K〈〈D〉〉. If ϕ is an epimorphism, then equality holds.
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Proof. Let P and Q be any KC-polynomials.
(a) If P ≡S ∩ ≡T Q, then for every translation p ∈ Tr(C), both S(p(P )) =

S(p(Q)) and T (p(P )) = T (p(Q)) hold, and hence also S + T (p(P )) = S + T (p(Q)).
This means that P ≡S+T Q.
(b) For any a �= 0,

P ≡aS Q ⇔ (∀p ∈ Tr(C)) aS(p(P )) = aS(p(Q))

⇔ (∀p ∈ Tr(C)) a · S(p(P )) = a · S(p(Q)) (Lemma 4.10(b))

⇔ (∀p ∈ Tr(C))S(p(P )) = S(p(Q))

⇔ P ≡S Q,

(c) For any p ∈ Tr(C),

P ≡S Q ⇔ (∀q ∈ Tr(C))S(q(P )) = S(q(Q))

⇒ (∀q ∈ Tr(C))S(p(q(P ))) = S(p(q(Q)))

⇔ (∀q ∈ Tr(C)) p−1(S)(q(P )) = p−1(S)(q(Q)) (Lemma 4.9(c))

⇔ P ≡p−1(S) Q.

(d) Now

P ϕ ◦≡S ◦ϕ−1 Q ⇔ Pϕ ≡S Qϕ

⇔ (∀q ∈ Tr(D))S(q(Pϕ)) = S(q(Qϕ))

⇒ (∀p ∈ Tr(C))S(pϕ(Pϕ)) = S(pϕ(Qϕ)) (Lemma 2.1)

⇔ (∀p ∈ Tr(C))S(p(P )ϕ) = S(p(Q)ϕ) (Lemma 4.7)

⇔ (∀p ∈ Tr(C))Sϕ−1(p(P )) = Sϕ−1(p(Q)) (Lemma 4.9(d))

⇔ P ≡Sϕ−1 Q,

and if ϕ is surjective, then the only ”⇒” also becomes an equivalence sign (again by
Lemma 2.1). �

Again, let C = (C,Σ) be any Σ-algebra. The syntactic KΣ-algebra of a KC-series
S ∈ K〈〈C〉〉 is defined as the quotient KΣ-algebra SA(S) := PK(C)/≡S . Depending
on the context, SA(S) may also denote either the K-vector space (K〈C〉/≡S ,+, [0̃])
or just the set K〈C〉/≡S . The natural homomorphism

νS : PK(C)→ SA(S), P �→ [P ]S ,

is called the syntactic homomorphism of S. Obviously, we get S as the composition
of νS and γS as illustrated by Fig. 1.
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PK(C)

SA(S)

K

S

νS

γS

Figure 1: S as the composition of νS and γS .

Example 5.4 Let us determine the syntactic QΣ-algebra of the QSP-series defined
in Example 4.1. In what follows, we write simply [P ] for [P ]Paths. In Example 5.1
we already showed that the set of elements of SA(Paths) is {[Pa,A] | a,A ∈ Q},
where Pa,A = (2a − A). ↓ +(A − a).(↓ ‖ ↓) for each pair a,A ∈ Q. By using the
characterization of the syntactic congruence ≡Paths given in Example 5.1, it is easy
to verify that for all a, b,A,B ∈ Q,

(1) [Pa,A] + [Pb,B ] = [Pa+b,A+B ],

(2) b[Pa,A] = [Pba,bA],

(3) [Pa,A]‖[Pb,B ] = [Pab,aB+Ab], and

(4) [Pa,A] · [Pb,B ] = [Pab,AB ],

and this also shows that η : SA(Paths) → Q2, [Pa,A] �→ (a,A), is an isomorphism
between SA(Paths) and the 2-dimensional QΣ-algebraM of Example 4.1. �

The following facts correspond to those presented in Lemma 5.3.

Proposition 5.5 Let C = (C,Σ) and D = (D,Σ) be Σ-algebras.

(a) SA(S + T ) � SA(S)× SA(T ) for all S, T ∈ K〈〈C〉〉.

(b) SA(aS) = SA(S) for every S ∈ K〈〈C〉〉 and every a ∈ K,a �= 0.

(c) SA(p−1(S))� SA(S) for all S ∈ K〈〈C〉〉 and p ∈ Tr(C).

(d) If ϕ : C → D is any homomorphism, then SA(Sϕ−1) � SA(S) for every
S ∈ K〈〈D〉〉. If ϕ is an epimorphism, then SA(Sϕ−1) ∼= SA(S).

Proof. The first three assertions follow directly from the corresponding statements
in Lemma 5.3. To prove (d), let us first assume that ϕ : C → D is an epimorphism.
We shall now show that

ψ : SA(Sϕ−1)→ SA(S), [P ]Sϕ−1 �→ [Pϕ]S ,
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PK(C) PK(D)

SA(Sϕ−1) SA(S)

ϕ

νSϕ−1 νS

ψ

Figure 2: The isomorphism ψ in Proposition 5.5 (d).

is an isomorphism of KΣ-algebras. The definition of ψ is illustrated by Fig. 2. First
of all, ψ is well-defined and injective. Indeed, for any P,Q ∈ K〈C〉,

[P ]Sϕ−1ψ = [Q]Sϕ−1ψ ⇔ Pϕ ≡S Qϕ

⇔ P ≡Sϕ−1 Q (Lemma 5.3 (d))

⇔ [P ]Sϕ−1 = [Q]Sϕ−1 .

Since ϕ is surjective, so is ψ, and straightforward computations show that it preserves
the operations of KΣ–algebras. For example, if σ ∈ Σk and P1, . . . , Pk ∈ K〈C〉, then

σSA(Sϕ
−1)([P1]Sϕ−1 , . . . , [Pk]Sϕ−1)ψ = [σPK (C)(P1, . . . , Pk)]Sϕ−1ψ

= [σPK (C)(P1, . . . , Pk)ϕ]S

= [σPK (D)(P1ϕ, . . . , Pkϕ)]S

= σSA(S)([P1ϕ]S , . . . , [Pkϕ]S)

= σSA(S)([P1]Sϕ−1ψ, . . . , [Pk]Sϕ−1ψ).

Consider now the general case in which ϕ : C → D is not necessarily an epimor-
phism. Let E = (E,Σ) be the subalgebra of D obtained as the image of C under ϕ.
Furthermore, let T ∈ K〈〈E〉〉 be the restriction of S to E, and let ψ : C → E , c �→ cϕ,

be the epimorphism from C onto E obtained from ϕ by restricting its range to
E (= Cϕ). Then it is clear that Sϕ−1 = Tψ−1. Furthermore, every translation
p ∈ Tr(E) of E is the restriction of some translation p′ ∈ Tr(D) of D, and every
KE-polynomial P ∈ K〈E〉 can also be regarded as a KD-polynomial, and it is easy
to see that then T (p(P )) = S(p′(P )). From this it follows that if P ≡S Q for some
P,Q ∈ K〈E〉, then also P ≡T Q. This means that the restriction θ of ≡S to K〈E〉
is contained in ≡T , and therefore SA(T ) = P(E)/≡T is an image of P(E)/θ. Since
P(E)/θ is covered by SA(S), it follows from the first part of the proof that

SA(Sϕ−1) = SA(Tψ−1) ∼= SA(T ) � SA(S),

and hence also the general part of (d) holds. �
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Proposition 5.6 Let S ∈ K〈〈C〉〉 be a KC-series for some Σ-algebra C = (C,Σ).

(a) The syntactic algebra SA(S) recognizes S.

(b) If a KΣ-algebra M recognizes S, then SA(S) � M. In particular, if there is
a representation (M, ϕ, γ) of S such that the linear extension ϕ : PK(C)→M
of ϕ is an epimorphism, then SA(S)�M and, more precisely, there exists an
epimorphism η :M→ SA(S) of KΣ-algebras such that ϕη = νS and ηγS = γ.

Proof. If we restrict the syntactic homomorphism νS to C, we obtain the homomor-
phism ϕ : C → SA(S)•, c �→ (1.c)νS , of Σ-algebras. For the syntactic linear form γS ,
we get γS(cϕ) = γS([c]S) = (S, c) for every c ∈ C, and hence SA(S) recognizes S.
To prove (b), let M = (M,+, 0,Σ) be a KΣ-algebra that recognizes S. First

consider the special case, where there is a representation (M, ϕ, γ) of S such that
the linear extension ϕ : PK(C)→M of ϕ is an epimorphism
For any u ∈M , let uη = [P ]S , where P is any KC-polynomial such that Pϕ = u.

Let us verify that this yields the required epimorphism η :M→ SA(S).
If Pϕ = Qϕ for some P,Q ∈ K〈C〉, then for every p ∈ Tr(C), p(P )ϕ = pϕ(Pϕ) =

pϕ(Qϕ) = p(Q)ϕ, and hence S(p(P )) = γ(p(P )ϕ) = γ(p(Q)ϕ) = S(p(Q)). This
means that [P ]S = [Q]S , and hence η is well-defined. Clearly, η is surjective.
Let us show that η is a homomorphism. If u = Pϕ and v = Qϕ with P,Q ∈ K〈C〉

and a ∈ K, then (u+ v)η = [P +Q]S = [P ]S+[Q]S = uη+ vη, and (au)η = [aP ]S =
a[P ]S = a(uη). Let k ≥ 0, σ ∈ Σk and u1, . . . , uk ∈ M . If P1, . . . , Pk ∈ K〈C〉 are
such that P1ϕ = u1, . . . , Pkϕ = uk, then σ(P1, . . . , Pk)ϕ = σM(P1ϕ, . . . , Pkϕ), and
hence (omitting S as a subscript)

σM(u1, . . . , uk)η = [σ(P1, . . . , Pk)] = σSA(S)([P1], . . . , [Pk]) = σSA(S)(u1η, . . . , ukη).

For all P ∈ K〈C〉, Pϕη = [P ]S = PνS , i.e., ϕη = νS . Similarly, if u = Pϕ ∈ M ,
then uηγS = PϕηγS = γS([P ]S) = S(P ) = γ(Pϕ) = γ(u), and hence ηγS = γ.
The first statement of part (b) now follows easily when we first replaceM with

its subalgebra N = (K〈C〉ϕ,+, 0,Σ) obtained as the image of PK(C) under ϕ. �

Now we get the following generalization of the corresponding facts about string
series (cf. [13]) and tree series (cf. [4, 3, 11]).

Corollary 5.7 Let C be any Σ-algebra. A KC-series S is recognizable iff SA(S) is
finite-dimensional.

Proof. If SA(S) is finite-dimensional, then S ∈ RecK(C) by Proposition 5.6 (a). On
the other hand, if S is recognized by a finite-dimensional KΣ-algebra M, then by
Proposition 5.6 (b), the dimension of SA(S) is at most equal to that ofM. �
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Proposition 5.8 LetM = (M,+, 0,Σ) and N = (N,+, 0,Σ) be finite-dimensional
KΣ-algebras, and let C = (C,Σ) be a Σ-algebra freely generated over some variety
of Σ-algebras into which N • belongs. IfM�N andM recognizes some KC-series
S, then also N recognizes S.

Proof. Let ϕ : C → M• be a homomorphism and γ : M → K be a linear form such
that (S, c) = γ(cϕ) for every c ∈ C. First we prove the assertion in two special cases.

Case 1. Assume that M is a subalgebra of N . Then we may view ϕ also as a
homomorphism ϕ : C → N • and γ can be extended to a linear form γ′ : N → K.
It is clear that (N , ϕ, γ′) is a representation of S.

Case 2. Assume now that there exists an epimorphism η : N →M of KΣ-algebras.
Then η̃ : N • → M•, u �→ uη, is an epimorphism of Σ-algebras, and by our
assumption concerning C and N •, there exists a homomorphism ψ : C → N •

such that ψη̃ = ϕ. On the other hand, β := ηγ is a linear form of N , and it is
easy to see that (N , ψ, β) is a representation of S.

The general assertion of the proposition follows from these two special cases. Indeed,
if M � N , then M is an image of some subalgebra N1 of N . Also N •

1 is in the
variety mentioned in the proposition, and hence N1 recognizes S by Case 2, and
therefore N recognizes S by Case 1. �

Note that the following corollary applies, in particular, to the cases where C is
the free monoid X∗ or the term algebra TΣ(X) for some alphabet X.

Corollary 5.9 Let C be a Σ-algebra freely generated over some variety V of Σ-
algebras, and let S ∈ RecK(C). If M is a finite-dimensional KΣ-algebra such that
SA(S) �M andM• ∈ V, then M recognizes S.

Let us call a KΣ-algebra syntactic if it is isomorphic to the syntactic KΣ-algebra
of some C-series for some Σ-algebra C.
Note that since γS is a homomorphism of K-vector spaces, ker γS is a congruence

on the K-vector space (SA(S),+, [0̃]S), but in general it is not a congruence on the
KΣ-algebra SA(S).

Lemma 5.10 Let C = (C,Σ) be a Σ-algebra and let S ∈ K〈〈C〉〉. Then there is no
non-trivial congruence θ on the KΣ-algebra SA(S) such that θ ⊆ ker γS.

Proof. If θ ∈ Con(SA(S)) and θ ⊆ ker γS , then νS ◦θ◦ν−1S ⊆ νS ◦ker γS ◦ν−1S = kerS.
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Hence, for any P,Q ∈ K〈C〉,

[P ]S θ [Q]S ⇒ (∀q ∈ Tr(SA(S)•)) q([P ]S) θ q([Q]S)
⇒ (∀p ∈ Tr(PK(C)•)) pνS(PνS) θ pνS (QνS)
⇒ (∀p ∈ Tr(PK(C)•)) p(P )νS θ p(Q)νS
⇒ (∀p ∈ Tr(C)) p̂(P )νS θ p̂(Q)νS
⇒ (∀p ∈ Tr(C))S(p(P )) = S(p(Q))

⇒ [P ]S = [Q]S ,

where we also made use of Lemmas 2.1 and 4.4. Hence θ is the diagonal relation. �

We will also need the following technical lemma.

Lemma 5.11 Let M = (M,+, 0,Σ) be a KΣ-algebra. If γ : M → K is any linear
form, then the relation θγ on M defined by the condition

u θγ v ⇔ (∀p ∈ Tr(M•)) γ(p(u)) = γ(p(v)) (u, v ∈M),

is the greatest congruence θ on M such that θ ⊆ ker γ.

Proof. It is clear that θγ is an equivalence on M such that θγ ⊆ ker γ. It is a
congruence of the Σ-algebra M• since u θγ v implies that γ(p(q(u))) = γ(p(q(v)))
for all p, q ∈ Tr(M•). It is also a congruence on theK-vector space (M,+, 0) because
γ and all the translations p ∈ Tr(M•) are linear.
If θ is a congruence onM such that θ ⊆ ker γ, then for any u, v ∈M ,

u θ v ⇒ (∀p ∈ Tr(M•)) p(u) θ p(v) ⇒ (∀p ∈ Tr(M•)) γ(p(u)) = γ(p(v)) ⇒ u θγ v,

i.e., θ ⊆ θγ . �

Proposition 5.12 A KΣ-algebraM = (M,+, 0,Σ) is syntactic if and only if there
exists a linear form γ : M → K such that ker γ does not contain any non-trivial
congruences on the KΣ-algebraM.

Proof. Let C = (C,Σ) be any Σ-algebra and S ∈ K〈〈C〉〉 be any C-series. By Lemma
5.10, γS : SA(S) → K is a linear form for which there is no non-trivial congruence
θ on SA(S) such that θ ⊆ ker γS .
Assume now that M = (M,+, 0,Σ) is a KΣ-algebra for which there exists a

linear form γ :M → K such that ker γ does not contain any non-trivial congruence
onM. Then, in particular, θγ = ΔM . Let S be the KM•-series such that (S, u) =
γ(u) for every u ∈M (i.e., as mappings S and γ are equal). It is easy to verify that

η : PK(M•)→M, a1.u1 + . . .+ am.um �→ a1u1 + . . . + amum,
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is a KΣ-epimorphism such that S(P ) = γ(Pη) for every P ∈ K〈C〉. Now, for any
P,Q ∈ K〈M〉,

P ≡S Q ⇔ (∀p ∈ Tr(M•))S(p(P )) = S(p(Q))

⇔ (∀p ∈ Tr(M•)) γ(p̂(P )η) = γ(p̂(Q)η)

⇔ (∀p ∈ Tr(M•)) γ(p̂η(Pη)) = γ(p̂η(Qη))

⇔ (∀q ∈ Tr(M•)) γ(q(Pη)) = γ(q(Qη))

⇔ Pη θγ Qη

⇔ P ker η Q,

where we used Lemmas 2.1, 4.4 and 5.11 as well as the fact that θγ = ΔM . Hence,

M ∼= PK(M•)/ ker η = PK(M•)/≡S = SA(S),

which shows thatM is syntactic. �

As a consequence of the previous proposition, we get the following useful result.

Proposition 5.13 Every finite-dimensional subdirectly irreducible KΣ-algebra is
syntactic.

Proof. Let M = (M,+, 0,Σ) be a finite-dimensional subdirectly irreducible KΣ-
algebra, and let {u1, . . . , un} be a basis of (M,+, 0). If n = 0, thenM is the trivial
KΣ-algebra and thus isomorphic to SA(0̃) (for any choice of C).
Let us now assume that n ≥ 1. For each i ∈ [n], we define γi : M → K by the

condition that if u = a1u1 + . . . + anun is the representation of an element u ∈ M
as the sum the base elements, then γi(u) = ai. Obviously, each γi is a linear form
and ker γ1 ∩ . . .∩ ker γn = ΔM . If for every i ∈ [n], there is a non-trivial congruence
θi such that θi ⊆ ker γi, then we would have θ1 ∩ . . . ∩ θn = ΔM contradicting the
assumption that M is subdirectly irreducible. Therefore at least one of the linear
forms γi satisfies the condition of Proposition 5.12 andM is syntactic. �

6 Concluding remarks

We have defined and studied syntactic congruences and syntactic KΣ-algebras of
KC-series, where C is a general Σ-algebra. As a preparation, we established several
facts about such series and various operations on them, and we studied the KΣ-
algebra of KC-polynomials in some detail. Much of the work done aims directly at
a variety theory, and in a forthcoming paper we will use many of these results to
prove a variety theorem for tree series. Whether this can be further generalized to
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something corresponding to the theory of varieties of recognizable subsets of free
algebras in a variety presented in [15] (cf. also [17]), remains to be seen. It would
also be interesting to see whether this work can be extended to series over something
more general than a field, for example, along the line suggested by Mathissen [11].
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