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Abstract—Determining dependencies between different com-
ponents of an application is useful in lots of applications
(e. g., architecture reconstruction, reverse engineering, regres-
sion test case selection, change impact analysis). However,
implementing automated methods to recover dependencies
has many challenges, particularly in systems using databases,
where dependencies may arise via database access. Further-
more, it is especially hard to find safe techniques (which do
not omit any important dependency) that are applicable to
large and complex systems at the same time. We propose two
techniques that can cope with these problems in most situations.
These methods compute dependencies between procedures or
database tables, and they are based on the simultaneous static
analysis of the source code, the database schema and the SQL
instructions. In this paper, we quantitatively and qualitatively
evaluate the methods on real-life data, and also evaluate them
on some of their potential applications.

Keywords-Program dependencies, program analysis,
databases, SEA relations, CRUD matrix.

I. INTRODUCTION

Analyzing program dependencies is helpful in many dif-
ferent phases of the software development process, such
as in architecture reconstruction, reverse engineering, re-
gression test case selection, and change impact analysis. A
certain class of automated methods for computing program
dependencies uses static analysis, usually by employing call,
control flow, and data flow information. The granularity of
these methods ranges from the basic block level through
procedure1 and class levels to module and system levels,
each granularity level having potential application areas.

Static analysis has its own pitfalls, though: in many
situations, we have to decide if want a safe result (meaning
that no important dependency is missed) or a concise one
(focused on the certain dependencies only). On the one hand,
a high-level analysis can be made safe by including all the
possible dependencies that might arise during the executions
of the code being examined, but this might result in many
fake dependencies, thus the result is not very useful. On the
other hand, a detailed low-level static analysis might find
just the relevant dependencies, but have high computation
costs and make it impractical on real-size systems. It is also
possible that safety is sacrificed to make a method faster,

1In this paper the term procedure means any general procedure. A stored
procedure of a database system will be called a stored procedure.

and heuristics are used instead of detailed computations that
might miss some rare, but important, dependencies.

In addition, bigger information systems are usually het-
erogeneus in the sense that more than one programming
language and technology are used in them. The most com-
mon situation is that relational databases are used behind
procedural programs. In this case dependencies may (and
will) arise through the database, which are usually not
detected by static analysis tools. It is possible to extract
some SQL instructions that access the databases, but a
static analysis is usually not enough to recover all of them
exactly (consider, for example, SQL query-strings assembled
at execution time).

Here we propose two methods that compute dependencies
at the procedure level, are applicable on real-size systems,
and when properly applied, can provide safe results. The first
method is based on Static Execute After/Before relations
(SEA/SEB [1]), which uses the static call- and control
flow graph and a lightweight interprocedural analysis of the
system. The second method analyses the embedded SQL
statements of the code and the database schemas to discover
dependencies via database access. It computes CRUD-based
dependencies [2], [3] between the SQL statements, and
propagates them to the procedure level.

We applied these methods on program code obtained from
one of our industrial partners. Here architecture reconstruc-
tion and test coverage evaluation were performed. The main
contributions of the paper are:

• the application of a CRUD-based Usage Matrix for
dependency analysis between program elements, which
we think is a novelty (Usage Matrix is a common way
of recovering dependencies between client applications
and database tables);

• adapting SEA relations to recover dependencies in
database-intensive systems;

• applying a combination of these two methods and
empirically evaluating them on real-life data.

The paper is organized as follows. In Section II we give an
overview of related work. We provide a detailed description
of the algorithms in Section III, then in Section IV we pro-
vide a quantitative and qualitative analysis of the methods,
and we present some possible application scenarios. Lastly,



in Section V we discuss our results, draw some pertinent
conclusions and suggest some ideas for future study.

II. RELATED WORK

The System Dependence Graph (SDG), which describes
traditional software dependencies (e. g. control and data de-
pendencies) between different source elements of a system,
is a common tool for software dependency analysis [4].
The construction of the SDG has been a real challenge for
the slicing community [5], [6] for a long time, because
– depending on the source code being analyzed – one
has to tackle a range of problems like context sensitivity,
pointers, and threads. This is why many studies have focused
on software dependencies. However, only a few of them
concentrate on dependencies arising via database access,
e. g. Sneed et al. in [7].

Another goal of identifying these kind of dependencies
is the impact analysis of schema changes. Maule et al.
published a technique [8] in this area which is based on a
k-CFA algorithm for extracting SQL queries. They use the
SDG to identify the impact of relational database schema
changes upon object oriented applications. Gardikiotis et
al. [9] use a DA (Database Application) specific version
of the PDG (Program Dependence Graph) to perform a
static program slicing analysis. They extended the PDG with
special pseudo nodes for SQL statements and their relations
to the database schema.

Another potential application of the identified dependen-
cies is test case selection, and testing database applications in
general. Haraty et al. introduced a method for regression test
selection for database applications [10], [11]. Besides using
traditional control and data dependencies, they introduced
the notion of a dataflow analysis method that uses database
interactions and it is based on identifying the usage of table
columns. This idea is similar to our CRUD relation idea.
Their method works on SQL’s PSM extension (Persistent
Stored Modules, e.g. Pl/SQL). Thus they do not need to deal
with the problems of dynamically concatenated SQL queries,
which is important if one would like to generalize this
technique to other procedural or object-oriented languages.

A CRUD or Usage Matrix is also useful for system
understanding and quality assessment purposes. Deursen et
al. [2] used it in their work to identify conspicuous table
usage in COBOL applications. For instance, tables employed
just for retrieving data and top used tables. Brink et al. [3]
used Usage Matrix to calculate metrics for applications with
embedded SQL.

The dependencies computed from the source code can be
applied to support data reverse engineering too. Henrard et
al. published papers in this area [12], [13] and evaluated dif-
ferent dependency analysis techniques (variable dependency
graph, program slicing) via database access positions applied
to dependency elicitation.

Most of the above-mentioned methods heavily depend on
the extraction of SQL statements from the source code. Find-
ing solutions for this problem has also been a big challenge
for researchers and many approaches have been proposed for
static and dynamic analysis techniques as well. Most of the
static methods apply string analysis techniques [14], [15],
as we do too, but ours does not implement control or data
flow analysis in order to keep the extraction of query strings
fast and scalable for large systems. Hainaout et al. recently
published two papers [16], [17] which describe different
techniques and also some applications in this area. Cordy et
al. published a number of papers [18], [19] describing the
TXL language and its applications including embedded SQL
parsing. Their TXL language and agile parsing technology
could also be used to extract embedded SQL statements
and/or to parse incomplete SQL statements. However, they
agree that applying their agile technology would require
more resources than ‘normal’ parsers.

III. METHODS

A. Overview

1) Motivation: The main idea behind our methods is that
in data-intensive systems many dependencies between the
program elements arise via database accesses, which are
usually not recovered by traditional dependency algorithms.

For instance, suppose that one procedure (called f ) inserts
data into a table T and later during execution another
procedure (called g) reads data from table T to execute a
complex algorithm which takes the same data as its input
parameter. Obviously, when we modify the first procedure
and perform a change impact analysis, we must examine
the second procedure too. This is the only way to make
sure that our algorithm implemented in g still works as
expected. Sometimes traditional algorithms are able to deter-
mine whether g depends on f (f → g), but there are many
situations when f → g will not be detected. For example, a
simple call or a control flow analysis will be able to recover
the f → g relation if there is a chain of call or control
flow dependencies from f to g. However, suppose that our
application is multi-threaded and f and g run in different
threads, furthermore f never calls directly or transitively g.
In this case, the relation between the two procedures will
appear neither in the call graph nor the control flow graph
of the system.

In another common situation, let us suppose that the
above-mentioned f and g are called in a procedure body
one after the other; but g is never called directly or indirectly
from f . The traditional call graph-based methods will not
recover their dependency relation either. Therefore, it would
not be safe to perform a change impact analysis in this case.

2) Methods: Here we propose two new methods for
recovering dependencies in database-intensive systems that
complement traditional software dependencies. One is a pre-
viously published algorithm that determines Static Execute



Figure 1. Methods overview. The main parts of the methodology are the steps for extracting source information (analyzing the source code, extracting
and analyzing SQL instructions) and the steps for computing SEA and CRUD relations. The collected information can be used for a variety of purposes.

After or Static Execute Before (SEA/SEB ) [1] relations and
the other is based on the Usage Matrix (CRUD for short)
[2], [3].

Dependencies computed by both SEA/SEB and CRUD
describe special relations which are not recognizable by tra-
ditional software dependencies, and when applied suitably,
can provide safe results at a reasonable cost, even in the
case of large database-intensive systems.

An overview of our analysis system is given in Figure 1.
Both algorithms take their input from the Abstract Semantic
Graph (ASG) extracted from the source code, but in the
case of the Usage Matrix we also need to extract the
SQL instructions embedded in the source code and analyze
them separately. The outputs of the algorithms are a list of
computed relation pairs: procedure-to-procedure, procedure-
to-table, table-to-table, and column-to-column pairs. These
relations can be used in application areas like architecture
reconstruction and test coverage measurement.

B. CRUD relations
1) Introduction: After a successful extraction and analy-

sis of embedded SQL statements, it is possible to determine
the relations between the program statements and between
the accessed tables or columns. To achieve this, an analysis
of the database schema is required along with an analysis
of extracted SQL statements. Should the schema source
code not be available, it can be obtained from the database
management system. After retrieving this additional piece of
information, the computed relations can be used to construct
the Usage Matrix of the system. This matrix describes the
usage relations between the procedures and between the
tables of the system. In our case, the relations are the
basic CRUD (Create, Retrieve, Update, Delete) operations.
Namely,

• INSERT statements create data in their target table;
• a typical way of retrieving data from a table is a
SELECT statement, but any other statements (even an

INSERT or DELETE statement) can retrieve data from
tables;

• UPDATE statements update data in their target table;
• DELETE statements delete data from their target table.
A typical CRUD matrix can be seen in Figure 2.

Customers Rentals Cars
NewCustomer C
CarRental R C R
AddressModification RU
CarCrash D

Figure 2. A typical CRUD matrix. NewCustomer inserts data into the
Customers table. CarRental reads data from the Customers and Cars tables,
and inserts data into the Rentals table. AddressModification retrieves and
updates the Rentals, and CarCrash deletes data from the Cars table.

The same information can also be presented in a graph
called a Usage Graph, which shows the different kinds of
relations between the procedures and tables. A typical Usage
Graph can be seen in Figure 3. Solid and dashed arrows with
different directions represent different relation types.

2) Relations between procedures via table access: The
computed CRUD matrix can be used to determine relations
on different levels of the system. We say that procedures
are related by CRUDT

PP if they share at least one accessed
table.

Formally, for f and g procedures (f, g) ∈ CRUDT
PP if

and only if ∃T table which is accessed by both f and g.
This sort of relation has no direction, hence it is sym-

metrical: (f, g) ∈ CRUDT
PP ⇔ (g, f) ∈ CRUDT

PP . It
is not necessarily transitive because it may happen that
(f, g) ∈ CRUDT

PP because they access only Ti and
(g, h) ∈ CRUDT

PP because they access only Tj , but
(f, h) /∈ CRUDT

PP because they do not share an accessed
table, that is, i 6= j.

A visual representation of these relations can be seen in
Figure 4.



Figure 3. A typical CRUD graph. The tables are in the centre of the figure
and the procedures are in the oval shapes on both sides of the figure. The
arrows from the tables to the procedures represent data retrieve operations,
while the arrows from the procedures to the tables represent updates. The
dashed arrows from tables to procedures represent delete operations and the
dashed arrows from procedures to the tables represent create operations.

Figure 4. Typical CRUD relations between procedures and between
tables.

This relation can be computed in a safe way even
though the SQL extraction may not recover the exact SQL
statements for each embedded SQL string in the source
code. When an extracted SQL instruction contains an un-
recognized fragment in the place of a table identifier, a
conservative approach inserts the procedure into the Usage
Matrix as it would be related to all the tables of the database.
For example, in the case of a procedure containing an SQL
command like the one in Figure 5, a conservative approach
relates the procedure to each procedure that access any table
in the system.

Here, notice that the most common reason for unparsable
SQL strings is that they are sometimes constructed with code
fragments in a position where it makes the full statement
syntactically incorrect. However, there are several other
reasons, which we will elaborate on in Section IV-D.

3) Relations between procedures via column access:
CRUD operations can be lowered to the database column
level by considering exact column access instead of a table
access. The idea behind this low-level consideration is that
even if a procedure modifies a table and another one reads

SELECT firstname, lastname
FROM @@customer_table@@
WHERE firstname

LIKE(’%@@name@@%’);

Figure 5. Sample code of an extracted SQL command where the table
name is determined by a variable.

data from the same table, there is no data dependency be-
tween them unless they modify and read the same record(s)
of the table. However, determining the accessed record(s) of
the table is not possible via a static analysis. Nevertheless,
it is still possible to find the accessed columns of the table,
and the scope of the dependency relation can be narrowed
down. Harraty et al. suggest this level of granularity in [10].

We shall define CRUD operations for the relations be-
tween procedures via column access like so:

• INSERT statements create data in all the columns of
their target table;

• SELECT and those statements which do not modify
data, retrieve data from columns which are accessed
only for reading. The asterisk in a SELECT means a
data retrieval for all the columns of the corresponding
tables;

• UPDATE statements update specified columns of their
target table;

• DELETE statements delete data from all the columns
of their targeted table.

Formally, for f and g procedures (f, g) ∈ CRUDC
PP if

and only if ∃C column which is accessed by f and g.
CRUDC

PP can be also computed via a conservative
approach. However, in procedural languages where SQL
commands are constructed in a dynamic way, the noise of
such a conservative method would result in too many false
positive relations.

4) Relations between tables or between columns: The
Usage Matrix can be used to determine relations between
tables (CRUDTT ) or between columns (CRUDCC) of the
system too. This approach is based on database and program
reverse engineering [13]. The idea behind it is that there are
many kinds of dependencies between table columns that are
not recognizable by the traditional database reverse engineer-
ing techniques that only analyze the database of a system.
Certain kinds of dependencies require taking into account
the embedded queries in the source code as well. Columns
or tables accessed by the same procedures are related to each
other and these relations must be considered when carrying
out data reverse engineering (i.e. modularization).

Similar to CRUDT
PP , the CRUDTT and CRUDCC

relations can be defined as follows: for t and q tables
(columns) (t, q) ∈ CRUDTT (CRUDCC ) if and only if
∃P procedure which accesses both t and q.

These kind of dependencies can be also recovered by



using the Usage Matrix. However, a conservative implemen-
tation should be applied with care as an unrecognized code
fragment will mean that all the tables or all of the columns
in the system will be related to each other.

C. SEA/SEB relations

1) SEA/SEB in general: The Static Execute After/Be-
fore dependencies and an algorithm for their computation
were previously published by Jász et al. [1]. According to
their definition (f, g) ∈ SEA if and only if it is possible
that any part of g is executed after any part of f in some
execution of the program. Similarly, (f, g) ∈ SEB if and
only if it is possible that any part of g is executed before
any part of f . The two relations are inverses of each other,
so (f, g) ∈ SEA ⇔ (g, f) ∈ SEB .
SEA/SEB relations involving (f, g) can be formally

defined as follows:

SEA = CALL ∪ RET ∪ SEQ [∪ID ]

where (f, g) ∈ CALL ⇔ f (transitively) calls g, (f, g) ∈
RET ⇔ f (transitively) returns into g, (f, g) ∈ SEQ ⇔ ∃h
: h (transitively) calls f followed by g, and the second call-
site is flow-reachable from the first one. Finally, (f, g) ∈
ID ⇔ f = g. SEB can be formally defined as the inverse
of SEA.

2) SEA/SEB for procedures: The reason why SEA and
SEB describe safer relations between procedures compared
to simple call relations is due to SEQ relations. Thanks
to this set, SEA/SEB will discover those (f, g) relations
between procedures where f is called followed by g, but g
is not called (not even transitively) by f .

In order to compute SEA/SEB , the traditional call graph
is not sufficient since the order of call-sites within a pro-
cedure body is required to determine the above-mentioned
SEQ set of relations. To compute SEA/SEB , the control
flow graph (CFG for short) of the system is required. Once
we have the CFG, we can compute the dependencies with
the help of a language independent algorithm.

An extended example of the above CRUD example
(Figure 4) can be seen in Figure 6 with additional SEA/SEB
dependencies.

3) Directed SEA-CRUD relations: We mentioned pre-
viously that CRUD relations are not directed. The reason
for this is that it makes no sense to distinguish between
two procedures reading from the same table. It is the same
for procedures when updating, inserting, or deleting data
from the same table, but it is slightly different in the case
of two procedures where one of them modifies the table
and the other reads data from the same table. Simply by
using CRUD relations for procedures over tables, we cannot
determine the execution order of the procedures, so it is not
possible to determine whether the procedure reading data
from the table reads it after or before the other procedure
modifying the same table.

Figure 6. Typical CRUD and SEA/SEB relations between procedures
and between tables.

By combining SEA and CRUD it becomes possible to
compute which procedure accessed the same table before
the other one. We combine SEA and CRUD relations in
a simple way; by computing different set operations on the
two relations. This way we can use the union as a combined
conservative approach, while the intersection as a way to
see the stronger relations, for example. This information
can be used to evaluate special relations between procedures
otherwise not identified.

D. SQL extraction

Although the extraction of SQL commands is not part
of the dependency analysis algorithm itself, it has a great
influence on the effectiveness of the two methods proposed
here. In general, if we can achieve a better extraction of
SQL commands, the algorithms will be more precise and
more effective.

In many programming languages the SQL queries are sent
to the database server by specific procedures which take
the SQL commands as a string parameter. These procedures
are internal procedures or library procedures accessible via
an API. For these languages it is common programming
practice to prepare SQL commands by simple string concate-
nations and to execute the prepared SQL string by giving it
as a parameter to one of the internal or API procedures.
It has been already shown that for these languages the
mere examination of the source code should provide enough
information to determine the most significant fragments of
the SQL queries. These fragments are sufficient to parse
embedded SQL statements and determine the relations using
them via a careful static analysis [3].

However, the code fragments of the SQL query may be
defined at a certain distance from the place they are used in
the source code. In special cases this may result in a situation
where determining the exact syntax of SQL commands is
unfeasible via static analysis. For instance, when the SQL
statement which will be executed is a concatenation of
strings where one or more strings are read from the standard
input (Figure 7). In this case the executed SQL instruction



name = readString();
sql = "SELECT firstname, lastname " +

"FROM customers " +
"WHERE firstname " +
"LIKE(’%" + name + "%’)";

executeQuery(sql);

Figure 7. Example of an embedded SQL query. The query string is
concatenated on the second line using a variable in the WHERE clause of
the SQL query.

could only be captured via dynamic analysis techniques, but
it would produce results for only a certain set of executions
of the application. However, the SQL command coming
from the user input will probably not be the same for the
different executions of the application. In order to capture
all the possible query strings, one execution is not enough
and one must execute the application as many times as the
user input may vary. This is usually unfeasible for a large
and complex system.

We implemented a static approach for extracting and ana-
lyzing embedded SQL commands from the source code. We
should mention here that the system on which we evaluated
the proposed methods was written in a special procedural
language. The programming style of this language makes the
whole system strongly database dependent and it makes the
use of SQL queries very common in the system. The SQL
statements to be executed are embedded as strings sent to
specific library procedures and their results will be stored in
given variables. This method is actually the same as that for
procedural languages where embedded queries are sent to
the database via libraries like JDBC or ODBC. This makes
our method general and suitable for other languages too.

The implemented approach is based on the simple idea
of substituting the unrecognized query fragments in a string
concatenation with special substrings. For instance, in Figure
7, it is possible to simply replace the name variable with
a string “@@name@@” and the received query string will
be a syntactically correct SQL command. With this simple
idea we only need to locate the library procedures sending
SQL commands to the database in order to perform the
string concatenation, and the above-mentioned substitution
of variable, procedure name and other source elements.
Whenever the constructed string is syntactically correct,
it will have the main characteristics of the executed SQL
command.

Developers usually like to prepare statements as close to
their execution place as possible and they prefer to keep
SQL keywords in separate string literals. In most cases, it is
possible to substitute the variables with their last defined
values within the same control block. In other cases the
variable can be replaced with the variable name.

IV. EVALUATION

We performed our measurements on the code supplied
by one of our industrial partners. The IT architecture of
this company is heterogeneous and it is made up of many
different technologies, with a central role of a proprietary
technology provided by another local software company.
Most of the core systems are built upon this technology,
which is an integrated administrative and management sys-
tem made up of modules (subsystems) using Windows-based
user interfaces and MS-SQL databases. The modules contain
programs, and the programs are aggregates of procedures.
The language is procedural, and its syntax is similar to the
Pascal programming language. SQL statements are embed-
ded as strings sent to specific library procedures.

In previous projects, we implemented a source code
analyzer for this language (including an analyzer for the
embedded SQL language), and many different supporting
tools (some of which are language independent). We imple-
mented our methods in this environment and applied them
on the working module of a core system.

Table I
METRICS REPRESENTING THE MAIN CHARACTERISTICS OF THE

SYSTEM.

Metric name value
(Logical) Lines 315, 078
Programs 776
Procedures 2, 936
Triggered procedures 41, 479
Embedded SQL statements 7, 434
Tables 317
Temporary tables 641

In Table I, metrics are presented to highlight some of
the characteristics of the system being analyzed. We iden-
tified 7, 434 embedded SQL strings (based on the specific
SQL library procedure calls) and we successfully analyzed
6, 499 SQL statements, which is 87% of all the embedded
SQL strings. Here we differentiate between ‘normal’ and
triggered procedures. Triggered procedures are assigned to
database schemas, tables, and columns. They are never
called directly; instead an automated mechanism calls them
at runtime whenever a table or column of the schema is
used (e. g. written or read). Note that most of the 41, 497
triggered procedures are empty and including them in the
measurements adds only 10% more call edges to the call
graph (when these triggered procedures call ‘normal’ proce-
dures). Hence, in the following evaluation of the proposed
methods, we focused on ‘normal’ procedures.

A. Quantitative analysis

In Table II basic statistical indicators of the identified
relations are presented. The relations are: (number of) call



graph edges, SEA/SEB relations, while CRUDT
PP repre-

sents the conservative implementation of CRUD relations
between procedures, and CRUD∗ relations representing the
variants where only the certain dependencies are considered
(dependencies which arise only because of recognized code
fragments). The first column shows the total number of
computed dependencies for each relation type. The second
column shows the maximum number of dependencies of a
procedure, and the last two columns are the average and the
deviation of dependencies per procedure.

The results in Table II show that there are many rela-
tions between procedures via table access which cannot be
found using a call graph only. Furthermore, the differences
between CRUD∗T

PP and CRUDT
PP show that the price of

a conservative analysis can be quite high.
The average values show that when taking into account the

SEA/SEB relations, a procedure may depend on about 8%
of the whole module on average. Similarly, with CRUDT

PP

relations, a procedure might be related to about 6% of the
other procedures via database access.

In addition to the different relations between procedures,
we also measured relations between procedures and tables.
The procedures of the system accessed 1.81% of tables on
average and 25 was the highest number of accessed tables
by the same procedure. This measurement was performed by
taking into account only those relations that were not influ-
enced by unrecognized code fragments of SQL instructions.

Table II
BASIC STATISTICS OF DIFFERENT RELATIONS

sum max. avg. dev.
CG edges 18, 595 764 6.33 23.75
SEA/SEB 727, 303 2, 347 247.72 361.86

CRUDT
PP 576, 095 1, 066 192.22 338.87

CRUD∗T
PP 156, 527 615 53.31 120.61

CRUD∗
CC 1, 024, 180 2, 358 99.69 203.19

CRUD∗
TT 11, 817 330 12.23 24.60

The SEA/SEB and CRUD relations have a different
basis. Thus, they are comparable as different sets, and one
can check whether any of them contains the other, or they
are distinct. In Table III, the difference, the intersection, and
the union of the CRUDT

PP and SEA/SEB relations are
given. The columns represent the same statistical indicators
which were used in Table II. It shows that CRUD and
SEA/SEB are different kinds of relation as they have only
a few dependencies in common. This means that in the
program the two kinds of dataflow (via the normal control
flow and via databases) are well separated. Thus, neither of
these two relations seems to be better than the other one;
they complement each other. However, the intersection of
these two types of relations is also interesting. This will

determine those dependencies that arise via database access
but are potentially used by the same execution (the same
operative task). We think that this combined dependency is
stronger than any of its components alone, and it can be
used to prioritize procedures, e. g., for testing applications,
as it will mark only a small fraction of the original relations.

In Table III, we present data for CRUDRW T
PP relations.

This is a special type of the combined relations discussed
in Section III-C3, where a read operation in a procedure is
followed by a write in another one, or a write followed by a
read. CRUDRW T

PP∩SEA approximates the database-based
dataflow relation of the program. We measured this kind of
relation without taking into account those relations which
were influenced by unrecognized code fragments of SQL
instructions. We found that the rougher relations (CRUDT

PP ,
SEA/SEB ), and their combination contained 20% to 70%
more edges than the finer ones (with CRUDRW T

PP , SEA).

B. Qualitative analysis

As a qualitative analysis, we manually inspected the
computed relations by selecting random samples. We tar-
geted special types of dependencies (e. g. CRUDT

PP ∩SEA,
which describes dataflow between two procedures) and
we inspected the source code to see whether the chosen
dependency actually described a real dependency between
the two items.

Most of the evaluated CRUDT
PP∩SEA relations were real

dependencies between procedures. In some cases, we found
that the developers used temporary tables to pass data from
one procedure to another one. It is common practice in table
manipulation to select data from one table, place it into a
temporary table, and later insert the retrieved data from a
temporary into different, persistent one. These relations can
be readily seen when the procedures working with the same
temporary tables are inside the same program.2 However,
it may also happen that procedures in different programs
and in different source files of the system have these
types of dependencies. An example of a CRUDT

PP ∩ SEA
dependency between procedures via a temporary table can
be seen in Figure 8.

Another example is about the implementation of menus
in this framework, which are intensively used so as to let
the user access different features. One menu entry executes
one procedure of the system. During manual inspection, we
found procedures which were in CRUDT

PP relations, but
they implemented functionalities of different menu entries.
This means that f and g procedures are in CRUDT

PP

relations, and f is transitively called from the M1 menu
entry while g is transitively called from the M2 menu entry,
but f is not called (transitively) from the M2 entry, and g
is not called (transitively) from the M1 entry. Finding the

2In this framework, program is a higher level compilation unit. It contains
procedures and it is usually in a separate source file.



Table III
DIFFERENCE, INTERSECTION, AND UNION OF SEA/SEB AND CRUD RELATIONS BETWEEN PROCEDURES

Relations sum max. avg. dev.

CRUDT
PP \ SEA/SEB 542, 078 1, 065 184.63 97.75

SEA/SEB \ CRUDT
PP 691, 782 2, 346 235.62 107.54

CRUDT
PP ∩ SEA/SEB 36, 037 369 12.27 10.00

CRUDT
PP ∪ SEA/SEB 1, 267, 361 2, 347 431.66 162.41

CRUDRW T
PP ∩ SEA 29, 532 342 10.06 32.08

relations between these procedures is especially important in
this large system where there are around 200 menus working
with 2, 936 procedures.

procedure procA:
sql = "SELECT DISTINCT * " +

"INTO #temptable " +
"FROM table WHERE condition";

executeQuery(sql);

procedure procB:
sql = "INSERT INTO table2" +

"SELECT * FROM #temptable";
executeQuery(sql);

procedure procC:
procA();
procB();

Figure 8. Example use of a temporary table to pass data from one
procedure to another one. There is close connection between procA and
procB, as they are in CRUDT

PP ∩ SEA relation.

C. Potential applications

Based on the information extracted from the source, we
provided support to the company in different areas includ-
ing software architecture management and software testing.
Here, we overview our experiences related to these two
potential applications of the dependencies computed with
our methods.

1) Architecture reconstruction: In architecture recon-
struction, static analysis is used to automatically detect the
various relations between software components. With our
industrial partner, we previously performed such an analysis
between programs using a call graph. We extended this
architecture graph using information obtained from CRUD
and SEA/SEB . The two relations added 49, 754 additional
edges to the 2, 459 original ones between the 584 programs
included in the architecture graph. We were also able to
include 785 tables and 1, 921 relations between tables and
programs in the graph.

2) Regression test selection: Regression tests are carried
out to ensure that modifications in the code do not introduce
new bugs. However, regression test suites are usually very

large, and executing all the test cases for small modifications
– despite being safer – can be very expensive resource-wise.
Thus, regression test case selection is important. However,
executing only those test cases that directly cover the mod-
ifications is not always enough, because the change might
have an impact in other areas of the system. Impact analysis
can be done based on many kinds of dependencies including
the call graph, SEA/SEB and CRUD .

We computed code coverage (for the change and the
corresponding test selection result) using the test execution
data of a real testing project. Figure 9 shows how the average
coverage value varies with the different impact sets. As
can be seen, inspecting more procedures results in a lower
coverage. The relation between these two values seems to be
linear in our case, but the call graph-based firewall impact
results in a smaller coverage value, which was surprising
to us. As for SEA/SEB vs. CRUD , it can be seen that
using SEA/SEB , larger impact sets are obtained and this
naturally results in a lower coverage.
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Firewall

Impact

SEA/SEB
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Figure 9. Coverage of different procedure sets. On the X axis the size
of the procedure set (corresponding to the different impact analyses) is
shown, with the Y axis denoting the coverage values. Changed denotes the
procedures containing the modifications only; and the other four sets denote
procedures that are accessible from Changed procedures via some relations.
Firewall and Impact use the call relation, with only directly accessible
procedures, and all procedures that can be reached through a series of call
edges, respectively. SEA/SEB and CRUD denote those procedures that can
be reached by traversing the edges of SEA/SEB and CRUDT

PP relations.

D. Implementation pitfalls

In this section we overview some possible threats that
might be encountered when implementing the proposed



methods. We encountered these issues as well, so they may
serve as “threats to validity” of the results presented above,
especially regarding the safety of the analysis.

1) Imprecise ASG: The first main step, which may be
unsafe in a complex analysis system, is the source code
analysis itself. In this step we extract the AST (Abstract
Syntax Tree) from the source code and compute the ASG
(Abstract Semantic Graph). In some cases, it may not be
possible to build a proper ASG via static analysis. For
example, in the languages where dynamic procedure calls
are allowed, it is easy to construct source fragments where
the called procedure cannot be determined. As the input of
our methods, we assume that the input ASG is precise and
safe.

2) Unrecognized code fragments in SQL queries: Our
SQL extraction method reconstructs the embedded SQL
queries with a string substitution rule. We assume that the
reconstructed and syntactically correct SQL commands have
the same key characteristics as the SQL commands that will
be executed by the application. Whenever an SQL query is
not parsable, it is handled conservatively and we suppose
that it accesses all the tables of the system. However,
there are some cases where the SQL query is syntactically
correct, but it is not possible to tell which tables it accesses.
In Figure 5 we provide an example of this case. This
case can be handled by recovering the unknown table, but
other problems may arise as well. It may happen that the
unrecognized code fragment is in a place of an identifier
which is recognized as a column, but it is actually a subquery
that accesses several other tables of the database (Figure 10).

SELECT firstname, lastname
FROM customers
WHERE firstname IN (@@subquery@@);

SELECT @@subquery@@, lastname
FROM customers;

Figure 10. Example of a constructed SQL command where the unrecog-
nized code fragment is in the place of a value, but it is actually a subquery.

The potential error-prone places of the unrecognized code
fragment can be determined by a simple rule which states
that whenever an unrecognized code fragment is located at
a place where it may refer to a subquery or table, then it is
assumed that it accesses all the tables of the database.

In later steps we assume that the SQL analyzer and the
algorithm which constructs the Usage Matrix are able to
recognize all these error-prone cases.

3) Database modifications during code execution: It may
happen that while the application is running, the database is
modified. If the executed SQL command that produces the
change in the database is embedded in the source code, it
can be located, but it is hard to tell its influence on the other
commands. It may still happen that the database is modified
outside the scope of a source code analysis. Our system

recognizes the database modification SQL statements, but
it does not evaluate them individually. Therefore, they are
handled like every other kind of table access.

4) Dependencies via stored procedures: In database-
intensive systems it is normal to use stored procedures.
Stored procedures are declared and they run on the database
side of the application, but it is possible to create and
execute them from the application by embedding specific
SQL statements (e.g. CREATE PROCEDURE, EXEC). It is
important to note that a stored procedure can access database
tables like any other SQL command, hence if a procedure of
the application executes a stored procedure its Usage Matrix
should be properly updated with the accessed tables.

5) Dependencies via internal database dependencies (e.g.
triggers, foreign keys): Some dependencies may arise via
internal database structures like triggers or foreign keys.
These dependencies may lead to a situation where the
database manager updates a table due to some modification
made in another table. These dependencies can be handled
by using an accurate database scheme analysis.

6) Dependencies through temporary tables and views: It
is also common in relational database systems to use views
for queries or temporary tables to store temporary data.
Both of them are sources of hidden dependencies similar
to internal database dependencies. Views – like structures
selecting data from other tables – can be handled like any
other table of the database, but their columns must point to
the columns of the original table columns. In the case of
temporary tables it is important to bear in mind that it is
very hard to follow the lifecycle of a temporary table via
a static analysis. Our system currently handles temporary
tables like any other table of the system. If one temporary
table is created only once inside a compilation unit, all of
its references will be properly identified. However if there
are other temporary tables created with the same name, it
is impossible to determine statically which one is used in a
query string.

V. CONCLUSIONS

Determining program dependencies in the right way via
code analysis is a difficult task. Although many kinds of
dependencies and the corresponding methods of analysis
have been presented in the literature, they are usually not
safe, precise, and efficient at the same time.

In this paper, we presented two methods for recovering
program dependencies in database-intensive applications,
whose combination is safe in certain situations. One is based
on the SEA/SEB relations, and the other uses CRUD-
based Usage Matrices. We think that the use of these two
methods for recovering program dependencies is a nov-
elty here. We performed measurements with experimental
implementations of the methods in an industrial context,
and presented preliminary results that contain a quantitative



and qualitative comparison of the methods, and also some
potential applications.

The results show that the disjoint parts of the relation
sets of the two methods are similar in size, and that their
intersection is considerably smaller (it is about 3% of the
union). So, based on this empirical evaluation, our main
conclusion is that neither of the relations is definitely better
(safer and more precise) than the other; they are simply
different. Thus they should be applied together in situations
where a safe result is sought. However, as the corresponding
dependency sets are usually different, their intersection could
also be interesting in some other situations, such as when
a prioritization of the dependencies is necessary, in which
case the intersection can act as a higher priority dependency
set. However, further research is needed in this respect.

There are many other open questions that deserve to
be investigated further. We would like to perform a more
thorough comparison of the two methods, where we would
take into account some other kinds of dependency analyses
published in the literature. As a dependency analysis has
many potential application areas, the methods should be
evaluated against a variety of applications to see which
method is the best choice in a particular case. Finally, the
precision of the methods could be improved by applying
heuristics that remove certain unnecessary dependencies
imposed by the conservative nature of the methods.
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