
Received January 28, 2021, accepted February 18, 2021, date of publication March 2, 2021, date of current version March 17, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3063158

Automated Recovery and Visualization of
Test-to-Code Traceability (TCT) Links:
An Evaluation
NADERA ALJAWABRAH1, TAMÁS GERGELY1, SANJAY MISRA 2,3, (Senior Member, IEEE),
AND LUIS FERNANDEZ-SANZ4
1Department of Software Engineering, University of Szeged, 6720 Szeged, Hungary
2Department of Computer Engineering, Atilim University, 06830 Ankara, Turkey
3Department of Electrical and Information Engineering, Covenant University, Ota 112233, Nigeria
4Department of Computer Science, University of Alcalá, 28801 Madrid, Spain

Corresponding author: Sanjay Misra (sanjay.misra@covenantuniversity.edu.ng)

This work was supported in part by the Ministry of Innovation and the National Research, Development and Innovation Office within the
framework of the Artificial Intelligence National Laboratory Programme, and in part by the University of Szeged Open Access Fund,
Grant No. 5237. The work of Nadera Aljawabrah and Tamás Gergely was supported by the University of Szeged, Hungary. The work of
Sanjay Misra was supported by CUCRID, Covenant University, Ota, Nigeria.

ABSTRACT In the software development process, traceability links between unit tests and code are not
explicitly maintained, and dependencies in most cases are manually identified. As a result, a large amount of
effort and time is required during the comprehension process to establish the links between these artifacts.
Although there are several methods that can infer such links based on different phenomenons, these methods
usually produce different set of traceability links. This work expands upon previous traceability link recovery
and visualization studies by implementing a combination of traceability recovery methods that automatically
retrieve the links, and visualizing them to help developers to overview the links inferred by various recovery
techniques, and also to select the right relations for analyses. The results of the usability study show that the
visualization model presented herein can effectively support browsing, comprehension, and maintenance of
Test-to Code Traceability (TCT) links in a system with enhanced efficiency, as well as visualization of TCT
links from multiple sources is better than a visualization of single source of traceability links.

INDEX TERMS Software development, software comprehension, test case, traceability links, visualization.

I. INTRODUCTION
System source code constitutes the main development artifact
in agile development; meanwhile, unit tests, code and user
stories are usually the artifacts produced during the agile
development process itself. As such, creating and visualizing
the links between code classes and unit tests can be helpful
during software development processes in a number of tasks
such as in program comprehension, impact analysis, mainte-
nance, and artifact reuse.

Several approaches have been explored to extract the
links between test and code [21]. While traceability recovery
approaches can be automated, none of them is itself accurate.
On the other hand, manual recovery is a complex, error-
prone, and time-consuming task. As a result, a combination of
TCT links recovery methods is recently used to improve the
quality of the retrieved links [30], [31], [16], [17], [21], [25].
However, the unsolved issue remains is how to efficiently
support the comprehension, browsing, and maintenance of

The associate editor coordinating the review of this manuscript and

approving it for publication was Fabrizio Messina .

the retrieved links. It is commonly recognised that visual-
ization is an efficient method to represent these links in
an intuitive and natural way. It effectively supports under-
standing test-to-code relations and helps various tasks in the
software development life cycle (SDLC) [19]. Though, only a
small set of research studies have focused on the importance
of visualization of TCT links in comprehension, evolution,
refactoring, and maintenance task of a software system.

Previous studies [10], [13], [24] documented traceabil-
ity links visualization among different artifacts in software
(e.g. source codes, requirements, documents, test cases, etc.).
Recently, a variety of traceability tools were built, provid-
ing different views to depict relationships between software
artifacts. In [33], for example, a tool is presented to support
the establishment and visualization of traceability links in
DevOps environments by combining the development level
and operational level artifacts of software (source code,
requirement, design, and unit test). Different visualization
methods are applied by other tools to display traceability
links between software artifacts [4], [13]. Several visualiza-
tion formats are supported in D3TraceView [4], sunburst,

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 40111

https://orcid.org/0000-0002-3556-9331
https://orcid.org/0000-0002-3685-3879


N. Aljawabrah et al.: Automated Recovery and Visualization of TCT Links: Evaluation

tree, matrix, list, table, bar, gauge, and radial view. Marcus
et al. has shown the importance of visualization in recover-
ing, maintaining, and browsing the traceability links between
software artifacts [12]. However, to date, no visualization
tool seems to exist that focuses on the visualization of TCT
traceability links that are recovered from multiple sources.

In this work, our particular focus is on the traceability
links between test cases and the related production classes.
The objective of our work is to provide testers with an effi-
cient visualization that enables them to understand, brows,
and maintain TCT links. We have developed an innovative
approach for TCT links’ visualization that combines vari-
ous automated test-to-code recovery approaches and supports
effective visualization technique.

TCTracVis [1] was a prototype developed with limited fea-
tures. The aim of the prototype was to visualize traceability
links between test cases and code classes that were manually
recovered. In the present work, we have added more func-
tionalities that support the automated recovery approaches
and the simultaneous visualizations of test and code
relations.

The current version of TCTracVis combines different TCT
recovery approaches to automatically establish the links
between test cases and its classes/methods which, in turn,
reduces the effort of manual recovering traceability links.
We further enhanced support for these approaches with a
traceability visualization technique to allow visualizing the
overall structure of traces and a thorough description of each
trace. The visualization will aid the developer and tester to
make their decision whether the links are true and which are
false positives.We adopted a hierarchical tree-view technique
to achieve these goals.

The main idea of using the traceability recovery
approaches is to help software engineers to trace the relation-
ships between unit test and source code, and automatically
extract traceability links at low cost and time, while using
visualization aims to identify the disagreement in traceability
links inferred from different sources [26]. Besides, visualiza-
tion can help to reveal if there has been something wrong
with the tests and/or the code (at least their relationship) in a
particular system. Our contributions to this exploratory work
are the following:

1) Build an informative and generic visualization tool that
combines multiple automated sources of traceability
links and improves program comprehension, browsing,
and maintenance.

2) Examine the tool usability and assessing users’ interest.
3) Display the hierarchical relationships of source code

and units test inferred from different sources for better
system evolution analysis.

The experimental study is conducted to evaluate the use-
fulness and efficiency of our traceability visualization
approach. The results of this evaluation show that the visu-
alization of traceability link inferred from different sources
is more efficient and helpful than using a single source, and
our tool can efficiently and effectively support the software

engineers to understand, browse, and maintain the test and
code relations in a software system.

The remainder of the article is organized as follows:
Section II discusses the relatedwork, Section III describes our
traceability visualization approach, and the architecture of
TCTracVis is described in Section IV. The evaluation results
are presented in Section V. Section VI presents the threats to
the validity of the technique.We draw a conclusion and future
work in Section VII.

II. RELATED WORK
In the following subsections, we analyze some of the existing
techniques used for TCT links recovery, and we also intro-
duce some of the visualization techniques usually used to
display the links between software artifacts.

A. TRACEABILITY LINK RECOVERY TECHNIQUES
Only a few specific sets of automated traceability recovery
approaches have been proposed that are viable means to
display links between production classes and test units. In the
most often utilized and discussed work initially proposed
by Rompaey and Demeyer [21]; the authors suggested six
traceability recovery strategies as sources to extract the links
between unit tests and source code, naming conventions,
fixture element types, latent semantic indexing (LSI), static
call graph, last call before assert and co-evolution. In naming
convention [21], [17] traceability links are established if a
unit test contains the name of a tested class after remov-
ing the word ‘‘Test’’ from the name of a class executing
the test case. Naming conventions have been described in
several books and tutorials (e.g. [21], [17]) which is an
indication of their widespread usage in different contexts.
In this approach, traceability links could not be established
if unit tests do not contain the names of the tested classes.
In static call graph (SCG) [17], [21], units under test can be
derived by collecting all classes under test that is directly
invoked in the test case implementation, and thereafter the
most frequently referenced classes are selected. In case there
are no dominant production classes, the selected sets would
contain a possibly large range of data object and helper
types that will, in turn, impact the precision of the retrieved
links. To mitigate the drawback in SCG, authors in [21]
proposed the Last Call Before Assert (LCBA) method, which
derives test classes by checking the last call invoked right
before asserting statements. However, if developers write
many assert statements per test unit, many units under test
could be retrieved. This problem is referred to as ‘‘Assertion
Roulette’’ [3]. The traceability links can be established in the
lexical analyses (LA) approach [17], [21] depending on the
textual similarity between test cases and the corresponding
unit under test, whereas in co-evolution (CV), the starting
point of the approach is the Version Control System (VCS)
of the software such as CVS, SVN, SourceSafe, or Perforce.
This approach requires that changes to code under test and
unit tests are simultaneously fetched into the system. Also,

40112 VOLUME 9, 2021



N. Aljawabrah et al.: Automated Recovery and Visualization of TCT Links: Evaluation

developers need to practice testing during development; oth-
erwise the co-evolution information is not captured in VCS.

TCTracer is an approach that uses a variety of new and
traditional TCT recovery techniques [31]. The techniques
were combined and applied to both method level and class
level. The evaluation results showed that the combination
of recovery techniques is more effective than using a single
technique. In our approach, we provide visualization support
to the combination of recovery techniques to enhance the
comprehension of the TCT link.

TCT using slicing and conceptual coupling (SCOTCH) has
been proposed in [16]. Herein, traceability links are recovered
using dynamic slicing and conceptual coupling techniques.
TCT links are derived using assert statements, then, tested
classes are identified in two steps: the first step identifies the
started tested sets (STS) using dynamic slicing. In the second
step the candidate tested set (CTS) are produced by filtering
STS using conceptual coupling between identified classes
and the unit test. This approach, however, does not consider
the semantics of STS during the coupling conceptual pro-
cess [15]. Also, the candidate tested classes identified by
dynamic slicing still contain an overestimate of the tested
classes [15]. The study findings of using these approaches
are unsatisfactory as a result of the low accuracy and manual
effort needed by a domain expert to establish the retrieved
links [15], [17], [21]. Gergely et al. [29] did not explicitly
extract the traceability links of test and code, but they used
clustering instead. The clustering is performed with static
analysis and dynamic analysis.

Previous research has studied how to use gamifica-
tion to enhance the manual maintenance of traceability
links [27], [28], however, these studies have not seen any
significant concern.

In this work, we combine three of the above techniques,
namely: NC, LCBA, and SCG. The reason behinds using
these techniques that NC had a high precision [21], [31],
LCBA provided a better score of applicability as a result of
comparing six traceability recovery approaches [21], while
SCG is used to identify the intended class under test by
connecting each test with the methods list that may be called
by the test [14]. This can help in identifying an error location
in a failed test case.

B. TRACEABILITY LINKS VISUALIZATION TECHNIQUES
In recent years, research on visualization of traceability links
has become very popular. A lot of work has been dedicated
to exploiting visualization techniques in terms of matrix,
hyperlinks, lists, and graphs due to contexts to help users
analyze and understand the traceability information.

1) TRADITIONAL TECHNIQUES
Graph-based visualization. Traceability visualization sys-
tems commonly use a graph visualization method as it allows
an overview of traceability links between various artifacts in
software [32]. In graphs, artifacts are represented as nodes,
while edges are represented as relationships between nodes.

Four well-known visualization techniques [matrix, graphs,
lists, and hyperlinks] were analyzed and compared in [8] to
discover in which context these visualization methods can be
properly used. The study demonstrated management tasks are
better represented by graphs. A tool, developed by Kamala-
balan and Uruththirakodeeswaran et al. [7], traces software
artifacts links and displays these link elements as a graph.

A specific graph-based approach called Chain-Graph has
been proposed to visualize relationships between require-
ments [5]. Another type of graphical representation is Sun-
burst [13]; wherein nodes are displayed on adjacent rings
representing tree views. Such a graph can show the overall
hierarchical structure [4]. Although graphs can visualize the
overview of links between artifacts, it is a big challenge to
display a large number of traceability links between software
artifacts because of scalability issues. As such, the presenta-
tion of large sets of data becomes unreadable or difficult to
understand.

Matrix-based visualization. A two-dimensional represen-
tation in the form of a table is commonly used to visualize
software artifacts relationships. It is commonly used in visu-
alizing requirement traceability links with other artifacts [32].
Several tools have been presented to support the matrix visu-
alization method [24], [4]. Di Thommazo et al. proposed two
approaches to automate the generation of the requirement
matrix [24]. In this work, visualization of traceability infor-
mation using the Requirements Traceability Matrix (RTM)
helps in determining requirements dependencies in an effec-
tive way. Typically, matrices are selected to visualize a small
volume of traceability information. As presented by Li and
Maalej [8], the matrix is also appropriate to help in manage-
ment tasks. However, due to visual clutter issues, it becomes
indecipherable when the set of artifacts gets larger [18].

Visualization by hyperlinks and lists. Traceability links can
also be presented as hyperlinks and lists. Hyperlinks are pre-
sented to users in tabular format using natural language [20].
Thismethod of visualization allows users to navigate between
related artifacts along with the link. Several approaches have
proposed hyperlinks as a method for representing traceability
information [6], [11]. In testing and implementation activi-
ties, hyperlinks are desired over lists [8]. Lists are the least
pickedmethods among other traditional approaches for repre-
sentation traceability links [8]. All the information related to
each traceability link is presented in list view (source artifacts,
target artifacts). Previous work has shown that, just as the
techniques above, hyperlinks and lists do not scale well for
large data [9], [23].

2) OTHER TECHNIQUES
There are further approaches have been proposed to visualize
traceability links. The OrganicViz tool [22] applies a network
visualization that shows traceability information evolution
in engineering projects. Marcus et al. [12] proposed Traviz,
a prototype tool that visualizes traceability links using col-
ored and labeled boxes. Traviz supports browsing, recov-
ery, and maintaining traceability links of software artifacts.

VOLUME 9, 2021 40113



N. Aljawabrah et al.: Automated Recovery and Visualization of TCT Links: Evaluation

Multi-Visio Trace [18] hires various approaches of visu-
alization involving, graph, matrix, sunburst, and tree view
enabling selection of the appropriate view for information
depending on the task to be performed. Chen et al. [2] inte-
grated two visualization techniques: Treemaps and Hierar-
chical Trees to support a through an overview of traceability
and provide a detailed overview of each trace. Despite all the
techniques above, representing a large set of information is
still a big challenge.

There is not much interest in the literature being reviewed
in visualizing TCT links, as works on the visualization of test-
ing are still practically limited. Developers usually concen-
trate more on the development process and activities which
are responsible for testing activities. Recently, in more impor-
tant projects, developers cannot miss testing. However, they
omit traceability because, during the development process,
they do not feel the need for it. Therefore, they do not spend
effort on it. Moreover, despite the importance of TCT links in
practice [19], it is not commonly used, and its scope is highly
disregarded in software development. This research is based
on these foundations.

III. THE PROPOSED APPROACH
We have developed TCTracVis [1], a traceability visualiza-
tion tool, to support the developers to recover, visualize, and
understand the TCT links in an efficient way. The tool is
developed to recover and show traceability links between test
cases and source code. Since it is a difficult task to determine
which classes/methods are tested in test cases in a large
program, this tool can help to provide significant help for the
developers in understanding these relations. We present our
traceability recovery techniques and describe the traceability
visualization method in the following.

A. TCT LINK RECOVERY
In [1], we presented a prototype of a tool that supports visual-
ization of traceability links retrieved using class invocations
in test cases. In this paper, we include additional recovery
techniques that can automatically establish TCT links.

1) TRACEABILITY LINK RECOVERY USING NC
As mentioned in the related work section, naming conven-
tions retrieve links between test cases and units under test by
matching the names of unit tests and production classes. The
reason behinds using this approach that it performs well in
several situations [17], [21].

In addition to NC, we adopt a derivative of the traditional
naming convention, namely Naming Convention-Contains
(NCC) [31], which replaces the condition that the name of the
test unit must exactly match the name of the tested code (e.g.
‘‘Prog’’ -> ‘‘testProg’’ or ‘‘ProgTest’’), with the more flexible
condition that the name of the test unit contains the name of
the tested code (e.g. ‘‘Prog’’ ->‘‘testProgVariant1’’ or ‘‘Func-
tionalityofProgTest’’). Therefore, the tested class is linked to
the test class if the name of the test class includes the name
of the tested class after removing the term test form test class.

NCC uses NC’s strengths. It establishes N:1 relationships
between classes and tests (i.e. many test cases are written to
test a production class) as opposed to 1:1 relationships with
NC. This approach can perform better if the project does not
follow the traditional naming conventions.

link(nt, nc) =

{
true, if nc is substring of nt
false, otherwise

(1)

where nt is the name of a test unit and nc is the name of a
tested code. In the case that the name of a test unit does not
exactly match the name of tested code, or it is not a substring
of the name of a tested code, then the link (if exists) can not
be established by NC or NCC. Thus, other approaches can be
used.

2) TRACEABILITY LINKS RECOVERY USING SCG
Static call graph works by inspecting calls of the production
class in the implemented test unit. The production class that
is referred to most is the most likely to be the unit under test.
In our approach, we search for method invocations in a test
method and return the most frequently invoked production
class and how many times it is called in each test method.

3) TRACEABILITY LINKS RECOVERY USING LCBA
As a result of comparing six traceability recovery
approaches [21], LCBA provides a higher accuracy score
in terms of applicability. LCBA attempts to separate helper
classes from test classes by capturing the calls of tested
classes that were invoked right before asserting statements.
In our approach, the statements in each test method are
analyzed and searched for productions classes and methods
called by a test method, and then the test method is linked
to the production class if it is the last return before an assert
statement.

link(tm, pc)

=

{
true, if pc is last return before assert in tm
false, otherwise

(2)

where tm is the test method, and pc is the production class
(i.e. a class under test).

Although the majority of the techniques were performed
manually (from scratch), the methods listed in the related
work are all able to be automatable.

Still, the issue is that using a single source is not reli-
able. As such, our tool supports the combination of more
sources/methods to infer test-to-code relations and visualizes
them in a way that helps the developer to compare these links
and decide which ones to treat as valid.

B. VISUALIZATION OF TCT LINKS
TCTracVis has been developed as a visualization tool that can
efficiently offer visualization of relationships between unit
tests and test classes/methods. Our goal is to support users
to present, navigate, and understand TCT links.

40114 VOLUME 9, 2021



N. Aljawabrah et al.: Automated Recovery and Visualization of TCT Links: Evaluation

FIGURE 1. Code-to-test dependency graph.

We utilize the hierarchy tree graph to visually represent a
thorough overview of traceability links between a node and
its related nodes wherein a node can be a production class,
method, or test class/method. Once the traceability links of
a selected node are established and retrieved, a hierarchical
tree graph is built to show links of nodes are linked to the
selected node. In our approach, we employ a left-to-right
hierarchy tree visualization technique which represents 1:N
and/or N:1 relationships. In other words, a single test can
evaluate more classes, and more tests can evaluate the same
class, resulting in an N:M relation.

As the traceability links have the advantages of being
bidirectional, traceability links can be shown in two types of
graphs:
1) Code-to-test dependency graph, which shows the

traceability links for a specified production class
that is inspected by more test classes. In Figure 1,
EmployeeClass class is tested by three tested classes,
Employee-GetTest, Employee-SalaryTest, and Employ-
eeClassTest.

2) Test-to-code-based graph, which shows the traceability
links for a specified test class with its related tested
class and tested methods. For example, in Figure 2,
SubtractsClassTest test class has three tested meth-
ods which are written to evaluate several methods in
DeductionClass class.

IV. ARCHITECTURE AND DESIGN PRINCIPLES OF
TCTrasVis
TCTracVis has been built as a stand-alone desktop applica-
tion for MS Windows. It automatically recovers traceability
links between unit tests and tested code in a project utiliz-
ing three different recovery techniques, and visualizes these
links using hierarchy tree graph visualization techniques.
Currently, the tool is designed to find traceability data of
the source code created in C# code using Microsoft unit
tests. It supports multiple traceability recovery sources to

FIGURE 2. SubtractsClassTest Test class’s traceability links.

FIGURE 3. Architecture of TCTracVis.

extract TCT links; Figure 3 illustrates the architecture of this
traceability visualization tool.

The tool requires a solution file as an input. As the tool is
designed to find the traceability between source code and test
cases of any program, the solution file holds the information
about all the projects used in the source program. In the first

VOLUME 9, 2021 40115



N. Aljawabrah et al.: Automated Recovery and Visualization of TCT Links: Evaluation

FIGURE 4. TCTracVis user interface.

TABLE 1. Solutions characteristics. This table shows metrics of the C#
projects used in the implementation and evaluation of TCTracVis.

step, the tool reads the solution file and finds the project files
(source code and unit test).

Next, the tool searches for C# source code files and test
case files. In this step, the tool also finds the path of the
assemblies which would be read in the next stage. Then,
the tool finds the assemblies and reads them, basically, it reads
two assemblies: (1) The assembly created by the source code
(name spaces and classes) (2) the assembly created in test
cases. Namespaces, classes, and methods are loaded into
visualization generator which shows the hierarchy of classes
and name spaces using a hierarchical tree visualization tech-
nique. Test cases are passed to the traceability recovery
mechanism which includes three approaches to retrieve links
between test cases and the related production classes. The
retrieved links are then passed to the visualization generator
and displayed using hierarchical trees. The tool also provides
some metrics about the traced solution, which are visualized
using bar charts.

A. USAGE EXAMPLES
Figure 4 shows the user interface of TCTracVis tool. Classes
and test cases of two solutions written in C# are used in

the experiment, HRsystem,1 which is a human resources
information system developed by ITG2 with enough unit tests
for implementation and evaluation purposes; and UnitTes-
tExample3; which is an open-source Windows forms appli-
cation that is served by several small classes that are used
in unit testing. Table 1 shows the characteristics of the two
C# solutions. The table displays how many lines of code are
in each system, the number of production classes, number
of methods, number of test classes and test methods which
written to test the production classes and methods.

Once the tool reads the solution file, all files of a project
(i.e. production classes, base methods, and unit tests) will
be displayed on the right part of the screen (see figure 4).
In a class view, a double click on a class shows a hierarchy
tree graph for a selected class and all its related methods
and fields. When a user right-clicks on the class item in
the Class View, a popup menu appears as ‘‘Base Class to
TestCase Dependency’’. When the popup menu is clicked,
a tree-view appears in the ‘‘Tree View’’ panel showing the
dependency graph for the selected base class (i.e. test classes
that call the selected class). In test case view, a user can ini-
tially select one traceability recovery approach (e.g. LCBA),
a double click on the test case shows the details in the ‘‘Tree
View’’ panel as a hierarchy tree graph. A click on a test
class in a hierarchy tree graph expands it to show subsequent
items related to a selected test class (i.e. base classes and test
methods).

1https://github.com/rayyad79/HRSystem.git
2Integrated Technology Group (ITG) https://www.itgsolutions.com/
3https://github.com/situ-pati/UnitTestExample

40116 VOLUME 9, 2021



N. Aljawabrah et al.: Automated Recovery and Visualization of TCT Links: Evaluation

FIGURE 5. Traceability links of EmpTrainingCoursesClassTest test class.

FIGURE 6. Traceability links of issue-registerTest using SCG.

Figures 5, 6, and 7 show examples of the visualiza-
tion of TCT links for the ‘‘issue-registerTest’’ test case
using NC/NCC, SCG, and LCBA, respectively. In Figure 5,
EmpTrainingCoursesClassTest test class is connected to a

number of tested classes whose names are matched the test
class’ name (e.g. EmpTrainingCoursesClass class) or they
are substring of its name (e.g. TrainingCoursesClass and
EmpTrainingCourses classes). Aswementioned before, if the

VOLUME 9, 2021 40117



N. Aljawabrah et al.: Automated Recovery and Visualization of TCT Links: Evaluation

FIGURE 7. Traceability links of issue-registerTest using LCBA.

name of a tested class does not match the name of a test
class or it’s not a substring of the name, the link cannot be
established by using NC or NCC methods. Furthermore, if a
link is found by NC/NCC, the other approaches can still be
used to validate or invalidate this link.

The SCG strategy is used in Figure 6 to establish the
links of the issue-registerTest test class. The visualization
shows the production classes that are invoked most in the
implementation of the test class and the number of times
called in each test method. Finally, Figure 7 provides a visu-
alization of the traceability links of issue-registerTest test
class using the LCBA strategy. The figure shows a set of
tested classes which are called by issue-registerTest test class
in the statements performed right before asserting statements
in issuebookTest test method. It can be clearly observed that
the test class has several test methods where each method
test is written to check one or more methods under test.
Moreover, in each node of the tested method, the name of
the tested class which includes the tested method can be
shown.

As shown in Figures 5, 6, and 7, the links between code
classes, methods, and unit tests from different sources are
displayed which, in turn, provide a clearer picture of what
is taking place within these tests. Furthermore, a hierarchical
tree view presents a detailed overview of method-level trace-
ability links.

Further features in TCTracVis include some metrics about
the traced solution (e.g. no. of base classes, no. of test classes,
no. of classes not tested) (see Figure 8). These information are
visualized using barcharts (see Figure 9). Themetrics provide

FIGURE 8. Statistics data of HRsystem.

a quick overview of artifacts of the traced solution, which can
help to better extract valuable information with less effort.
For example, one can reveal classes of the code which are
not exercised by a set of test cases. This insight enhances
the improvement of testing by creating new test cases for
the untested classes (i.e. creating more links) which, in turn,
improving the quality of the code, increasing code coverage,
facilitating maintenance, and reducing costs.

40118 VOLUME 9, 2021



N. Aljawabrah et al.: Automated Recovery and Visualization of TCT Links: Evaluation

TABLE 2. Evaluation tasks.

FIGURE 9. Statistics data of HRsystem in a graph view.

V. EVALUATION
The main target of this experiment is to develop an under-
standing of the effectiveness and usability of our visualization
traceability approach in order to justify the effort and the time
spent in the design of the TCTracVis tool. We conducted a
usability study to answer the following questions:

• To what extent the visualization of links from multiple
sources better helps testers to find solutions for their
problems than visualizing links from a single source?

• To what extent the use of the traceability visualization
approach and its implementation help to enhance the
overall browsing, comprehension, and maintenance of
TCT links of a system?

To answer the questions above, we defined a set of tasks
to be performed using our traceability visualization tool.
These tasks have also been performed manually to mea-
sure TCTracVis added value to traditional software engi-
neering processes in manual tracing. These tasks are shown
in Table 2. The solution used in this study is the UnitTes-
tExample solution mentioned in the previous section. It is
worth mentioning that our tool is robust to support large
projects; however, we selected the UnitTestExample to make
the manual evaluation much easier for the participants. A
group of 24 participants, with varying levels of expertise in
software development and unit testing, were assigned for the
evaluation of our tool and performing the tasks. Among the
participants were 17 students, 3 from industry, and 4 from
academics. We divided the participants into two groups: a
control group and an experimental group. The former group is
assigned to perform the tasks manually, while the latter group
is assigned to perform the tasks using the TCTracVis tool.
In the experimental group, the participants were 8 students,
2 academics, and 2 participants from industry. While the con-
trol group had 9 students, 2 academics, and 1 participant from
industry. Among 24 participants, 5 had more than 10 years of
development experience, 6 had fewer than 10 years but more
than 5 years, and 9 had an experience between 2-5 years,
and 4 had less than 2 years. In the beginning, we provided
the participants with a brief introduction to help them to
get familiar with our approach and tasks. After the tasks’
completion, a set of questions on our tool have been answered
by the participants.

During the execution of the tasks, we recorded the time
needed and the number of steps performed to complete each
task in each group as illustrated in Figures 10 and 11, respec-
tively. It is to be noted that the time factor of the evaluation
process was managed by using a stopwatch, as the time
needed to understand the tasks was taken into consideration.

VOLUME 9, 2021 40119



N. Aljawabrah et al.: Automated Recovery and Visualization of TCT Links: Evaluation

FIGURE 10. Average time to complete tasks.

FIGURE 11. Number of steps to perform the tasks.

As shown in Figure 10, the average time to complete all
tasks using our tool varying from 5 minutes to 10 minutes.
While the same tasks were completed manually 35 minutes
on average. The time varies depending on the participants’
experience in software development. For the experimental
group, it also depends on how frequently they use traceability
tools.

7 of the 12 participants in the experimental group com-
pleted the first task in less than 5 minutes, 3 spent 8 minutes,
and 2 participants took 10minutes to complete the task. Aswe
observed, the participants who spent 8 and 10 minutes prac-
ticed a little to get familiar with the tool before carrying out
the four tasks. The participants managed to easily understand
how the system is structured by using the ‘‘statistics’’ infor-
mation and charts. Moreover, they easily defined the specific
conventions used to organize the unit tests by browsing the
‘‘class view’’ and looking at the NC approach. In contrast,
in the control group, the participants spent around one hour
to complete the first task.

In the second task, we asked 4 participants in the experi-
mental group to use only a single link source to perform the
task, they used ‘‘base code to test dependency’’. While the
other participants were asked to use all sources. The moti-
vation behind this is to evaluate the efficiency of visualizing
traceability links inferred from multiple sources compared to
a single source. In the experimental group, the second task

TABLE 3. Questionnaire used in the experiment.

TABLE 4. Distribution of questions over tasks. This table shows what
questions were addressed in the different tasks in the evaluation.

was performed with times varying from 1 to 3 minutes, as the
participants became more familiar with our tool, whereas,
in the control group, the participants took 48 minutes on aver-
age to complete their task. We observed that in the manual
evaluation, the participants made great efforts in analyzing
the change impact of the production class and detecting its
related test cases.

The third task was completed within 5 and 10 minutes
by the experimental group, while the average time in the
manual evaluationwas 48minutes. In the experimental group,
the participants easily found a class in a ‘‘class view’’ and
identified the number of its linked test cases using ‘‘base
class-to-test case dependency’’ graph in the tool. This took
around 1 minute to complete for a single class. On the other
hand, in the control group, as the developer of UnitTestEx-
ample followed a specific naming convention, this helped the
participants to identify the test cases that linked to the classes.
Nonetheless, this task was tedious for the participants and
required a great effort for being completed.

Task 4 was as hard as task 3 in the control group. The
participants took 45 min on average to complete the task.
Whereas in the experimental group, this task was performed
easier and faster. It was completed in around 5 minutes on
average. In the latter, the participants selected the LCBA
method to recover the test case links with the classes and
managed to easily identify test cases, display the hierarchical
tree of their links, and then identify the number of their linked
classes. In Figure 11, it can be seen that the number of steps
needed to perform the tasks manually is much more than the

40120 VOLUME 9, 2021



N. Aljawabrah et al.: Automated Recovery and Visualization of TCT Links: Evaluation

FIGURE 12. Evaluation results.

number of steps required to perform the tasks using our tool.
The participants in the control group took more steps in per-
forming the four tasks compared to the experimental group.
During the manual evaluation, participants often switched
between the source code files and the test cases files to read
and perform the task and write down the notes.

After the evaluation, the analysis of the main outcomes
performed was on several questions answered by the partic-
ipants in the experimental group, based on their experience
of using our tool. The ten questions are shown in Table 3.
The main purpose of the questions is to assess the tasks
performed by the participants. Table 4 shows the distribution
of the questions over the four tasks. Questions 1, 3, and 4 aim
to assess the first task. In the first task, where the goal is
to understand system and test structure, we asked questions
about the usability, information content and visualization
property of the tool. The second task is assessed by questions
5 and 7. The goal in this task is to determine which tests
should be checked after the code changes.We asked questions
about the effectiveness of combining and visualizing differ-
ent recovery approaches. Questions 2 and 5 assess the third
task. Questions 7 and 8 are concerned with the fourth task.
The third and fourth tasks concern defining a class with the
highest number of linked unit tests and a unit test with the
highest number of linked classes respectively. The questions
on these tasks were on the efficiency of the visualization
property of the tool and how it can support the developers
and testers in project development and management. Ques-
tions 9 and 10 aim to investigate the usefulness and the
importance of our approach from the participants’ point of
view.

The results of the evaluation questions are shown
in Figure 12. The questions are shown on the x-axis, while the
y-axis displays the number of participants and their responses
based on the Likert scale (Strongly disagree, disagree, neither
agree nor disagree, strongly agree). The most interesting
result that the majority of the provided responses was pos-
itive. 9 participants (strongly) agreed that the tool is easy
to use, the visualization of multi-sources links is better than
visualizing single source links. They highly recommended
our tool to developers, testers, and researchers. 6 of them
also (strongly) agreed that they could easily visualize the
traced solution in an efficient way, the tool can help them to
save time needed to find traceability links, and it could make
a project more cost effective. Furthermore, 6 participants
(strongly) agreed that the visualization of traceability links
was clear, and they were able to show the statistical data of
the program components easily using the tool. Several partic-
ipants gave the answer ‘‘agree’’ and in each question around
1 or 2 participants answered ‘‘neither agree nor disagree’’.
4 participants (strongly) agreed that they could easily detect
the base code to test dependency and 3 agreed to this ques-
tion, but 4 participants answered ‘‘disagree’’. They responded
that they did not figure out that they should right-click on
a class to show the dependency diagram; they commented
that this feature should be more prominent in the interface.
7 participants (strongly agree) that the automated recovery
approaches are better than manual methods, whereas one par-
ticipant answered (disagree) to this question. They justified
the answer that the manual methods cannot be avoided
during project development; it is often required to confirm
vulnerabilities.

VOLUME 9, 2021 40121



N. Aljawabrah et al.: Automated Recovery and Visualization of TCT Links: Evaluation

Overall, the results revealed that the participants strongly
agreed that the visualization of traceability link inferred from
different sources is more efficient and helpful than using a
single source, and that, the results showed that the visualiza-
tion tool can efficiently support understanding, browsing, and
maintaining of TCT links in a software system.

VI. THREATS TO VALIDITY
Some threats potentially affect the validity of our evaluation
results. We have exerted reasonable efforts to identify these
threats and attempted to alleviate some of them.

The first threat is that only one system has been used in the
usability evaluation. The main reason for using one system
is manual evaluation. We mentioned before that our tool is a
generic tool and supports C# solutions of varying sizes.

The second threat concerning the extent to which the
results of our study can be generalized; to alleviate this threat,
we introduced the tool and the problem to different partic-
ipants (evaluators) with varying levels of experience. Our
evaluators included students, academics, and experts from the
industry who have familiarity with the necessary software
development skills.

The third threat is that some of the participants were
unfamiliar with the concept of traceability or visualization.
To overcome this threat, we provided the participants with a
precise description of the traceability and visualization, ran
a demo, and explained the tool. We allowed the participants
sufficient time to understand the functionality or usability of
the tool and practice visualization exercises on some sample
sets of problems before presenting the real problem to solve.

VII. CONCLUSION AND FUTURE WORK
In this paper, we introduced a novel traceability visualization
approach and its implementation that extends our previous
work. We combined different traceability recovery methods
that automatically retrieve the links, we also provide visual-
ization support to these links using a hierarchical tree visu-
alization technique. A usability study has been conducted
to evaluate the usability and usefulness of our traceability
visualization tool.

Based on our evaluation results, we observed that
TCTracVis tool can provide the participants with the follow-
ing features and functions:
• Directly identify a specific item in a traced program to
show its related links.

• Visualize a class/method hierarchy tree of a program.
• Detect and visualize a class dependency on test cases.
• Retrieve the traceability links for a specific test case
from multiple sources automatically and visualize the
retrieved links in an efficient way.

• Support an overall overview of the program components
by providing detailed statistics and visualization of these
components.

• Save time needed in finding TCT links in a project
efficiently and make the project cost-effective.

Based on the results presented in this work, there are potential
areas of future work as follows:
• Visualization system can be extended to support further
programming languages such as Java, C++, Python.

• Implement our approach with further TCT links recov-
ery approaches.

• Extend our visualization system to include one overall
overview visualization of all traceability links for the
whole project which, in turn, may need to support other
types of visualization techniques.

REFERENCES
[1] N. Aljawabrah and A. Qusef, ‘‘TCtracVis: Test-to-code traceability links

visualization tool,’’ in Proc. 2nd Int. Conf. Data Sci., E-Learn. Inf. Syst.,
2019, pp. 1–4, doi: 10.1145/3368691.3368735.

[2] X. Chen, J. Hosking, and J. Grundy, ‘‘Visualizing traceability links
between source code and documentation,’’ in Proc. IEEE Symp. Vis.
Lang. Hum.-Centric Comput. (VL/HCC), Sep. 2012, pp. 119–126, doi: 10.
1109/VLHCC.2012.6344496.

[3] A. Van Deursen, L. Moonen, A. Van Den Bergh, and G. Kok, ‘‘Refactoring
test code,’’ in Proc. 2nd Int. Conf. Extreme Program. Flexible Processes
Softw. Eng. (XP), 2001, pp. 92–95.

[4] A. A. G. Filho and A. Zisman, ‘‘D3TraceView: A traceability visual-
ization tool,’’ in Proc. 29th Int. Conf. Softw. Eng. Knowl. Eng. (SEKE).
Pittsburgh, PA, USA: Wyndham Pittsburgh Univ. Center, Jul. 2017, doi:
10.18293/SEKE2017-038.

[5] P. Heim, S. Lohmann, K. Lauenroth, and J. Ziegler, ‘‘Graph-based visual-
ization of requirements relationships,’’ in Proc. Requirements Eng. Visual-
izat., Sep. 2008, pp. 51–55, doi: 10.1109/REV.2008.2.

[6] H. Kaindl, ‘‘The missing link in requirements engineering,’’ ACM SIG-
SOFT Softw. Eng. Notes, vol. 18, no. 2, pp. 30–39, Apr. 1993, doi: 10.
1145/159420.155836.

[7] K. Kamalabalan and T. Uruththirakodeeswaran, ‘‘Tool support for trace-
ability of software artefacts,’’ in Proc. Moratuwa Eng. Res. Conf. (MER-
Con), Apr. 2015, pp. 318–323, doi: 10.1109/MERCon.2015.7112366.

[8] Y. Li and W. Maalej, ‘‘Which traceability visualization is suitable in this
context? A comparative study,’’ in Requirements Engineering: Foundation
for Software Quality (Lecture Notes in Computer Science: Lecture Notes in
Artificial Intelligence (LNAI) Lecture Notes in Bioinformatics), vol. 7195.
Berlin, Germany: Springer, 2012, pp. 194–210, doi: 10.1007/978-3-642-
28714-5_17.

[9] J. Lin, C. Chou Lin, J. C. Huang, R. Settimi, J. Amaya, G. Bedford,
B. Berenbach, O. B. Khadra, C. Duan, and X. Zou, ‘‘Poirot: A distributed
tool supporting enterprise-wide automated traceability,’’ in Proc. 14th
IEEE Int. Requirements Eng. Conf. (RE), Sep. 2006, pp. 356–357, doi: 10.
1109/RE.2006.48.

[10] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora, ‘‘ADAMS re-trace:
A traceability recovery tool,’’ in Proc. 9th Eur. Conf. Softw. Maintenance
Reeng., 2005, pp. 32–41, doi: 10.1109/CSMR.2005.7.

[11] G. Marchionini and B. Shneiderman, ‘‘Finding facts vs. Browsing knowl-
edge in hypertext systems,’’Computer, vol. 21, no. 1, pp. 70–80, Jan. 1988,
doi: 10.1109/2.222119.

[12] A. Marcus, X. Xie, and D. Poshyvanyk, ‘‘When and how to visualize
traceability links?’’ in Proc. 3rd Int. Workshop Traceability Emerg. Softw.
Eng. (TEFSE), CA, USA, 2005, pp. 56–61.

[13] T. Merten, D. Juppner, and A. Delater, ‘‘Improved representation of trace-
ability links in requirements engineering knowledge using Sunburst and
Netmap visualizations,’’ in Proc. 4th Int. Workshop Manag. Requirements
Knowl., Aug. 2011, pp. 17–21, doi: 10.1109/MARK.2011.6046557.

[14] P. Bouillon, J. Krinke, and N. Meyer, ‘‘EzUnit: A framework for associat-
ing failed unit tests with potential programming errors,’’ in Proc. 8th Int.
Conf. Agile Process. Softw. Eng. Extreme Program., Como, Italy, 2007,
pp. 101–104.

[15] R. M. Parizi, S. P. Lee, and M. Dabbagh, ‘‘Achievements and challenges
in state-of-the-art software traceability between test and code artifacts,’’
IEEE Trans. Rel., vol. 63, no. 4, pp. 913–926, Dec. 2014, doi: 10.1109/
TR.2014.2338254.

[16] A. Qusef, G. Bavota, R. Oliveto, A. D. Lucia, and D. Binkley,
‘‘SCOTCH: Slicing and coupling based test to code trace hunter,’’ in
Proc. 18th Work. Conf. Reverse Eng., Oct. 2011, pp. 443–444, doi:
10.1109/WCRE.2011.68.

40122 VOLUME 9, 2021

http://dx.doi.org/10.1145/3368691.3368735
http://dx.doi.org/10.1109/VLHCC.2012.6344496
http://dx.doi.org/10.1109/VLHCC.2012.6344496
http://dx.doi.org/10.18293/SEKE2017-038
http://dx.doi.org/10.1109/REV.2008.2
http://dx.doi.org/10.1145/159420.155836
http://dx.doi.org/10.1145/159420.155836
http://dx.doi.org/10.1109/MERCon.2015.7112366
http://dx.doi.org/10.1007/978-3-642-28714-5_17
http://dx.doi.org/10.1007/978-3-642-28714-5_17
http://dx.doi.org/10.1109/RE.2006.48
http://dx.doi.org/10.1109/RE.2006.48
http://dx.doi.org/10.1109/CSMR.2005.7
http://dx.doi.org/10.1109/2.222119
http://dx.doi.org/10.1109/MARK.2011.6046557
http://dx.doi.org/10.1109/TR.2014.2338254
http://dx.doi.org/10.1109/TR.2014.2338254
http://dx.doi.org/10.1109/WCRE.2011.68


N. Aljawabrah et al.: Automated Recovery and Visualization of TCT Links: Evaluation

[17] A. Qusef, R. Oliveto, and A. D. Lucia, ‘‘Recovering traceability links
between unit tests and classes under test: An improved method,’’ in
Proc. IEEE Int. Conf. Softw. Maintenance, Sep. 2010, pp. 1–10, doi: 10.
1109/ICSM.2010.5609581.

[18] A. Rodrigues, M. Lencastre, and G. A. D. A. C. Filho, ‘‘Multi-
VisioTrace: Traceability visualization tool,’’ in Proc. 10th Int. Conf.
Qual. Inf. Commun. Technol. (QUATIC), Sep. 2016, pp. 61–66, doi: 10.
1109/QUATIC.2016.019.

[19] G.-C. Roman and K. C. Cox, ‘‘Program visualization: The art of mapping
programs to pictures,’’ in Proc. Int. Conf. Softw. Eng., 1992, pp. 412–420.

[20] S. Winkler and J. von Pilgrim, ‘‘A survey of traceability in requirements
engineering and model-driven development,’’ Softw. Syst. Model., vol. 9,
no. 4, pp. 529–565, Sep. 2010, doi: 10.1007/s10270-009-0145-0.

[21] B. V. Rompaey and S. Demeyer, ‘‘Establishing traceability links between
unit test cases and units under test,’’ in Proc. 13th Eur. Conf. Softw.
Maintenance Reeng., 2009, pp. 209–218, doi: 10.1109/CSMR.2009.39.

[22] T. Stanković, M. Štorga, I. Stojić, and T. Savšek, ‘‘Traceability visualisa-
tion toolkit,’’ in Proc. Int. Design Conf., vol. 70, 2012, pp. 1617–1626.

[23] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram, ‘‘Advancing candidate link
generation for requirements tracing: The study of methods,’’ IEEE Trans.
Softw. Eng., vol. 32, no. 1, pp. 4–19, Jan. 2006, doi: 10.1109/TSE.2006.3.

[24] A. D. Thommazo, G. Malimpensa, T. R. D. Oliveira, G. Olivatto, and
S. C. P. F. Fabbri, ‘‘Requirements traceabilitymatrix: Automatic generation
and visualization,’’ in Proc. 26th Brazilian Symp. Softw. Eng., Sep. 2012,
pp. 101–110, doi: 10.1109/SBES.2012.29.

[25] H. M. Sneed, ‘‘Reverse engineering of test cases for selective regression
testing,’’ in Proc. 8th Eur. Conf. Softw. Maintenance Reeng. (CSMR),
Mar. 2004, pp. 69–74.

[26] N. Aljawabrah, T. Gergely, and M. Kharabsheh, ‘‘Understanding test-
to-code traceability links: The need for a better visualizing model,’’
in Computational Science and Its Applications—ICCSA 2019 (Lec-
ture Notes in Computer Science: Lecture Notes in Artificial Intelli-
gence (LNAI) Lecture Notes in Bioinformatics), vol. 11622. Cham,
Switzerland: Springer, 2019, pp. 428–441, doi: 10.1007/978-3-030-
24305-0_32.

[27] R. M. Parizi, A. Kasem, and A. Abdullah, ‘‘Towards gamification in
software traceability: Between test and code artifacts,’’ in Proc. 10th Int.
Conf. Softw. Eng. Appl., Jul. 2015, pp. 393–400.

[28] R. M. Parizi, ‘‘On the gamification of human-centric traceability tasks in
software testing and coding,’’ in Proc. IEEE 14th Int. Conf. Softw. Eng.
Res., Manage. Appl. (SERA), Towson, MD, USA, Jun. 2016, pp. 193–200,
doi: 10.1109/SERA.2016.7516146.

[29] T. Gergely, G. Balogh, F. Horváth, B. Vancsics, Á. Beszédes, and
T. Gyimóthy, ‘‘Differences between a static and a dynamic test-to-code
traceability recovery method,’’ Softw. Qual. J., vol. 27, no. 2, pp. 797–822,
Jun. 2019.

[30] A. Kicsi, L. A. Vidcs, V. Csuvik, F. Horváth, A. Beszédes, and F. Kocsis,
‘‘Supporting product line adoption by combining syntactic and textual
feature extraction,’’ in Proc. Int. Conf. Softw. Reuse. Cham, Switzerland:
Springer, 2018, pp. 148–163.

[31] R. White, J. Krinke, and R. Tan, ‘‘Establishing multilevel test-to-code
traceability links,’’ in Proc. ACM/IEEE 42nd Int. Conf. Softw. Eng.,
Jun. 2020, pp. 861–872.

[32] D. A. Meedeniya, I. D. Rubasinghe, and I. Perera, ‘‘Traceability establish-
ment and visualization of software artefacts in DevOps practice: A survey,’’
Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 7, pp. 66–76, 2019.

[33] I. Rubasinghe, D. Meedeniya, and I. Perera, ‘‘Automated inter-artefact
traceability establishment for DevOps practice,’’ in Proc. IEEE/ACIS 17th
Int. Conf. Comput. Inf. Sci. (ICIS), Jun. 2018, pp. 211–216, doi: 10.
1109/ICIS.2018.8466414.

NADERA ALJAWABRAH received the mas-
ter’s degree in software engineering from The
Hashemite University, Jordan. She is currently
pursuing the Ph.D. degree with the Department
of Software Engineering, Szeged University, Hun-
gary. Her doctoral research investigates the visu-
alization of software testing. She authored the
articles Understanding TCT Links: The Need for
a Better Visualizing Model and TCtracVis: TCT
Links Visualization Tool and coauthored the arti-

cles Visualizing Testing Results for Software Projects and Towards a Com-
prehensive Survey of the Requirements Elicitation Process Improvements.

TAMÁS GERGELY received the Ph.D. degree in
computer science from the University of Szeged,
in 2011. He is currently an Assistant Professor
with the Department of Software Engineering,
University of Szeged. He has been teaching for
more than 20 years, including testing of CTFL,
Agile FL, ATM, ATA, ATTA, and CPRE FL, for
more than ten years. His research interests include
software quality, software testing, and test quality.
He has more than 35 publications and participated

in many academic-industrial projects in these fields.

SANJAY MISRA (SeniorMember, IEEE) received
the M.Tech. degree in software engineering from
the Motilal Nehru National Institute of Technol-
ogy, India, and the Ph.D. degree in information
and knowledge engineering (software engineer-
ing) from the University of Alcalá, Spain. He is
currently a Full Professor of computer engineering
with Covenant University (400–500 ranked Uni-
versity by THE) Ota, Nigeria. He has 25 years
of vast experience in academic administration and

research in various universities in Asia, Europe, and Africa. As per SciVal
(SCOPUS-Elsevier) analysis, he is the most productive researcher in whole
Nigeria, from 2012 to 2017, from 2013 to 2018, from 2014 to 2019, and
from 2015 to 2020 (in all disciplines/subjects), in computer science No. 1 in
the whole country and No. 4 in the whole continent. He has published more
than 400 articles (SCOPUS/Web of Science) with more than 300 coauthors
around the world (-102 in JCR/SCIE journals) in the core and application
area of software engineering (SQA, SPI, and SPM), Web engineering, health
informatics, cyber security, and intelligent systems. He received several
awards for outstanding publications, including the 2014 IET Software Pre-
miumAward (U.K.), and from the TUBITAK-Turkish Higher Education, and
Atilim University. He has delivered more than 90 keynote speeches/invited
talks/public lectures in reputed conferences and institutes around the world
(travelled around 60 countries). He edited (with colleagues) 49 LNCS and
nine IEEE proceedings, and several books. He was the Editor-in-Chief of the
book series IT Personnel and Project Management, the International Journal
of Human Capital and Information Technology Professionals (IJHCITP)
(IGIGlobal), and of three journals (IJ) and an editor of various SCIE journals.

LUIS FERNANDEZ-SANZ received the degree
in computing from the Polytechnic University of
Madrid (UPM), in 1989, and the Ph.D. degree
in computing, with a special award, from the
University of the Basque Country, in 1997. With
more than 20 years of research and teaching expe-
rience with the UPM, the Universidad Europea
de Madrid, and the University of Alcalá (UAH),
he has also been engaged in the management of
the main Spanish Computing Professionals Asso-

ciation, as the Vice President. He is currently an Associate Professor with
the Department of Computer Science, UAH. He is also the Chairman of the
ATI Software Quality Group. His general research interests include software
quality and engineering, accessibility, eLearning, and ICT professionalism
and education. He has held the vice president position of the Council of Euro-
pean Professional Informatics Societies (CEPIS), from 2011 to 2013 and
since 2016.

VOLUME 9, 2021 40123

http://dx.doi.org/10.1109/ICSM.2010.5609581
http://dx.doi.org/10.1109/ICSM.2010.5609581
http://dx.doi.org/10.1109/QUATIC.2016.019
http://dx.doi.org/10.1109/QUATIC.2016.019
http://dx.doi.org/10.1007/s10270-009-0145-0
http://dx.doi.org/10.1109/CSMR.2009.39
http://dx.doi.org/10.1109/TSE.2006.3
http://dx.doi.org/10.1109/SBES.2012.29
http://dx.doi.org/10.1007/978-3-030-24305-0_32
http://dx.doi.org/10.1007/978-3-030-24305-0_32
http://dx.doi.org/10.1109/SERA.2016.7516146
http://dx.doi.org/10.1109/ICIS.2018.8466414
http://dx.doi.org/10.1109/ICIS.2018.8466414

