Handling the Unstructured Statements in the
Forward Dynamic Slice Algorithm!

Csaba Farago, Tamas Gergely

Research Group on Artificial Intelligence, Hungarian Academy of Sciences
Aradi vértanuk tere 1., H-6720 Szeged, Hungary, +36 62 544145
h633185@stud.u-szeged.hu, gertom@inf.u-szeged.hu

Abstract. Different program slicing methods are used for debugging,
testing, reverse engineering and maintenance. Slicing algorithms can be
classified as static slicing and dynamic slicing methods. In applications
such as debugging the computation of dynamic slices is more preferable
since it can produce more precise results. Tibor Gyiméthy et al. intro-
duced a new so called “forward dynamic slice” algorithm. It has a great
advantage compared to other dynamic slice algorithms that the used
memory locations are proportional to the number of different memory
locations used by the program, which is in most cases much smaller than
the size of the execution history. The execution time of the algorithm
is linear in the size of the execution history. In this paper we introduce
the handling of the jump statements in the C language (goto, break,
continue).

1 INTRODUCTION

Program slicing methods are widely used for debugging, testing, reverse engi-
neering and maintenance (e.g. [3], [7], [2], [4]). A slice consists of all statements
and predicates that might affect the variables in a set V' at a program point p
[8]. A slice may be an executable program or a subset of the program code. In
the first case the behaviour of the reduced program with respect to a variable
v and program point p is the same as the original program. In the second case
a slice contains a set of statements that might influence the value of a variable
at point p. Slicing algorithms can be classified according to whether they only
use statically available information (static slicing) or compute those statements
which influence the value of a variable occurrence for a specific program input
(dynamic slice).

In many applications (e.g. debugging) the computation of dynamic slices is
more preferable since it can produce more precise results (i.e. the dynamic slice
is smaller than the static one). In this paper we are concerned with dynamic
slicing.

In [5] Gyiméthy et al. introduced a method for the forward computation
of dynamic slices (i.e. at each iteration of the process slices are available for

! This work was supported by the grant OTKA T25721

all variables at the given execution point). However, the presented method was
applicable only to “toy” programs (i.e. with one entry procedure and with only
scalar variables and simple assignment statements). In [9] the handling of the
procedures and pointers, and the implementation of the algorithm were shown.
In this paper we introduce how to handle the jump statements in the C programs.
This method was not described in [9]. Besides the statement goto it solves the
problem of statements break and continue which are in fact special cases of the
goto statement — they are simply reduce to it. The handling of the statement
switch-case-dafault is also described.

The paper is organized as follows: in the next section the “forward dynamic
slice” method is introduced, the handling of the jump statements is presented
in the section 3 and in the last section a short summary is described.

2 FORWARD COMPUTING OF THE DYNAMIC
SLICE

In some applications static program slices contain superfluous instructions. This
is the case for debugging, where we have dynamic information as well. Hence
debugging may require smaller slices, which improves the efficiency of the bug
finding process ([1], [6]). The goal of the introduction of dynamic slices was to
determine more precisely those statements that may contain program faults,
assuming that the failure has been revealed for a given input.

#include <stdio.h>
int n, a, i, s;
void main()
{
scanf ("%d", &n);
scanf ("%d", &a);
i=1;
s =1;
if (a > 0)
s = 0;
while (i <= n) {
if (a > 0)
s += 2;
else
10. s *= 2;
11. i++;
}
12. printf ("%d", s);

© 00N O W N -

Fig. 1. Example program

Consider the example program in figure 1. The static slice of this code with
respect to the variable s at vertex 12 contains all the statements.

Prior to the desciption of a new dynamic slice algorithm we introduce some
basic concepts and notations.

A feasible path that has actually been executed will be referred to as an
ezecution history and denoted by FH. Let the input be a = 0, n = 2 in the case
of our example. The corresponding execution history is (1,2, 3,4,5,7,8,10,11, 7,
8,10,11,7,12). We can see that the execution history contains instructions which
are in the same order as they have been executed, so FH(j) gives the serial
number of the instruction executed at the j'* step, referred to as execution
position j.

To distinguish between multiple occurrences of the same instruction in the
execution history we make use of the notion of action. It is a pair (i,j) which
is written as i/, where 7 is the serial number of the instruction at the execution
position j. For example 12'° is the action for the output statement of our example
for the same input above.

The dynamic slicing criterion as a triple (x,i’, V) where x denotes the input,
i/ is an action in the execution history, and V is a set of the variables. For a
slicing criterion a dynamic slice can be defined as the set of statements which
may affect the values of the variables in V.

We apply a program representation which only considers the definition of a
variable, and the use of variables, and direct control dependences. We refer to
this program representation as a D/U program representation. An instruction of
the original program has a D/U expression as follows:

i.d: U,

where 7 is the serial number of the instruction, and d is the variable that gets
a new value at the instruction in the case of assignment statements. For an
output statement or a predicate d denotes a newly generated “output variable”-
or “predicate-variable”’-name of this output or predicate, respectively (see the
example below). Let U = {uq, ua, ..., u, } such that any uy, € U is either a variable
that is used at @ or a predicate-variable from which instruction i is (directly)
control dependent. Note that there is at most one predicate-variable in each U.
(If the entry statement is defined, there is exactly one predicate-variable in each
U.)

Our example has a D/U representation shown in figure 2.

Here p5, p7 and p8 are used to denote predicate-variables and 012 denotes
the output-variable, whose value depends on the variable(s) used in the output
statement.

Now we are ready to derive the dynamic slice with respect to an input and
the related execution history based on the D/U representation of the program, as
follows. Firstly, we process each instruction in the execution history starting from
the first executed statement. Then after processing an instruction i. d : U, we
derive a set DynSlice(d) that contains all those statements which affect d when
instruction i has been executed. By applying the D/U program representation

i. d: U
1.n: 0
2.a: 0
3.4 0

4. s: 0

5 p5: {a}

6. s: {p5}
7. p7: {i,n}
8. p8: {p7,a}
9. s: {s,p8}
10. s {s,p8}
1. i: {i,p7}
12. 012: {s}

Fig. 2. D/U representation of the program

the effect of data and control dependences can be treated in the same way. After
an instruction has been executed and the related DynSlice set has been derived,
we determine the last definition (serial number of the instruction) for the newly
assigned variable d denoted by LS(d). Put simply, the last definition of variable
d is the serial number of the instruction where d is defined last (considering
the instruction i. d : U, LS(d) =). Clearly, after processing the instruction
i. d : U at the execution position j LS(d) have the value ¢ for each subsequent
executions until d is defined next time. We also use LS(p) for predicates which
means the last definition (evaluation) of predicate p. For example, if EH (10) =7
(the current action is 7'9) then LS(d) = 7.

Now the dynamic slices can be determined as follows. Assume that we are
running a program on input ¢. After an instruction i. d : U has been executed at
position p, DynSlice(d) contains just those statements involved in the dynamic
slice for the slicing criterion C = (t,i?,U). DynSlice sets are determined by the
equation below:

DynSlice(d) = U (DynSlice(uk) U {LS(uk)})

upelU

After DynSlice(d) has been derived we determine LS(d) for assignment and
predicate instructions, i.e.
LS(d) =i

Note that this computation order is strict, since when we determine DynSlice(d),
we have to consider whether LS(d) occurred at a former execution position
instead of p (like the program line x = x + y in a loop).

The formalization of the forward dynamic slice algorithm is presented in
figure 3.

Note that the construction of the execution history is achieved by instru-
menting the input program and executing this instrumented code. The instru-
mentation procedure is discussed in [9].

program DynamicSlice
begin
Initialize LS and DynSlice sets
ConstructD/U
ConstructEH
for j = 1 to number of elements in EH
the current D/U element is /. d: U
DynSlice(d) = UukEU (DynSlice(uk) U {LS(uk)})
LS(d) =1
endfor
Output LS and DynSlice sets for the last definition of all variables

end

Fig. 3. Dynamic slice algorithm

Now we illustrate the above method by applying it to our example program
in figure 1 for the execution history (1,2,3,4,5,7,8,10,11,7,8,10,11,7,12).
During the execution the following values are computed:

Action‘ d U DynSlice(d) LS(d)
11 | n 0 1] 1
22 | a 0 0 2
33] 0 0 3
44 s] 1] 4
5 |p5 {a} {2} 5
7% 1p7 {i,n} {1,3} 7
8" | p8 {p7,a} {1,2,3,7} 8
108 | s {s,p8} {1,2,3,4,7,8} 10
11° | i {i,p7} {1,3,7} 11
70 1p7 {i,n} {1,3,7,11} 7
81 | p8 {p7,a} {1,2,3,7,11} 8
102 | s {s,p8} {1,2,3,4,7,8,10,11} 10
13 | i {4i,p7} {1,3,7,11} 11
74 p7 {i,n} {1,3,7,11} 7
1215 012 {s} {1,2,3,4,7,8,10,11} 12

The final slice is the union of DynSlice(012) and {LS(012)}. (See figure 4.)

3 HANDLING THE UNSTRUCTURED STATEMENTS

A problem which must be dealt with is how we should handle the jump state-
ments in the dynamic slicing algorithm. In this section C-specific jump statements

#include <stdio.h>
int n, a, i, s;
void main()

{

1. scanf("%d", &n);!
2. scanf ("%d", &a);!
3. i=1;!
4. s = 1;!
5. if (a > 0)
6. s = 0;
7. while (i <=)!]{
8. if (a > 0)!|
9. s += 2;
else
10. s *= 2;!|
11. i++;!
}
‘12. printf("%d4", s);!‘
}

Fig. 4. The framed statements give the dynamic slice

are considered, but the method can be used in other programming languages, as
well.

In the next subsection the handling of the goto statement is described, along
with the break, continue, and switch statements.

3.1 The goto statement

Where the goto statement occurs, the D/U structure is built up as follows:
so called “label variables” are introduced. Let the defined variable (d) be the
prevously introduced label variable called the real name of the label. It could also
be an ordinal number, but for sake of simplicity here we use the previous name.
The use set (U) contains no “extra” variables, just the appropiate predicate
variable and we will find that it can contain label variables, too.

The previously defined label variable is inserted the use set (U) of those
statements which occur after the corresponding label within the function. It is
important to do this to the end of the function, not only in the appropiate block.

If there are more labels, they are all handled in the same way. If the goto
statement appears after the definition of the label, then of course it contains
the just defined label variable. But this isn’t a problem because in the execution
history it appears as a former defined variable. It can be defined by itself or
by another goto statement. If neither goto statement corresponding to a label
executes during the program, the last definitios of the label statement remains

undefined so it won’t affect the result of the dynamic slice. The result contains
all of the defined labels.

When the goto is executed during the program and the dynamic slice con-
tains at least one of the statements after the definition of the label, then the
result will contain at least the previous corresponding goto (and of course its
predicate dependencies transitively). So it often unnecessary increases the size
of the dynamic slice. So using of many goto statements it makes hard to analyze
the program.

A simple example is shown on figure 5, and its result is on figure 6. In spite
of the result is computed at the first line, the second, the third and the forth
statement also has effect of the final result, because if we change the value of
variable b in the second statement, then the final result would be changed.

i. ‘ (d: U)
#include <stdio.h>
void main() {
int a,b;
1. a=1; a:(
2. b=1; b:0
3. if (b==1) p3: {b}
4. goto 1; l:{p3}
5. at+; a:{a,l}
1:
6. printf("%d",a); |06 : {a,l}
}

Fig. 5. A simple C program demonstrating how the goto statement works

Action (i/)|DynSlice(i)

1t [

22 0

3 {2}

4 {2,3}
6° {1,2,3,4}

Fig. 6. The results of program 5

A slightly bigger example is shown on figure 7, and its result on figure 8.
In this example the weak point of handling the goto statement turns out. The
result is correct.

i. |(d: U)

#include <stdio.h>
void main() {
int i,j,k,1;
1 k=0; k:0
1=0; 1:0
3 i=0; i:0
11:
4. j=0; J: A}
12:
5. k=k+i+j; k:{k,i,j,11,12}
6. 1ots L2 {1,01,12)
7. e g {5,01,12}
8. if (j<2) p8:{j,11,12}
9. goto 12; 12 : {p8,11,12}
10. it+; i {d,11,12}
11. if (i<2) pll: {4,01,12}
12. goto 11; 11:{p11,11,12}
13. printf ("%d",k);|o0l3 : {k,I1,12}
}

Fig. 7. Another C program demonstrating how the goto statement works

3.2 The break statement

The break statement is equivalent to goto statement, which jumps out from the
block of the appropiate while, do...while, switch or for statement to the first
statement after this block. This problem can be solved as follows. The defined
variable at every occurrence of the break statement should be an individual
label variable. One form might be break<Nr>, where <Nr> is the ordinal number
of the break statement within the program. All of the statements after the
corresponding block are dependent on the previously defined label variable as
introduced at the goto statement. Note that if a label is placed just after the
corresponding block and the break is replaced with a goto which jumps to that
label, then the result is the same.

An example of the break statement and its results are shown in figures 9 and
10 respectively.

3.3 The continue statement

Like the break statement we should define an individual continue named label
variable. This might be denoted by continue<Nr>, where <Nr> is the ordinal
number of the continue statement within the program. It is defined in state-
ments where continue occurs. The dependent statements are statements from
the beginning of the block of the appropriate for, while or do...while state-
ment to the end of the function. So the continue statement is always dependent
on itself.

Action (17)| DynSlice(z)

17 0

22 0

33 0

4* 0

5° {1,3,4}

6° {2}

7 {4}

g8 {4,7}

9? {4,7,8}

10° {1,3,4,5,7,8,9}

116 {2,4,6,7,8,9}

127 {4,7,8,9}

138 {4,7,8,9}

140 {3,4,7,8,9}

15 {3,4,7,8,9,10}

162 {3,4,7,8,9,10,11}
174 {3,4,7,8,9,10,11,12}
185 {1,3,4,5,7,8,9,10,11, 12}
198 {2,3,4,6,7,8,9,10,11,12}
207 {3,4,7,8,9,10,11,12}
218 {3,4,7,8,9,10,11,12}
229 {3,4,7,8,9,10,11,12}
23° {1,3,4,5,7,8,9,10,11,12}
245 |{2,3,4,6,7,8,9,10,11,12}
257 {3,4,7,8,9,10,11,12}
268 {3,4,7,8,9,10,11,12}
2710 {3,4,7,8,9,10,11,12}
2811 {3,4,7,8,9,10,11,12}
291 1{1,3,4,5,7,8,9,10,11,12}

Fig. 8. The results of program 7

An example of the continue statement and its results are shown in figures

11 and 12 respectively.

3.4 The switch statement

After the handling break statement has been dealt with, then the handling of

the switch statement is quite straightforward.

At place where the switch statement occurs a predicate variable is defined,
just like those with while or if. All of the statements within the switch block
are dependent on this predicate variable. If at least one statement within the
switch block is included to the slice result, all of the case labels and the acci-
dental default label are included. Here the break statements are handled with

the previously described manner.

#include <stdio.h>
void main() {
int a,b,i;
1. a=1; a:0
2. b=1; b:0
3. i=2; b:0
4. while (i>0) { |p4:{i}
5. b--; b:{p4,b}
6. i-—; i:{p4,i}
7. if (b==0) |p7:{b}
8. break; |break8: {p7}
9. a++; a:{p4,a}
}
10. printf("%d",a);|0l0: {a,break8}
}

Fig. 9. A simple C program demonstrating how the break statement works

Action (/)| DynSlice(i)

1t 1]

22 0

33 0

4* {3}

55 {2,3,4}

68 {3,4}

77 {2,3,4,5}

88 {2,3,4,5,7}
910 {1,2,3,4,5,7,8}

Fig. 10. The results of program 9

An example of the switch statement and its results are shown in figures 13
and 14 respectively.

4 SUMMARY

Different program slicing methods are used for debugging, testing, reverse en-
gineering and maintenance. Slicing algorithms can be categorized according to
whether they use static slicing or dynamic slicing methods. In applications such
as debugging the computation of dynamic slices is more preferable since it can
produce more precise results.

There have been several methods for dynamic slicing introduced in the liter-
ature, but most of them use the internal representation of the execution of the
program with dynamic dependencies called the Dynamic Dependence Graph

i |(d: U)

#include <stdio.h>
void main() {
int a,b,i;
1. =1; a:0
2. b=1; b:0
3. i=2; b:0
4. while (i>0) { p4 : {3, continue8}
5. b--; b: {p4,b, continue8}
6. i-—; i : {p4, 1, continue8}
7. if (b==0) p7 : {b, continue8}
8. continue; | continue8 : {p7, continue8}
9. at++; a : {p4, a, continue8}
}
10. printf("%d",a); |0l0: {a,continue8}
}

Fig.11. A simple C program demonstrating how the continue statement works

Action (i/)] DynSlice(7)

i 0

22 0

33 0

4! {3}

5° {2,3,4}

6° {3,4}

77 {2,3,4,5}

88 {2,3,4,5,7}

9* {2,3,4,5,6,7,8}
10° {2,3,4,5,6,7,8}
116 {2,3,4,5,6,7,8}
127 {2,3,4,5,6,7,8}
13° {1,2,3,4,5,6,7,8}
144 {2,3,4,5,6,7,8}
15 1{1,2,3,4,5,6,7,8,9}

Fig. 12. The results of program 11

(DDG). The main disadvantage of these methods is that the size of the DDGs is
unbounded, since it includes a distinct vertex for each occurrence of a statement.
In [9] new forward global method for computing dynamic slices of C programs
were introduced. In parallel with program execution the algorithm determines
the dynamic slices for any program instruction.
This paper mainly devoted itself to the handling of unstructured jump state-
ments. A method of handling the goto, break, continue and switch statements

i. |(d: U)

#include <stdio.h>
void main() {
int a,b;
1. b=0; b:0
. a=2; a:0
3. switch (a) { p3: {a}
case 1:
4. b=5; b:{p3}
5. break; breakb : {p3} case 2:
6. b=3; b: {p3}
case 3:
7. bt+; b:{p3,b}
8. break; breakT : {p3} default:
9. b=6; b:{p3}
}
10. printf("%d",b);|0l0: {b,break5, break7}
}

Fig. 13. A simple C program demonstrating how the switch statement works

Action (i/)| DynSlice(i)

11 [}

22 0

3° {2}

4° {2,3}

57 {2,3,6}
6° {2,3}
7o {2,3,6,7,8}

Fig. 14. The results of program 13

of the C programming language was described. The solution of the handling func-
tions and pointers is described in [9].

The main advantage of our algorithm is that it can be applied to real size
C programs because its memory requirements are proportional to the number
of different memory locations used by the program (which is in most cases far
smaller than the size of the execution history—which is, actually, the absolute
upper bound).

We have already developed a program, in which we implemented the forward
dynamic slicing algorithm for the C language. Our assumptions about the mem-
ory requirements of the algorithm turned out to be well-founded. According to
our preliminary test results it is indeed proportional to the number of different
memory locations used by the program, which is much less than the size of the
execution history.

References

1. Agrawal, H., DeMillo, R. A., and Spafford, E. H. Debugging with dynamic
slicing and backtracking. Software—Practice And Experience, 23(6):589-616,
June 1993.

2. Beck, J., and Eichmann, D. Program and Interface Slicing for Reverse Engi-
neering. In Proc. 15th Int. Conference on Software Engineering, Baltimore,
Maryland, 1993. IEEE Computer Society Press, 1993, 509-518.

3. Fritzson, P., Shahmehri, N.; Kamkar, M., and Gyiméthy, T. Generalized algo-
rithmic debugging and testing. ACM Letters on Programming Languages and
Systems 1, 4 (1992), 303-322.

4. Gallagher, K. B., and Lyle, J. R. Using Program Slicing in Software Mainte-
nance. IEEFE Transactions on Software Engineering 17, 8, 1991, 751-761.

5. Gyiméthy, T., Beszédes, A, and Forgdcs, I. An Efficient Relevant Slicing
Method for Debugging. In Proc. 7th European Software Engineering Con-
ference (ESEC), Toulouse, France, Sept. 1999. LNCS 1687, pages 303-321.

6. Korel, B., and Rilling, J. Application of dynamic slicing in program debugging.
In Proceedings of the Third International Workshop on Automatic Debugging
(AADEBUG’97), Linkoping, Sweden, May 1997.

7. Rothermer, G., and Harrold, M. J. Selecting tests and identifying test coverage
requirements for modified software. In Proc. ISSTA’9/ Seattle. 1994, 169-183

8. Weiser M. Program Slicing. IEEE Transactions on Software Engineering SE-
10, 4, 1984, 352-357.

9. Beszédes, A., Gergely, T., Szabd, Zs. M., Csirik, J., and Gyiméthy T. Dynamic
Slicing Method for Maintenance of Large C Programs. At the 5th European
Conference on Software Maintenance and Reengineering (CSMR 2001). Lisbon,
Portugal, March 14-16, 2001.

