
Semi-Automatic Test Case Generation from
Business Process Models

Tibor Bakota1, Árpád Beszédes1, Tamás Gergely1, Milán Imre Gyalai1, Tibor
Gyimóthy1, and Dániel Füleki2

1 University of Szeged, Department of Software Engineering
Árpád tér 2., H-6720 Szeged, Hungary, +36 62 546724

{bakotat,beszedes,gertom,gyalaim,gyimothy}@inf.u-szeged.hu
2 IDS Scheer Hungária Kft.

Infopark sétány 1., H-1117 Budapest, Hungary, +36 1 4630900
d.fuleki@ids-scheer.hu

Abstract. In this work, we describe our method for designing test cases
based on high level functional specifications – business process models.
Category Partition Method (CPM) is used to automatically create test
frames based on possible paths, which are determined by business rules.
The test frames can then be used in the process of test case design,
together with filtering and prioritization also given as CPM rules. We
present the details of the adaptation of CPM, together with first experi-
ences from applying the method in an industrial context.

Keywords: software testing, test case design, test case generation, functional
testing, black-box testing, equivalence partinioning, Category Partition Method,
CPM

1 Introduction

In test planning and test case design, functional (or black-box) tests play a crucial
role. Among testing professionals, there is a common agreement that functional
tests should always have higher priority than structural (or white-box) tests
[1], provided that the basis upon which tests are designed (the specification,
normally) is accessible and well-elaborated. One of the most commonly applied
functional test case design techniques is equivalence partitioning, where the set
of possible program inputs and states is represented by a single representative,
which is believed to produce the same behavior as any other representative from
the given partition. This way a limited, yet representative combination of all
possible behaviours of the software will be tested.

Equivalence partitioning is a well-known technique and also very pragmatic,
but unfortunately, it is rarely described in a more precise and formal way. Prob-
ably the most well-elaborated approach formally described is still Ostrand and
Balcer’s Category Partition Method (CPM) [2]. In this paper, we describe our
method – which is based on CPM – for semi-automatic test case design from



very high level functional software specifications, usually in the form of various
business process models. The CPM method is re-interpreted and specialized so
that it is applicable for automatically generating high level test frames based on
possible paths and determined by business rules in the business process model.
The test frames can then be used, by the means of filtering, weighting and spe-
cialization, to create the actual test cases. As such, it is a kind of model-based
test design approach employing automatic generation to aid the manual test case
design process. The method: (1) ensures that no important path in functional
description is ommitted, (2) ensures that all infeasible paths are eliminated and
(3) provides a way to assign priorities to the generated test cases. This way, the
required effort of test case design is significantly reduced while providing higher
reliability in the resulting test cases.

We applied the method to one of the leading business process design frame-
works and description languages, and validated its usefulness in an industrial
case study. To our knowledge no previous work dealt with applying CPM to
such kind of functional descriptions and reported practical benefits of this for-
mal equivalence partitioning approach.

The paper is organized as follows. In Section 2, we overview the approach and
compare it to related work. The details of the method are given in Section 3. We
report on practical experience in applying the method in an industrial context
in Section 4 and conclude in Section 5.

2 Overview and Related Work

In this section we give an overview of the method and elaborate on related work.
The main steps of the method are shown in Figure 1. The method works from

a high-level representation of the process (hereinafter process means a business
process), created by a business specialist and extended by a test designer who is
aware of the implementation of the various steps. The extended model contains
certain additional information about the process. From the extended model the
test designer or tester prepares and finally runs the tests. Note that test designer
and tester may be the same person.

The input model of our method describes the control flow of the process, that
is, the order of the process steps, and their connections. This model is worked out
by the process analyst. Then the test designer adds further information to the
model. The amount of such extra information is usually significant but it pays
off since testing with this technique will be much more elaborate and reliable.
This information is clearly test-oriented and it is the duty of the test designer
to derive it from the (business and technical) specification of the system. The
modified model contains, for each activity (manual function by humans or system
function to be carried out by software), the relevant operating parameters such
as input, external system status, etc.

Although the aim of the generated test cases is to test the implementation of
the whole business process (instead of testing the individual implementations of
the steps) different parameter values – which have influence to the process flow



designer

Test

Process
description
extension

Generating

Model Model Test

ExecutingProcess

description tests tests

Process

analyst
Tester

Fig. 1. Levels and steps of test generation

– must be considered as well. We used (CPM) to reduce the number of different
inputs required for testing. We do not detail on this method in this paper, an
interested reader should consult article [2]. The main idea of it is that the input
is divided into (logically independent) parts, called categories. Then, for each
category, the possible values of the category are grouped into partitions in a way
that two values from the same partition cause the same effect during execution.
This way one actual input for each partition of a category are enough to fully
test the program behaviour regarding the given category.

In our interpretation of CPM, the parameters are described by categories.
The possible parameter values are organized into partitions for each category
that basically describe the various implementation (test) modes of the given
function which are important for the business logic. During testing one value
is chosen from each partition to represent the corresponding partition. At the
forks (decisions) of the control flow information can be added to the branches
for selecting the direction based on input categories.

Then so-called test frames can be generated from the model. The difference
between a test frame and a test case is that a frame binds partitions to categories,
while test cases bind values to inputs. Thus, test frames are specific views of
the process described in the model extended with the information about input
partitions assigned to the individual steps. Test cases are produced from the test
frames so that an arbitrary element of the specified partition is used as input.
The test case is a test scenario that can be implemented, representing a potential
functional implementation of the given process.

There are two ways to reduce the number of test frames and test cases gener-
ated. First, certain unrealizable or irrelevant combinations can be filtered based
on the relationship between the functions and certain properties assigned to the
functions (so-called properties). Priorities can be assigned to the test frames
(test cases) based on various weights (e.g. risk factor) to the functions.



There is a significant amount of literature on methods for test case generation,
and a small portion of the approaches deal with business processes. However,
most of these articles describe methods specialized for a specific description
language (e.g. for BPEL), and the area of web services, while our method can
be applied for any model (satisfying some basic requirements).

Yuan et al. propose an extended control flow graph to represent a BPEL
process [3,4]. They generate sequential test paths from this representation, ac-
cording to branch coverage criterion. Then these are combined into concurrent
test paths and a constraint solver is used to remove infeasible paths, and to gen-
erate test data. Zhang et al. transforms web services flow into a dynamic testing
model based on extended UML 2.0 activity diagram [5]. They provide a test
coverage definition, and a test case generation method that generates only rele-
vant test cases. Garcia-Fanjul et al. generate test suite specification from BPEL
representation for the compostiton of web services [6,7]. A systematic procedure
based on SPIN is proposed to select test cases according to a transition coverage
criterion. Xiaoyan et al. generate test cases based on the OWLS requirement
model to test the interaction of web services [8]. Neither of the methods above
use CPM.

CPM is not a new method. It had been used in practice by testers prior
to its formal definition. First Ostrand et al. described it formally in [2]. They
proposed a method for creating functional test suites from system specifications
by annotating the test specification with constraints. Jeff and Offutt described a
formal method that extends CPM and deals with infeasible paths [9]. Offutt and
Irvine combined CPM with a memory management faults detector tool to test
object oriented software migrated from procedural language [10]. Vieira et al.
describe a UML based test case generation method combining several existing
techniques including CPM [11]. To reduce the number of generated test cases,
the authors employ custom annotations and different coverage criteria. Bertolino
et al. presented a CPM based approach for testing applications expecting XML
documents as input [12]. To limit the number of generated instances, they employ
practical strategies for handling element weights and type values.

As far as we know CPM has not been used earlier for high-level test case
generation for business processes.

3 The method in detail

In this section the method is described in detail. The method is defined so that
it could be used with any kind of model which meets certain requirements (see
below). The method is for the testing of the process itself, and assumes that the
individual functions themselves operate correctly.

In the model the inputs, parameters, outputs, and output parameters of the
process can be linked to the given activities. The individual activities themselves
can have additional inputs and outputs. The method assumes that the input and
parameters of the process are supplied “manually” by the tester, while other in-
puts of the activities are filled-in through automatic dataflow within the process.



The outputs and output parameters of the process are used to determine the ex-
pected values, but can participate in automatic data flow as well. Other outputs
of the activities participate only in the automatic data flow.

The method is based on CPM. The main idea is that categories are assigned
to the individual process steps to be tested. A category can be anything that
has significant effect on the operation of the given step, such as input data or
its properties/features (e.g. size), environmental parameter, etc. Then partitions
are assigned to each category. This is in fact the classification of the possible
values of the given category. This classification can be done in such a way that
the given step of the process should, in some way, work similarly for the values
of the same partition.

The method consists of four levels in test generation:

Model level. A model is a directed graph describing the process to be tested.
The graph indicates the activities and forks of the process by vertices and the
possible control flows by edges. The model also contains meta-information
assigned to the vertices and edges (inputs, outputs, categories, partitions,
etc.).

Path level. A path is a chain constructed from the model by traversing the
graph from the starting point to the end-point. The graph vertices visited
several times during traversal are represented as individual vertices of the
path. The meta-data assigned to the points and edges are also present here.

Test frame level. A test frame is a series of activities where each activity holds
information on the type of input it takes.

Test case level. A test case is a series of functions with given input values.

The individual levels and the transitions between the levels are shown in Figure 2.
During path-generation the possible paths are generated from the model, in
which the filter parameters specified by the model designer are also taken into
consideration. Several test frames are constructed from such paths with the help
of the given categories and partitions, out of which the specified filter conditions
filter out the “bad” frames. Then, with the help of weighting, some parts of the
total frames can be omitted. The remaining frames make up particular test cases
through selecting actual input values in accordance with the partitions.

3.1 The Model

The model is a directed graph describing the process to be tested. The model
should meet the following requirements:

– The model has a starting point.
– The activities (functions) of the model indicate the parameters (any factor

influencing operation, for example input or the state of an external system)
they work with, and also the output of the activities.

– Categories are assigned to the individual parameters of the process. A cat-
egory represents an aspect based on which the parameter values can be



Model

Path Path Path Path

Path generation

Path filtering

Path Path

Test frame generation

Test frame Test frame Test frame

Test frame filtering

Test case Test case

Test case generation

Test frame

Test frame Test frame

Test frame weighting

Model

Paths

Test frames

Test cases

Fig. 2. Test case generation process

classified into partitions. A partition means a set of values linked by some
aspect. (For example if the parameter is a string, one category can be its
length, another one the features of the characters it contains.

– Those inputs of the activities that are not inputs of the process will not be
classified into categories. However, since this is only possible if the output of
other activities is used, these relationships should be indicated in the model.

– There are three types of forks: in case of AND all branches shall be executed
in parallel; in case of XOR exactly one branch will be executed; in case of OR
any number (but at least one) of the branches shall be executed in parallel.
All fork types have their corresponding jointer counterpart as well.

– OR and XOR forks have conditions assigned to the individual branches. The
conditions use the categories of the preceding functions as variables, and



their partitions as values. In case of a XOR fork exactly one path can be
followed depending on the categories used.

– Relationship can be established between the states of the model. Such rela-
tionship could be excludes, in which case the two states cannot be present
on the same path; or implies, in which case one state can only be present on
a path if the other one is present as well.

– Other information can also be assigned with the elements of the model that
can help processing of the model.

3.2 Generating Test Frames

In the following, we give two approaches to generating test frames. The first
one follows what is a logical approach in two steps, while the second one is an
optimized version combining the two steps into a single one.

Generation in two steps. In this case first all possible paths are generated
from the model. A path will be a graph free of forks that contains all or part
of the information assigned to the vertices and edges of the graph. The path
is generated by traversing the graph from the starting point to the end point.
When a function is reached the function in question is copied together with all
attached information. When a fork is reached it is also copied. The branches of
the forks are managed in the following way:

AND: All branches are traversed and the resulting function-series are combined.
Since such branches are theoretically independent of each other, the function
series of the branches can simply be placed one after the other (although
more complex combining algorithms are possible). One single path is made
of one single AND fork (disregarding forks within the branches).

XOR: One of the branches is chosen and executed. Since the choice of the
branch unambiguously determines what partition-combinations could the
input categories of the preceding functions use, other combinations are for-
bidden. n paths are generated from one single n-directional XOR fork (dis-
regarding forks within the branches).

OR: The branches to be executed are selected. The partition-combinations of
the preceding functions are forbidden in a similar way as with XOR, and
the branches selected are treated as branches of an AND fork. Thus 2n − 1
paths are generated from one single n-directional OR fork (disregarding forks
within the branches).

All possible different paths are generated from the graph, where two paths
are regarded to be different if the series of functions involved is different (disre-
garding the information assigned). Should the model contain a loop, the number
of all possible paths would be infinite. To avoid this we assume that different
executions of the loop do not differ from each other. Thus, in this case a path
can be generated from the loop in two ways: one, where the elements of the path
are not executed, and two, where they are executed once.



In the second step of the two-step method test frames are generated from
the path. If n partitions are allowed (i.e. not forbidden) for one category of
the parameters of a function, then n new paths are constructed from the single
path in a way that for all new paths of the category all but one partition will
be forbidden for the given category. A test frame is constructed from the path
when a partition is fixed for all categories of all functions.

Generation in one step. The two actions of the above two-step method are
so tightly connected that they can practically be executed in parallel. Or, to be
more precise, fixing partitions will unambiguously determine the paths that can
be chosen at the forks, thus only the serialization of the branches of the AND
forks (including the branches selected by the partitions in OR forks) shall be
done in the way indicated above.

For the loops the above method can also be applied here, namely, only the 0
and 1 iteration versions are generated.

3.3 Decreasing the Number of Test Frames

It is obvious that the previous step results in a huge number of test frames. We
give two methods to decrease this number, furthermore they can even be used
jointly to increase the efficiency of optimization.

The features of functions and partitions. One of the methods can be used
during generation to decrease the number of paths/frames. Here the idea is that
certain states/partitions are forbidden in case of certain conditions, and special
features are assigned to partitions and complete functions.

If a path contains two states that are in excludes relationship in the model,
the path is not valid – thus it shall be disregarded. And if one state of the model
implies another state that is not present in the path, this one is also omitted
from among the possible paths.

To establish the pre-conditions for the partitions the categories and partitions
can be used in a way similar to the one used when assigning conditions to the OR
branches. It can also be done through defined features that could be determined
by partitions or functions.

In practice this means the following. Two additional elements are assigned
to each partition:

– A feature list.
– A logical expression.

Two types of features can be defined in the feature list. Special features
affect the management of the partition, while other features help in establishing
pre-conditions.

The logical expression encodes the pre-condition of choosing the partition.
The expression describes whether it is a property or a category-partition pair.



The feature as elemental part is true in a preliminary test frame if one of the
partitions already fixed in the preliminary test frame defines it, meaning that
it is present in the feature-list of a partition already fixed. A category-partition
pair as elemental part is true in a preliminary test frame if the given partition of
the pair is fixed for the given category of the pair in the preliminary test frame.
Given this, a partition with pre-conditions can only be chosen to be fixed during
generation of the frames if the evaluation of the pre-condition gives a true value.

The special features of a function or partition can be the following:

unique: It is enough to include a partition or function with this feature in one
single test frame. That is, if it is already fixed or chosen for at least one
test frame, there is no need to consider it in generating other test frames.
However, care should be taken that test frames disregarded due to unique
features must not result in losing other partitions or partition combinations.
For example, if partition a1 of category A is a pre-condition of both partition
b1 and b2 of category B, it is of no importance that a1 is of unique feature,
since omitting either of the A = a1, B = b1, and A = a1, B = b2 combination
would result in “losing” one partition of B.

error: Not more than one of the partitions or functions with this feature should
be chosen for a test frame. That is, if an element with this feature is already
fixed or chosen for the preliminary test frame, other such choices can be
omitted.

Weighting of functions. Weighting of functions decreases the number of test
frames generated subsequently.

Here the test designer – based on the business specification and possibly
with the help of the process analyst – assigns weights to the individual functions
based on the probability values fixed in the model. Then the test frames are
generated and sequenced according to a combined value calculated from these
weights. This ensures that only the first limited number of test frames must be
executed in case of resource limitation. Section 3.4 presents the details of this
method.

3.4 Adaptive Risk Model

The aim of the adaptive risk model outlined below is to reduce the number (or
establish a priority) of test frames determined through the general method in
such a way that functions with higher risk levels precede those with lower risk
in the resulting list. In this context risk level is a complex concept applied to
single functions, with the following primitive constituents:

Importance: The higher the loss due to malfunction, the more important is
the function. The following business importance categories are defined:
– Business critical: The malfunction of the given function has effect on

the entire daily business activity. Correct operation is essential for the
process as a whole.



– Highly important: The correct operation of the function is important. In
case of malfunction the function can be bypassed, although with high
cost (manual resource expenditure).

– Important: In case of malfunction the function can be relatively easily (at
low cost) repaired/bypassed in such a way that the process as a whole
would not be affected in business terms.

– Not important: Although the function is part of the given process as a
whole, yet its malfunction does not affect the result of the process as a
whole. (Later it can easily be reproduced independently of the process.)

The actual values of the Importance concept defined above are provided by
empirical data for the given functions that should be fixed during modelling. For
functions with no such values fixed default values should be assumed, which is
‘Important.’

Each category should – also empirically – be assigned a numerical value in
such a way that the rate between the numerical values should reflect the rela-
tionship between the corresponding categories. It can be assumed that Business
critical is assigned the value of 1, while Not important 0.

In addition to the above weighting of the functions the probability of each
event should also be approximated empirically:

Probability: The probability of the given event (empirical estimation). The
values are assigned to the edges starting out from the functions. The following
categories are defined:
– Always: The given event always happens after the completion of the

function in question.
– Often: The given event often happens after the completion of the function

in question. In this case an alternative event should exist that happens
in the other cases. The probability of the alternative event should be
Rarely.

– Rarely: The function usually does not appear during the completion of
the process. In this case an alternative event should exist that happens
in the other cases. The probability of the alternative event should be
Often.

– Never: The given event never happens after the completion of the func-
tion in question.

Real numbers are assigned to the categories defined above that indicate the
probability of the events. Thus, the value assigned to the Always category is
1, and the value of Never is 0. Often and Rarely take the values of 0.75 and
0.25 respectively. If, based on the specification of the process, the function in
question can only result in a pre-defined state, then this state should necessary
be assigned the value of 1. In case the execution of the given function can result
in several possible states and no individual values are assigned to each of the
given states, then all of them should, by default, be assigned the value

1
number of possible states



(that is, all possible transitions have the same probability for realisation). In
addition to the pre-defined categories listed above any real number between
0 and 1 could be assigned to the events with the condition that the sum of
probabilities assigned to the possible events of the given functions must be equal
to 1.

With respect to the probability model above it is important that the possi-
ble states resulting from the functions (and their probability), described in the
description made during modelling the process, should be independent of the
functions that lead to the point in question.

If the description of the process meets the above requirement and the states
are assigned probability weights in the way described above to reflect conditions
of real execution, then we get a so-called Markov chain which can be interpreted
as abstract mathematical expression and subjected to statistical/probability ex-
amination.

For example, we can, in a simple way, calculate for any 2 functions the pos-
sibility of the transition of one process into the other one, the average number
of other functions on the route, etc.

Let C (Fi) be the above defied risk of function Fi. Since test frames can
be described as series of functions, the expected risk of a test frame can be
aggregated from the costs of the functions involved. The following extension
estimates the expected risk of the test frame:

Let F1, F2, ...Fn be the functions included in the test frame. Then these un-
ambiguously determine a T test frame. The expected risk of an Fi function can
be estimated in the following way:

Cavg
i = C (Fi)B (Fi) ,

where B (Fi) is the probability of error occurring in function Fi. If there are
(empirical) data available on the extent to which the given function is error-
prone, then B (Fi) can be approximated using these estimations. If a function
is not error-prone at all (based on experience no problem occurred so far), then
assigning the value 0 to the appropriate weight the expected risk of the given
function will also be 0 – thus it is included in the risk estimation of the entire
test frame with 0 weight as well. If the inclination to error cannot be estimated
empirically, the functions shall be assigned the same weight for this inclination
(e.g. 0.5). Later on these weights will adaptively conform to the values appearing
in real environment.

The expected risk of the individual functions can unambiguously aggregated
to the test frame containing them, as follows:

C (T ) =
∑

i

Cavg
i pi−1,i

where pi−1,i is the probability that function Fi−1 is followed by Fi in the process
(this information is available, as described earlier).

The above expression estimates the expected risk in case test frame T con-
tains an error. By calculating this value for every test frame a risk order, that



is testing priority can be established. Let us suppose that following the steps of
the method we receive the output that contains T1, T2, ..., Tn test frames. Let us
take the one with the highest expected risk value and execute it. If no malfunc-
tion is observed during operation, then we decrease the weight of error-proneness
for the functions involved in the execution (the extent of decrement is an input
parameter of the method). Then we establish a new priority with the new risk
values for the newly generated test frames. In the other case – if malfunction
is observed during operation – we increase the weight of error-proneness for the
functions involved in the execution. The iterative process ends if the risk of the
test frame with the highest risk falls below a pre-defined limit.

3.5 Test Cases

A test frame becomes a test case if the partitions assigned to the inputs are
replaced by their “representative”, that is, by one particular value from the re-
spective partition. Since test cases can be defined in several ways, we propose
a flexible method. We assign a script to every partition of each category in the
model that generates test data appropriate for the given partition of the given
category. In a simple case it can be done through generating random values, but
it is also possible to retrieve real data from an existing database for testing. In
the case of more elaborate scripts the actual values already assigned to the cat-
egories of the test frame might be required for the generation of test cases. For
this reason we provide call patterns with the scripts, where the parameters of
the scripts are categories, and upon calling the script the actual value assigned
to the given category in the preliminary test case shall be included.

Similarly, scripts can also be assigned to the outputs that generate the ex-
pected values of outputs/output parameters.

4 Application Experience

In this section we present the results of a pilot implementation of the method
with one of our industrial partners from the financial sector. During the asses-
ment of the partner’s business processes, we selected one of its 33 processes and
applied the method to it. The selected process was modelled in ARIS Business
Architect [13] as an extended EPC diagram [14], and we used the software’s
own reporting module to generate test frames (it can be programmed in Visual
Basic).

The first variant of the process contained 59 functions, 59 events, 29 branches
(forks), and 5 loops. The test frame generation resulted in about 40, 000 unre-
stricted test frames. To reduce this number, the original process was divided
into three distinct parts, and some refactoring were made on the branches. This
optimization reduced the number of functions to 33, events to 32, branches to
10. The number of unrestricted test frames of this optimized model was about
1, 500, which was finally reduced to 11 after filtering unfeasible paths.



Then the adaptive risk model was applied on the resulted frames (using 0,
0.25, 0.75, 1 as C (Fi) and p(i) values; 0.1, 0.2, 0.3, 0.5 as B (Fi) values). The
priorities of the test frames varied between 5.2875 and 0.45.

Although the detailed description of the business process required much more
efforts than simply modelling the process flow, applying the method resulted in
a more elaborated process description. Using the automated test frame gener-
ation the formerly applied ad-hoc testing was significantly improved resulting
in the improvement of testing efficiency. Although no exact data have yet been
collected, according to our industrial partner the final 11 test frames were good
representatives of the most important business cases of the system.

5 Conclusions and Future Work

In this paper we described a method that can be used for high-level test frame
generation from a process specification. The method is not specialized to any
existing process description language, instead it can be used when the model
provides a particular set of required information. The method is based on CPM,
and results in a test suite that covers all possible and different executions. To
reduce the size of the test suite, two techniques are described. The first is based
on information given in the model, and exludes infeasible test frames. The sec-
ond orders the remaining frames, and selects the most important frames to be
executed first. For latter an adaptive risk model was given.

An experimental implementation of the method in ARIS resulted in 11 test
frames out of 1, 500 for the example business process making its testing much
simpler.

In the future we plan to enhance the experimental implementation. The flex-
ible test case generation method we proposed in Section 3.5 is too general. As its
implementation depends on the different attributes of the implementation of the
business process steps, we omitted it from our prototype. We plan to work out
this step in a more detailed level and implement it. We also plan to implement
the method in other modelling environments. In addition, a measurement on the
benefits of the method should be done on a large number of different real-world
business processes.

Acknowledgements

This research was supported in part by the Hungarian national grants RET-07/2005,
OTKA K-73688 and TECH_08-A2/2-2008-0089 SZOMIN08.

References

1. ISTQB: International Software Testing and Qualification Board homepage
http://www.istqb.org/.

2. Ostrand, T.J., Balcer, M.J.: The category-partition method for specifying and
generating functional tests. Communications of the ACM 31(6) (1988) 676–686



3. Yuan, Y., Li, Z.J., Sun, W.: A graph-search based approach to BPEL4WS test
generation. In: International Conference on Software Engineering Advances (IC-
SEA’06), IEEE Computer Society (2006) 14

4. Yan, J., Li, Z., Yuan, Y., Sun, W., Zhang, J.: BPEL4WS unit testing: Test case
generation using a concurrent path analysis approach. In: 17th International Sym-
posium on Software Reliability Engineering (ISSRE’06), IEEE Computer Society
(2006) 75–84

5. Guangquan, Z., Mei, R., Jun, Z.: A business process of web services testing method
based on UML 2.0 activity diagram. In: Intelligent Information Technology Appli-
cation Workshop. (December 2007) 59–65

6. Garcia-Fanjul, J., Tuya, J., de la Riva, C.: Generating test cases specifications for
BPEL compositions of web services using SPIN. In: International Workshop on
Web Services-Modeling and Testing. (2006) 83–94

7. Garcia-Fanjul, J., de la Riva, C., Tuya, J.: Generation of conformance test suites
for compositions of web services using model checking. In: Testing: Academic and
Industrial Conference-Practice and Research Techniques. (2006) 127–130

8. Xiaoyan, Z., Ning, H., Ying, Y.: OWL-S based test case generation. Journal of
Beijing University of Aeronautics and Astronautics (March 2008)

9. Jeff, P.A., Offutt, J.: Using formal methods to derive test frames in category-
partition testing. In: In Proceedings of the Ninth Annual Conference on Computer
Assurance (COMPASS’94), IEEE Computer Society Press (1994) 69–80

10. Offutt, J., Irvine, A.: Testing object-oriented software using the category-partition
method. In: Seventeenth International Conference on Technology of Object-
Oriented Languages and Systems (TOOLS’95). (August 1995) 293–304

11. Vieira, M., Leduc, J., Hasling, B., Subramanyan, R., Kazmeier, J.: Automation
of GUI testing using a model-driven approach. In: AST ’06: Proceedings of the
2006 international workshop on Automation of software test, New York, NY, USA,
ACM (2006) 9–14

12. Bertolino, A., Gao, J., Marchetti, E., Polini, A.: Automatic test data generation
for XML schema-based partition testing. In: AST ’07: Proceedings of the Second
International Workshop on Automation of Software Test, Washington, DC, USA,
IEEE Computer Society (2007) 4

13. IDS Scheer: ARIS Business Architect http://www.ids-scheer.com/.
14. Kim, Y.: Process modeling for BPR – Event-process chain approach. In: 16th

International Conference on Information Systems. (1995) 109–121


