
Understanding Test-to-Code Traceability
Links: The Need for a Better Visualizing Model

Nadera Aljawabrah1(&), Támas Gergely1,
and Mohammad Kharabsheh2

1 Department of Software Engineering, University of Szeged, Szeged, Hungary
{nadera,gertom}@inf.u-szeged.hu

2 Department of Computer Information System,
The Hashemite University, Zarqa, Jordan

mohkh86@hu.edu.jo

Abstract. Visualization of test-to-code traceability links is a great approach to
understand test-to-code relations. It efficiently supports software developers in
various software development activities throughout the software development
life cycle (SDLC) by browsing, recovering and maintaining, links between
various software artifacts. However, only a small portion of research has been
done on visualization of test-code relations and its importance in maintenance,
comprehension, evolution, and refactoring of a software system. This paper
extensively draws attention of the reader/researcher to the usefulness of visu-
alizing test-to-code traceability links and opens up several research questions or
research paths for further advanced exploration.

Keywords: Visualization � Test-code relations � Traceability links

1 Introduction

Testing is considered to be an important phase in the software development life cycle
(SDLC) in which the unit test plays a significant role in software evolution and
maintenance and assists in building a quality product [1]. Visualization is a very
effective method which helps testers to quickly understand the structure of code and
testing correlation. Though there are many studies that address software visualization,
only a few have focused on the visualization of test-code relations. This paper high-
lights this interesting problem for practitioners and researchers, which may drive more
adoption of the test-code relation tools in practice, as well as trigger more study and
development on related techniques and tools.

Understanding the relations between test and code is essential for other activities in
SDLC, such as: change impact analysis, refactoring and reengineering [1]. In this work,
we focus on the visualization of test-code relations from two aspects: visualization of
test information and visualization of test-to-code traceability links. All information
relevant to the testing process, such as test results, code coverage, and test-related
metrics, can be treated as test information. Visualization of test information can be a
means of providing valuable information about the adequacy of code testing [2],
visualizing software faults [3], and evaluating code coverage of test suites’ quality [4].

AQ1

© Springer Nature Switzerland AG 2019
S. Misra et al. (Eds.): ICCSA 2019, LNCS 11622, pp. 1–14, 2019.
https://doi.org/10.1007/978-3-030-24305-0_32

A
u

th
o

r
P

ro
o

f

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24305-0_32&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24305-0_32&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24305-0_32&domain=pdf
https://doi.org/10.1007/978-3-030-24305-0_32

The area of visualizing test information has been targeted by a number of research
teams. For example, visualization of code coverage [5] displays all statements that are
executed by test suites and thus facilitates the location of faults in these statements.
Another method, described by Cornelissen et al. [6], used a UML sequence diagram to
visualize test information. Quite recently, there has been growing interest in visualizing
test-related metrics which can be considered as an indication of the quality and the
process of testing effort [7, 8]. Test-to-code traceability is useful in many software
development tasks such as maintenance, refactoring and regression testing; visualiza-
tion of these relations is one important methodology to assist the tasks.

Current research on test-to-code traceability links is focused on how to retrieve the
links between test and code as well as different approaches that have been suggested
and used to recover test-to-code-traceability links. However, in [9] the authors find that
there is a lack of visualization support, one of the main challenges in the current test-to-
code traceability recovery approaches and tools. This study aims to investigate the
existing literature on test-related visualization. We have defined two research questions
(RQs) to identify, evaluate and select all quality research evidence relevant to those
questions. Our research questions focus on two test-code relation areas: Testing
information and test-to-code traceability links.

RQ1 to what extent has a visualization of test-code relations been supported in
existing studies?
The motivation of this question is to show whether the researchers and practitioners pay
any attention to using visualization in identifying the links between test and code as
well as obtaining more information about these links (e.g. how the artifacts are con-
nected, types of relations, etc.).

RQ2 what visualization techniques and tools are available to represent test-code
relations?
The purpose of this question is to identify the approaches followed in the literature to
represent test-code relations in a visual manner, the most common methods followed in
representation, and to obtain an overview about different types of visualization tools
used and identify their purposes.

Investigating these questions can provide more information about the areas that
have used the visualization and how much they have been supported by researchers and
practitioners respectively. To answer these questions we explored many publications in
the domain of software visualization, source-code related visualization and, particu-
larly, test-related visualization.

The remainder of this paper is organized in different sections as follows: Back-
ground information and some related works are presented in the next section, why we
need to visualize test and code relations is discussed in Sect. 3. We present results and
discussion of our work in Sect. 4 and we conclude our paper in Sect. 5.

2 N. Aljawabrah et al.

A
u

th
o

r
P

ro
o

f

2 Background Information and Related Work

2.1 Software Visualization

Software development is a complex process that combines many tasks such as com-
prehension, analysis, and maintenance. In this context, software visualization plays a
vital role in program understanding and in reducing the complexity of understanding
the source code structure. Program comprehension is a very effective part, which
provides an initial perception of the software structure and supports the maintainability
of the software. Throughout the history of software development, visualization of
software artifacts has attracted much attention from research teams and several visu-
alization approaches have been proposed to analyze and explore different aspects of
software systems, such as runtime behavior, source code or software evolution [12, 13].
Koschke [12], for example, conducted a survey discussing the use of software visu-
alization in the context of software maintenance, re-engineering, and reverse engi-
neering. The survey collected the perspectives of 82 researchers to identify how far
visualization is used in these contexts. The results indicated that the researchers believe
in the value of visualization in their work. While Caserta et al. [13] in their survey
addressed all visualization techniques used in visualizing the evolution of static aspects
of the software (e.g. code lines, classes, software architecture). They listed all visual-
izing tools developed to display the relations in software inheritance, access, and
method calls.

Various visualization-based techniques have been used in software visualization.
Graphs are the most frequently used visualization to convey information and describe
binary relations (in general), as well as different layout tools, have been developed to
draw graphs [14, 18]. Other techniques are also used depending on the context, such as
charts, UML diagrams, and trees. Out of these techniques, in recent years, a metaphor
has become a key concept where ideas or objects (lower level of abstraction) are used
as a representative or symbol of other things (higher level of abstraction) which are
different from their actual meaning.

The area of visualizing source code relevant information is widely targeted in
literature and it has been accepted as a means to help in software maintenance and
understand the evolution of software systems. Visualization methods could be elicited
depending on the user’s need and the information to be visualized (e.g. metrics,
relationships, and dependencies). For example, graph-based representation turned out
to be appropriate for visualizing source code evolution. Most of the studies have
focused on visualizing source code-related metrics and many approaches are proposed
in this regard. Metrics is a numerical/proportional value to describe and measure the
quality of software artifacts [14, 15] (e.g. source code quality, testing quality, and
documentation quality); therefore, it is called quality metrics. Identification of the
metrics to be used depends on the intent of the visualization. The code-related metrics
which have been frequently used for visualization purpose are: line of codes (LOC),
McCabe complexity [16, 17] and number of methods (NOM) [18, 19]. These metrics
support the maintainability of source code. In visualization space, data and metrics are
mapped to a set of visual attributes as per the context of visualization.

Understanding Test-to-Code Traceability Links 3

A
u

th
o

r
P

ro
o

f

City metaphor is the most popular metaphor used for visualizing program com-
ponents [21]. This metaphor supports navigation of the program, interaction with
represented elements, and explores the city structure. City metaphor is an effective 3D
method to represent software structure that enables the user to be well aware of the
position of software objects, thus it can be easily retrieved to the development process.
In other words, 3D visualization makes use of the spatial memory of users [22]. Wettel
and Lanza [23] presented a 3D city metaphor-based language-independent interactive
3D visualization tool named ‘CodeCity’. This tool presents class as building and
package as a district of a ‘software city’. Two code metrics are used for mapping on
visual properties: NOM maps on the height of the building and NOA maps on the
width. Their visualization is limited to a higher level of abstraction, i.e. package and
class. Quite recently, considerable attention has been paid to use of a 3D games
environment in software visualization. CodeMetropolis [24] is a command line which
helps the city metaphor to visualize source code at a lower level of abstraction
(methods and attributes). It uses a game engine ‘Minecraft’ [25] to visualize the
structure of the source code. A single method is represented as a floor located in a
building (class). Code metrics display the distinct attributes of a software system. These
attributes are mapped to various properties in visual representation space. For instance,
the height of the floor expresses the size of the method in terms of logical lines of code.
A developer is a player who can fly and explore the Minecraft word and obtain details
about internal classes. Balogh et al. [8] extended CodeMetropolis [24] to include
visualization of test-related metrics to support developers to better understand the test
suite’s quality and its relation to the production code. CodePark [26] is another game
environment-based tool, which has been recently developed to visualize source code. In
this tool, the source code itself has been directly visualized in 3D space instead of using
a metaphor to represent it. A set of code metrics has been used to explore a 3D graphs
metaphor to describe the internal structure and relations of large-size programs for
quality assessment purposes [27]. Visual properties of program entities (e.g. size,
shape, color) represent particular metrics of these entities for mapping in 3D visual-
ization metaphor. Information is presented from two points of view: usage-based
pattern and inheritance-based pattern. Depending on these patterns, quality attributes
such as the size and complexity of programs can be observed in visual space.

In line with the above-mentioned works, many extensive research works have been
conducted on code visualization. These works have been immensely useful to reduce
the effort in understanding software architecture and thereby simplify the software
maintenance and evolution process [12].

Coding and testing are very important activities in the software development life
cycle. They are firmly associated with agile software development where the software
is evolved frequently. Visualization supports understanding of the inner workings of
source code and the behavior of test suites [6].

However, from the developer’s perspective, testing is a time-consuming process.
Developers believe that their code is well written and, for the purpose of profit, their
interest is mainly focused on delivering the software on time, thus testing is often
excluded [1]. Hence, visualizing relevant test information (e.g. test suites, test results)
is not sufficiently highlighted. Using visualization with testing can be an effective
method to provide valuable information about: the adequacy of code testing,

4 N. Aljawabrah et al.

A
u

th
o

r
P

ro
o

f

visualizing software faults [28, 29], and evaluation code coverage of test suites’ quality.
This paper contributes to drawing attention to a visualization of test-code relations and
concentrates particularly on two areas: visualization of testing information and visu-
alization of test-to-code traceability links.

2.2 Test-to-Code Traceability Links

Current research on test-to-code traceability links is focused on how to retrieve the links
between test and code. Rompaey and Demeyer [30] have compared six traceability
recovery strategies in terms of the applicability and the accuracy of each approach. The
comparison covers only those approaches relating to requirement traceability and test-
to-code traceability. The strategies have been evaluated based on three open-source Java
programs. In these approaches, units under test are identified by matching test cases,
production code’s name, vocabulary (e.g. identifiers, comments), examining method
invocation in test cases, looking at the last calls right before assert statement, and
capturing changes on test cases and production code in the version control change log.
The results show that last call before assert, lexical analysis and co-evolution have high
applicability; however, they have low accuracy. While naming convention and fixture
element types showed high precision and recall, the best results are provided by com-
bining the high-applicability strategies with the high-accuracy ones.

Qusef et al. [31] proposed a more accurate test-to code traceability recovery tool
(SCOTCH+ – Source code and Concept-based Test to Code traceability Hunter). This
technique depends on applying dynamic slicing and conceptual coupling to recover the
links between test cases and source code, thus identifying class under test (CUT).

Recently, various techniques have been developed to support visualization of
traceability links between software system artifacts. In addition, different tools have
also been developed to automatically/semi-automatically retrieve traceability links
between different software artifacts types (e.g. requirements, source code, and docu-
ment). Marcus et al. [32] studied traceability links between software artifacts and
showed how visualization can be important in recovering, maintaining and browsing
links between such artifacts.

Traceability links can be identified according to a specific task required to retrieve
these links, (e.g. recovering links for evolution purposes). The most popular types of
links retrieved are established among items based on the types of software artifacts,
which can be either implicit or explicit [33].

Visualization techniques and tools have been developed depending on the type of
data to be visualized and the objectives of visualization (e.g. to understand the
dependencies and relationships between software artifacts, how they interact with each
other, and help document links between several kinds of software artifacts -e.g.
requirements, tests) [34]. In Table 1, a set of traceability techniques and tools are listed.
Some tools [36, 37] allow the user to add, browse and delete links or even edit the
properties of such links. Another tool is pluggable with an IDE [32] to give a uniform
user experience for test-to-code traceability links and software artifacts. Each tool
provides one or more visualization techniques which may display links in different
ways depending on the information task context. For example, the Multi-Viso Trace

Understanding Test-to-Code Traceability Links 5

A
u

th
o

r
P

ro
o

f

tool [36] provides four visualization techniques depending on the context in which the
traceability is being applied. The visualization displays a global structure of traceability
and a detailed overview of each link.

While most of the listed techniques present the links extracted between require-
ments and different software artifacts (e.g. documents, source code), none of these tools
address the ease of visualizing the links between unit tests and code, which lays the
foundation of this research.

3 Why Is the Visualization of Test-to-Code Relations
Needed?

Test-to-code relations can be treated as traceability links that display how test cases and
the code under test can be connected. Test suites are usually used to evaluate software
systems and detect the program faults. The larger the programs are, the larger the test cases
executed, thus a huge amount of data will be produced which is difficult to be interpreted
in textual form. Visualization of test suites is useful to give any reader an obvious view of

Table 1. Traceability links visualization techniques and tool

Visualization
method/Technique

Links visualized Link recovery
method

Visualization
tool

Context-based technique
(Sunburst, Matrix Tree,
Graph) [36]

Links between
software artifacts

Automatic
(REREATOS) tool

Multi-Visio
Trace

Graph (Chain Graph) [15] Links between
software
requirements

Manual –

List [33] Links between
software artifacts

Automatic ADAMS re-
trace

Requirement Matrix
(RTM-E, RTM-NLP) [37]

Requirement
dependencies

Automatic + Manual –

Small color squares [32] Links between
software artifacts

Manual TraceViz

Sunburst, Net map [38] Links between
requirement
artifacts (project
goals, task, etc.)

Manual –

Tree map
Hierarchal tree [39]

Links between
classes in source
code and
documents
elements

Automatic –

Tree, Matrix
Sunburst, Table [35]

Links between
software artifacts

Automatic
(REREATOS tool)

D3TraceView

6 N. Aljawabrah et al.

A
u

th
o

r
P

ro
o

f

the testing results as well as to determine the fault occurrence in the source code with the
least effort and time. Unit tests are used to determine whether the software being tested
works correctly or not for a given input [40]. A test case is considered as an up-to-date
document that reflects how parts of the code are changed and how they are supposed to be
executed [1]. The benefits of running test cases lie in: improving software quality,
reducing maintenance effort and cost [28], and identifying faults in software systems.
A unit test plays an important role during regression testingwhere a unit test is re-executed
and evolved in parallel with code changes [41]. However, the development process is an
iterative and ongoing processwhichmeans new changes and updates continuously appear
on the software, thus numerous regression tests have to be run (i.e. increasing the testing
cost). Therefore, visualizing established links between units under test and their related
test suites helps in reducing generating regression tests and saves much time during
software evolution process [31].

Units test and tested code can be connected by different types of relations (e.g.
direct tests, calls, indirect uses). These links emphasize the consistency between unit
test and tested code (e.g. when a test case fails, the links show which part of the code is
related to this failure). Thereby, visualizing test-to-code traceability links provides a
better understanding of the inter-relationships between tests and tested code which in
turn contributes to maintaining and browsing these relations. In addition, refactoring of
the code requires some modifications to the test suite in order to keep it valid after
refactoring, thus visualization of recovered relationships between unit test and unit
under test could be exploited to support and facilitate the refactoring process [31].

With the increasing size and complexity of software under test and its automated
test suites, visualization is needed to analyze code coverage and to provide testers with
a wide range of information about the quality, performance, the location of a test suite,
its relation with the production code, and which parts of code are covered by test cases
[42]. There is a large amount of literature that deals with the visualization of test
information and a wide range of tools have been proposed for the task of visualization
of testing information as mentioned in the section above. However, to the author’s best
knowledge, very few publications are available in the literature that addresses the issue
of visualizing test-to code-traceability links. Studies on test-to-code traceability links
have paid more attention to how to recover links between test and With the increasing
size and complexity of software under test and its automated test suites, visualization is
needed to analyze code coverage and to provide testers with a wide range of infor-
mation about the quality, performance, the location of a test suite, its relation with the
production code, and which parts of code are covered by test cases [42]. There is a
large amount of literature that deals with the visualization of test information and a
wide range of tools have been proposed for the task of visualization of testing infor-
mation as mentioned [43]. However, to the author’s best knowledge, very few publi-
cations are available in the literature that addresses the issue of visualizing test-to code-
traceability links. Studies on test-to-code traceability links have paid more attention to
how to recover links between test and code, as well as various approaches have been
proposed to retrieve the traceability links between the test units and units under test, as
mentioned in Sect. 2. However, none of these methods supports the representation of
such links in a visual manner. The focal point of this work is to draw attention to the

Understanding Test-to-Code Traceability Links 7

A
u

th
o

r
P

ro
o

f

importance of using a visualization technique to display the links between a code and
its related unit test.

4 Results and Discussion

In this section we analyze the collected results according to our research questions:

RQ1: To what extent has a visualization of test-to-code relations been investigated
in existing studies?
We performed a detailed review of the literature following citations and references
using web-based literature search engines. This effort resulted in gathering a number of
publications that listed various approaches on the basis of different techniques relating
to visualization topics. Thus from all the gathered publications, relevant literature
which is found to be 44 in number, we refined and selected those approaches that
satisfy the following criteria in accordance with our research purpose:

1. Those approaches that use visualization techniques to represent software source
code.

2. Those approaches that use visualization techniques to represent test-related
information.

3. Those approaches that use visualization techniques to represent test-to-code trace-
ability links.

Figure 1 shows the share of the different investigated studies in percentage related
to various methods of visualization from a selected sample of research papers. Our
investigation shows that 48% of total software testing-related research works talk about
visualization of source code. Testing information-based (test-code relations) visual-
ization works amount to 29% and visualization of test-to-code traceability links does
not receive any interest in the studied literature. This implies that works on testing
related visualization are still practically limited. One possible reason is that writing tests
is considered to be a time-consuming and not interesting task. Developers could focus
more on the development process and activities which are responsible for testing
activities. They trust their code is well written and does not need any tests. Therefore,
not visualization in specific but testing, in general, is neglected.

Moreover, despite the importance of test-to-code traceability links in understand-
ing, maintaining and refactoring code, it is not commonly used and its scope is highly
neglected in software development.

As mentioned in the previous section, there is a huge requirement to advance test-
to-code traceability recovery visualization techniques. The existing approaches have
several limitations which make the visualization process somewhat difficult; for
instance, most of the links that could be retrieved using the current methods are either
redundant links or missing links-there is no way to recover specific links of high
importance. Furthermore, identifying links is purely a manual task that needs higher
time and effort investment.

8 N. Aljawabrah et al.

A
u

th
o

r
P

ro
o

f

RQ2: What visualization techniques and tools are proposed to represent test-code
relations?
A variety of visualization techniques have been developed to visualize different types
of testing-related information. Examples of these techniques, as discussed in previous
paragraphs, are graph-based, UML diagrams, metaphor. The graph-based visualization
technique can be considered as the most popular visualization technique used; how-
ever, this may depend on the purpose of the deployment of the visualization technique.
Various visualization techniques have many use cases, such as to obtain an overview of
the code and test evolution, or improve the understanding of dependencies between
code and test, or to support the visualization of testing information [28]. Concerning
test-to-code traceability links, there is not much interest in developing approaches to
visualize links between test and code. Most of the approaches have been developed to
visualize relationships/links between requirements and other software artifacts (source
code, design, test cases) such as graphs, traceability matrices, hyperlinks (cross-
references) and lists, as shown in Fig. 2 [44]. Based on our investigations, it is clear
that further research in the area of visualization of test-to-code traceability links is
necessary. Below we provide some open questions that can help to reveal specific
topics in this area for further research and try to give some answers as an example. We
feel the following questions and directions are the most interesting ones.

Fig. 1. Analysis of the results depending on RQ1

Understanding Test-to-Code Traceability Links 9

A
u

th
o

r
P

ro
o

f

Q.1. What is the purpose of visualization?
Visualization must have a purpose. Defining our goal can help in finding proper
visualization techniques to be used and appropriate elements to be presented in it.
Purpose can be: understand relations, impact analysis, find problems (e.g. bad smells).

Q.2. What is a suitable visualization technique that can be used to display test-to-
code traceability relations and their attributes?
There are several possible ways to visualize test-to-code relations including graphs,
matrices, hyperlinks, lists, tree maps, 3D space. Among the available visualization
techniques, ‘graph-based visualization’ and ‘traceability matrices’ seem to be the most
suitable methods for various needs to find traceability links between code and tests.
However, the determination of the most suitable method depends on the use case
meaning, as the most suitable method may vary from one use case to another. For
example, when one tries to check the relations of an item for impact analysis, ‘graph
representations’ and ‘hyperlinks’ seem to be relevant. On the other hand, if someone
needs a broader view to check inconsistencies among the relations, ‘graph represen-
tation’ showing the traceability links inferred using different link-detection techniques
in different colors might be a better choice. But a 3D visualization also seems to be
appropriate to display attributes of various items and relations.

Q3. What test and code items and properties should be objects and attributes in
the visualization?
Relations can be visualized directly as objects in the visualization space (e.g. as lines
between objects), or we can only map their properties to the attributes of the connected
objects.

Q4. What are the criteria taken into account to choose the best visualization
technique?
As an example, the size of a program can be a criterion, and should be taken into
account while using any visualization technique. Visualization methods often become
too large and thus hard to read and understand in the case of big projects.

Fig. 2. (from [44]) Visualization techniques

10 N. Aljawabrah et al.

A
u

th
o

r
P

ro
o

f

Q5. What is the best recovery approach usable to retrieve the links between test
and code?
Several techniques can be used to derive traceability relations, and each technique
retrieves a slightly different set of links. Depending on the purpose of the visualization
and the technique we use, either all links can be visualized or we should choose a
specific visualization method to visualize any one of the links, but which one? This is
another open question that can be investigated.

Q6. What is the level of information details that could be visualized?
In a real-time system, thousands of tests and code items exist. Although it is not
impossible to visualize all these at once, this is probably not the best way. Instead, a
selective or hierarchical visualization approach seems to be a better choice. For
example, instead of method-level visualization, one can show (test and production)
classes or group items based on their relations or some other purposes and visualize the
groups only.

5 Conclusion and Future Work

As there are many sources from where the traceability relations can be inferred, one of
the most important questions is to decide which source or combination of sources is the
best to determine the test-to-code links. It is obvious that, if these sources disagree, this
will make it harder to understand what is going on, what was the goal of the developer,
how the components are really related and change impact analysis can yield in false
results, etc. Fortunately, visualization can aid this task. In this work, we analyzed the
scope, advantages, and concerns surrounding the visualization of test-to-code trace-
ability links. Test-to-code traceability links couple test cases to code elements based on
the relationship that enables us to understand which code modules are tested by which
unit tests. Therefore, visualizing such relations helps to improve software development,
testing or maintenance processes, and lessen bugs while updating the existing features
of a piece of software or adding new features to it. More research in visualization of
test-to-code traceability is necessary.

Further research then can then aim to make a statistical comparison of these
inference methods. Work on addressing the questions mentioned above is in progress
and will be presented in future papers.

Our future work is to develop a tool that visualizes and stores traceability links
among unit test and its related code and can be integrated with a traceability links
recovery tool that extracts links between code and tests. One of the goals of using
visualization is to identify the disagreement between traceability links inferred from
different sources. This might point out places where something is wrong with the tests
and/or the code (at least their relationship) in a specific system.

AQ2

Understanding Test-to-Code Traceability Links 11

A
u

th
o

r
P

ro
o

f

References

1. Demeyer, S.: Object-oriented reengineering (2008)
2. Tamisier, T., Karski, P., Feltz, F.: Visualization of unit and selective regression software

tests. In: Luo, Y. (ed.) CDVE 2013. LNCS, vol. 8091, pp. 227–230. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40840-3_33

3. D’Ambros, M., Lanza, M., Pinzger, M.: A bug’s life visualizing a bug database. In: VISS
2007 – Proceedings of the 4th IEEE International Workshop on Visualizing Software for
Understanding and Analysis, pp. 113–120 (2007)

4. Araya, V.P.: Test blueprint: an effective visual support for test coverage. In: 2011 33rd
International Conference on Software Engineering (ICSE), pp. 1140–1142 (2011)

5. Jones, J.A., Harrold, M.J., Stasko, J.: Visualization of test information to assist fault
localization. In: Proceedings of the 24th International Conference on Software Engineering,
ICSE 2002, pp. 467–477 (2002)

6. Cornelissen, B., Van Deursen, A., Moonen, L., Zaidman, A.: Visualizing testsuites to aid in
software understanding. In: Proceedings of the European Conference on Software
Maintenance and Reengineering, CSMR, pp. 213–222 (2007)

7. Filipe, J., Maciaszek, L.A.: Evaluation of novel approaches to software engineering, July
2013

8. Balogh, G., Gergely, T., Beszedes, A., Gyimothy, T.: Using the city metaphor for visualizing
test-related metrics. In: 2016 IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering, pp. 17–20 (2016)

9. Parizi, R.M., Lee, S.P., Dabbagh, M.: Achievements and challenges in state-of-the-art
software traceability between test and code artifacts. IEEE Trans. Reliab. 63(4), 913–926
(2014)

10. Pinzger, M., Gall, H., Fischer, M., Lanza, M.: Visualizing multiple evolution metrics. In:
Proceedings of the 2005 ACM Symposium on Software Visualization - SoftVis 2005, vol. 1,
no. 212, p. 67 (2005)

11. Telea, A., et al.: Code flows: visualizing structural evolution of source code to cite this
version: HAL Id: inria-00338601 (2008)

12. Koschke, R.: Software visualization in software maintenance, reverse engineering, and re-
engineering: a research survey. J. Softw. Maint. Evol. Res. Pract. 15(2), 87–109 (2003)

13. Caserta, P., Zendra, O.: Visualization of the Static aspects of Software: a survey. IEEE
Trans. Visual Comput. Graphics 17(7), 913–933 (2011)

14. Erdemir, U., Tekin, U., Buzluca, F.: E-Quality: a graph based object oriented software
quality visualization tool. In: 2011 6th IEEE International Workshop on Visualizing
Software for Understanding and Analysis (VISSOFT), pp. 1–8 (2011)

15. Heim, P., Lohmann, S., Lauenroth, K., Ziegler, J.: Graph-based visualization of require-
ments relationships. In: 2008 3rd International Workshop on Requirements Engineering
Visualization, REV 2008 (2008)

16. Wingkvist, A., Ericsson, M., Lincke, R., Löwe, W.: A metrics-based approach to technical
documentation quality. In: Proceedings of the 7th International Conference on Quality of
Information and Communications Technology, QUATIC 2010, pp. 476–481 (2010)

17. Varet, A., Larrieu, N., Sartre, L.: METRIX: a new tool to evaluate the quality of software
source codes. In: AIAA Infotech@ Aerospace (I@ A) Conference, p. Draper Laboratory-,
(2013)

18. Marcus, A., Comorski, D., Sergeyev, A.: Supporting the evolution of a software
visualization tool through usability studies. In: Proceedings of the IEEE Workshop on
Program Comprehension, pp. 307–316 (2005)

AQ3

AQ4

12 N. Aljawabrah et al.

A
u

th
o

r
P

ro
o

f

http://dx.doi.org/10.1007/978-3-642-40840-3_33

19. Boccuzzo, S., Gall, H.C.: Software visualization with audio supported cognitive glyphs. In:
IEEE International Conference on Software Maintenance, ICSM, pp. 366–375 (2008)

20. Denier, S., Sahraoui, H.: Understanding the use of inheritance with visual patterns. In: 2009
3rd International Symposium on Empirical Software Engineering and Measurement, ESEM
2009, pp. 79–88 (2009)

21. Wettel, R., Lanza, M.: Visualizing software systems as cities. In: VISS 2007 – Proceedings
of the 4th IEEE International Workshop on Visualizing Software for Understanding and
Analysis, pp. 92–99 (2007)

22. Cockburn, A., McKenzie, B.: Evaluating the effectiveness of spatial memory in 2D and 3D
physical and virtual environments. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems: Changing Our World, Changing Ourselves - CHI 2002, no.
4, p. 203 (2002)

23. Wettel, R., Lanza, M.: CodeCity. In: Companion 13th International Conference on Software
Engineering - ICSE Companion 2008, p. 921 (2008)

24. Balogh, G., Beszédes, A.: CodeMetropolis-code visualisation in MineCraft. In: 2013 IEEE
13th International Working Conference on Source Code Analysis and Manipulation
(SCAM) (2013)

25. Minecraft Official Website. http://minecraft.net/
26. Khaloo, P., Maghoumi, M., Taranta, E., Bettner, D., Laviola, J.: Code park: a new 3D code

visualization tool (2017)
27. Lewerentz, C., Simon, F.: Metrics-based 3D visualization of large object-oriented programs.

In: Proceedings of the 1st International Workshop on Visualizing Software for Understand-
ing and Analysis, pp. 70–77 (2002)

28. Agrawal, H., et al.: Mining system tests to aid software maintenance. Computer (Long.
Beach. Calif.) 31(7), 64–73 (1998)

29. Breugelmans, M., Van Rompaey, B.: TestQ: exploring structural and maintenance
characteristics of unit test suites. In: WASDeTT-1 1st International Workshop on Advanced
Software Development Tools and Techniques, no. i, pp. 1–16 (2008)

30. Van Rompaey, B., Demeyer, S.: Establishing traceability links between unit test cases and
units under test. In: Proceedings of the European Conference on Software Maintenance and
Reengineering, CSMR, no. ii, pp. 209–218 (2009)

31. Qusef, A.: Test-to-code traceability: why and how? In: 2013 IEEE Jordan Conference on
Applied Electrical Engineering and Computing Technologies, AEECT 2013 (2013)

32. Marcus, A., Xie, X., Poshyvanyk, D.: When and how to visualize traceability links?
33. De Lucia, A., Fasano, F., Oliveto, R., Tortora, G.: ADAMS re-trace: a traceability recovery

tool. In: Proceedings of the European Conference on Software Maintenance and
Reengineering, CSMR, pp. 32–41 (2005)

34. Lago, P., Muccini, H., van Vliet, H.: A scoped approach to traceability management. J. Syst.
Softw. 82(1), 168–182 (2009)

35. Gilberto Filho, A.D.A., Zisman, A.: D3TraceView: a traceability visualization tool
36. Rodrigues, A., Lencastre, M., De Cysneiros Filho, G.A.A.: Multi-VisioTrace: traceability

visualization tool. In: Proceedings of the 2016 10th International Conference on the Quality
of Information and Communication Technologies, QUATIC 2016, pp. 61–66 (2017)

37. Di Thommazo, A., Malimpensa, G., De Oliveira, T.R., Olivatto, G., Fabbri, S.C.P.F.:
Requirements traceability matrix: automatic generation and visualization. In: Proceedings of
the 2012 Brazilian Symposium on Software Engineering, SBES 2012, pp. 101–110 (2012)

38. Merten, T., Jüppner, D., Delater, A.: Improved representation of traceability links in
requirements engineering knowledge using Sunburst and Netmap visualizations. In: 2011
4th International Workshop on Managing Requirements Knowledge, MaRK 2011 - Part 19th
IEEE International Requirements Engineering Conference, RE 2011, pp. 17–21 (2011)

AQ5

AQ6

Understanding Test-to-Code Traceability Links 13

A
u

th
o

r
P

ro
o

f

http://minecraft.net/

39. Chen, X., Hosking, J., Grundy, J.: Visualizing traceability links between source code and
documentation. In: Proceedings of IEEE Symposium on Visual Languages and Human-
Centric Computing - VL/HCC, pp. 119–126 (2012)

40. Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Trans. Softw. Eng. 39(2), 276–291
(2013)

41. Eagan, J., Harrold, M.J., Jones, J.A., Stasko, J.: Technical note: visually encoding program
test information to find faults in software. In: IEEE Symposium on Information Visualization
2001, INFOVIS 2001, pp. 33–36 (2001)

42. Van Rompaey, B., Demeyer, S.: Exploring the composition of unit test suites. In: ARAMIS
2008 - 1st International Workshop on Automated Engineering of Autonomous and Run-
Time Evolving Systems, ASE 2008 23rd IEEE/ACM International Conference on
Automated Software Engineering, pp. 11–20 (2008)

43. Koochakzadeh, N., Garousi, V.: TeCReVis: a tool for test coverage and test redundancy
visualization. In: Bottaci, L., Fraser, G. (eds.) TAIC PART 2010. LNCS, vol. 6303, pp. 129–
136. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15585-7_12

44. Winkler, S., von Pilgrim, J.: A survey of traceability in requirements engineering and model-
driven development. Softw. Syst. Model. 9(4), 529–565 (2010)

14 N. Aljawabrah et al.

A
u

th
o

r
P

ro
o

f

http://dx.doi.org/10.1007/978-3-642-15585-7_12

