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Abstract

In speech recognition there is a constant need to improve the recognition
accuracy. There are many ways of doing this, and among them, one
might be to increase phoneme recognition rates. Here, however, we
decided to investigate the usefulness of triangular norms taken from the
field of fuzzy logic. The triangular norms are tools for aggregating one
probability factor from multiple probability values, thus they seem to
be ideal for constructing hypothesis probabilities. The tests showed that
this idea is fruitful: the recognition error rate was reduced by 16% both
in isolated word and sentence recognition, without causing any increase
in the running times.

Keywords: speech recognition, probability calculation, fuzzy logic, tri-
angular norms

1 Introduction

In the problem of Automatic Speech Recognition (ASR) an important task
is to improve the recognition accuracy, but in most cases only tools with small
or no further computational needs are permitted. This paper deals with one
such idea, that of applying triangular norms (t-norms for short) [1, 2] from
fuzzy logic to better the probability calculation part.



There are many fields where fuzzy methodology has been applied such as
in the field of image processing [3]. We previously used a family of aggrega-
tion operators in speech recognition to better the recognition percentage [4].
Now we will test the triangular norms for this task because they provide the
largest range of operators that can be used in our case. We experiment with
several t-norms and try to determine the best parameters for our needs.

The structure of this paper is as follows. First we define the speech recog-
nition problem in a segment-based environment. Next, we introduce triangular
norms and show some of their properties. Then we describe the test environ-
ment and the test databases, and analyze the test results. Lastly we draw some
conclusions.

2 The Speech Recognition Problem

In speech recognition problems we have a speech signal represented by a
series of observations A = a1a2 . . . at, and a set of possible phoneme sequences
(words or word sequences) that will be denoted by W. Our task is to find the
word ŵ ∈ W such as

ŵ = arg max
w∈W

P(w|A), (1)

which, using Bayes’ theorem, is equivalent to

ŵ = arg max
w∈W

P(A|w) · P(w)
P(A)

. (2)

Further, noting the fact that P(A) is the same for all w ∈ W, we have that

ŵ = arg max
w∈W

P(A|w)P(w). (3)

Speech recognition models can be divided into two types – the discriminative
and generative ones –, depending on whether they use Eq. (1) or Eq. (3).
Throughout this paper we will apply the customary, generative approach [5].

Now let us define w as o1 . . . on, where o j is the jth phoneme of a word (or
word sequence) w. Furthermore, let A1, . . . , An be non-overlapping segments
of the observation series A = a1 . . . at, where A j = at j−1 . . . at j , j ∈ {1, . . . , n}.
An A j segment is defined by its start and end times and will be denoted by
[t j−1, t j]. For a segmentation A = A1, . . . , An we put the values of the time in-
dices belonging to each segment into a vector S n = [t0, . . . , tn] (1 = t0 < . . . <
tn = t). We make the conventional assumption that the phonemes in a word
are independent, thus P(A|w) can be obtained from P(A1|o1), . . . , P(An|on) in



some way. Usually we simply multiply these values, but now we will try out
some other methods here as well.

The P(A j|o j) (or P([t j−1, t j], o j)) values in effect measure how well the A j

segment represents the o j phoneme. To calculate the values, many ways can be
chosen, but in this paper we opted for the segment-based approach. In it this
probability is calculated by considering longer, interval-based features which
describe the whole A j segment. In our case it meant that an Artificial Neural
Network (or ANN) [6] had to be trained on these features, and then its output
was normalized to the length of the given segment. We should say here that,
of course, any machine-learning algorithm could be used instead. We should
also remark that the tests made in this paper can be easily transformed to a
frame-based framework.

Now we will define the set of possible hypotheses. The hypothesis space
is a Cartesian product space where the first dimension is a set of word pre-
fixes, while the second is a set of segmentations. Given a set of words (or
word sequences) W, we use Pre fk(W) to denote the k-long prefixes of all the
words in W having at least k phonemes. Let S k = {[t0, t1, . . . , tk] : 1 = t0 <
t1 < · · · < tk ≤ t} be the set of sub-segmentations made of k segments over
the observation series a1 . . . at. The hypotheses will be the elements of H =
⋃∞

k=0(Pre fk(W)×S k). We will denote the root of the tree – the initial hypothe-
sis – by h0 = (∅, [t0]), h0 ∈ H. Pre f1(W)×S 1 will contain the first-level nodes.
For a (o1 . . . o j, [t0, . . . , t j]) leaf we link all (o1 . . . o jo j+1, [t0, . . . , t j, t j+1]) ∈
Pre f j+1(W) × S j+1 nodes.

Now we need to assign probabilities to the nodes of this search tree. For
this we will use a function T : [0, 1]2 → [0, 1]. Usually T is the simple
multiplication operator (i.e. it supplies the product of its two parameters), but
here we will also test various other operators. Now let P(h0) = 1. After, let

P(o1 . . . o j+1, [t0, . . . , t j+1]) = T (P(o1 . . . o j, [t0, . . . , t j]), P([t j, t j+1], o j+1)).
(4)

We look for a leaf with the highest probability. Of course, any search method
can be applied, but here we chose the multi-stack decoding algorithm [7].

In the following we will test different families of triangular norms for this
T .

3 Triangular norms

The triangular norms are standard aggregation operators of fuzzy sets [1,
2]. We would like to apply them to speech recognition in hypothesis probabil-



ity calculations (i.e. use each in Eq. (4) as T ), but first we need to define some
basic terms.

Definition 1 A triangular norm (t-norm) is a binary operation T on the inter-
val [0, 1], i.e. a function T : [0, 1]2 → [0, 1], such that for all x, y, z ∈ [0, 1] the
following four axioms are satisfied:

(T1) T (x, y) = T (y, x). (commutativity)
(T2) T (x,T (y, z)) = T (T (x, y), z). (associativity)
(T3) T (x, y) ≤ T (x, z) whenever y ≤ z. (monotonicity)
(T4) T (x, 1) = x (boundary condition)

Such a t-norm is the product operator (TP). Now we make some more defini-
tions:

Definition 2 A t-norm T is continuous if and only if it is continuous in each
component, i.e. if for all x0, y0 ∈ [0, 1] both the vertical section T (x0, . . .) and
the horizontal section T (. . . , y0) are continuous functions in one variable.

Definition 3 A t-norm T is Archimedean if for all x, y ∈]0, 1[ there is an n ∈ N
such that T (T (. . .T (x1, x2), . . . , xn−1), xn) < y, where x1 = . . . = xn = x.

These two properties seem to be important for a T function in Eq. (4). We
should expect that a slightly different phoneme probability affects the hypoth-
esis probability by only a little bit too. In other words, there are no sudden gaps
between these kind of hypotheses. This way, T should be continuous. On the
other hand, if T satisfies the Archimedean property, then the longer a word is,
the closer the result (and hence the probability of the word pronounced) is to
zero, which is also desirable. Another reason for anticipating these properties
is that our default operator, TP is also both continuous and Archimedean. Thus
in the following we will use triangular norms which fulfil both these require-
ments.

3.1 Common triangular norms

Now we introduce the triangular norms that are common in the literature,
and which have been tested here. One of the basic t-norms is the Lukasiewicz
t-norm, which is

TL(x, y) = max(x + y − 1, 0). (5)

However, there exist t-norm families, that is triangular norms with a single
parameter. Following Klement, Mesiar and Pap [2], we list the common ones.



Note that most of these t-norm families can have other λ values correspoding
to some basic t-norms, but here we omit the full listing due to lack of space.
Schweizer-Sklar t-norms (λ ∈ R, λ , 0):

T S S
λ (x, y) = (max((xλ + yλ − 1), 0))1/λ (6)

Hamacher t-norms (λ > 0):

T H
λ (x, y) =

x · y
λ + (1 − λ)(x + y − x · y)

(7)

Yager t-norms (λ > 0):

T Y
λ (x, y) = max(1 − ((1 − x)λ + (1 − y)λ)1/λ, 0) (8)

Dombi t-norms (λ > 0):

T D
λ (x, y) =

1

1 + (( 1−x
x )λ + ( 1−y

y )λ)1/λ
(9)

Sugeno-Weber t-norms (λ > −1):

T S W
λ (x, y) = max(

x + y − 1 + λxy
1 + λ

, 0) (10)

Aczél-Alsina t-norms (λ > 0):

T AA
λ (x, y) = e−((− log x)λ+(− log y)λ)1/λ

(11)

Mayor-Torrens t-norms (λ > 0):

T MT
λ (x, y) =

{

max(x + y − λ, 0) if λ ∈]0, 1] and (x, y) ∈ [0, λ]2,
min(x, y) otherwise.

(12)

Table 1 describes the intervals in which these t-norm families satisfy the conti-
nuity or Archimedean property, or both. The reader should note here that T MT

with λ = 1 is the same as TL.

4 Experimental results

We performed two experiments in order to test the above mentioned trian-
gular norms. In the first one we sought to check their capabilities during the
recognition of isolated words. We used a corpus of 500 children uttering 60
words each, making a total of 30,000 utterances of 2,000 different Hungarian



T S S
λ

T H
λ

T Y
λ

T D
λ

T S W
λ

T AA
λ

T MT
λ

cont. λ ∈ R\0 λ > 0 λ > 0 λ > 0 λ > −1 λ > 0 0 ≤ λ ≤ 1
Arch. λ ∈ R\0 λ > 0 λ > 0 λ ≥ 0 λ ≥ −1 λ ≥ 0 λ = 1
both λ ∈ R\0 λ > 0 λ > 0 λ > 0 λ > −1 λ > 0 λ = 1

Table 1. The intervals where the triangular norm families we deal with are continuous,
Archimedean, and both continuous and Archimedean.

words. 24,000 utterances were used for training, while the remaining 6,000
words were used for testing purposes. Many of the young speakers had just
learned to read and some of them had difficulties with pronunciation, which
led to a diverse database. Moreover, many used words were very similar to
each other, which made the recognition task difficult. Testing was done in the
framework of the OASIS Speech Laboratory [8]. The diversity of the database
led to a basic word recognition rate of 92.17% in the OASIS system, while the
HTK system [10] we used as a reference achieved a score of 92.60%.

In the other test we sought to test the performance of these triangular norms
in sentence recognition. For it we trained the phoneme recognition ANN on a
large, general database. 332 people of various ages spoke 12 sentences and 12
words each, which were recorded on different computers and sound cards via
different microphones. [9] This way we fulfilled our goal of training a speaker-
independent phoneme classifier. We should also mention here that the resulting
neural networks can be used in any context.

In the next step we combined this phoneme classification method with a
simple language model. The sentences spoken were restricted to those of med-
ical reports. 150 randomly selected sentences were recorded, which were then
used as the test database. The language model was a simple word 2-gram; i.e.
the probability of the next word depends only of the last word spoken, and it
is calculated by a statistical investigation of texts in a similar field. Thus we
carried out this investigation on all the available almost 9,000 reports, which
contained 2,500 different words in 95,000 sentences.

The performance of a speech recognition system can be easily measured
on word recognition tasks: we only have to compute the ratio of the correctly
recognized and the tested words. However, we cannot use this method on sen-
tence recognition as we do now because only one badly identified word would
ruin the whole sentence. We cannot compare the two sentences word by word
either, because one incorrectly inserted or skipped word would also corrupt the
calculated performance ratio. For this reason, usually the edit distance of the
two sentences (the original and the resulted) is calculated; that is, we construct



T S S
λ

T H
λ

T Y
λ

T D
λ

T AA
λ

Word
interval [−3, 1] ]0, 15] [180, 320] ]0, 5] ]0, 20]

step 0.01 0.02 0.5 0.01 0.05

Sentence
interval [−2, 0.5] ]0, 2] — [0.1, 0.5] [0.9, 1.4]

step 0.01 0.01 — 0.02 0.02

Table 2. The tested interval and the step sizes of the triangular norm families.

the resulting sentence from the original by using the following operations: in-
serting and deleting words, and replacing one word with another one. These
operations have some cost (in our case 3, 3 and 4, respectively), and then we
choose an operation set with the lowest cost. Then we can calculate the fol-
lowing measures:

Correctness =
N − S − D

N
(13)

and
Accuracy =

N − S − D − I
N

, (14)

where N is the total number of words in all the original sentences, S is the
number of substitutions, D is the number of deletions and I is the number of
insertions. Under these circumstances, the baseline was correctness = 92.03%
and accuracy = 91.69%, which is probably due to the large number of words
and the simple nature of the language model.

The testing was carried out in a similar way for both test environments.
First we tested the Lukasiewicz t-norm (TL). The next step was to test the
t-norm families that had a λ parameter. For each t-norm family the tested
interval was first determined by some rough tests in the region where it is
both continuous and Archimedean, then a suitable step size was assigned to
it for which we increment the λ value inside this interval. Unfortunately the
Sugeno-Weber family did not produce any acceptable results at this stage, so
we excluded it from further tests. Neither did the Yager family on the sentence
recongition task, so we omitted these as well. Table 2 shows the tested intervals
and the step sizes for both test series.

Next the testing was done on these the intervals and with these step sizes.
The results can be seen on Figure 1 and Figure 2, while the best performances
of the t-norms tested are listed in Table 3 and Table 4. Note that TL = T MT

1 ,
so the best performance of T MT is also below 1% by all measures. The rea-
son for this is probably that the Lukasiewicz t-norm is a rather drastic one for
probabilities appearing in a speech recognition environment: to get a result
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Figure 1. Recognition accuracy using the Schweizer-Sklar, Hamacher, Yager, Dombi
and Aczél-Alsina t-norm families, relative to the product operator.

t-norm family TP TL T S S
λ

T H
λ

Best performance 92.17% 0.26% 93.47% 92.60%
Rel. error reduction — — 16.60% 5.49%

t-norm family TP T Y
λ

T D
λ

T AA
λ

Best performance 92.17% 89.45% 93.47% 93.04%
Rel. error reduction — — 16.60% 11.11%

Table 3. Recognition percentages and relative error reduction rates when the triangu-
lar norms were applied.
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Figure 2. Recognition accuracy using the Schweizer-Sklar, Hamacher, Yager, Dombi
and Aczél-Alsina t-norm families, relative to the product operator. The sides of the
tested regions where there was no information shown, was omitted.

t-norm family TP TL T S S
λ

T H
λ

Best accuracy 91.69% 0.69% 92.61% 92.50%
Relative error reduction — — 11.07% 9.74%

Best correctness 92.03% 0.81% 93.31% 93.19%
Relative error reduction — — 16.06% 14.55%

t-norm family TP T Y
λ

T D
λ

T AA
λ

Best accuracy 91.69% — 92.25% 92.03%
Relative error reduction — — 6.73% 9.74%

Best correctness 92.03% — 93.03% 92.73%
Relative error reduction — — 12.54% 8.78%

Table 4. Recognition percentages and relative error reduction rates when the triangu-
lar norms were applied.



greater than 0, the sum of the two parameters must be over 1. But the prob-
ability value of a hypothesis (one of these parameters) is usually very close
to 0, while the probability of the next phoneme (the other parameter) is rarely
greater than 0.5. Thus practically all hypotheses had a probability of 0, result-
ing in just a few hits which were just lucky guesses. The bad performance of
the Sugeno-Weber t-norm family can be similarly explained: the probability
values generated were 0 too often to get an acceptable result.

The remaining triangular norms produced an acceptable recognition per-
formance, although the Yager t-norm family could not achieve the initial per-
centage value in the word recognition task. Also, it performed poorly on sen-
tence recognition, which was clear even after the preliminary tests. The others,
however, matched or even outperformed the basic product operator. In the first
test environment the Hamacher and the Aczél-Alsina family gave a slight im-
provement of 5.49% and 11.11% (in terms of the relative error reduction). The
Schweizer-Sklar [11] and the Dombi [12] t-norm families were the most ef-
fective for this task: we were able to achieve a 16.60% relative error reduction
using these two t-norms, causing the recognition percentage to increase from
92.17% to 93.47%.

In the second test environment the results were similar. Although the rela-
tive error reduction rates were different for the accuracy and correctness scores,
there was a definite improvement in the values. Here also the Schweizer-
Sklar [11] proved to be the best-working triangular norm family with relative
improvements of 11.07% and 16.06% (accuracy and correctness, respectively).
The Hamacher family worked almost as well with rates of 9.74% and 14.55%;
moreover, the Dombi and Aczél-Alsina families produced good results. Lastly,
we should stress here that it is not the best parameter value that is the key issue,
because it may vary in different settings (feature set, frame or segment-based
model etc.). The actual value of λ can be tuned to suit the particular prob-
lem. What is important is the ability of a triangular norm to actually better the
recognition scores.

5 Conclusions and Future Work

In this paper we investigated the usefulness of triangular norms for tasks
in speech recognition. Several t-norms were tested as hypothesis probability
approximators. The results confirm that this approach works, because we were
able to reduce the recognition error by 16% without incurring any increase in
the running times. The next logical step might be to experiment with full re-
inforcement aggregation operators (or uninorms) because their full reinforce-



ment property makes them closer to human decision making. This is what we
intend to do in the future.
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