
Adjusting Effort Estimation Using Micro-Productivity Profiles
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Abstract

We investigate a phenomenon we call micro-productivity decrease, which is expected to be found
in most development or maintenance projects and has a specific profile that depends on the project,
the development model and the team. Micro-productivity decrease refers to the observation that the
cumulative effort to implement a series of changes is larger than the effort that would be needed if we
made the same modification in only one step. The reason for the difference is that the same sections
of code are usually modified more than once in the series of (sometimes imperfect) atomic changes.
Hence, we suggest that effort estimation methods based on atomic change estimations should in-
corporate these profiles when being applied to larger modification tasks. We verify the concept on
industrial development projects with our metrics-based machine learning models extended with sta-
tistical data. We show the calculated micro-productivity profile for these projects could be used for
effort estimation of larger tasks with more accuracy than a naive atomic change oriented estimation.

1 Introduction

Software estimation is often required in development and maintenance tasks in various forms [2, 11].
The prediction of the required effort to implement a specific change is directly related to software costs,
hence it is very important. However, estimation based purely on experience is typical, and little or no
systematic approaches are often used. This is partly due to the very complex nature of the problem: the
required effort depends on a number of parameters which are difficult to quantify. Usually it is easier to
get an accurate estimation of a smaller change than of a larger change task (a series of smaller changes).
Hence, the estimators often predict a larger task by aggregating a series of smaller change estimations [3].
Different estimation models (such as those based on statistical models or employing machine learning)
also tend to scale poorly, i.e., they may be fairly accurate in the short term, but become less and less so
when they are applied for longer modification periods. Moreover, the volume of example data available
to automatic prediction models using historical data is much bigger related to atomic changes than to
larger change tasks. Throughout the paper we will distinguish the following effort estimation types:

• ‘Change task estimation’ This refers to the common situation when a project manager or a
developer needs to estimate the cost of implementing a specific change request, and generally, the
manager is not interested in the individual costs of performing atomic changes. For this type of
estimation, global information about the organization and the project is required also.

• ‘Atomic change estimation’ In this case, we are interested in the cost of implementing a unit,
general atomic change. This kind of estimation is important for short term project control, but in-
sufficient for change task estimation (typically simpler methods and less historic data are enough).

• ‘Atomic change sequence estimation’ When the same software entities are changed in a series
of subsequent steps of atomic changes, we can aggregate the individual cost estimates up to the
estimated size of the change in order to approximate the cost of the whole change sequence. Note
that the expected extent of the change needs to be estimated separately.
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However, we argue that for the latter the notion of what we call micro-productivity decrease,1 should
be taken into account, otherwise the aggregation will be imprecise and provide false estimations of the
whole change task. Micro-productivity decrease is an observation that the cumulative effort to implement
a series of changes is larger than the effort that would be needed if we made a single modification to
achieve the same result in one step. The reason for the difference is that the same sections of code are
usually modified more than once in the series of (sometimes imperfect) atomic changes. (Note, that this
can be observed in any type of creative work, not only software development.)

This phenomenon is undoubtedly found in most development or maintenance projects, moreover,
it seems to have a specific profile that depends on the type of the system, the development model, the
composition of the team, and other factors, but it has to be typical for the current project. In this work,
we propose to use this profile – Micro-Productivity Profile (MPP) – to adjust the estimation values
got for atomic change sequences in order to get more accurate values at any desired change task size.
Essentially, MPP shows how much repeated modifications to distinct lines of code are to be expected
– in other words, how much the micro-productivity is decreasing by the length of the atomic change
sequence. We found in our subject projects that, on average, after merely 8 atomic modifications the
micro-productivity halves.

We determined a method to formulate MPP, then applied it to our prediction models, which are
based on machine learning, and can predict the net developer time for modifying a single code line. In
our machine learning model [13], we employ various product and process metrics as predictors, and in
the present work we extend it with statistical values to be able to predict change sequences, and not only
an atomic change as in the previous version. We combine this model with MPP by taking explicitly the
decrease in micro-productivity into account, and verify the effect of this enhancement to the prediction
accuracy in an empirical study. We make the following contributions in this paper:

1. We apply our machine learning based effort estimation method from previous work on an extended
data set.

2. We introduce the notion of Micro-Productivity Profile, and present the way we have calculated it
for our subject projects.

3. Finally, we compare the different prediction approaches – learning models with and without MPP
– and check which one is the closest to the actual efforts.

The rest of the paper is organized as follows. Section 2 presents the micro-productivity decrease
phenomenon through an example. Section 3 defines the MPP and describes its use in estimation models.
Section 4 presents the machine learning that we used to predict the modification effort. In Section 5,
we describe our experimental study using machine learning method and MPP. Results are reported in
Section 6. Reviewing related work in Section 7, we conclude and list our future plans in Section 8.

2 Motivating Example

To understand the motivation for our work, let us consider the following example, which has been taken
from one of the real projects we used in our experiment. The example represents two changes. The initial
code can be seen in Figure 1 (a), while Figure 1 (b) and Figure 1 (c) shows the modified parts of the first
and the second changes.

1We use the term micro-productivity related to atomic developer changes as opposed to what we call macro-productivity,
which refers to the investigation of productivity on a larger scale, for a whole organization, its processes, people, a project or a
technology, for instance.
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...

83: if (!dataProvider.getDataMap().containsKey(tagId)) {

84: dataProvider.getDataMap().put(tagId,

new ArrayList<DataPoint>());

85: }

86:

87: dataProvider.getDataListForTag(tagId).

add(new DataPoint(xValue, yValue));

(a)

...

83: initDataMap();

84:

85: dataProvider.getDataListForTag(tagId).

add(new DataPoint(xValue, yValue));

(b)

...

83: dataProvider.addDataForTag(tagId,

new DataPoint(xValue, yValue));

(c)

Figure 1: The (a) original and the changed code after (b) the first and (c) the second modifications.

The first change moved the if statement (lines 83-85) to the initDataMap() method, so the if

statement was changed to the method call. The aim of this solution was to decrease the number of
duplicated code instances in the code. The second change merged the initialization and the addition as
a refactoring operation. This operation increases the maintainability, as the developers do not have to
care about calling the initialization method manually. A new method was declared with the name of
addDataForTag(), which performs the initDataMap() method call in case of necessity.

During the first change 3 lines were removed and 1 line was added, while during the second change 2
lines were removed and 1 line was modified. It could be counted as 7 line modifications, however, there
were lines which were modified twice. If the duplicated code elimination and the refactoring operation
were executed in one step, only 4 lines would be removed and 1 line would be modified. In other words,
we could speculate that higher programmer productivity can be obtained in short periods (7 lines) than
in a longer period (5 lines). This is due to the natural process of incrementally creating something new,
sometimes performing atomic changes superfluously. This, of course, cannot be avoided, since there is
no such thing as perfect development, but we argue that this phenomenon should not be neglected in
software cost estimation.

In the following, we will refer to this observation as micro-productivity decrease We will define
the modification effort, the Modification Complexity (MC) metric as the ratio of the development time
and the code churn size (the number of modified, added, and deleted lines), and with the help of this
metric, the Micro-Productivity Profile (MPP) will be defined as well. Note when investigating micro-
productivity decrease, the time required for individual modifications will always sum up, while the net
amount of modifications will be subjected to the effect above (the total number of changed lines being
less than or equal to the sum of the atomic changed lines), hence it will affect LMC similarly.

3 Micro-Productivity Profile and its use in effort estimation

3.1 Definitions

First, we introduce the modification effort metric, which will be our representation of the effort (devel-
oper time) required to perform a single or multiple changes on a program element such as a file, i.e., to
modify one line in a given subsequent revision (modification) of that element. This metric, the Modifi-
cation Complexity (MC) is the ratio of the net development time and code churn size for a subsequent
change of a file.2 More formally, MC is defined for the ith modification of file F as:

MC(F, i,x) = time(F,i,i+x)
diff (F,i,i+x) ,

2Note, that this metric does not take the time spent on other activities into account, like reading documentation, examining
dependencies with other files, which may contribute to the overall cost.
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where

• x is the number of subsequent atomic changes,

• time(F, i, i+ x) is the net development time (DT) spent on F between the ith and (i+ x)th versions
of F in minutes,

• diff (F, i, i+ x) is the size of the code churn between the ith and (i+ x)th versions of F in lines.

Now we define Micro-Productivity Profile (MPP) – computed as a median of all different modifica-
tions with the same length in a project – as a function of x, which is the number of subsequent atomic
changes to perform a bigger change task, and it shows the ratio of decrease in micro-productivity (in-
crease of MC) with respect to the case when the modification is done in one step. In other words, MPP
shows how much longer the modification of a single line takes – given the atomic change sequence length
as a parameter – than if the change sequence had been done in one single step. More formally:

MPP(x) = median∀F,∀i
MC(F,i,x)
MC(F,i,1) ,

where

• x is the number of subsequent atomic changes,

• the median values (to avoid over-influence of outliers) are calculated from MC of every modifica-
tion of every file,

• 1 ≤ i ≤ max(F)− x, where max(F) is the last modification of file F .

3.2 Using MPP in effort estimation

Here, we will briefly describe a possible approach to use MPP in effort estimation of a larger development
or maintenance task. Suppose that a project manager needs to assess the amount of developer time
for completely implementing a specific change request (rather than being interested in the effort of a
single modification only) – this is what we called ‘Change task estimation’. In this situation, after
concept location, the next task is to perform an impact analysis to determine the extent of the required
modification [12].

Often only the prediction of the cost performing a smaller modification or an atomic change is re-
liable, so the manager get the estimation of the whole change task by simply multiplying the effort of
an atomic change with the estimated number of the necessary modifications, which relates to the size of
the change impact set and depends on the development process model. But the problem is that atomic
modifications do not sum up due to the MPP effects.

It is important to stress that in this scenario the amount of atomic changes required (i.e., the size of the
change impact and the required steps to perform the change task) has to be determined by the manager
separately based on program analysis. We use this length as a parameter in our estimation framework.
In a situation when the manager has access to more complex project data (like a series of past change
requests) that can be used for predicting the effort of the change as well, the method of adjusting atomic
estimation using MPP has no function, but a complex change task-based estimation would be used.

MPP may be applicable for a number of other purposes as well, such as to define customized de-
veloper profiles that can be helpful in project resource planning/allocation. Customized profiles could
also be defined for different project types, process models, or organizations. We do not deal with these
options in this paper, but plan to investigate them in the future.
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4 Machine learning based estimation

4.1 Estimation models

In previous work [13], we presented a framework and an effort estimation model based on a complex
set of product and process metrics as predictors. With that approach we could answer the question “how
many minutes will a single line change take in the next modification of a file on the average?”

However, if the effort of a complex modification is to be estimated, this model is not suitable. If the
manager estimates the possible time of the modification, due to the sequence of imperfect modifications,
the real modification time is usually more than the estimated one. In order to get an accurate cost
estimation by aggregating of the atomic changes cost, micro-productivity decrease should be taken into
account. In order to investigate this phenomenon, we construct an extended estimation model, which can
estimate the effort not only for the next modification, but for the next several modifications.

Figure 2: Learning model (LM) illustrated chronologically.

Figure 2 demonstrates the machine learning of the modification effort in the case of a file. The
x axis represents the time, with nine modification points of the file. The figure depicts a snapshot at
measurement point 7, previous measurement points represent the past, while subsequent measurement
points represent the future. The training data is always calculated from the past (on interval 1-7), e.g.,
predictor values are generated using the information available between points 1 and 5 and target values
are obtained from points 5 to 7. The predictors are calculated from the first versions of the file (on interval
1-5), while the targets are calculated from the next modifications based on interval 5-7.

This way, the learning model (which is based on the training set) will be able to forecast the modifica-
tion complexity for the next modification. In the current example, it means that the available information
from interval 1-7 can be considered as a predictor set to predict the modification effort of the next change,
which gives a forecast to future point 8.

Furthermore, this learning model is extended with a statistical function to give a forecast to not only
the next one but the subsequent modifications. So, we introduce 2 kinds of estimation methods:

1. the naive atomic change based estimation method (referred to as EM): we assume constant effort
during a series of atomic changes, where the effort is estimated by the learning model,

2. the improved atomic change based estimation method (referred to as EM(x)): the naive atomic
change based estimation method is improved with MPP(x) statistical function to be able to con-
sider the productivity decrease (EM(x) = EM ∗MPP(x)).
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4.2 Predictors

In our previous paper [13] we introduced a predictor set for machine learning to estimate modification
complexity. Now, we use the same predictors for effort estimation. Figure 3 shows the used product and
process metrics.

Product metrics:
LLOC Logical Lines Of Code: Total non-empty and non-

comment lines of the class.
C&K met-
rics [4]

DIT (Depth of Inheritance Tree), NOC (Number Of
Children), CBO (Coupling Between Object Classes),
RFC (Response set For a Class), WMC (Weighted
Methods per Class), LCOM (Lack of COhesion in
Methods).

Code Churn The number of added, deleted or modified lines, cal-
culated from the SVN by comparing the previous ver-
sion of the class with the current version.

Process metrics:
TT Task Time: Estimated development time of a task by

the project manager in hours (in order to consider the
difficulty of the task in prediction). It is aggregated
into 4 groups: very short, short, medium, long.

DEP Developer’s Experience in Programming: The level
of experience of the developer according to the
project manager, aggregated into 4 groups: beginner,
junior programmer, senior programmer, leader pro-
grammer.

NFA Number of File Accesses: Shows how many times a
developer accessed (got back to) a file during a given
modification.

NDF Number of Developers of the File: Shows how many
developers have modified a file before.

DT Development Time: The net development time of a
file – it is calculated by monitoring the development
of the file –, it shows how many minutes a modifica-
tion of a file actually takes between two revisions.

Figure 3: The used product and process metrics.

While product metrics are based on classes, process metrics are based on files, unambiguous associ-
ation between classes and files was necessary. We also used the Revision Number (RN) as a metric in
prediction, which shows the number of the revision when the file was modified, essentially the represen-
tation of the time. We have 3 projects with 3 sequences of revision numbers in different repositories, and
they were standardized by using sequential numbering starting with 1.

Finally, we define the metric Modification Complexity (MC) as the ratio of development time and
size of code churn for the next changes of the class. MC means how many minutes one line modification
takes on the average during the next changes of the class. The target of our prediction model is the
LMC: we defined the levels of modification complexity (LMC) by grouping the MC values into three
classes: low, medium, high. We used Weka [14] to estimate the LMC from the predictors. Three kinds
of learning methods were used: J48 (C4.5 algorithm), RBFNetwork (a normalized Gaussian radial basis
function network), and ClassificationViaRegression (a classification using regression methods).

5 The Experimental Study

5.1 The Subject Projects

We gathered data from 3 industrial R&D projects (a small, a medium and a large) in the area of agri-
culture, an off the shelf chart viewer component, and telemedicine. SCM-map is a small map viewer
portlet project under GateIn Portal3 which also integrates Geoserver services, an open source map server
implementation. Chart is a Flot based JSF implementation, and EE-Oryx is a visual process template
editor for the web which is based on Oryx4. We used these three projects together as a whole for our
experiments to have more data from which to predict.

The initial version of the project files was generated, this included default implementations of most
of the methods. For this reason, during development the insertion of completely new sections of code

3http://www.jboss.org/gatein
4http://bpt.hpi.uni-potsdam.de/Oryx/
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were relatively rare, most of the file modifications involved editing and restructuring existing code. In
Table 1, the main characteristics of the projects can be seen.

Project Classes Nr. of developers Work Days Nr. of revisions Nr. of file modifications

SCM-map 14 → 40 2 21 140 25
Chart 93 → 107 2 20 72 201
EE-Oryx 1380 → 1418 2 16 285 145

Total 497 371

Table 1: Metrics representing the main characteristics of the projects.
The projects were managed at the same company and each project had two different developers

allocated to them. Note, that during the development and maintenance the SCM-map project, there were
only 25 usable file modifications, since the source code base contained a great amount of XML, HTML
and JavaScript code, from which we were unable to extract product metrics (only from Java).

5.2 The Framework

In this experiment we extend the framework introduced in our previous work [13]. Our framework is
a general purpose framework, which can be applied for prediction of different kinds of maintenance
properties from different kinds of metrics. Figure 4 shows the extended framework.

Figure 4: The architecture of the framework.

On each workstation, a Productivity Plug-in was installed into the Eclipse development environment,
which logs the development-related low level information (e.g. active file, perspective, developer, task,
elapsed time, etc.). Each log is then uploaded to the Productivity Log Server. Before starting the devel-
opment of the project, the project manager estimated some project metrics (e.g. task time, developers’
experience, etc.). Process metrics are calculated from the Productivity Log Server, while the product
metrics are obtained using the Columbus tool [6], which analyzes the source code retrieved from the ver-
sion control server. The framework collects, processes, and aggregates the metrics which serve as input
to the Weka [14] machine learning tool, which finally gives estimation models to predict the maintenance
effort. We determined the MPP from the collected code churn size and the development time in case of
each file in each modification.

During the examined commits to the SVN repository, 371 Java file modifications were made. Adding
or removing of a whole file was not considered, only file modifications. There were a lot of file modi-
fications during the experiment, but we can measure static product metrics for only Java files. For each
Java file modification, we collected the C&K and LLOC product metrics calculated by Columbus. These
metrics have proved to be useful for prediction in software development area [8]. They were processed
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in three ways to be able to follow their change scale, namely: 1) the value of the metric in the given revi-
sion, 2) the relative value of the metric in the given revision compared to its first version, 3) the relative
value of the metric in the given revision compared to its previous version.

We determined the code churns from the SVN repository, then the process metrics from the Pro-
ductivity Log Server were related to the SVN repository changes: this way the file modifications were
connected to both the product and the process metrics. Finally, we calculated the MC values from a
product and a process metric (DT/code churn) for the training set of the machine learner. However, since
there were file modifications among the 371 cases where the file was not modified again at all, 254 file
modifications remained to predict LMC.

We have extended the framework with a statistical component, which collects the code churn and the
DT values from the past to determine the Micro-Productivity Profile for different modification lengths.

5.3 Training and testing data

The C4.5 algorithm, a normalized Gaussian radial basis function network, and a classification using
regression methods were used as prediction algorithms for the effort of the next change, which were
validated with 10-fold cross validation by their precision, recall and F-measure values.

However, to test our extended prediction method, we took a sequence of modifications belonging
to a randomly selected task called chart.implementation.java.connector. This task modified
17 files during 9 revisions. A total of 44 file modifications belong to this task, so we partitioned the
254 prediction data into two groups: one group contained 210 training data instances and the other one
contained 44 testing data instances. In the following, we will refer to the testing data as the actual value.

As the MC metric is a nominal attribute, we aggregated it into 3 groups (called Levels of Modification
Complexity (LMC)) to predict only 3 classes by the learner: we sorted ascending the MC values and
composed 3 sets with the same number of elements (low, medium, high).

6 Results

In this section the estimation models (EM and EM(x)) are applied to estimate the effort of the next
modification of the files. We also quantify the Micro-Productivity Profile for our projects and compare
the actual effort to the predicted data by the constant EM model and by the improved EM(x) model.

6.1 EM learning model

EM is the original learning model we used in our previous experiment [13]. In that paper we showed
that the combination of the product and process metrics resulted a significantly higher accuracy in the
case of our effort prediction. Since we have another, larger training set, we re-evaluated the precision
and recall of this learning model using the same 10-fold cross validation. The precision and recall
values determined by Weka are shown in Table 2. The result of our previous experiment can be seen in
parentheses. On the whole, the larger data set shows a bit better accuracy in modification complexity
prediction, except for RBFNetwork.

Model Precision(%) Recall(%) F-Measure

J48 50.1 (47.5) 49.8 (47.3) 49.9
RBFNetwork 37.9 (39.7) 40.3 (39.6) 38.4
ClassificationViaRegression 46.6 (42.7) 47.4 (45.1) 44.9

Table 2: Precision and recall values of EM.
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6.2 Micro-Productivity Profile

We collected the modification complexity values for 1, 2, 3, etc. modification lengths. Among the
254 file modifications, the most frequently modified file was changed 17 times, so we had modification
complexity statistics up to the next 16 modifications. Because of the asymmetric distribution of the
complexity values, their average would not characterize them well, so the median was calculated for
each modification length instead. The Micro-Productivity Profile defined as the rate of effort can be seen
for our projects in Figure 5.

Figure 5: Micro-Productivity Profile.

The Micro-Productivity Profile of the projects is an increasing curve. For shorter sequence lengths
the rate of effort increases fast, then for longer modification sequences the growth slows down. Note
in particular that the profile relates the number 2 to number 8. For these projects this means that if a
file were modified 8 times, the cost of the 8 modification would be twice as much as the cost if the
modification would be done in a single step.

6.3 Comparison of estimation methods and the actual data

In the following, we present some examples on how the 3 effort (EM, EM(x) and the actual effort) values
are related to each other for certain files. For the measurements we used a task with 42 modifications of
17 files as the basis of the testing data. The most frequently modified files from the 17 files of the testing
data are the SettingProvider.java and DataProvider files with 7 modifications. The predicted and
the actual effort values of these files are given in Figure 6. The y axis represents the net time of a change
of a line in minutes, while the x axis shows the length of the modification sequence.

Figure 6: Predicted and actual modification efforts in SettingsProvider and DataProvider classes.

The naive atomic change based method (EM) assumes constant productivity, while the improved
atomic change based method (EM(x)) improves the naive approach with MPP. Although EM overesti-
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mated the effort of the first modifications in the cases of SettingsProvider and DataProvider, it
gives an average value of all of the actual ones, which is overall a good estimation. By improving the
estimation model, the estimation accuracy seems to be the same, however, because of its growing ten-
dency the enhanced model seems to be much closer to the actual values. EM and EM(x) approximate
the actual efforts pretty well in these cases.

Using prediction values of all 17 files we determined the distance between the different estimation
models and the actual values. While the Euclidean distance between the EM and the actual values is
1.3669, the distance between the EM(x) and the actual values is 1.3289. The lower distance concludes
higher estimation accuracy.

6.4 Discussion

In this section we summarize some observations about the results we obtained.
Atomic change estimation: We repeated our previous experiment [13] in a larger data set, and we

found that the accuracy of the estimation models (see Table 2) is a bit higher than in the case of our
earlier research. The relatively high precision and recall values proved the relevance of the predictor set.
Learning precision is over 50%, nearly 60% for the classes which is notable compared to the random
classification (33%).

Micro-Productivity: The findings of this research statistically confirm our observation that the cu-
mulative effort to implement a series of changes is larger than the effort that would be needed if we made
the same modification in one step.

Micro-Productivity Profile: We quantified the micro-productivity decrease phenomenon by collect-
ing data representing the effort, and determined the measure of effort increase if the modification is done
by a certain number of changes (see Figure 5). We observed that for shorter sequence lengths the rate of
effort increases fast, then for longer modification sequences the effort growth slows down.

Comparison of atomic change sequence estimations: Finally, we compared the estimated targets
of the two kinds of prediction models to the actual efforts. We found that the atomic change based
estimation model improved by MPP hence giving more accurate prediction than the naive one.

6.5 Threats to Validity

Undoubtedly, the limited amount of training data and the group of testing data is a risk: we had only 3
projects to retrieve training data and we chose only 1 task to get the testing data. We intend to perform
similar experiments in the future on more data.

Drawing general conclusions from this experiment is difficult, because any method depends on a
potentially large number of relevant modifications. For this reason, we cannot assume a priori that the
results of this study generalize beyond the specific environment, in which it was conducted. However,
the results are in line with our assumption.

We are confident that our predictor set (product and process metrics) has predictive power for the
maintenance effort in other projects, but there can be other metrics which are not considered in formu-
lating our models which could improve the prediction models.

To predict the modification complexity, we separated the values on which we base our prediction into
3 groups, but this way we got extreme values inside the groups. To avoid this, we could use more than 3
groups, but for this to be possible more training data would be needed.

Managers can estimate the maintenance effort in top-down and bottom-up approaches. The top-down
effort estimation is based on the known effort of previous projects, while the bottom-up effort estimation
is based on aggregating distinct modification tasks. Our approach is a form of the latter approach, where
the effort can be estimated as the sequence of smaller modifications (which also relates to the so-called
decomposition technique [11]).
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7 Related work
Note that the discussion revolves around two topics: productivity decrease and the applicability of ma-
chine learning to derive cost models.

Traditional, the well-understood productivity measuring approaches include Putnam’s SLIM, Al-
brecht’s FP method of estimation, COCOMO and COCOMO II [3]. Besides these traditional approaches,
various machine learning techniques have been evolved. These methods are based on a set of cost drivers,
like process (e.g. process maturity), project (e.g. reuse, platform), personnel (e.g. personnel experience),
and product measures (e.g. size). An effort estimation model was introduced by Mockus et al. [9], which
predicts the amount and the distribution of maintenance effort over time. They examined several factors,
including the developer, and properties of the change: type, status, size, rate of size and complexity.
They were focused on what changes were made and how they were made, not on the properties of the
code. Our most important cost drivers are also the net development time and the code churn size.

Most of the approaches deal with macro-productivity, i.e., they try to reason about the (future) be-
haviour of a system by considering coarse granularity data that is available at higher levels of observation.
Premraj et al. [10] examined the productivity trends over time with long term objective. They had evi-
dence of productivity improvement over the years and stated that there are significant differences in size
and effort between development and maintenance projects. Contrarily, we examined productivity trends
with short term objective and to distinguish development and maintenance is only our plan.

Our approach aims at micro-productivity, where fine granularity data is collected and used from
lower levels of operation in the projects. Donzelli [5] used data from a real project to show that using
a combination of different maintenance practices are needed to maximize maintenance performance. In
the area of micro-productivity Junio et al. [7] applied k-means clustering algorithm for partitioning and
grouping the maintenance requests. By their PASM process the grouping maintenance requests helps to
reduce maintenance costs. Although we grouped the maintenance requests not by automatic clustering
but continuously coming maintenance requests of a file, we also observed the micro-productivity growth.
While in the former case the cost can be reduced by grouping the maintenance requests, our approach
shows an inevitable extra cost in maintenance.

According to Abdel-Hamid [1] the actual productivity is the potential productivity decreased with
losses due to faulty processes, where the potential productivity is the level of productivity attained when
an individual or group makes the best possible use of their available resources, and the faulty processes
are typically due to dynamic motivation factors and communication overhead. Imperfect or not deliber-
ating changes are not referred, which also can cause loss.

8 Conclusion
We believe that micro-productivity decrease is a general phenomenon (not even specific to software
engineering), which deserves much more attention when software estimation is concerned. The MPP
profile computed for our subject development projects shows an eye-opening tendency that, on average,
after only 8 atomic modifications the micro-productivity halves. This means that an effort prediction
approach based on atomic changes cannot be accurately used to predict larger modifications by simple
summing, but the inclusion of MPP profiles is recommended.

We concentrated on what we called atomic change sequence estimation as opposed to change task
estimation. Although the available experimental data did not allow us to try learning on task based
changes, we took an alternative route with MPP profiles and atomic change sequences, which turned out
to be well applicable. However, in the future when we will have significantly more data about change
requests we will concentrate on this topic as well.

We presented our experimental approach and framework for effort estimation, which employs ma-
chine learning techniques based on various process and product metrics. Despite the relatively good
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learning accuracy of more than 50% (with a 3-class classification), surely, we have to perform additional
experiments on larger data sets in order to further enhance the basic methods and get even better learning
results. Our initial model could predict the effort for atomic changes, and after we have observed that
the prediction can be made better when incorporating the expected length of the modification, we started
to work on incorporating the micro-productivity decrease. Our experiments with a real industrial project
showed that a prediction model based on predicting atomic change adjusted by MPP profile shows better
approximation to the actually measured data than without MPP profile.

Further research is required to validate the approach in different situations and environments, and
there are several ways to improve or extend our current results. We are interested in how these MPP
profiles look like on different projects, with different development models (e.g. linear, agile, evolutionary,
open or closed source). We also expect to find different profiles for different phases of a project, like
initial development, evolution, or maintenance. Finally, it would also be interesting to see whether
individual developers have their own profiles based on their experience and skill.
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