Improving the Multi-stack Decoding Algorithm
in a Segment-Based Speech Recognizer

Gébor Gosztolya and Andras Kocsor

Research Group on Artificial Intelligence of the Hungarian Academy of Sciences and
University of Szeged, H-6720 Szeged, Aradi vértanik tere 1., Hungary,
ghosty@rgai.inf.u-szeged.hu, kocsor@inf.u-szeged.hu

Abstract. During automatic speech recognition selecting the best hy-
pothesis over a combinatorially huge hypothesis space is a very hard task,
so selecting fast and efficient heuristics is a reasonable strategy. In this
paper a general purpose heuristic, the multi-stack decoding method, was
refined in several ways. For comparison, these improved methods were
tested along with the well-known Viterbi beam search algorithm on a
Hungarian number recognition task where the aim was to minimize the
scanned hypothesis elements during the search process. The test showed
that our method runs 6 times faster than the basic multi-stack decoding
method, and 9 times faster than the Viterbi beam search method.

Keywords. search methods, segmental speech model, speech recogni-
tion, multi-stack decoding, Viterbi beam search.

In the last two decades the performance of speech recognition has greatly im-
proved. With the growth of computational power, the same algorithms are com-
puted faster, and this also makes further refinements possible, which may result
in a more accurate recognition system. However the more complex the approach,
the bigger the hypothesis space might be. The search over the hypothesis space
is a vital issue because there are usually millions of hypotheses, and most of
them have very low probabilities. This is why the search methods remain an
important issue in speech recognition even today.

The multi-stack decoding method [3] is a well-known search algorithm with
a generally good performance. However, we sought to improve it by constructing
a faster method which recognized the same amount of test words. Although we
tested the improvements on Hungarian numbers, all of these strategies can be
used for other languages and utterances as well. The tests were performed within
the framework of our segment-based speech recognition system called the OASIS
Speech Laboratory [B], [7].

The structure of the paper is as follows. First we briefly discuss the funda-
mentals of speech recognition, then compare the frame-based and segment-based
approaches. Next we explain the standard multi-stack decoding method and the
Viterbi algorithm, and our improvements on the former. The final part of the
paper discusses the experiments, the effectiveness of each improvement, and the
results we obtained in practice.

P.W.H. Chung, C.J. Hinde, M. Ali (Eds.): IEA/AIE 2003, LNAI 2718, pp. 744-[749] 2003.
© Springer-Verlag Berlin Heidelberg 2003

Improving the Multi-stack Decoding Algorithm 745

1 Frame-Based vs. Segment-Based Speech Recognition

In the following the speech signal A will be treated as a chronologically increasing
series of the form ajas . .. a;, while the set of possible phoneme-sequences (words)
will be denoted by W. The task is to find the word @ € W defined by

P(Alw) - P(w)

W = arg max P(w|A) = arg max P(A)

p— PA 'P
ax arg max (Alw) - P(w),

where P(w) is known as the language model. If we optimize P(w|A) directly, we
are using a discriminative method, while if we use Bayes’ theorem and omit P(A)
as we did in the formula above the approach is generative. The speech recognition
process can be frame-based or segment-based, depending on whether the model
incorporates frame-based or segment-based features [4].

Frame-based speech recognition. In speech theory a widely-used model is Hid-
den Markov Modelling (HMM), which is a frame-based generative method. HMM
models speech as a collection of states which are connected by transitions. Each
state associates an output observation with an output probability, and each
transition has an associated transition probability. Here, the feature vectors
are the output observations. The output probability models the acoustic con-
straints, while the transition probability between HMM states models duration
constraints. For further details on HMM see [6].

Segment-based speech recognition. In this less commonly used approach we as-
sume for a word w = o1 ... 0; that a phoneme o; is based on 4; = a;aj41 ... aj4yr—1
(an r-long segment of A, where A = A;...A,). With this A; segment first
long-term features are extracted, then a phoneme classifier is used to iden-
tify the most probable phoneme covered by the underlying segment. In our
framework Artificial Neural Networks (ANN) are employed, but the way the
classifier actually works is of no concern to us here. We further assume that
P(w|A) =T, P(0i|A) =[], P(0i|A;), i.e. that the phonemes are independent.
In order to determine P(0;|A;), we need to know the exact values of the A;s. This
is a hard task, and because automated segmentation cannot be done reliably,
the method will make many segment bound hypotheses. So we must include this
segmentation S (which determines A; ... A,) in our formulae:

P(w|A) = P A) = P A)-P(S|A) = P A)-P(S|A
(w|A) XS: (w, S|A) zS: (]S, 4) - P(S|A) = max P(w]S, 4) - P(S|4)

For a given S, both P(w|S, A) and P(S|A) can be readily calculated using a

classifier. The former is computed via a phoneme classifier, while the latter leads

to a two-class classification problem with classes called “phoneme” and “anti-
phoneme” [1], [1].

2 The Search through the Hypothesis Space

In this section we will build the hypothesis space by using the segment-based
approach, but in a frame-based system an equivalent hypothesis space would

746 G. Gosztolya and A. Kocsor

appear. In the following instead of a probability p we will use the cost ¢ =
logp. The hypothesis space is a subset of a Cartesian product space of two
spaces. The first space consists of phoneme sequences, while the second con-
sists of segmentations. An array T,, = [to,1,...,t,] is called a segmentation if
0=ty <t < - < t, =t holds, which defines n neighboring [t;, ;1] in-
tervals. We also require that every phoneme fit into some overlapping interval
[ti,tq] (i,q € {0,...,n},0 < i < g < n), ie. the former A; speech segment
here is referred by its start and end times. Given a set of words W, we use
Pref(W) to denote the k-long prefixes of all the words in W having at least k
phonemes. Let TF = {[tiy,ti,,...,ti,] : 0 =i < i1 < -+ < i, < n} be the set
of sub-segmentations over T,, with k connected intervals. Now we will define the
hypothesis space recursively by constructing a search tree containing all the hy-
pothesis elements as its nodes. We will denote the root of the tree (the initial hy-
pothesis) by ho = (0, [to]), and Pref; (W) x T} will contain the first-level nodes.
For a (0102...0j, [ti,, ..., t;,]) leaf we link all (0102...05,[tiy, ..., ti;, ti;.,]) €
Prefj1(W) x T2+ nodes. We are looking for a leaf with the lowest cost.

If a hypothesis is discarded because of its high cost (i.e. we do not scan
its descendants), we say that it was pruned. A stack is a structure for keeping
hypotheses in. Moreover, we use limited size stacks in the multi-stack decod-
ing algorithm: if there are too many hypotheses in a stack, we prune the ones
with the highest cost. Extending a hypothesis (0102 ... 05, [t .. .,t;;]) having a
cost ¢ with a phoneme v and a time instance ¢;,,, will result in the hypothesis
(0102...0v,[tiy, ..., ti;, ti;,,]), which has a cost of ¢ together with the cost of v
in the interval [t;,,t;,,,].

Multi-stack decoding method. In this algorithm we assign a separate stack for
each time instance t; and store the hypotheses in the stack according to their
end times. In the first step we place hg into the stack associated with the first
time instance then, advancing in time, we pop each hypothesis in turn from the
given stack, extend them in every possible way, and put the new hypotheses into
the stack belonging to their new end time [3]. Algorithm 1 in Appendix shows
the pseudocode for multi-stack decoding.

Viterbi beam search. This algorithm differs only in one feature from the multi-
stack decoding approach: instead of keeping the n best hypotheses, a variable
T called the beam width is employed. For each time instance ¢ we calculate
Diyin, i-e. the lowest cost of the hypotheses with the end time ¢, and prune all
hypotheses whose cost D falls outside D, + T [2].

3 How Might Multi-stack Decoding Be Bettered?

When calculating the optimal stack size for multi-stack decoding, it is read-
ily seen that this optimum will be the one with the smallest value where no
best-scoring hypothesis is discarded. But this approach obviously has one major
drawback: most of the time bad scoring hypotheses will be evaluated owing to
the constant stack size. If we could find a way of estimating the required stack

Improving the Multi-stack Decoding Algorithm 747

size associated with each time instance, the performance of the method would
be significantly improved.

i

i)

i)

iv)

One possibility is to combine multi-stack decoding with a Viterbi beam
search. At each time instance we keep only the n best-scoring hypotheses,
and also discard those which are not close to the peak (thus the cost will
be higher than D,,;, + T). Here the beam width can also be determined
empirically.

Another approach is based on the observation that, the later the time in-
stance, the smaller the required stack. We attempted a simple solution for
this: the stack size at time ¢; will be s - m?, where 0 < m < 1 and s is the
size of the first stack. Of course m should be close to 1, otherwise the stacks
would soon be far too small for safe use.

Another technique is a well-known modification of stacks. It can easily hap-
pen that there are two or more hypotheses which have the same phoneme-
sequence and the same end times (it may be that some earlier phoneme
bound is at a different time instance). In this case it is sufficient to retain
only the most probable ones. Surprisingly, a simpler version of it worked
better: we allowed the stacks to store more of these “same” hypotheses, but
when extending a hypothesis in the stack, we popped it and then compared
its phoneme sequence with the previously popped one (when there was one).
The current hypothesis is extended only when the phoneme sequences differ.
Yet another approach for improving the method comes from the observation
that we need big stacks only at those segment bounds where they exactly
correspond to phoneme bounds. So if we could estimate at a given time in-
stance what the probability is of this being a bound, we could then reduce
the size of the hypothesis space we need to scan. We trained an ANN for this
task (on derivative-like features) where its output was treated as a probabil-
ity p. Then a statistical investigation was carried out to find a function that
approximates the necessary stack size based on this p. First, we recognized
a set of test words using a standard multi-stack decoding algorithm with a
large stack. Then we examined the path which led to the winning hypothe-
sis, and noted the required stack size and the segment bound probability p
for each phoneme. The result represented as a stacksize—probability diagram
was used to obtain a proper fitting curve estimating the required stack size.
It can be readily shown that most of the higher stack sizes are associated
with a high value of p, so the stack size can indeed be estimated by this
probability. This observation was confirmed by the test results.

The last suggested improvement is based on our observation that the mini-
mum size of a stack depends as well on the number of hypotheses the earlier
stacks hold. The size of a new stack was estimated by the previous ones us-
ing preliminary statistics. But this type of prediction is only of value if other
improvements were initially applied and stack-size reduction was achieved
beforehand.

748 G. Gosztolya and A. Kocsor

Table 1. Summary of the best performances of all the method combinations used.

Method combinations total ANN calls avg. ANN calls
Viterbi beam search 5,469,132 17,529.26
multi-stack decoding 3,754,456 12,033.51
multi-stack + ¢ 2,263,738 7,255.57
multi-stack + i 3,701,035 11,862.29
multi-stack + ii¢ 1,555,747 4,986.36
multi-stack + iv 3,283,114 10,522.80
multi-stack + v — —
multi-stack + it + @ 888,445 2,847.58
multi-stack + it + @4 1,409,434 4,517.41
multi-stack + 4ii + v 1,280,783 4,105.07
multi-stack + it + v — —
multi-stack + i3 + ¢ + i3 861,253 2,760.42
multi-stack + 74 + ¢ + v 728,702 2,335.58
multi-stack + 7 + ¢ + v 808,635 2,591.77
multi-stack + it + @ + v + ¢ 722,902 2,316.99
multi-stack + it + ¢ + v + v 678,709 2,175.34
multi-stack + 7 + ¢ + v + v + @ 677,309 2,170.86

4 Results and Conclusion

We had six speakers who uttered 26 numbers, each one twice, giving a total of
312 occurrences. We expected the methods to score the same results, which they
did, although with different parameters even for each grouping. We monitored
the methods by the number of hypothesis elements scanned: the lower the num-
ber, the better the method. We employed sequential forward selection: first we
checked all improvements separately with their best parameters, then we chose
the best and checked all the others combined with it, and so on. For comparison
we also performed a standard Viterbi beam search test.

It is quite surprising that improvement ii¢ produced the best results. After
that, improvement ¢ (the Viterbi beam search) reduced the search space the
most, followed by improvement iv (with the segment bound probability). It can
be seen that all improvements enhanced the performance of the recognition in
every case; the best result was obtained by using all of them together. But we also
suggest partial combinations such as combination it + ¢ + v + v or i1 + i +
1w, having found that further extensions did not greatly better the performance.

Overall we conclude that, on examining the test results, it is apparent that
we can indeed marry the multi-stack decoding and Viterbi beam search methods
without any loss of accuracy, and with a marked improvement in performance.
Further significant search space reductions were also possible, so our new combi-
nation ran some 6 times faster than the multi-stack decoding method, and some
9 times faster than the Viterbi beam search method.

Improving the Multi-stack Decoding Algorithm 749

5 Appendix

The multi-stack decoding pseudocode described by Algorithm 1. “” means
that a variable is assigned a value; “<=” means pushing a hypothesis into a stack.
Stack[t;] means a stack belonging to the ¢; time instance. A H (¢, p, w) hypoth-
esis is a triplet of time, cost and a phoneme-sequence. Extending a hypothesis
H(t,c,w) with a phoneme v and a time ¢; results in a hypothesis H' (t+t;,¢’, wv),
where ¢’ = ¢+ ¢;, ¢; being the cost of v in the interval [¢,¢;]. We denote the
maximal length of a phoneme by maxlength.

Algorithm 1. Multi-stack decoding algorithm
Stack[to] = ho(to, 0, “”)
fori=0...ndo
while not empty(Stack[t;]) do
H(t,c,w) < top(Stack[t;])
if t; = tmax then
return H
end if
for | =i+ 1---i+ mazxlength do
for all {v | wv € Prefitiength of w} do
H'(t;,c’,w') + extend H with v
Stack[t;] < H'
end for
end for
end while
end for

References

1. J. Grass, J. CHANG, M. McCANDLESS, A Probabilistic Framework for Features-
Based Speech Recognition, Proceedings of International Conference on Spoken Lan-
guage Processing, Philadelphia, PA, pp. 2277-2280, 1996.

2. P.E. HArT, N.J. NiLssON AND B. RAPHAEL, Correction to “A Formal Basis for
the Heuristic Determination of Minimum Cost Paths”, SIGART Newsletter, No.
37, pp. 28-29, 1972.

3. X. HuanGg, A. ACERO, H.-W. HON, Spoken Language Processing, Prentice Hall
PTR, 2001.

4. F. JELINEK, Statistical Methods for Speech Recognition, The MIT Press, 1997.

5. A. Kocsor, L. TOTH AND A. KUBA JR., An Querview of the Oasis Speech Recog-
nition Project, Proceedings of ICAI ’99, Eger-Noszvaj, Hungary, 1999.

6. L.RABINER AND B.-H. JUANG Fundamentals of Speech Recognition Prentice Hall,
1993.

7. L. T6éTH, A. Kocsor AND K. KovAcs, A Discriminative Segmental Speech Model
and its Application to Hungarian Number Recognition, Text, Speech and Dialogue,
2000.

	1 Frame-Based vs. Segment-Based Speech Recognition
	2 The Search through the Hypothesis Space
	3 How Might Multi-stack Decoding Be Bettered?
	4 Results and Conclusion
	5 Appendix
	References

