
Impact Analysis in the Presence of Dependence
Clusters Using Static Execute After in WebKit

Lajos Schrettner†, Judit Jász‡, Tamás Gergely†, Árpád Beszédes† and Tibor Gyimóthy†

†Department of Software Engineering
University of Szeged, Hungary

Email:{schrettner, gertom, beszedes, gyimothy}@inf.u-szeged.hu

‡Research Group on Artificial Intelligence
Hungarian Academy of Sciences

Szeged, Hungary
Email: jasy@inf.u-szeged.hu

Abstract—Impact analysis based on code dependence can be
an integral part of software quality assurance by providing
opportunities to identify those parts of the software system
that are affected by a change. Because changes usually have
far reaching effects in programs, effective and efficient impact
analysis is vital, which has different applications including change
propagation and regression testing. Static Execute After (SEA)
is a relation on program elements (procedures) that is efficiently
computable and accurate enough to be a candidate for use in
impact analysis in practice. To assess the applicability of SEA in
terms of capturing real defects, we present results on integrating
it into the build system of WebKit, a large, open source software
system, and on related experiments. We show that a large number
of real defects can be captured by impact sets computed by SEA,
albeit many of them are large. We demonstrate that this is not an
issue in applying it to regression test prioritization, but generally
it can be an obstacle in the path to efficient use of impact
analysis. We believe that the main reason for large impact sets
is the formation of dependence clusters in code. As apparently
dependence clusters cannot be easily avoided in the majority of
cases, we focus on determining the effects these clusters have on
impact analysis.

Index Terms—Change impact analysis, Source code analysis,
Static Execute After, Regression testing, Dependence clusters.

I. INTRODUCTION

During software development and maintenance it is vitally
important to ensure that changes made to a system do not
degrade its quality. Even a smallest change can affect a
significant portion of the system and, obviously, the changed
parts are affected directly, but we should look further and
determine which other parts are affected indirectly. Impact
analysis methods deal with this situation [8], but unfortunately,
indirectly affected parts are often neglected. Impact analysis
can aid implementing the changes in various ways. Most
importantly, it can give hints about where in the system the
changes need to be propagated [9] and, after the changes have
been implemented, it can aid regression testing to capture
defects introduced nevertheless [19]. Comprehensive retesting
may be very expensive in this case, so it is beneficial to be
able to identify a subset of the test suite that tests those parts
of the system which may be affected by a particular change.

A widely accepted impact analysis method rests on static
code dependence analysis, most notably (forward) slicing
based on System Dependence Graphs [12]. Slicing is accurate,
but at the same time it is computationally rather expensive.
Static Execute After (SEA) is an alternative to slicing on the
procedure level as it is more efficient at the expense of being
a bit less accurate [13], [14]. Our long term goal is to build on
this potential to let software developers use impact analysis in
their daily routine.

Recently we have experimented [15] with integrating SEA
into the build environment of WebKit [23], a real size,
complex, and lively evolving software system. In this paper
we report on an extended set of experiments using SEA for
impact analysis in WebKit. We use real defect data based
on regression test execution result histories, and relate them
to changes that introduced and later eliminated defects. We
do this by checking whether the impact sets of the failure
introducing changes contain the modifications at the fixing
revisions (we call this the prediction capability of impact
analysis). By using a larger data set than previously and an
improved analysis method, we have found that SEA performs
well in terms of prediction, but the impact sets are often very
large. This can be a problem when using the impact sets for
manual change propagation, but for other applications such
as automatic regression test selection and prioritization they
can still be useful, however. Hence we experimented with
augmenting our former results on selective regression testing
with a new algorithm that takes impact sets into account in
addition to the changes.

After investigating the large impact sets we observed that
the main reason for such sets seems to be the formation of
large dependence clusters in code [6]. The root causes of
this phenomenon are not well understood yet; it seems to
be an inherent property of program code dependence graphs.
As apparently dependence clusters cannot be easily avoided
in the majority of cases, we focused our further research on
determining the effects these clusters have on impact analysis.
We found that changes can often be associated to clusters, so

this supports the findings of other researchers that refactoring
clusters should be a concern.

The contributions of this paper are the following:
• We tested the SEA algorithm on a large industrial system

and found that it is suitable to be integrated into the build
environment and exhibits good prediction capabilities.

• We defined SEA-based dependence clusters and estab-
lished that they are the primary causes of large impact sets
which hinder the applicability of change-based impact
analysis in some applications.

• We checked whether the theoretical importance of the
formation of large dependence clusters, which seem to
present an inherent limitation in impact analysis, can be
justified in practice.

• We showed how SEA-based impact analysis can be used
to enhance test case selection and prioritization in a
regression test environment.

The paper is organized as follows. In Section II, we
overview related research. Section III provides background
information about the concepts used and formulates the re-
search questions we seek answers for. Section IV describes the
data collecting methods that were used and the measurements
that were carried out. Section V presents results and discusses
threats to their validity. Finally, we conclude in Section VI.

II. RELATED WORK

A. Impact analysis

Impact analysis [8] deals with the problem of identifying
those parts (the impact set) of a software system that might be
affected by a change in the system, in other words finding the
possible dependences between the change and the other parts
of the system. There are different fundamental approaches for
determining impact sets. In this work we are concerned with
code dependences [16].

Program slicing based on dependence graphs [12] is one of
the most important practical methods for this task. Here, first
a program representation is built that captures all the different
dependences between program elements like statements, and
then a reachability algorithm finds the dependences starting
from a particular point (the slicing criterion), which represents
the initial change. Although there are reports on the usability
of some variants of program slicing on large programs [1],
usually these algorithms pose serious challenges in the case
of present day big and complex software projects, which is
due to the inherent complexity of the algorithms.

Because of these problems, other, more light-weight ap-
proaches are often used such as those based on a call graph
of the program. Many of them determine the impact sets of
the modified procedures of a program from the call graph [8],
[22]. Although these methods are simple, they are not safe,
and it is easy to show that they miss to identify a set of
real dependences [2]. We presented empirical evidence that the
SEA relations can be a good approximation of program slices
at the procedure level, while its computational complexity is
better than that of program slicing [2], [13], [14].

Our method and the above mentioned approaches concen-
trated only on the source code and its changes in a system.
But in many cases we can gain important information from
other software artifacts like software repositories, bug tracking
systems, or natural language texts [18], [29]. This information
can then be used to derive special kinds of impact sets, but
this work is not concerned with this area.

B. Dependence Clusters

The research on fine granularity dependence clusters has
been initiated by Binkley and Harman [6], who defined depen-
dence clusters as a maximal set of program elements that each
depend on the other (on the SDG program representation).
They have been associated with backward program slices, and
eventually, with the program slice sizes. This approximation
turned out to be a good instrument to work with dependence
clusters.

The current view is that large dependence clusters are
detrimental to the software development process, in particular
they hinder impact analysis because in any dependence-related
examination encountering any member of cluster immediately
pulls in the whole cluster [1], [5], [7], [11]. Furthermore,
it seems that dependence clusters are independent of the
programming language and the type of the system, hence they
are universally present as an inherent property of programming
practice [1], [2], [10].

Despite these observations, at present there are relatively
few results reported on how to find dependence cluster causes
effectively, and subsequently refactor them into smaller de-
pendence formations. In this work, we further support the
universality of SEA-based dependence clusters by identifying
them in the WebKit system, and discuss their effects in the
context of impact analysis and defects.

C. Regression testing

In this work, we apply the SEA method also to regres-
sion test selection and prioritization. Both areas have been
studied and different methods have been proposed. An ex-
cellent overview of regression test selection techniques has
been presented by Rothermel and Harrold, who introduced
a framework to evaluate the different techniques [19]. They
defined (among others) an important evaluation criterion called
inclusiveness, which we rely on as well as one of the primary
evaluation aspects of our methods (it shows the ratio of
failing test cases included in the selection). Another survey on
regression test selection and prioritization has been presented
by Yoo and Harman [28].

Inclusiveness is the focus of many researchers in the field
of regression testing. Wong et al. suggested that regression
test reduction techniques can lower the number of executed
test cases without significantly reducing the fault-detection
capabilities of test suites [27]. However, Rothermel et al. ex-
amined the costs and benefits of test-suite reduction techniques
and their results show that the fault-detection capabilities of
test suites can be severely compromised by test-suite reduc-
tion [20].

Test case prioritization techniques have also been stud-
ied thoroughly. Wong et al. proposed a hybrid technique
combining modification, minimization and prioritization-based
selection to identify a representative subset of all test cases that
may result in different output behavior on the new software
version [26]. Case studies on regression test prioritization have
also been done. For example, Rothermel et al. [21] conclude
that prioritization techniques can be effectively used, but the
usefulness of a particular technique on a specific test suite
depends on many attributes of the technique and the test suite.
Our prioritization strategies use greedy algorithms, just as most
other authors’ as well, however there has been some research
presented to use search algorithms instead [17].

The use of impact analysis for regression testing can be
found in various forms in the literature; see for an overview
Rothermel and Harrold for instance [19], which lists, among
others, program dependence based methods that our method is
also based on. There are also some simpler methods that take
into consideration only close relationships [25]. Regression
test selection completeness, i. e. safety, has been especially
the topic of various researchers [4], [19], which is one of the
reasons impact analysis is considered for this application.

III. BACKGROUND

A. Static Execute After and dependence clusters

The Static Execute After relation is defined as follows. For
program elements (procedures, classes, statements, etc.) f and
g, we say that (f, g) ∈ SEA if and only if it is possible that
any part of g is executed after any part of f in any one of the
executions of the program. The SEA relation is formulated as
follows:

Definition (SEA relation):
SEA = CALL ∪ SEQ ∪ RET

where

(f, g) ∈ CALL }
⇐⇒ f calls g

(g, f) ∈ RET (or g returns into f)

(f, g) ∈ SEQ ⇐⇒ ∃h : f returns into h,
then h calls g

It can easily be seen that the SEA relation covers all
possible cases when one procedure can be called after the
other. Computing the SEA relation actually means following
all possible control flow paths from a procedure to the rest of
the system. Also, it is more convenient to consider the reflexive
closure of this relation, since any change in a particular
procedure can (conservatively) affect any other part of it from
an impact analysis viewpoint. In the following, we consider
procedures (functions and methods in C++) exclusively, and
for any procedure the set of procedures that it is related to
will be called its SEA set.

The computation of the SEA relation is based on the
Interprocedural Component Control Flow Graph (ICCFG) [2],
a program representation that contains sufficient information
to extract the required relations, while being much smaller and

simpler than other graphs including the System Dependence
Graph [12] used for slicing.

We analyzed the precision of the SEA relation compared
to static slicing and showed [13], [14] that the SEA relations
can be a good approximation of static slices at the procedure
level. The precision values demonstrated that there is only
a small amount of additional dependences produced by the
SEA method due to its conservative nature. Since SEA does
not produce false negatives, compared to slices, we always get
100% recall.

As mentioned earlier, (slice-based) dependence clusters
were found to be detrimental to program comprehension.
Originally, dependence clusters were defined at the instruction
level, but it is possible to define them considering higher gran-
ularity of a program using a suitable “depends on” relation. In
particular, it is possible to use SEA as the basis of dependence,
but as SEA has a representation that contains procedures as
units, a SEA-based dependence cluster analysis will be based
on procedures.

Definition (SEA-based dependence cluster):
A SEA-based dependence cluster of a program is a
maximal set of procedures in which any two have
the same (reflexive) SEA sets.

Informally, a SEA-based dependence cluster is a maximal
set of procedures that each depend on the other in the ICCFG
program representation, i. e. each can be executed after (some
part of) each other. It is important to realize that the cluster
is not necessarily identical to the SEA sets of the individual
procedures; the cluster can have at most as many elements
as the (common) SEA sets. Practically, this definition can be
substituted [6] by checking only the sizes of the dependence
sets as the comparison basis instead of the sets themselves.
Of course, it can happen that by chance two or more different
dependence sets have the same size, and this way false clusters
can be formed, however it turned out that the sizes are a
good approximation in practice. In this work, we follow this
approach when comparing SEA-based dependence clusters.

B. SEA-based impact analysis experiment setup

In this research we used a very pragmatic way to assess
the applicability of the SEA-based impact sets: we used real
defect data based on historical regression test execution results,
and compare them to the respective changes that introduced
and later eliminated the defects. We then verified whether the
impact sets of the failure introducing changes contained the
modifications at the fixing revisions (the prediction capability
of the method). In earlier work [15], we used this approach
and performed initial experiments with a limited data set from
the WebKit system. In the present paper we extend these
measurements with additional data and various improvements
in the methods as explained later.

Figure 1 serves as a guide to summarize our approach to
evaluate the SEA method in a real-world environment. The
revisions of the system under examination are denoted along
horizontal lines. We can examine the differences in subsequent
revisions to arrive at a set of procedures that were modified

from one revision to the next. We depict these sets between
two pairs of revisions, revisionm and revisionm+1, then later
between revisionn and revisionn+1.

Test case(j)

Test case(i)

Test case(k)

revision revision revision revision

Passed PassedFailed Failed... Failed ...

?

Changed procedures

Impact set

Changed procedures

m m + 1 n n + 1

Figure 1. Verifying impact analysis prediction capability using real defects

The test cases of the system under examination can be seen
vertically. All test cases are run on every revision to find out
whether any regression errors have been introduced by the
latest modifications. The outcome of running a test case can
be either Passed or Failed. Let us consider a scenario in
which there is a test case tcj that produces the following out-
comes: Passed in revisionm, then Failed a number of times
from revisionm+1 up to revisionn, then Passed again in
revisionn+1. In this scenario we can assume that the changes
made between revisionm and revisionm+1 are responsible
for the failed test case tcj . The error that was introduced in
revisionm+1 is worked on by the programmers, then it is
corrected in revisionn+1, when test case tcj passes again. Our
hypothesis is that the impact set of the modified procedures at
the time the error was introduced in revisionm+1 contains
the procedures that were modified between revisionn and
revisionn+1. If that hypothesis is found to be correct, then we
would have a strong evidence that impact analysis in general
and the SEA algorithm in particular is very useful in predicting
where developers should look for errors in their code.

C. Evaluation environment: WebKit

Our evaluation environment is WebKit [23], a layout engine
that renders web pages in web browsers, used in Google
Chrome or Nokia mobile devices for example. WebKit con-
tains about 1.9 million lines of C++ code (this amounts to
about 86% of the whole source code) and it has a relatively
big collection of regression tests, which helps developers keep
code quality. The regression test suite consists of nearly 25
thousand active test cases; its purpose is to maintain compat-
ibility, standards compliance gains, and check some stability,
performance and other issues. Theoretically the regression
tests must pass before patches can land in the revision control

system, but unfortunately this requirement cannot be met in
many cases, so selective retesting is often applied. WebKit
has a large development community geographically spread
around the world with very lively development activity. The
development environment is a typical one for such a big, dis-
tributed open source team which includes serious configuration
management and strict integration rules. There is a huge body
of version information and historical defect data available in
the version control repository, automatic test execution logs
and the issue management database. As of April 11, 2012
there are 113914 revisions, and about 90 revisions are created
on average each day, all of which are followed by either a full
or selective regression test execution. The issue management
database contains nearly 90 thousand entries.

The above mentioned features make the WebKit system
suitable for our experimental study. In our measurements we
used the Qt port of WebKit called QtWebKit on x86_64 Linux
platform. For the compilation we used Qt 4.7.4, the latest
stable version of Qt.

D. Test selection and prioritization

Recently, we have been investigating regression testing in
an industrial environment by applying one of the fundamental
techniques, regression test selection and prioritization based
on code coverage [3]. In particular, we experimented with
different algorithms that are able to provide good failure
detection rate by selecting only a (small) subset of the test
cases. The algorithms favored those test cases that covered
the methods which had been modified just prior to testing. If
the number of these covering test cases was too high, then
it was reduced further based on assigned priority values. A
promising prioritization strategy was found to be to assign
priorities according to code coverage percentage, i. e. a test
case that covered more procedures has been assigned a higher
priority rate.

In the present research, we extended this approach with an
additional selection and prioritization algorithm, which also
takes into account the clusters associated with impact sets of
the modification, not only the modification itself. This is an
important application of impact analysis and has been studied
in the past [8], [19], however we were able to compare our
impact analysis-based method to other methods that do not
take impact sets into account. The actual algorithms we used
are presented later in this article.

E. Research questions

We formulate three research questions which we seek an-
swers for in the context of our experimental software system
WebKit:

RQ1 What is the prediction capability of the SEA relation
and what are the typical impact set sizes the algo-
rithm produces? Clearly, we hope for a result show-
ing that we can produce sufficiently small impact sets
while maintaining high prediction capability. If this
is not the case we investigate the causes and possible
applications and improvements.

RQ2 We established that the SEA relation can serve as
a basis to define a variant of the notion of depen-
dence cluster. Related to this, we are interested in
large dependence clusters, in particular we would
like to investigate whether their presence can be
demonstrated and what role they play in impact set
formation.

RQ2-A Are there any large SEA-based depen-
dence clusters in WebKit?

RQ2-B What is the relationship between SEA-
based dependence clusters and impact
sets of defect introducing changes?

Answers to this question could then support or ques-
tion the significance of dependence clusters in terms
of hindering the successful application of SEA-based
impact analysis for regression testing and change
propagation.

RQ3 Can SEA impact sets be used to improve the perfor-
mance of selective regression testing and test priori-
tization? If the selection and prioritization improved
by impact analysis outperforms other strategies based
on changes only, this could support the significance
of impact analysis in this application.

IV. MEASUREMENTS

Initial investigations about SEA focused on how it compares
to other impact analysis methods, particularly program slicing.
Later we moved on to investigate its applicability in real-life
situations, for large programs such as GCC and Mozilla [14],
and recently we have been investigating the properties of the
algorithm on a different but equally complex software system,
the WebKit open source web browser engine [15].

In the current stage we solved a number of technical issues
in order to be able to analyze the system automatically in
a regular manner. With the data collected, we were able to
measure the prediction capability of the relation, which we
verified by computing impact sets of actual revision changes
where regression errors were introduced, and compared them
to the actual changes where the regression errors were fixed.

A. Revision pair matching

We tried the approach explained in the previous section in
an earlier set of experiments [15], where the results showed
that the method is applicable for the analysis of the system,
and that the impact sets can predict the required changes in a
fair amount of cases, but there also remained open issues for
improvement. One such area was the small number of actual
revision pairs taken from the WebKit revision control system
that provided the bases of evaluation for prediction capability.
We examined several hundred revisions, but it turned out that
we could arrive at only a relatively small number of usable
revision pairs that matched all the criteria.

To arrive at a suitable number of defect introducing and
defect correcting revision pairs, we examined a much wider
range of revisions (r79171–r112713) and used two different
methods:

• An automatic method searched through the full range of
revisions above and extracted change information from
the version control system, as well as examined the
execution logs of the regression test suite. The execution
logs contain the Passed/Failed status of every test case,
so it is possible to identify defect introducing/correcting
revision pairs this way. We examined 33542 revisions and
found 477 candidate revision pairs.

• We examined the WebKit issue management database,
which is based on Bugzilla [24], by manually looking for
entries that reported the successful elimination of bugs.
Such entries identify a defect correcting revision, then
searching backwards from that point, we tried to find
the defect introducing revision. There are a lot of un-
certainties with this method, primarily because Bugzilla
entries are often incomplete or unreliable. Nevertheless,
we examined 370 bug entries, from which we managed to
identify 275 candidate revision pairs in the same interval
as above.

The revision pairs have to conform to a number criteria in
order to be suitable for our purposes. For this reason, the initial
set of revision pairs were subjected to further filtering:

• We deal with the Qt port of WebKit presently, so revisions
related to other ports were dropped.

• The construction of the SEA relation necessitates the
analysis of the source code of the program. Currently we
only have the infrastructure to analyze C/C++ code, so we
drop revisions that contain non-C++ code exclusively, as
it happens when only JavaScript code, configuration files,
or test cases are modified.

• Due to inherent inaccuracies in the representation of
the analyzed program, sometimes there are procedures
(e. g. instantiated template functions, some overloaded
operators) that show up in change logs, but are not
contained in our internal program representation, hence
in the SEA relations. These unrecognizable procedures
have to be eliminated from the change sets, and we
occasionally had to drop whole revisions whose change
set reduced to the empty set this way.

• Sometimes the correction of a bug is to cancel the
changes that introduced it. Our search method correctly
identifies revision pairs that represent this kind of activity,
but it is not interesting from an impact analysis point of
view, because the bug correcting revisions have the same
change set as that of the bug introducing ones. As there
is no need for change propagation in this case, we do not
include these revision pairs in our experiments.

The two methods for pair determination produced a different
set of successful matches, summarized in Table I. We com-
bined the results and used the 240 identified revision pairs as
a basis for determining the prediction capability of the Static
Execute After relation.

B. Full SEA set computation
We used the SEA relation defined over the set of proce-

dures of a program. Typically, impact analysis requires the

Table I
REVISION PAIRS FOR IMPACT ANALYSIS EXPERIMENTS

Automatic Manual Total
Examined entries 33542 370 –
Revision pairs identified 477 275 752
Revision pairs after filtering 161 79 240

computation of the impact sets for members of a small set of
procedures, the change set of a revision. This is feasible and
efficient enough to enable us to incorporate these computations
into the build and test processes of a real system. However,
occasionally we need the impact sets of all procedures in a
program, to determine the dependence clusters for example.
Unfortunately the computation of such a complete relation
might take a long time indeed as there are approximately
92000 procedures in WebKit, and it takes a few hours to
compute the full SEA relation for such a large set on a typical
workstation (see Table II). This time requirement prohibits the
computation of the complete SEA relation for every revision,
so we resort to computing it for only a few selected revisions at
most. Fortunately the set of procedures changes very little from
revision to revision (approximately 20 procedures change on
average), so the complete SEA relation computed on a specific
revison can be used for a number of neighbouring revisions
as a good approximation.

C. Improved selective regression tests

Our last research question deals with the extension of a
test selection and prioritization method for WebKit regression
tests [3] with SEA-based impact analysis results. Initially,
we determined the full code coverage relationship between
procedures and test cases, which will be the basis for test
selection. Then, for the set of changed procedures at a given
revision we selected those test cases that cover any of the
changed procedures. Prioritization was then performed on this
initial set of test cases by calculating various attributes about
the test cases and assigned an “award” value based on them.
Once we have the ordering based on the award values, we set
a fixed threshold to select only the first N tests for execution.
We experimented with different N values to get a picture
of what threshold would be small enough while maintaining
reasonable inclusiveness ratios. Two notable values, 1% and
20% of the test cases, were used as the comparison basis.
The effectiveness of the method was checked by using two
measures: inclusiveness, that shows how many failing tests
are included in the selection and selection size in terms of
percentage of the total number of test cases.

We developed various prioritization strategies and compared
them to find out which provides the best inclusiveness with
the same number of tests. As a baseline, we also used
random prioritization to find out whether any of the more
advanced prioritization strategies shows significant difference.
For the experiments in the present work we chose to use the
most traditional prioritization strategy (named General), which
favoures test cases that cover the most procedures besides the
changed ones. Here, the assumption was that test cases with

higher overall coverage are better.
We improve the General strategy in such a way that we

prioritize test cases not by how much they cover from all the
procedures but from those procedures that are members of
some of the large dependence clusters. The idea behind this
strategy is that if clusters capture some important computation
and many changes are applied to it, then tests that are
somewhat specialized to cover mostly the clusters could be
more effective. Other similar strategies are possible as well
(e. g. extending the change set with the impact set), with which
we plan to deal with in the future.

D. Measurement tools overhead

We can observe that SEA impact analysis incurs some time
overhead compared to the original build process.

The basis of our experiment is the analysis of the relevant
revisions (those that contain relevant changes at procedure
level) of the system, and the computation of the corresponding
impact sets. In parallel to the build process, we compute the
ICCFG graph. Additionally, we need to execute the regression
tests as well. In Table II, we can see the times typically
required for the mentioned steps for one revision (on an Intel
Xeon X5670 (12 core 2.93 GHz) machine with 96 GB RAM).

Table II
APPROXIMATE EXECUTION TIMES OF THE ANALYSES

Activity Time (depends on revision)
Build 20 minutes
Build with static analysis 1.5–2 hours
Regression tests 16–20 minutes
Change set SEA computation 1–10 minutes
Complete SEA computation 5 hours
Prioritization under 1 minute

As it can be seen, the time required to compute the static
information increases the build time, but it is still much better
than any more accurate analysis method such as computing
program slices based on a dependence graph. In fact, many
other algorithms or tools would probably be unable to com-
plete the analysis at all.

The time required for computing the SEA sets varies in a
wide range, which is obviously due to the different number
of changed procedures per revision. The whole analysis also
includes the execution of additional tools such as the extraction
of the changed procedure names for example, but the costs of
these are negligible.

V. RESULTS

A. Impact analysis on WebKit

The first step to perform the impact analysis experiments
was to determine the potentially interesting revision pairs, as
explained in the previous section. For the final 240 revision
pairs we performed ICCFG computation on the first element
of each pair (the failure inducing revision). SEA sets were
then computed for each changed procedure at these revisions,
which resulted in the total of 3792 sets.

We computed individual impact sets for the changed proce-
dures in order to be able to compute the prediction ratios for

individual procedures, but we also computed a union of these
SEA sets to show overall percentages for the revisions.

To answer our first research question (RQ1) we essentially
needed a series of two measures: the sizes of the impact sets
and the corresponding prediction capabilities. Both measures
can be expressed in percentage, relative to the program size
and the ratio of correctly identified procedures, respectively.

We present the data about set sizes and prediction on an
XY-plot in Figure 2. This plot contains 3792 data points which
correspond to the individual procedures at the failure revisions
from the identified pairs (x axis is the prediction, y is SEA
set size).

Figure 2. Relating prediction capability and impact set sizes for individual
procedures.

We can observe a number of different things on this plot.
First, it would be beneficial to have many small impact sets
with high prediction (towards the lower right corner). If we
produced a large number of randomly selected subsets of the
procedures in different sizes, theoretically the expected values
of this data would be by the diagonal (assuming uniform dis-
tribution of the selection and the defects). Therefore anything
below the diagonal is good, and it can be determined that
74% of the data points are below the diagonal, so we can
conclude that the results are promising as far as prediction
capability is concerned. We can also observe that a lot of
impact sets that produce good prediction are pretty large, but
more interestingly there are two clearly distinguishable vertical
stripes around 30% and 45%, which hint at the existence of
large dependence clusters. We will discuss impact set sizes
and their relationship to dependence clusters later.

There is, however, an issue with investigating the impact
sets this way, using individual procedures. Namely, we cannot
identify which procedure(s) in a change set actually caused the
new failure, nor the fixing procedure(s), so it is a better com-
parison if we calculate impact sets together for all procedures
in a change set (by computing their union). Figure 3 shows
a similar XY-plot but with single data points per revision
pair (there were 240 data points for this graph). An obvious
difference is that we get fewer results with low prediction
capability, which can be explained by the fact that we are using
unions of impact sets, so if at least one of the sets captures
any of the changes we get a positive result. For the following
two figures we also used this revision-based data set.

Figure 3. Relating prediction capability and impact set sizes for complete
change sets.

The prediction numbers vary greatly within the whole range
0-100%; the average is 83.9% with a deviation of 27.7%.
Figure 4 shows the distribution for this data with one hundred
value ranges. There are several cases where the prediction is
0% or close to it, and we can observe different values at all of
the ranges, but in most of the cases the prediction was high,
mostly 100%. Low prediction values, even complete misses
are expected to occur in a few cases for a number of reasons:

• source code analysis is not completely accurate
• procedures in the impact set may get deleted eventually
• defects may be corrected by introducing new procedures,

which cannot be predicted

Figure 4. Prediction histogram (number of revisions shown on logarithmic
scale)

Based on these data, we can conclude that overall the
prediction was quite successful, albeit in many cases with a
relatively large impact set.

B. Change sets, impact sets, and clusters

We have seen that the SEA set sizes were not evenly
distributed but they showed some grouping behavior around
specific values, which leads us to the question of dependence
clusters in WebKit. Considering the sizes of set of all impact
sets, more than half of them were below 1% of the system size,
i. e. the number of all procedures in the system. The average
size of impact sets was 17203, which is just below 19% of
the system size.

For answering the first part of our second research question
(RQ2-A) we first determined the most visible dependence
clusters. We started off by visually investigating the Monotone
Size Graph based on computing SEA impact sets for all
procedures in the system (Figure 5, revision 91555 was used
for this purpose). By visual inspection we identified three
clearly distinguishable clusters that we marked by, from left
to right, Cluster1, Cluster2 and Cluster3.

Figure 5. MSG graph of SEA impact set sizes. Grey boxes represent the
three clusters, black regions are non-cluster sets.

To obtain the graph shown in the figure we performed an
automatic processing of the raw data in the following way:

• We did not consider impact sets smaller than 1% of the
system as candidates for inclusion in any cluster. Impact
sets of the same size were expected to be equal if their
size is large enough, so small ones had to be filtered out in
order to get reliable results. We checked the three largest
groups of impact sets of the same size and found that
the elements of each group were equal, so “same size”
turned out to be a perfect indicator of equality for SEA
impact sets, similarly to that of PDG-based slices [6].

• Next, we allowed a tolerance of 0.1% in the size of the
impact sets (about 92 procedures) to belong to the same
cluster. The impact sets of size within this tolerance have
most of their elements in common, so it is reasonable to
regard them as “equal” for the purposes of the present
investigation.

This way, we can partition the MSG into 7 distinct regions, the
three clusters and the regions around them. We investigated the
sizes of the clusters and the corresponding SEA set sizes in
detail. The first two columns of Table III show these sizes both
in the number of impact sets of these regions and in percentage
relative to all impact sets (rows are listed in the order of
increasing impact set sizes). The largest cluster takes almost
1/3 of all impact sets while the sum of all three is 41.53%,
which means that almost half of all impact sets reside in one
of the large clusters. The last column of the table shows the
impact set sizes for these three clusters. Since there are about
92000 procedures in WebKit we can conclude that although
there are a lot of large impact sets, the largest one contains
only about half of the whole program.

The second part of this research question (RQ2-B) dealt
with the defect correcting change sets captured by impact

Table III
DEPENDENCE CLUSTER SIZES

All Percent Predicted Percent SEA size
procedures procedures

Region1 49623 54.42% 360 17.81% –
Cluster1 8028 8.80% 180 8.91% 28395
Region2 1127 1.24% 28 1.39% –
Cluster2 2981 3.27% 156 7.72% 31720
Region3 1040 1.14% 15 0.74% –
Cluster3 26864 29.46% 1239 61.31% 41892
Region4 1530 1.68% 43 2.13% –
Sum 91193 100.00% 2021 100.00% –

analysis. In other words, we wanted to find out what is typical
to those changes that correct failures: are they mostly elements
of impact sets belonging to a cluster or not? For this, we
filtered the list of all impact sets to those which captured at
least one fixing change at the corresponding failure fixing
revision. There were 2021 such procedures altogether. The
third and fourth data columns of Table III show how many
of these filtered impact sets belonged to the identified regions
of the MSG. We can observe that in terms of percentage all
clusters contain more impact sets from the filtered set, most
notably Cluster3, which doubled. Altogether, 77.93% of defect
predicting impact sets belong to some of the big clusters. This
difference to the overall percentage of 41.53% is mostly due
to the relatively few small impact sets kept by this filtering
(there are more large predicting sets than small ones).

To summarize, almost half of all of the impact sets belong
to big clusters while significantly more, over 3/4 of failure
predicting impact sets belong to this category.

C. Improved regression test selection and prioritization

The third research question (RQ3) concerned the perfor-
mance of selective regression testing. Our hypothesis for
the impact set-based improvement was that clusters could
represent some distinct computation, and if there are test
cases present in the system specialized for these computations
then prioritizing based on the clusters’ coverage could be
more effective than a general whole program coverage based
approach.

We performed test selection and prioritization with the
method described in the previous section using the three
clusters individually and using their union as well. Altogether
70 revisions have been measured this way (as in our earlier
experiments [3]), and the average inclusiveness values were
calculated for two prioritization thresholds, 1% and 20%.
There were about 25000 test cases in this period, so these
thresholds mean a maximum of 250 and 5000 test cases
selected, respectively (less if the change based selection is
smaller). Table IV shows the results of these measurements.

Table IV
REGRESSION TEST PRIORITIZATION INCLUSIVENESS

TCs General Cluster1 Cluster2 Cluster3 Cluster union
1% 5.13% 5.64% 8.21% 4.36% 4.36%

20% 40.00% 41.54% 61.79% 40.00% 40.26%

The original inclusiveness of the General strategy was
5.13% and 40.00% for the two thresholds. We could not
observe any significant improvement with the cluster based
prioritization, except for the case when we used Cluster2 for
this purpose. The union of the clusters did not show any
improvement either.

We investigated what could be the reason for Cluster2
showing an inclusiveness improved by 55–60%? To do this,
we investigated the relationships between the different final
prioritized test lists, whether there were any significant differ-
ences between them. We summarize our findings in Table V,
where T1, T2 and T3 denote the final test lists prioritized using
Cluster1, Cluster2 and Cluster3, respectively.

Table V
PRIORITIZED TEST SETS’ RELATIONSHIPS

TCs S1 S2 S3 S4 S5 S6 S7

1% (228) 30 48 35 6 1 19 173
20% (3531) 869 1917 879 173 163 1211 1278

where

S1=|T1 \ (T2 ∪ T3)| S2=|T2 \ (T1 ∪ T3)| S3=|T3 \ (T1 ∪ T2)|
S4=|(T1 ∩ T2) \ T3| S5=|(T2 ∩ T3) \ T1| S6=|(T1 ∩ T3) \ T2|
S7=|T1 ∩ T2 ∩ T3|

For the two thresholds, we show the number of elements in
the set intersection regions among the test sets for the three pri-
oritization strategies (average values of the 70 measurements
are shown). The numbers in parentheses after the thresholds
show the average selection sizes. If we focus our attention on
the strategy based on Cluster2, it can be clearly seen that its
test set seems to be much more unique than that of the other
two clusters. First, set S2 is bigger than the other two by about
50% for the smaller selection and 1.2 times for the bigger one.
Also, the intersection of T1 and T3 (S6) is much bigger than
the other two pairwise intersections with T2.

We did not verify the actual causes for these findings but
we speculate that Cluster2 could represent some kind of a
special computation with its dedicated test case subset, so
this could explain why prioritizing based on this cluster could
provide higher inclusiveness than using a general approach. In
the future, we plan to investigate the internal structure of this
cluster and the related test cases to verify this explanation and
would like to compare our approach to others [28].

D. Threats to validity

There are several threats to the validity of the presented
method and experiment, apart from the obvious ones that
regard the potential defects in the impact analysis and other
supporting measurement tools. Parts of the toolset (including
the SEA implementation) has been used, however, in a number
of previous research projects so we are confident in the validity
of the implementation.

There are some known deficiencies of the measurement
tools nevertheless. Currently we can analyze only C/C++ code,
furthermore there could be some issues with certain language
constructs like template instantiation. We tried to minimize the
effect of these weaknesses by removing all those measurement

points (complete revisions) from the investigation that could
be compromised by this limitation (as discussed earlier).

When verifying the prediction capability rate of the impact
analysis, we could not precisely know which atomic changes
caused the failure and the fix since

1) we aggregated the changes and the dependences to
procedure level, and

2) we could not take into account that a revision may
implement more than one functionality at the same time.

This means that we assumed that all changes at a given
revision belong to a failure inducing change or a fix.

Our method for finding suitable revision pairs neglects the
fact that the fix can be done in more steps during the failing
period and the final fix made when the status changes to
Passed. The Bugzilla-based matching method was mostly
manual so this way we could of course miss interesting
revisions, and the resulting pairs could not be complete in
any sense and it is not clear to how much extent the results
derived from them are generalizable.

The analysis of the results in connection to the clusters,
defects and testing are based on only one system with only
three clusters in it. Hence these results should be generalized to
other systems with caution. However, the basic findings about
the presence of the clusters are aligned with other research.

Finally, as with all other static code analysis techniques,
our method cannot guarantee complete coverage of possible
dependences due to various issues related to the dynamic
nature of the languages, and other semantic, conceptual or
logical dependences in the software system.

VI. CONCLUSIONS

In this paper we dealt with the Static Execute After
(SEA) relation, a static code dependence analysis method.
Our investigations centered around change impact analysis,
dependence cluster identification, and regression test selec-
tion for the WebKit software system. We constructed three
research questions for which we sought and gave answers
for. First we collected a sizeable amount of historical data
about actual defects and the corresponding changes (defect
introduction and fixing), and assessed the applicability of
the SEA relation to change impact analysis of the defect
introducing changes with respect to the required changes
to fix the defect (prediction capability). We found it to be
satisfactory in general (with 83.9% prediction capability on
average), albeit the produced impact sets were often quite large
(RQ1). Although precise impact sets are often useful even
if their size is large (e. g. for automated regression test suite
reduction), they are detrimental when manual processing may
be necessary (e. g. in change propagation). This observation
led us to investigate the dependence clusters that are formed
during SEA computations. It turned out that there are large
clusters in the code (RQ2-A) and they are indeed responsible
for large impact sets (42% of the sets are in such clusters
whose sizes are about 1/3 of the program size), so impact set
size reduction methods should consider dependence clusters.
The examination of the relationship between defect predicting

change sets and dependence clusters showed that such change
sets even more often, in 78% of the cases, reside inside clusters
(RQ2-B). Finally, we worked on improving formerly defined
regression test selection and prioritization methods by taking
into account SEA impact sets of changes (those belonging to
the clusters, essentially) in addition to the changes themselves.
We were able to improve inclusiveness of the test prioritization
algorithm by over 55% with one of the impact sets belonging
to a specific cluster (RQ3). This is a preliminary result and
needs further investigation to find out the universality of the
effect, reasons for it and possible practical applications.

There are numerous possible directions for future work.
Our ultimate goal is to provide impact analysis and test
optimization tools for WebKit developers, so we plan to
enhance the implementations further to be integrated into the
development processes. Our research findings in this paper
are expected to be generalizable to other systems as well,
so we plan to verify them in other real life, industrial envi-
ronments. Further examinations of cluster properties seem to
be interesting, including examining the relationships between
clusters and their SEA sets, finding causes for their formation
and opportunities for removal. To be more suitable for other
impact analysis applications, we plan to develop methods to
reduce the size of the impact sets. The research on regression
test selection and prioritization is clearly another interesting
topic for further research. We plan to analyze the relationships
between the internal structure of the clusters, the associated
tests and the resulting inclusiveness. We have further ideas
for additional prioritization strategies, which we also plan to
implement and evaluate.

ACKNOWLEDGEMENTS

The authors would like to thank Attila Kerék, László Langó,
Csaba Osztrogonác, John Taylor and Béla Váncsics for their
valuable supporting work for this research. This research was
supported by the Hungarian national grants GOP-1.1.1-11-
2011-0049 and OTKA K-73688.

REFERENCES

[1] M. Acharya and B. Robinson, “Practical change impact analysis based
on static program slicing for industrial software systems,” in Proceedings
of the 33rd ACM SIGSOFT International Conference on Software
Engineering (ICSE), 2011, pp. 746–765.

[2] Á. Beszédes, T. Gergely, J. Jász, G. Tóth, T. Gyimóthy, and V. Ra-
jlich, “Computation of static execute after relation with applications to
software maintenance,” in Proceedings of the 2007 IEEE International
Conference on Software Maintenance (ICSM’07), 2007, pp. 295–304.

[3] Á. Beszédes, T. Gergely, L. Schrettner, J. Jász, L. Langó, and T. Gy-
imóthy, “Code coverage-based regression test selection and prioritization
in the WebKit system,” 28th IEEE International Conference on Software
Maintenance (ICSM’12). Accepted for publication, manuscript available
upon request.

[4] J. Bible, G. Rothermel, and D. S. Rosenblum, “A comparative study of
coarse- and fine-grained safe regression test-selection techniques,” ACM
Transactions on Software Engineering Methodologies, vol. 10, no. 2, pp.
149–183, 2001.

[5] D. Binkley and M. Harman, “Identifying ’linchpin vertices’ that cause
large dependence clusters,” in Ninth IEEE International Working Con-
ference on Source Code Analysis and Manipulation (SCAM ’09), 2009,
pp. 89–98.

[6] ——, “Locating dependence clusters and dependence pollution,” in Pro-
ceedings of the 21st International Conference on Software Maintenance
(ICSM’05), 2005, pp. 177–186.

[7] D. Binkley, M. Harman, Y. Hassoun, S. Islam, and Z. Li, “Assessing
the impact of global variables on program dependence and dependence
clusters,” Journal of Systems and Software, vol. 83, no. 1, pp. 96–107,
2010.

[8] S. A. Bohner and R. S. Arnold, Eds., Software Change Impact Analysis.
IEEE Computer Society Press, 1996.

[9] J. Buckner, J. Buchta, M. Petrenko, and V. Rajlich, “JRipples: A tool
for program comprehension during incremental change,” in IWPC, 2005,
pp. 149–152.

[10] Á. Hajnal and I. Forgács, “A demand-driven approach to slicing legacy
COBOL systems,” Journal of Software: Evolution and Process, vol. 24,
no. 1, pp. 67–82, Jan. 2012.

[11] M. Harman, D. Binkley, K. Gallagher, N. Gold, and J. Krinke, “De-
pendence clusters in source code,” ACM Transactions on Programming
Languages and Systems, vol. 32, no. 1, pp. 1:1–1:33, Nov. 2009.

[12] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing using
dependence graphs,” ACM Transactions on Programming Languages
and Systems, vol. 12, no. 1, pp. 26–61, 1990.

[13] J. Jász, “Static execute after algorithms as alternatives for impact
analysis,” Peryodica Politechnica, pp. 163–176, 2008.

[14] J. Jász, Á. Beszédes, T. Gyimóthy, and V. Rajlich, “Static execute
after/before as a replacement of traditional software dependencies,” in
Proceedings of the 2008 IEEE International Conference on Software
Maintenance (ICSM’08), 2008, pp. 137–146.

[15] J. Jász, L. Schrettner, Árpád Beszédes, C. Osztrogonácz, and T. Gy-
imóthy, “Impact analysis using Static Execute After in WebKit,” in
Proceedings of the 16th European Conference on Software Maintenance
and Reengineering, 2012, pp. 95–104.

[16] B. Li, X. Sun, H. Leung, and S. Zhang, “A survey of
code-based change impact analysis techniques,” Software Testing,
Verification and Reliability, pp. n/a–n/a, 2012. [Online]. Available:
http://dx.doi.org/10.1002/stvr.1475

[17] Z. Li, M. Harman, and R. M. Hierons, “Search algorithms for regression
test case prioritization,” IEEE Transactions on Software Engineering,
vol. 33, no. 4, pp. 225–237, 2007.

[18] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic, “An Information
Retrieval Approach to Concept Location in Source Code,” in The 11th
IEEE Working Conference on Reverse Engineering (WCRE’04), 2004.

[19] G. Rothermel and M. J. Harrold, “Analyzing regression test selection
techniques,” IEEE Transactions on Software Engineering, vol. 22, no. 8,
pp. 529–551, 1996.

[20] G. Rothermel, M. J. Harrold, J. von Ronne, and C. Hong, “Empirical
studies of test-suite reduction,” Software Testing, Verification and Reli-
ability, vol. 12, no. 4, pp. 219–249, 2002.

[21] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prioritizing
test cases for regression testing,” IEEE Transactions on Software Engi-
neering, vol. 27, pp. 929–948, 2001.

[22] B. G. Ryder, “Constructing the call graph of a program,” IEEE Trans.
Softw. Eng., vol. SE-5, no. 3, pp. 216–226, May 1979.

[23] “The WebKit open source project,” http://www.webkit.org/, last visited:
2012-05-03.

[24] “WebKit Bugzilla homepage,” https://bugs.webkit.org/, last visited:
2012-05-04.

[25] L. White, K. Jaber, and B. Robinson, “Utilization of extended firewall
for object-oriented regression testing,” in Proceedings of the 21st IEEE
International Conference on Software Maintenance (ICSM’05), 2005,
pp. 695–698.

[26] W. E. Wong, J. R. Horgan, S. London, and H. Agrawal, “A study of
effective regression testing in practice,” in Proceedings of the Eighth
International Symposium on Software Reliability Engineering, 1997, pp.
264–274.

[27] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur, “Effect of
test set minimization on fault detection effectiveness,” in Proceedings
on the 17th International Conference on Software Engineering, 1995,
pp. 41–50.

[28] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: A survey,” Software Testing, Verification and Reliability,
vol. 22, no. 2, pp. 67–120, 2012.

[29] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller, “Mining version
histories to guide software changes,” IEEE Trans. Softw. Eng., vol. 31,
no. 6, pp. 429–445, 2005.

